Variant Calling and Clustering on RNA-Seq Data

by Paul Arndt and Karsten Tausche
03.02.2017
Agenda

● The basics
● History of DNA Sequencing Technologies
● RNA-Seq and Variant Calling Pipelines
● Clustering on mixed data
● Hands-on: Variants in practice
● Ethics discussion
The basics
The basics

- **RNA sequencing expression**
 - differences in mapped reads between different samples → compare the amount of specific genes
 - quantitative data

- **Variant Calling: DNA vs. RNA**
 - DNA sequencing: analytically complex and not very efficient
 - RNA sequencing: cheaper, and, because of the traditionally used RNA sequencing expression analysis, the data is already there
 - → Variant Calling on RNA Data
 - but: beware that RNA only contains genes expressed in the analyzed cells, not the whole genome
The basics

Variants

→ differences in genes, according to a reference genome

Natalie ATA TGA TCA ACA CTT

Steven ATA TGA TCA ACA GTT

● SNPs (Single Nucleotide Polymorphisms) vs CNVs (Copy Number Variant)
● Risk Variants vs Protective Variants
History of Genetics

Relatively short history is basis for our current understanding

- 1869: Nucleic acid
- 1919: Polynucleotide model: four bases, sugar, phosphate
- 1944: Genes
- 1954: Structure of the Deoxyribonucleic acid (DNA)
- 1984: Initial Idea of the “Human Genome Project”
- 2000: First Draft of HG
- 2003: HG completely sequenced
DNA Sequencing Technologies

Human Genome: 3.2 Gbp (Million basepairs)

- **First Generation Sequencing (ABI 2002): Human Genome Project**
 - Very high accuracy (> 99.99%)
 - Slow processing (1 run = 100kbp, 3h)

- **Next Generation Sequencing: Illumina (2006): Today’s Standard**
 - Acceptably high accuracy (> 99.9%)
 - 2006: 1Gbp / run, 2016: 1 Tbp / run (6 days)
 - **Short read length: 200-400bp, later up to 700bp → fragmented output!**

- **Pacific Biosciences: Third Generation Sequencing (2013)**
 - Long read sequencing: 60kbp (“DeNovo Alignment”)
 - Accuracy > 99% (!)
Illumina Sequencing Process (simplified)

1) Preparation
 ○ Fragmentation of DNA into chunks (“reads”)
 ○ Required to be able to read sequence
 ○ 200-800 bp (3.2 Gbp in Human Genome!)

2) Amplification
 ○ Generate readable DNA regions (clusters)

3) Sequencing
 ○ Light reflected differently by each nucleotide
 ○ Record laser light reflection image
 ○ Generate textual output from recorded image

Illumina Sequencing Process (simplified)

1) Preparation
 ○ Fragmentation of DNA into chunks (“reads”)
 ○ Required to be able to read sequence
 ○ 200-800 bp (3.2 Gbp in Human Genome!)

2) Amplification
 ○ Generate readable DNA regions (clusters)

3) Sequencing
 ○ Light reflected differently by each nucleotide
 ○ Record laser light reflection image
 ○ Generate textual output from recorded image

[An Introduction to Next-Generation Sequencing Technology, illumina, 2016]
RNA-Seq based Pipelines

Reference Genome

Alignment

Mapped Reads

Quantification

Expression Data

RNA-Seq Reads

Variant Calling

Variants
Short Read Alignment

- Sequenced RNA: Many small RNA chunks (reads)
- Locate related position in the reference genome
 - Could be anywhere in the coding regions
 - Many highly similar regions within the DNA
 - Related coding DNA part may contain non-coding (irrelevant) parts
 - Editing events occur at specific regions/genes
- Process aligned reads
 - Probably many reads for same locations
 - Partly overlapping reads
 - Contradictory information
 - Apply statistical methods
Proteine Quantification Pipeline

- Multiple input samples (e.g., two conditions, healthy, ill)
- **Transcriptome**: set of all mRNA in a cell
 (\approx genes expressed in that cell)
- **Differential Expression**

