
Application Deployment & DevOps

Enterprise Platform and Integration Concepts
Software Engineering II
WS 2020/21

Image by Kevin Labianco from flickr: https://www.flickr.com/photos/kevinl8888/470783978/in/photostream/ (CC BY-NC-ND 2.0)



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

2



Application Deployment — Software Engineering II 

Infrastructure as Code enables DevOps teams to test applications in 

production-like environments early in the development cycle.

Terms

■ Provisioning:

Creating the systems that you’ll need to manage later on

■ Configuration management:

actually making systems useful, install and configure them

■ Deployment:

Getting the work we’ve done onto the systems in question

IaC and DevOps

3
Source: https://archive.fosdem.org/2018/schedule/event/deployment_provisioning_orchestration/



Application Deployment — Software Engineering II 

Development vs. Operations

4

Users

Production
Current Release

Dev A

Dev B

Repository
All Code

Development
Working Copy

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Application Deployment — Software Engineering II 

Problems

■ Software needs to be operated, run in production, and maintained

□ Developers vs. Admins

■ Short development and deployment cycles

■ Maintain quality standards

Development & Operations

5

Customer Devs Admins

Agile DevOps

“Agile for deployment”

DevOps

■ Formalized process for deployment

■ Focus on communication, collaboration, 

and integration between Dev and Ops



Application Deployment — Software Engineering II 

Definition

■ Fairly recent trend

■ "[...] no uniform definition for […] DevOps.

[…] people use their own definitions" [Dyck, 2015]

■ "There is no consensus of what concepts DevOps covers,

nor how DevOps is defined" [Erich, 2017]

■ Best practices to

shorten the application development life cycle

DevOps

6
[Dyck, 2015] Dyck, Andrej; Penners, Ralf; Lichter, Horst (19 May 2015). "Towards Definitions for Release Engineering and DevOps".

Proceedings of the 2015 IEEE/ACM 3rd International Workshop on Release Engineering. IEEE.

[Erich, 2017] Erich, F.M.A.; Amrit, C.; Daneva, M. (June 2017). "A Qualitative Study of DevOps Usage in Practice". Journal of Software: Evolution and Process. 29 (6).

Analysis

Design

ImplementationMaintenance

Planning

Maintenance



Application Deployment — Software Engineering II 

Not DevOps

7

Dev A

Dev B

Users

Repository
All Code

Development
Working Copy

Production
Current Release

Development
Working Copy

Development Operations

Development Data
Test Data
Production Data

Code
Build



Application Deployment — Software Engineering II 

Release

■ Planned state of the application

■ Set of requirements

■ Examples

□ Next big version with new shiny features

□ Urgent hotfix

□ Anything in-between

Version

■ Could be anything

■ A release has a version number

Terminology

8



Application Deployment — Software Engineering II 

Build

■ Attempt to implement a release

□ Snapshot of application

■ Often the output of the build tool

□ Not: the build script/tool/process

■ Version number is 

“<Release Number>.<Build Number>”

Terminology

9



Application Deployment — Software Engineering II 

Environment

■ A system on which the application 

can be deployed and used

To promote

■ To deploy a build on the next environment

To release

■ To promote a build to production

■ Thereby finishing the release

Terminology

10



Application Deployment — Software Engineering II 

Overview of Environments

Development
managed by developers

Development

■ Where the developers work

■ One per developer (if possible)

Integration

■ Runs all tests

■ A try-out version

Quality Assurance

■ Professional manual testing

Operations
managed by admins

Staging

■ Clone of production system

■ Final rehearsal

11

Production

■ The live system

■ Failures are expensive here



Application Deployment — Software Engineering II 

Example

12

Release 3.7

Integration Quality Assurance Staging Production

Build 5Build 5 Build 5

Build 2



Application Deployment — Software Engineering II 

Example

13

Release 3.7

Integration Quality Assurance Staging Production

Build 5

Build 2

Build 5Build 5

Build 6Build 7Build 8

Build 7

Developers
changing Code



Application Deployment — Software Engineering II 

Workflow

Promote & Test

14

Define Release

Promote & Test

Change Code

Assemble Build

Promote & Test Release
AcceptReject



Application Deployment — Software Engineering II 

DevOps

15

Dev A

Dev B

Admins Users

Integration
Latest Build

Repository
All Code Quality Assurance

Latest Build/
Release Candidate

Staging
Current Release/
Release Candidate

Production
Current Release

Quality 
Assurance

Project Team/
Project Lead

Development Operations

Development Data
Test Data
Production Data

Code
Build

Development
Working Copy

Development
Working Copy



Application Deployment — Software Engineering II 

Builds are immutable

■ If changed, previous testing was pointless

□ Even the smallest change has to go through all environments

Many systems required

■ Each environment has to be maintained

■ Automation?

