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Abstract

FPGAs have proven to be feasible accelerators for various data processing tasks,
including stream processing. However, recompiling a design and reconfiguring
an FPGA for dynamic queries is unfeasible due to long compilation times. This
work proposes a stream processing system that can be compiled to hardware and
reconfigured at run-time without recompiling the query or reprogramming the
FPGA. Reconfigurable operators are introduced that can change their processing
behavior through dynamic configuration signals. To not only make the operators
of a query configurable but the query itself, an operator interconnect is proposed
that allows dynamic communication paths between operators and therefore to
rebuild entire queries without recompilation. This system has been analyzed with
a focus on logic usage between different levels of configurability. It has been shown
that configurability comes at a significant cost of logic resources and increased
compilation time, while there are only small performance implications.





Zusammenfassung

FPGAs haben sich als praktikable Beschleuniger für verschiedene Datenverarbei-
tungsaufgaben, einschließlich Datenstromverarbeitung, erwiesen. Die Neukompilie-
rung eines Hardwareentwurfes und Rekonfiguration eines FPGAs für dynamische
Abfragen ist jedoch aufgrund langer Kompilierungszeiten unpraktikabel. Diese Ar-
beit stellt ein Datenstromverarbeitungssystem vor, das zur Laufzeit in Hardware
kompiliert und rekonfiguriert werden kann, ohne die Abfrage neu zu kompilie-
ren oder den FPGA neu programmieren zu müssen. Es werden rekonfigurierbare
Operatoren eingeführt, die ihr Verarbeitungsverhalten durch dynamische Kon-
figurationssignale ändern können. Um nicht nur die Operatoren einer Abfrage
konfigurierbar zu machen, sondern auch die Abfrage selbst, wird ein Operator-
Interconnect vorgeschlagen, welches dynamische Kommunikationspfade zwischen
Operatoren ermöglicht und damit den Aufbau kompletter Abfragen ohne Neu-
kompilierung ermöglicht. Das vorgestellte System wurde unter dem Schwerpunkt
der Logiknutzung bei verschiedenen Konfigurierbarkeitsstufen analysiert. Es wur-
de gezeigt, dass die dynamische Konfigurierbarkeit einen erheblichen Anstieg an
Logikressourcen und erhöhte Kompilierungszeiten mit sich bringt, während es nur
geringe Auswirkungen auf die Leistung gibt.
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1 Introduction

Devices based on Field-Programmable Gate Arrays (FPGAs) are becoming in-
creasingly popular in today’s data centers with various application areas including
smart NICs, specialized audio and video processing hardware, and general-purpose
programmable accelerators. With the XEON Gold 6138P, Intel even introduced a
processor with an on-package FPGA1. As their name suggests, they can be pro-
grammed to host custom processing circuitry tailored to an application scenario.
Custom circuitry allows for very energy-efficient processing compared to CPUs [20].

FPGAs can be programmed to accelerate common workloads, one of which is
stream processing. There has already been some work on offloading stream process-
ing tasks to reconfigurable hardware, citing its low-latency processing capabilities
and massive parallelism that custom circuitry makes possible. Contributions range
from general-purpose stream processing where algebraic query plans are compiled
to hardware [9], over network intrusion prevention systems [27] and multi-query
stream processing systems [11, 14] to run-time-reconfigurable stream joining [12].

The end-to-end process of programming an FPGA accelerator consists of creating
a circuitry definition (”design”) in a hardware description language (HDL) or using
high-level synthesis (HLS) to convert iterative and object-oriented C, C++, or even
Python code into an HDL. This hardware description is then translated into gate-
level macros in a processing step called ”synthesis”. After this step, the mapping
of these macros onto the actual FPGA resources (”placement”, ”fitting”) has to
be determined. Furthermore, in a step called ”routing”, they are interconnected.
As the last step, a programming file is generated which is used to program the
FPGA.

The placement and routing steps depend on the actual FPGA hardware, such as
the available logic cells and timing constraints. The placement is optimized and
routing is performed over and over until all timing constraints of the design are
met. Meeting these constraints is crucial for the hardware to perform in a stable
and predictable way. This process is very compute-intensive and, depending on
the design size, can take hours or even days to complete, even when reusing com-
pilation artifacts or splitting the design into smaller modules that can be compiled
independently from each other [5, 24, 25].