 Differences of mRNA quantities between the samples
RNA-Seq based Variant Calling

- **Filtering**
 - Deduplication
 - Remove low-quality reads (defined by sequencing device)
 - Filter unmapped reads
 - Filter low quality reads/mappings

- **Variant Calling**
 - Find deviation from reference genome

- **Postprocessing**
 - Separate Variants from Indels
 - Filter low-quality variants
 - Filter false-positive variants
RNA-Seq based Variant Calling Pipelines

SNPiR: “Reliable Identification of Genomic Variants from RNA-Seq Data” [Piskol 2013]

- High sensitivity
 - Loose criteria in variant calling step
- High specificity
 - Extensive filtering to omit false-positives
- Based on tools optimized for DNA-Seq Data

GATK Best-Practices: “Calling variants in RNAseq” [2014-2017]

- Built on newer tools, specialized for RNA-Seq Data
- Including some concepts of SNPiR
DATA CLEANUP

Non-GATK

Raw RNAseq Reads
- Map to Reference
 - STAR 2-pass
- Mark Duplicates & Sort (Picard)
- Split’N’Trim + ReassignMappingQuality
- Indel Realignment
- Base Recalibration

Analysis-Ready RNAseq Reads

VARIANT DISCOVERY

Analysis-Ready RNAseq Reads
- Variant Calling
 - HC in RNAseq mode

Raw Variants
- SNPs
- Indels

Variant Filtering
- RNAseq-specific settings

Filtered Variants
- SNPs
- Indels

EVALUATION

Analysis-Ready Variants
- SNPs & Indels

Variant Annotation

Variant Evaluation
- look good?
 - troubleshoot
 - use in project

Phasing
Alignment Across Splice Junctions

- Genome consists of **exons** (coding) and **introns** (non-coding)
- **Splicing**: removal of introns, joining of adjacent exons
- Not all **splice junctions** are known
- How to align reads across splice junctions?
Alignment Across Splice Junctions

- **Alignment to genome only?**
 - Algorithm would probably find a similar (wrong) location

- **Alignment to transcriptome only?**
 - Transcriptome may not be complete

- **Combined approach!**
 - Align to Genome
 - + known parts of the transcriptome
GATK: Two-Pass Alignment

- Using **STAR** aligner
 - State-of-the-art for RNA-Seq data

- Option: “2-pass STAR”
 - Detect splice junctions in first run
 - Use generated information in second run
 → final alignment

- Not using previously known splice junctions
 - No additional data dependencies
 - Missing information?
Filtering based on Genome Annotation

[USCS Genome Browser: Genomes + Annotations]

RepeatMasker Annotation

- Genome contains highly repetitive regions
- Controlling transcriptions, immunity against foreign DNA, …
- Generally non-coding
- Difficult/impossible to correctly align reads to
Filtering based on Genome Annotation

RNA Editing Sites

- Nucleotide sequence differs from original sequence in DNA
- Complicates read alignment
- Differences must not be interpreted as variants

![RNA Editing Diagram](https://en.wikipedia.org/wiki/RNA_editing)

Description:

1. **DNA** (AGCTGCAATTCGGCAATTCGCGATACGCG)
2. **Transcription of DNA to Pre-edited RNA** (AGCUGCAAUUGCUGCAUUCCAAACCGGAUACGC)
3. **Guide RNA gives template for editing** (UCGACGGUUAACGAACGUAAGAGUUGGCCUAUG)
4. **Editing of pre-mRNA** (AGCUGCAAUUGCUGCAUUCCAAACCGGAUACG)
5. **Pre-edited RNA** (AGCUGCAAUUGCUGCAUUCCAAACCGGAUACG)
6. **Edited RNA** (AGCUGCAAUUGCUGCAUUCCAAACCGGAUACG)
7. **Translation to protein or other pathway**
Filtering based on Genome Annotation

- Heavily used by SNPiR
 - Pseudo-Chromosomes
 - Post-processing after variant calling