Deployment overhead

■ Manual steps are potential for human failure

■ Automation?

Implications

16

Remainder of this lecture



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

17



Application Deployment — Software Engineering II 

Choice of hosting options is driven by a variety of parameters

■ Initial setup effort, cost, and required expertise

■ Operational costs and effort

■ Targeted service level agreements (SLAs)

■ Legal considerations (data privacy, liability, etc.)

Application Hosting Options

18

Low Effort
Little Control

High Effort
High Control

Own
Datacenter 

PaaS IaaS
Dedicated 

Hosting



Application Deployment — Software Engineering II 

Providers deliver OS, execution environment, database, web server, monitoring, etc.

Advantages

■Minimal effort and knowledge required for setup

■Only platform development knowledge (e.g. Python, Ruby) needed, 

no need for hardware / OS maintenance

■Possibility to scale up quickly and easily

Disadvantages

■Usually fixed environment with little variation points

■Provider SLA targets might differ from yours, e.g. downtime, response times

■Limited technical support

Examples: Heroku, Azure Compute, Google App Engine

Platform as a Service (Paas)

19



Application Deployment — Software Engineering II 

Providers deliver virtual private servers (VPS) with requested configuration 

Setup of execution environment, database servers, etc. is up to customers

Advantages

■Flexibility regarding execution environment

■Avoid management of underlying hardware

■Dynamic on-demand scaling of resources

Disadvantages

■Server administration know-how and efforts required

■ It’s still a VM: Potential performance drops, Disk I/O, etc.

Examples: Amazon EC2, Google Compute Engine, Rackspace Cloud, DigitalOcean

Infrastructure as a Service (IaaS)

20



Application Deployment — Software Engineering II 

Providers allocate dedicated hardware, classical approach

Advantages

■Complete control over server, down to bare metal, full power always available

■No virtualization-related performance issues

■More control over network configuration

■Dedicated SLAs

Disadvantages (compared to IaaS)

■No easy scaling of resources

■Administration efforts for servers, e.g. monitor disk failures

Examples: Hetzner, OVH, Rackspace, Host Europe

Dedicated Hosting

21



Application Deployment — Software Engineering II 

You host your own servers

Advantages

■Complete control over data, security, operations, network etc.

■Custom designed servers possible

■Add cabinets in available space with low cost

Disadvantages

■Huge upfront costs, e.g. space, cooling, fiber, hardware

■Expanding the space of the datacenter is expensive

■Provide around the clock support, monitoring, personnel, etc.

■Not feasible for small companies

Examples: Google, Facebook

Own datacenter

22



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

■ Virtualization

■ Configuration Management 

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

23



Application Deployment — Software Engineering II 

Setting up an Environment

24

Main challenges in preparing infrastructure:

■Minimize the effort required to repeatedly 

setup identical execution environments

■Without relying on “administration gurus”

Solutions:

■DevOps, i.e. a strong collaboration between 

the development and the operations team

■A strong bias towards automation



Application Deployment — Software Engineering II 

Where to Start With "Deploying"? 

25

■Hosted solutions aren't always feasible for initial experiments

■Maintaining local installs of server stacks

in different versions can get cumbersome 

■Development vs. production environment differences 

result in "it works on my machine" problems

■Don't want to force all developers to use

same development environment (e.g. choice of OS)

Possible solution: VirtualBox + Vagrant (https://www.vagrantup.com/)

■"Deploy" on your local OS for development

□Provision a virtual machine

http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500

https://www.vagrantup.com/
http://code.tutsplus.com/tutorials/vagrant-what-why-and-how--net-26500


Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

■ Virtualization

■ Configuration Management

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

26



Application Deployment — Software Engineering II 

Virtualization software provides and provisions a VM

Configuration management tools configure it, e.g. install required software

Why not configure manually?

■Error prone, repetitive tasks

■Documentation has to be kept up-to-date

■Explicit knowledge transfer required if admin changes

One config management tool example: Chef (http://chef.io, https://github.com/chef/chef)

■Formalize software install and configuration state into recipes

■Shared recipes (https://supermarket.chef.io/cookbooks)

■Ensure software and dependencies are installed

■Ensure that files, packages, and services are in the prescribed state

Next Step: Automate VM Setup

27

http://chef.io/
https://github.com/chef/chef
https://supermarket.chef.io/cookbooks


Application Deployment — Software Engineering II 

Using configuration management tools, you can:

■Define the required packages for all required servers

■ Install and configure necessary services

■Create directory structures

■Create custom configuration files (e.g., database.yml)

Also possible:

■Templates to create different files based on variables

■Creating various environments (e.g. staging vs. production)

■Central management of configuration files that are 

automatically transferred to clients

Configuration Management

28



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

29



Application Deployment — Software Engineering II 

Necessary steps after the server is available:

■Checkout code

■ Install or update dependencies (i.e. gems)

■Run database migrations, restart application servers

■Restart index servers, setup new Cron jobs, etc.