When using FPGAs for stream processing applications with a query compiled to

1https://ark.intel.com/content/www/us/en/ark/products/139940/intel-xeon-gold-6138p-
processor-27-5m-cache-2-00-ghz.html
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hardware, this greatly limits flexibility, because changing the query incurs long
compilation times. This might not be a problem for long-running static queries,
but when the behavior of certain stream processing operations has to change dy-
namically based on parameters (e.g., video compression factor in accelerated video
processing; interest rate and risk factors for derivative pricing in algorithmic trad-
ing) or the structure of a query has to be modified altogether (e.g., additional
selection stage), performing the entire compilation process and re-configuring the
FPGA is unfeasible. The same is the case for ad-hoc queries: they cannot benefit
from acceleration because compilation for an FPGA would take too long in most
cases and they need to be executed on the CPU. Even using mechanisms like par-
tial reconfiguration, where only a part of the FPGA chip is programmed, requires
a query (or a part of it) to be already compiled.

This work will present a stream processing system that can be compiled to hard-
ware and that can be reconfigured at run-time without the need to recompile the
query and without the need to reprogram the FPGA. The configuration is trans-
mitted within the data stream and applied instantly, so it allows to change query
behavior without any additional interruption in processing. Depending on the size
of the query to be configured, this can mean an end-to-end reconfiguration time
within nanosecond range. This is more than ten orders of magnitude faster than
an hour-long recompilation process.

Three stages of query configurability can be defined:

• Non-configurable query The behavior of the query is fixed at compile
time and no configuration is possible.

• Configurable query Each of the query’s operators can be configured at
run-time but the structure of the query itself is fixed at compile time. E.g.,
change the window size of a word count query; change the predicate of a
query’s selection operator.

• Composable query A collection of operator modules is present on the
FPGA which can each be configured. These operator modules can be chained
together at run-time to compose a query. The configuration therefore acts as
a query description language. E.g., transform a single query to a multi-query
consisting of multiple independent sub-queries; create an ad-hoc query.

These stages have different logic complexity. For a configurable query, configura-
tion registers need to be added. For a composable query, dynamic operator wiring
logic has to be included additionally. These added layers of abstraction take away
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optimization potential. An FPGA’s maximum clock speed is determined by the
length of datapaths in the design. Because of more complex decision logic, these
datapaths can be longer, possibly resulting in a reduction of the FPGA’s clock
speed. This in turn could reduce its throughput and increase latency. This work
will investigate the impact that a configurable query and composable query have
on throughput, latency, design size, compilation time, and other factors.

The presented system is built with configurability included, so the actual logic
generated for the FPGA is static. As an outlook, such a static design could be
transferred to an ASIC for general-purpose stream processing acceleration. As a
rule of thumb, ASICs are an order of magnitude faster than FPGAs [7, 8, 23]. The
results of this work could help in finding out whether such ASICs are feasible.

Section 2 will introduce basic concepts around stream processing and FPGAs. Sec-
tion 3 describes how the streaming system works and how its operators are im-
plemented. It also lays out how these operators can be made configurable and
how they are chained together in a composable system. Section 4 explains how the
presented system is integrated as an acceleration unit into an actual machine and
how it interfaces. Section 5 will provide a static analysis of the streaming system
that outlines properties such as logic usage and performance metrics of its opera-
tors. It also gives insights how the system performs in an integrated environment
and what impact configurability has on the system’s metrics. Section 6 will discuss
the presented results and proposes points for further research. Other FPGA-based
streaming systems are presented and compared with in Section 7, while Section 8
will conclude the work.
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2 Background

This section will introduce the background knowledge necessary to understand this
work. It will first explain FPGAs, their fields of application, and some concepts
of digital logic. Stream processing as a data processing concept will be introduced
thereafter.

2.1 FPGAs

FPGA is the short form for Field-Programmable Gate Array, a type of integrated
circuit onto which digital circuitry can be programmed after the chip has been man-
ufactured (programmable in the field). FPGAs can be used in a variety of dynamic
application scenarios such as database acceleration [16] or as smart storage [6]. His-
torically they were used to prototype digital designs before they were going into
manufacturing. This is still the case today with the largest CPU manufacturers
Intel and AMD having acquired the largest FPGA manufacturers Altera and Xil-
inx respectively. Applications that can leverage pipelined and parallel execution
can benefit most from FPGA acceleration, while iterative execution, complex data
dependencies, branching logic, and much state are not suited well [7].