- Not part of the GATK-Pipeline
 - Relying on advanced, specialized tools
 - Not relying on previously known data

- Apply SNPiR filtering to GATK-Pipeline?
 - Focus on human genome: rich information available
 - Filtering most reliable variants based on all known data
Statistical Filtering Strategies

● Statistical decisions in whole pipeline
 ○ Quality scores for alignment (depth, certainty)
 ○ Quality scores for called variant
 ○ Uncertainties in reference genome, two DNA strands, …

● Quality score evaluation requires reference scores
 ○ “Base quality score recalibration”
 ○ Data available for DNA-Seq
 ○ Not yet available for RNA-Seq

● Evaluation using known DNA-Seq variants
 ○ Currently most reliable way to verify tools and pipelines
Raw Sequencing Data: FASTQ Files

@SRR831012.1 HWI-ST155_0742:7:1101:1284:1981/1
NGAGATGAAGCACTGTAGCTTGGAATTTCGCGTGCCCAAGGAACCTCCAGT
+
%1=DDDFHHHGGFIIIIIIIIIIIIIIIIIEHIIIIIIIIIFIIIIIIII

@SRR831012.2 HWI-ST155_0742:7:1101:2777:1998/1
NGAGATGAAGCACTGTAGCTTTGGAATTTCGCGTGCCCAAGGAACCTCC
+
%1=DDFFHHHHHHHHIIIIIIIIIIIIIIIIIGIIIIIIIIIIIIIIIIIG

Quality score (increasing from worst to best):
"#$%&'()*+,-./0123456789:;<=?>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^`abcdefghijklmnopqrstuvwxyz{|}~

Experimental Setup

In our setting:
- ~1.4 GB per file
- ~8 Mio reads per file
- 80 files

RNAseq Intro
Milena Kraus, Apr 19, 2016
VCF: Variant Call Format

Example

```vcf
##fileformat=VCFv4.0
##fileDate=20100707
##source=VCFtools
##reference=NCBI36
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">  
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">  
##FORMAT=<ID=GT,Number=1,Type=Integer,Description="Genotype">  
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality (phred score)">  
##FORMAT=<ID=GP,Number=3,Type=Float,Description="Likelihoods for RR,RA,AA genotypes (R=ref,A=alt)">  
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">  
##ALT=<ID=DEL,Description="Deletion">  
##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural variant">  
##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the variant">  

#CHROM POS ID REF ALT QUAL FILTER INFO  
1  1 . ACG A,AT . PASS .  
1  2 rs1 C T,CT . PASS H2;AA=T  
1  5 . A G . PASS .  
1 100 T <DEL> . PASS SVTYPE=DEL;END=300
```

Mandatory header lines

Optional header lines (meta-data about the annotations in the VCF body)

Reference alleles (GT=0)

Alternate alleles (GT>0 is an index to the ALT column)

Phased data (G and C above are on the same chromosome)

How to make sense of the data

open question: What do newly sequenced genes do?

- infer correlations between different genes - allowing for example the building of classifiers to improve diagnosis, ...

other general use cases for clustering in bioinformatics:

- complexity reduction
How to make sense of the data
Clustering

Main Principles: Homogeneity, Separation

very intuitive for us in 2-D

Problem: n-dimensional data
 ● curse of dimensionality
Types of Clustering

Hierarchical
- Agglomerative (bottom-up)
- Divisive (Top-down)

Partitional
- Error Minimization
- Graph theoretic
- Density based
- Model based
 - minimal Spanning Tree
 - expectation maximization
 - Decision Tree
Types of Clustering

Hierarchical
- Agglomerative (bottom-up)
- Divisive (Top-down)
- Error Minimization
 - K-means
 - minimal Spanning Tree

Partitional
- Graph theoretic
- Density based
- Model based
 - expectation maximization
 - Decision Tree
Example Hierarchical Clustering

1. Every node is assigned its own cluster
2. Find the closest pair of nodes and merge them into a cluster
3. Repeat step 2, until all nodes in the network have been merged into a single large cluster
4. Choose a useful clustering threshold between the bottom and top levels
Example Hierarchical Clustering

How do you compute the distance between clusters?

