

BACHELOR PROJECT
Test Data Generator Tooling
Winter 2019/2020

Parallel Data Generator Framework (PDGF)
With the current rise of Machine Learning libraries and frameworks as well as
general data processing and data analytics engines there is bigger and bigger
need for good quality test data. For that reason bankmark UG
(haftungsbeschränkt) has developed the Parallel Data Generator Framework
(PDGF). The main goal of PDGF is to provide the means to create massively
parallel and scalable data generation programs without the need of any low-
level programming. For that PDGF provides an XML-based specification language
and many generators, e.g., long number generator or data time generator, that
can be used to specify a custom schema and along the logic and rules for
generating test data for this particular schema.

The current way for developing such data generator programs involves writing
schema specifications in XML. For the most part using XML works just fine; there
is no need for an IDE or compiler tool-chain, the programs are verbose such that
they can be understood by other people, and XML as a language is standardized
and well-defined, which means there is a plethora of tools available aiding in the
creation of XML documents. But the use of XML also has its shortcomings. Data
schemas, for instance, are inherently typed, that is fields have types and records
in turn consist of typed fields. Using XML does not make it easy to enforce these
types. That means typing related bugs that could potentially be found in
advance lead to run time exceptions. Another case where the usage of XML can
be cumbersome is when more complicated logic is needed. There are mechanisms
to inject Java code into the XML specifications but doing so without an IDE or
the typical tooling is more inefficient than simply writing a program in Java with
an IDE.

A solution is to provide a Java-API additional to the existing XML-API. But this
means all the parsing logic needs to be duplicated; once for XML and once for
Java. A good fit for resolving the duplication issue could be the Java Architecture
for XML Binding (JAXB). With JAXB it is possible to simply annotate existing code
to specify and identify the relevant interfaces, classes, and attributes and JAXB
will then handle all the marshalling and unmarshalling including parsing. The
PDGF code should be almost free of XML related code.

Project Outline
The main goal is to use and showcase the usefulness of the a Java-API for PDGF. The
participants should develop several applications that leverage the new API. Some examples
for these applications are:

• a graphical user interface (GUI) for defining data generator programs,

• a web-service for generating data,

• a framework for unit testing that will generate appropriate data based on the type
signature.

Such an application should then be showcased with a runnable prototype. Even though all
application are independent of each other, they should use a common API, which should be
developed as part of the project. Ultimately, the goal is to identify problems with the PDGF
architecture that make the use of JAXB complicated or even prevent its use. Ideally the XML-
API itself should be left untouched from the perspective of the end-user for backwards
compatibility.

External Partners

The project will be executed in cooperation with bankmark UG
(haftungsbeschänkt) and potentially additional partners.

Skills
This project is a software engineering project, participants need some experience in software
engineering and experience with at least one programming language, preferably Java. Additional
knowledge of software development processes and build tools, such as Maven, would be preferable.
Student should be comfortable in documenting their work with tools like JavaDoc, Wiki, and others.

Suggested Reading

• PDGF - https://www.bankmark.de/products-and-services/pdgf/
• JAXB - https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html
• PDGF Papers

o Rabl et al. “A Data Generator for Cloud-Scale Benchmarking”. TPCTC’10
o Rabl et al. “Just can’t get enough – Synthesizing Big Data”. SIGMOD 2015.

http://msrg.org/papers/SIGMOD15-DBSynth

Contact
Tilmann.Rabl@hpi.de

https://www.bankmark.de/products-and-services/pdgf/
https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html
mailto:Tilmann.Rabl@hpi.de

	Skills
	Suggested Reading
	Contact