2.1.1 Compute flexibility and energy efficiency

On a flexibility range, FPGAs lie between ASICs and CPUs. ASICs areApplication-
Specific Integrated Circuits that are fixed in the functionality they can provide af-
ter manufacturing, unlike FPGAs which can be reprogrammed, and unlike CPUs,
which usually allow flexible computation based on an instruction set. It has to
be noted that CPUs are also a form ASICs since they are integrated circuits and
cannot be reprogrammed, but they differ in their computation model. On an effi-
ciency range, ASICs can perform tasks with very high energy efficiency since their
circuitry can be optimized for the fixed functionality they provide. The computing
flexibility of a CPU is paid for by a low energy efficiency since they allow for gen-
eral computation. In this regard, FPGAs are in the middle ground between ASICs
and CPUs. They achieve around an order of magnitude better energy efficiency
than CPUs but are also around one to two orders of magnitude less energy efficient
than ASICs for the same computation [7].
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2.1 FPGAs

2.1.2 Components

Modern FPGAs are built upon four main resource types [7, 19]:

Look-up tables These components allow representing combinational logic func-
tions. They compose of multiple input wires and usually one output wire. For
each combination of input wire values, they can be programmed to output a spe-
cific value on the output wire. Modern FPGAs include look-up tables (LUTs)
of multiple sizes, i.e., the number of input wires, to allow for efficiently mapping
different levels of function complexity. Given the two input wires (x1, x2), a 2-to-1
LUT component to represent the logical and function would be programmed the
following way: (0, 0) → 0; (0, 1) → 0; (1, 0) → 0; (1, 1) → 1.

Flip-flops Flip-flops are memory elements designed to hold state. They are a
single-bit storage and save the value on their input wire on each rising edge of the
clock cycle. They can be combined to form registers of different widths.

Hard components In addition to LUTs and flip-flops, which form the basis of
reprogrammable logic, many FPGAs include additional components that are more
complex and serve a specific purpose. This includes block random-access memory
(BRAM ) and certain digital signal processing units (DSPs) such as multipliers.
Their circuitry is fixed and always present on the chip, that’s why they are called
”hard” components. While the same functionality could be built using LUTs and
flip-flops (i.e., a ”soft” component), hard components are more efficient and achieve
better timing than their soft counterparts. Hard components, like BRAM blocks,
are distributed across the FPGA fabric.

Interconnect LUTs and flip-flops are often present in combination as a config-
urable logic block (CLB) with the configuration stored in SRAM [19]. Intercon-
nects allow to wire up these CLBs and hard components to form a complete circuit.
Interconnects are based on ”switches” that can route a signal from component to
component. This routing and the configuration of the CLBs is determined when
the FPGA is programmed, i.e., it does not change in operation.

All implemented functionality occupies a part of the available resources, so the
complexity of the functionality will always be limited by the amount of logic re-
sources available. Partial reconfiguration allows to swap out parts of the logic
dynamically, but it is still not possible to have functionality that does not fit en-
tirely on the FPGA. This is especially the case for applications that require to
keep a lot of state since the amount of BRAM on an FPGA is typically less than
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2.1 FPGAs

one hundred Megabytes and off-chip DRAM has a high access latency, degrading
performance [7].

2.1.3 Logic circuits

One can make a distinction between combinational logic circuits and sequential
logic circuits. Combinational logic does not rely on a clock signal and constitutes
only of LUTs and no flip-flops as it does not hold state. Sorting networks are an
example of combinational logic: given a collection of input elements on its input
wires, the circuitry will after some time have the sorted collection on its output
wires [10]. The time it takes for the signal to propagate from the input wires
through the logic gates to the output wires is effectively determined by the length
of this signal path and the propagation speed of the signal.

More complex processing, or processing that involves state, might not be able to
be represented in only combinational logic, but in sequential logic. To preserve
for instance the output of the sorting network, one can use registers constituted of
flip-flops. On the rising edge of the clock, a flip-flop will store the value of its input
wires, which means that the output of the sorting network has to be stable at that
time. If the sorting network is also driven from a register, then the maximum time
the signal can take to propagate through the combinational circuit is determined
by the time difference between two rising edges of the clock - the duration of a clock
cycle. The maximum clock frequency that an FPGA can be driven at is therefore
the inverse of the propagation time of the longest combinational signal between
registers. This abstraction level is called the ”register-transfer level” (RTL). If
an FPGA is driven at a clock frequency that is too high, then the register input
signal might not have fully stabilized, leading to wrong results being stored (e.g.,
a wrongly sorted list). The excess time it takes the signal to stabilize in this case
is called ”slack”.