Remember: Automation!

■CI solutions support deploying to hosting providers

□Deploy after all the tests pass

□Deploy as updates are made

■Dedicated config management tools

□Explicit control over what is set up

Deploying as Part of the Dev Process

30



Application Deployment — Software Engineering II 

Example: Travis CI Continuous Integration and Deployment Workflow:

Deployment with CI

31

1. before_install

2. install

3. before_script

4. script

5. after_success or 

after_failure

6. after_script

7. before_deploy

8. deploy

9. after_deploy

optional
steps

Non-zero exit-status here:
build failed. Not deployed.

Otherwise: deployed in deploy step.

http://docs.travis-ci.com/user/build-lifecycle/

tests are
run

http://docs.travis-ci.com/user/build-lifecycle/


Application Deployment — Software Engineering II 

Automate, customize, and execute your software development

workflows in your repository

■Create own actions or use community actions

■Event-driven (e.g. pull request creation executes testing script)

■Workflow: automated procedure added to your repository

□Consist of one or more jobs (set of steps)

□Scheduled or triggered by an event

□Actions are standalone commands that 

are combined into steps to create a job

GitHub Actions

32https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions



Example Workflow
■ YAML syntax for defining events, jobs, and steps

1. Create the .github/workflows/ directory to store your workflow files

2. In this directory, create a file .yml , e.g.:

3. Commit and push to your repository

Application Deployment — Software Engineering II 33

name: learn-github-actions
on: [push]
jobs:

check-bats-version:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v2
- uses: actions/setup-node@v1
- run: npm install -g bats
- run: bats –v

GitHub Actions



Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

34



Application Deployment — Software Engineering II 

Keep an eye on server and health and applications:

■Monitor in production

□This is where errors are most costly

□Revenue loss, support tickets

■ Issue alerts

□When components fail

□When predefined thresholds are exceeded

■Examples:

□Regular HTTP GET requests (e.g. https://uptimerobot.com/)

□Monitor infrastructure, down to switches and services (e.g. http://nagios.org)

Monitoring Servers & Applications

35

https://uptimerobot.com/
http://nagios.org


Application Deployment — Software Engineering II 

Monitor application errors and performance bottlenecks:

■Monitor errors that happen at runtime

□ In production

□Discovered by users

■Notifications on application errors or slow downs

■Examples: 

□Errbit—Collect and organize errors (https://github.com/errbit/errbit)

□New Relic—Performance monitoring, response times, SQL (http://newrelic.com/)

Monitoring Servers & Applications

36

https://github.com/errbit/errbit
http://newrelic.com/


Application Deployment — Software Engineering II 

Agenda

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

37



Application Deployment — Software Engineering II 

Advantages:

■Users get a sense of “something happening”

□Short feedback loops

■Business value of features immediately present

■Deploy scripts used often, less likely to contain errors

■Reduced amount of code changes per release → faster fixes, less downtime

Prerequisites/Disadvantages:

■Only feasible with extensive set of good tests

■Tests / deployment need to run fast (Continuous Integration)

■Additional training for developers (DevOps) required

■May not be feasible for applications that require planning or

long-term support (e.g. operating systems)

Deploying 50 times a day?
Continuous Delivery

38

Operating systems feature both
CD (rolling releases) and
classical approaches (LTS releases)



Application Deployment — Software Engineering II 

How do 50 deployments a day fit into Scrums notion of Sprints?

Some ideas (let’s discuss):

■ Intermediate Reviews for individual stories by the PO

□At sprint review, each finished story is already running in production

□Review meetings become shorter, more of a high level overview

■Get faster feedback from stakeholders for next Scrum meeting

■Deploying to staging or testing systems becomes part of the definition of done

■Acceptance of features not only based on PO approval but stakeholder approval?

□A/B testing?

■"Working software is the primary measure of progress"—Agile Manifesto

□ Is software that is not deployed working? (DevOps)

Continuous Deployment vs. Scrum

39



Application Deployment — Software Engineering II 

Summary

1. DevOps

2. Application Hosting Options

3. Automating Environment Setup

4. Deployment Scripting

5. Application Monitoring

6. Continuous Deployment and Scrum

Conclusion: Try to automate everything!

40