- Single-link: merge two clusters with the smallest minimum pairwise distance
- Average-link: merge two clusters with the smallest average pairwise distance
- Maximum-link or Complete-link: merge the two clusters with the smallest maximum pairwise distance
Types of Clustering

Hierarchical
- Agglomerative (bottom-up)
- Divisive (Top-down)

Partitional
- Error Minimization
- Graph theoretic
- Density based
- Model based
 - minimal Spanning Tree
 - expectation maximizing
 - Decision Tree

K-means
Example K-means

The main idea is to define \(k \) centroids, one for each cluster.

1. Select \(k \) entities as the initial centroids
2. (Re)Assign all entities to their closest centroids
3. Recompute the centroid of each newly assembled cluster
4. Repeat step 2 and 3 until the centroids do not change or until the maximum value for the iterations is reached
Example K-means

advantages:

- simple, fast, efficient (O(n))

disadvantages:

- difficult to predict K, often produces clusters of uniform size, spherical assumption
Handling Mixed Data

Clustering so far is almost exclusively done on quantitative data

Now: adding Variants (qualitative data) → mixed Data

Main Problem: How to compute distances?
Clustering - Distance measures

COR Pearson sample metric

EISEN Cosine correlation

SPEAR Spearman sample correlation distance

\[d_{spear}(x, y) = 1 - \frac{\sum_{i=1}^{m} (x'_i - \bar{x}')(y'_i - \bar{y}')}{\sqrt{\sum_{i=1}^{m} (x'_i - \bar{x}')^2 \sum_{i=1}^{m} (y'_i - \bar{y}')^2}} \]
Gower Similarity

compares two cases i and j

- S_{ijk}: contribution provided by the k-th variable
- w_{ijk}: 1 or 0 depending on the comparison

basically case distinction depending on variable type
Gower Similarity

\[S_{ij} = \frac{\sum_{k} w_{ijk} S_{ijk}}{\sum_{k} w_{ijk}} \]

\[S_{ijk} = 1 - \frac{|x_{ik} - x_{jk}|}{r_{k}} \]

ordinal/continuous variables:

rk is range of values for the k-th variable
Gower Similarity

nominal variables:

\[S_{ijk} = 1 \text{ if } X_{ik} = X_{jk} \text{ or } 0 \text{ if } X_{ik} \neq X_{jk} \]

\[w_{jk} = 1 \text{ if both cases have observed states for } k \]
Gower Similarity

binary values

\[
S_{ij} = \frac{\sum_{k=1}^{n} w_{ijk} S_{ijk}}{\sum_{k=1}^{n} w_{ijk}}
\]
Multiple Factor Analysis

It may be seen as an extension of:

- Principal component analysis (PCA) when variables are quantitative,
- Multiple correspondence analysis (MCA) when variables are qualitative,
- Factor analysis of mixed data (FAMD) when the active variables belong to the two types.
Multiple Factor Analysis

PCA

MCA: also a dimension reducing method; it represents the data as points in 2- or 3-dimensional space.

indicator matrix or burt table
Step 1: K tables of J_k variables collected on the same observations

Step 2: Compute generalized PCA on each of the K tables (where γ is the first singular value of each table)
Step 3: Normalize each table by dividing by its first singular value (τ)

$$
\gamma_1^{-1} \times X_1 = Z_1
$$

$$
\gamma_k^{-1} \times X_k = Z_k
$$

$$
\gamma_K^{-1} \times X_K = Z_K
$$
Step 4: Concatenate the K normalized tables

Step 5: Compute a generalized PCA on the concatenated table
Clustering results - now what?

We will hopefully see some patterns that we can associate with diseases / known issues

To prove this, we can, for example, look at the Variants that got clustered together and check whether they are associated with similar problems
Hands-On: Genome Browser