2.1.4 Programming process

The first step in programming an FPGA is creating the desired functionality in a
digital circuitry design. Such a design can be created using a hardware descrip-
tion language (HDL) like VHDL or Verilog. It is also possible to use High Level
Synthesis (HLS) to compile C-style code into an HDL. HDLs exhibit a declara-
tive programming style and functionality is usually represented as combinational
circuits or state machines for more complex operations.
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2.2 Stream processing

In a step called ”synthesis”, the hardware description is then converted into a rep-
resentation on the logic-gate level. This representation is universal and compatible
with multiple FPGAs because it does not rely on the actual FPGA resources yet.
First optimizations are already carried out during synthesis, like the removal of
logic that is unused, the resolution of constant signals, or the optimization of state
machines [18].

The next step determines how the logic elements of the synthesized gate-level
design map to actual resources on the FPGA chip. This process is often called
”placement” or ”fitting” and has to take constraints such as the desired clock
frequency into account. Since the maximum clock frequency is determined by the
longest combinational signal path, this step has to place components belonging to
the same combinational path in close proximity to each other.

The same level of optimization is necessary for the ”routing” step which defines
how the placed components are wired together using the interconnects. The fitting
and routing are optimized until the timing constraints are met, i.e., the longest
combinational signal path fits within one clock cycle. This optimization process is
very compute intensive and can, depending on design size, take multiple hours [5,
19, 24]. Incremental compilation describes the approach of reusing compilation
intermediates, just like modern C++ compilers for example do. But since the
designs on FPGAs are highly optimized, even small changes can require a full
compilation run to achieve timing again [5].

The last step is to generate a ”bitstream” which is the device-specific representation
of the configuration of the chip’s components. This bitstream can then be used to
configure the FPGA. Using partial reconfiguration, only a part of the FPGA chip
is configured while the rest retains its configuration.

2.2 Stream processing

Akidau et al. define a stream processing system as a ”data processing engine that
is designed with infinite datasets in mind” [1]. Database systems operate on tables,
which constitute a dataset at a specific point in time. Streaming systems on the
other hand operate on streams, which encompass the evolution of a dataset over
time on an element-by-element basis [1]. The elements of a stream can therefore
have a temporal relation to each other.

Records Within this work, the elements of a stream are called records. They
are of a certain size and can contain arbitrary data. While not strictly required,
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2.2 Stream processing

one piece of data included within a record can be its event time timestamp: the
reference time of the record at which for example the event occurred that led to
the ingestion of this specific record into the stream.

Operators The stream can be processed using operators. Operators modify the
stream by adding records, removing records, or modifying records. Some operators
are stateless, i.e., they process a record agnostic of the stream, while other opera-
tors keep state. The system presented in this work keeps only local (i.e., operator)
and no stream-global state. This work calls a collection of operators that process
a stream a query.

Bounded processing Streams are thought of as infinite but some processing
only makes sense on bounded data. Windowing is a concept to define bounded
parts (windows) within a stream, which can also overlap with each other. These
bounds can be based on the number of records within a window or the duration
of a window based on the record event times. The simplest windowing concept
are tumbling windows which have a fixed number of records or duration. They
are non-overlapping as the end of one tumbling window is the start of the next
window. Sliding windows are also of fixed length but are overlapping based on a
slide. A window will start every slide many records or when the slide duration
has surpassed. This means that there will always be ⌈length÷slide⌉ many sliding
windows at a time. Tumbling windows are a special case of sliding windows where
length = slide [1].

Multi-query processing When referred to in this work, multi-query stream pro-
cessing covers two meanings: (1) processing the same stream using multiple differ-
ent queries or (2) processing multiple streams using multiple queries. While in (1)
there is one input stream and multiple output streams, in (2) there are multiple
input and output streams.

8



3 System description

A stream processing system has been designed in which queries can be reconfig-
ured at run-time. Different levels of query configurability can be defined. In a
non-configurable query, the query structure and operator behavior are static and
cannot be changed. In a configurable query, the query structure is static but
the individual operator behaviors can be changed. In a composable query, both
the query structure and operator behavior can be changed at run-time, allowing
for flexible processing. This section provides a description of this system, how it
functions, how it is implemented, and what queries can be realized. Section 3.1
describes the high-level design and introduces fundamental concepts such as tu-
ple propagation. Section 3.2 provides implementation details of certain stream
processing operators, how they can be made configurable, and how they integrate
into the system. Section 3.3 demonstrates how the configuration is propagated to
operators and Section 3.1.2 presents sample queries based on the introduced op-
erators. Section 3.5 describes how these configurable operators can be composed
into a query of which the structure itself can be changed without recompilation.

System bounds The ”system” being referred to in this chapter shall be limited
to the data stream processing part that forms a query on the FPGA and has a
record-in-record-out interface, excluding source and sink (which may be outside
the FPGA). How records are transmitted to and from the FPGA and what in-
termediate processing is necessary on the FPGA to realize such an interface, is
outlined in Section 4.

3.1 General

3.1.1 Record representation and propagation

On the hardware level, a record of n bits width is represented by n parallel wires.
That means a record is always propagated in its entirety instead of, e.g., a byte-wise
representation. This has the advantage that a record is always entirely available in
a single clock cycle and not just parts of it. This approach does not scale well for
records of very large size as all other circuitry like operators needs to be designed
to also handle whole records, which can lead to a high usage of logic resources.

These data wires can propagate one record per clock cycle. Since there might not
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3.1 General

be a record available each clock cycle, an additional ”data valid” signal indicates
whether the record currently on the data wires is considered part of the stream.
If this single wire carries an electrical ”high” signal, then the record is part of the
stream, else not.

Figure 1: Operator interface for record propagation.

As visualized in Fig. 1 the minimum interface of an operator consists of n input
and n output wires for the bits of the record and one input and one output data
valid wire. If the input data valid wire dvi is high, an operator processes the
record on the input data wires Ri. To signal output, the operator puts a record
on the output data wires Ro and sets the output data valid wire dvo to high. At
all other times, dvo must be set to low to indicate that whatever is on Ro should
not be considered output. Throughout this section, the interfaces of operators
are extended further to achieve certain functionality, e.g., the eow signal used for
windowing.

3.1.2 Queries

The push-based record propagation sets the foundation for communication between
operators. By connecting the output wires of an operator to the input wires of
another operator, individual operators can be chained together to form a query.
Since stream source and sink are not considered part of the query, it therefore has
the same record-based interface as an operator, as depicted in Fig. 2. The query as
a collection of operator stages is fully pipelined because the operators can accept
and propagate a new record in each clock cycle.

Figure 2: Query formed by combining operators.
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3.1 General

It has to be noted that operators are not limited to having only one input and
output stream. Such operators include windowing, stream fork and stream join,
which will be presented in the upcoming Section 3.2.

3.1.3 Handling back pressure

Some operators, like sorting, are not able to accept a record in each clock cycle.
That means an operator might have an output record but its downstream operator
cannot accept it. In this case, the downstream operator has to be able to signal
upstream that it is ”busy” so it does not receive any more records. There are two
main concepts on how to realize such functionality and they differ in how they
influence the stream source. For both, the respective operator has an additional
output wire ”busy” that is set to high if it cannot accept records at the moment.

Local buffering This concept does not influence the source. A signal buffer is
placed directly upstream to the operator that cannot accept records all the time.
This signal buffer has an additional input wire ”wait” which is connected to the
downstream ”busy” signal. This signal acts as a switch in the behavior of the
buffer. If it is high, then the buffer will not output records and instead queue up
all its incoming records (FIFO) in BRAM. Once the signal is low, the buffer starts
outputting these queued-up records and once this queue is empty, incoming records
are just passed through without buffering. All operators upstream to the buffer
are not influenced by this process. Therefore the buffer only acts as a mechanism
to alleviate small spikes in record frequency but is not suited for controlling the
overall query throughput. A source that produces a higher consistent throughput
than what the operators in the query can handle, will eventually lead to overflowing
buffers.

Global buffering Contrary to local buffering, global buffering does influence
the source by throttling it when an operator within the query cannot accept any
more records. For this to function, all ”busy” signals within a query are combined
with an or-gate and produce a query-global ”busy” signal which becomes part
of the output interface of the query. The source has to react to this signal and
stop delivering records to the query when it is high. Since the source is outside
of the system bounds, please see Section 4 how this can be achieved on a system-
integration level. This concept allows for controlling overall query throughput but
will react over-sensitive to small spikes in record frequency as input for the entire
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query is halted and not just the busy operator.

Combining local and global buffering Both concepts can be combined to
allow for alleviating small spikes in record frequency but also allowing for flow
control. A ”full” signal that is high when the queue is full (or almost full) is added
to the local signal buffers. The ”full” signals of all signal buffers in the system,
combined with an or-gate, form the query-global ”busy” signal. That means as
long as the local buffers still have capacity, the source continues to deliver records.
Only when one of the buffers becomes full, the source is throttled. This approach
combines the advantages of local buffering and global buffering by allowing for
controlling overall query throughput, while not reacting over-sensitive to spikes of
record frequency because these are mitigated by the local buffers.

3.2 Operators

This subsection presents operators and their interfaces. An operator’s interface
can be separated into three main parts:

Processing interface. Consists of all signals related to the data stream and
processing logic. The minimum processing interface of an operator is depicted in
Fig. 1. These signals change frequently as they carry the stream’s data. They
comprise of input and output signals.

Configuration interface. Consists of input signals that define the concrete
behavior of an operator. In a non-configurable system, configuration signals change
not at all and are resolved at synthesis time. In a configurable system, they only
change infrequently in comparison to the data stream.

System interface. Includes the clock and reset input signal which all operators
receive. The reset signal is necessary since operators may hold internal state that
has to be reset, e.g., after a reconfiguration. To trigger such a reset, the signal
must be held high for one clock cycle.

For each operator, relevant performance figures will be presented alongside their
implementation. For Glacier, Mueller et al. introduced ”latency” and ”issue rate”
as basic performance metrics, which this work will adopt. However, this work
will use the more common term ”throughput” instead of ”issue rate”. Latency
for an operator defines how many clock cycles pass between receiving a record
and that record affecting the operator’s output. Throughput on the other hand
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defines how many records on average an operator can accept per clock cycle. The
system presented in this work can propagate one record per clock cycle, therefore
the maximum achievable throughput is 1 record per clock cycle.

3.2.1 General concepts

Configurability An operator can have a configuration defined through its con-
figuration interface signals. This configuration defines the concrete behavior of the
operator. In a configurable system, this configuration, and therefore the behavior
of an operator can change at run-time. In a non-configurable system, these config-
uration signals are assigned constant values. Since the behavior cannot change at
run-time, the synthesizer will optimize unused logic away. Taking an aggregation
operator as an example, in a configurable system, logic for all modes of operation
(sum aggregation, count aggregation, ...) is present, while in a non-configurable
system, only the predetermined functionality is available (e.g., a sum aggregation).
In a configurable system that allows changing record sizes, resources need to be
overprovisioned. One can define a maximum record size that determines the width
of the Ri and Ro signals of an operator. This maximum record size can be set to
the number of bits that can be ingested by the host system into the FPGA in a
single clock cycle (see Section 4).

Figure 3: Extracting a field Ra consisting of bits 7 to 4 in a non-
configurable system (left) vs configurable system (right).

Record fields Some operators do not work on the entire record but only a part
of it. An example of this is a selection operator where only a field of the input
record may be used for the comparison. A field can therefore be defined as a
contiguous range of bits of a record. In a configuration interface, a field can be
represented by two numbers: the index of the start bit within the record and the
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index of the end bit within the record. While custom logic like in an FPGA allows
for such bitwise addressing, it is rarely practical and bytewise-addressing is used
instead (i.e., start byte and end byte). On the hardware level, a field is represented
by the respective subset of record wires. In a non-configurable system, this subset
of wires is known at synthesis time and the resulting logic for extracting the field
from the record is fairly simple as seen in Fig. 3. In a configurable system, the
field could be arbitrarily defined. A ”slicer” component takes the entire record
as input and uses multiplexers to extract the specified range of wires. Since the
field can be arbitrary in length, the slicer output is always the same width as the
input record. Only the lowest bits are set to represent the field and the rest of the
output is padded with logic lows. When synthesizing such a slicer with constant
field bounds, the resulting logic is equivalent to what can be seen in Fig. 3 on the
left. By using byte-wise addressing instead of bit-wise addressing for fields, the
logic complexity of such a slicer is reduced significantly.

3.2.2 Selection

The selection operator allows comparisons based on a binary operator θ of a field
a with another field b (σaθb(R)) or with a value constant v (σaθv(R)).

Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro mode ∈ {field, constant} clk (unused)
dvi dvo function ∈ {0, 1,=, ̸=, <,≤, >,≥} rst (unused)
eowi eowo field a ( start, end)

field b ( start, end)
constant ∈ N

Table 1: Interface of the selection operator. The eow signals are used for
windowing.

Interface Table 1 shows the operator interface. It is first to note that selection
can be implemented as a combinational logic circuit, i.e., it is not reliant on a
clock signal. Without a clock signal, no state can be held, so the operator further
leaves the reset signal unused. The configuration interface determines the concrete
operator behavior. The mode signal specifies whether field a is compared with
another field b or a constant. The function signal determines the binary operator
θ to use. Given that not the whole input record Ri but its field a is input to θ, the
configuration signals field a start and field a end determine a as a part of Ri.

14



3.2 Operators

The field b is extracted in the same way. See Section 3.2.1 how this field extraction
is achieved.

Figure 4: Configurable selection operator schematic.

Implementation Figure 4 shows a simplified schematic of the implementation
of the operator. Fields a and b are extracted by ”slicer” components. The mode is
input to a multiplexer that switches between the constant and b, while function is
input to a multiplexer that switches between the results of all possible θ’s. The θ’s
are implemented using a logic comparator for each of the input bits. The output
is a single wire that is low when the comparison is false, and high when it is true.
For contradiction (”0”) this wire is always low and for tautology (”1”) it is always
high, so no comparators are needed there.
The selection operator’s purpose is to determine whether an element of its input
stream shall be part of its output stream. This is exactly what the dv signals in
the operator interface are used for. Given dvi and the output of the θ-multiplexer,
to determine dvo, these two wires just have to be combined by a logic and (&)
gate: iff there is an input record as determined by dvi and the selected θ outputs
high, then the selection operator signals an output record. The output record Ro

is equivalent to the input record, so Ri’s wires can simply be passed through the
operator.
If the configuration is constant, i.e., in a non-configurable system, then the syn-
thesizer will optimize unused logic resources away. Figure 5 shows the logic that
effectively remains when doing an equals-comparison with the constant 9. One
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can see that the logic usage in a non-configurable system is significantly lower.

Figure 5: Circuitry that is left when comparing field a with the constant
9 for equality.

Performance Selection is implemented as a combinational circuit, therefore re-
sulting in a special case regarding latency and throughput. Latency is a fraction of
a clock cycle while throughput is larger than one record per clock cycle. To illus-
trate this, imagine four selection operators in sequence (and assuming the resulting
signal path fits within one clock cycle), then the latency of a single operator would
technically be a quarter of a clock cycle and the throughput would be 4 records per
clock cycle. If a single selection operator is placed between two non-combinational
operators, then its latency is technically zero and throughput is one record per
clock cycle. For simplicity, this work assumes that as the general case and will
refer to the operator having a latency of zero clock cycles and throughput of one
record per clock cycle throughout the rest of this work.

3.2.3 Projection

The projection operator allows for selecting a subset of bytes of the input record
to be present in the output record (πb1,b2,...,bn(R)). Common CPU-based stream
processing and database systems also allow ordering those bytes in a certain way.
Implementing reordering of all bytes in hardware would not only entail an overly
complex configuration, but the resulting logic would also require a lot of logic re-
sources. Therefore the projection operator allows for moving one range of bytes
of the record to a new position within it. Should multiple reorderings be neces-
sary, multiple projection operators can still be placed in sequence. Table 2 shows

16



3.2 Operators

the operator’s interface. Similarly to the selection operator, the entire projection
operator is based on only combinational logic.

Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro move field ( start, end) clk (unused)
dvi dvo move dest rst (unused)
eowi eowo keep bytes

Table 2: Interface of the projection operator.

Interface Themove field start byte andmove field end byte configuration fields
determine the range of the record to move, while the move dest field specifies the
destination byte index to move it to. The keep bytes bitmask determines which
bytes of the input record shall be part of the output record.

Figure 6: Circuitry generated when moving field a in front of b and dis-
carding the rest of Ri.

Implementation The operator will first perform the ”move” operation and ap-
ply the projection operation on the move’s result. The move field will be moved
to the destination byte move dest with the replaced bytes being shifted to the
field’s original position. The bytes to keep, based on the bitmask keep bytes, are
placed at the end of the record with the rest of the record being padded with logic
lows (”0”).
Figure 6 shows circuitry for an example projection. The operator only has an
effect on the output record Ro, so all other signals such as dv can simply be wired
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through. One can see that a move operation will only switch wire positions in the
output record relative to the input record. The wires of bytes discarded in the
projection are simply not connected to the output record. In a non-configurable
system, this implementation has the effect that the synthesizer will observe that
the discarded wires of Ri have no effect on downstream operators (and therefore
the query output). As already laid out by Mueller et al., the synthesizer can op-
timize away these ”dangling wires” and effectively realize a projection pushdown.
In a configurable system, the output record may change at any time given the
configuration parameters, rendering such optimizations impossible.

It might seem like the operator violates the single responsibility principle of soft-
ware engineering because it provides multiple modes of operation and/or function-
alities at once. But in the context of operator reconfigurability, allowing for more
functionality within a single operator entity creates greater flexibility in reconfig-
uration.

Performance For the projection operator, the same special case as for the se-
lection operator applies. In the general case of a projection operator being placed
between two non-combinational operators, latency is zero and throughput is one
record per clock cycle.

3.2.4 Windowing

The general windowing principle is based on signaling the end of windows in-
stream, a concept also used by Mueller et al. in their streaming system Glacier[9].
Similarly to how the dv signal is used to indicate whether a given record belongs to
the data stream or not, an eow (”end of window”) signal is used to indicate whether
a window ends with the current clock cycle. This signal is propagated throughout
the system in the same way as the dv signal and record are - from operator to
operator. Usually, an aggregation operator will then use this signal as an indicator
as to when to emit window aggregates. A windowing operator therefore opens a
window domain, while an aggregation or window synchronization operator closes
it. This concept avoids having to keep large state, such as collecting a window’s
records in memory. On the other hand, this introduces the limitation that the
stream has to be in-order when windowing is performed based on event time.

In the most general case, tumbling windows, there is only one open window domain
at a time. Using sliding windows there are ⌈window size ÷ window slide⌉ many
open window domains at a time: for instance, with a window size of 8 and window
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slide of 2 there will be always four open window domains at once. Because of the
inherent parallelism an FPGA design can make use of, these multiple open window
domains can be processed in parallel. A windowing operator splits the stream into
multiple processing branches, each branch only operating on one window domain.
As seen in Fig. 7 these branches are later joined by a window synchronization
operator after the window domains are over (i.e., usually after an aggregation).

Figure 7: Windowing mechanism consisting of four parallel processing
branches.

The windowing operator outputs the same record to all processing branches but
sets the data valid signal dv for a branch depending on whether this record belongs
to the respective window. It also outputs an eow signal to each branch to indicate
the end of the window. This concept allows for flexible windowing schemes because
a record can belong to multiple windows and multiple windows can end at the same
time. Now two sliding window operators will be presented: fixed-size windowing
and timestamp-based windowing.

Fixed-size windowing This operator produces sliding windows with a fixed
number of elements within each window. The processing is therefore time-agnostic
as it does not rely on any time information present in the record. For this operator,
the configuration interface only consists of the window size and window slide
signals as can be seen in Table 3. It counts the elements that have already been
emitted for each window and once the window size is reached, the eow signal will
be driven high for one clock cycle and the counter is reset to 0. These counters
are initialized with negative values of multiples of the window slide to achieve
the correct window begins. A record will only be emitted to a certain window
when its counter is larger than or equal to 0 to avoid windows being longer than
window size in this initialization phase.

In a non-configurable system, the windowing configuration is static and therefore
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Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro window size clk
dvi dvo[1..n] window slide rst

eowo[1..n]

Table 3: Interface of the fixed-size sliding windowing operator. n denotes
the number of provisioned processing branches.

the number of parallel window branches is defined. But when this configuration
changes at run-time, the number of required processing branches also changes.
Hence processing branches can be over-provisioned in a configurable system to
allow such flexibility, up to a defined number of maximum supported parallel
processing branches.

Since the operator simply passes records onto their respective processing branches
in parallel, it can accept one record per clock cycle, resulting in a throughput of
1. It does so with a latency of one clock cycle.

Timestamp-based windowing Contrary to the fixed-size windowing operator,
this operator determines windows based on the record’s event-time. As can be seen
in Table 4, the configuration interface contains additional signals that define the
field of the record which contains the event timestamp. The window size and
window slide parameters are in the same duration unit as this timestamp. The
operator assumes the stream to be in-order, i.e., these timestamps to monotoni-
cally increase. This allows to follow an approach similar to fixed-size windowing
but instead of keeping track of the number of records within each window, the
window start timestamps are stored. When a record with a timestamp larger than
window start + window size arrives, then the eow signal is driven high for the
respective window branch. The sliding is achieved by initializing the window starts
when the first record of the stream arrives: the start timestamps are set to the
record’s timestamp incremented by multiples of the window slide.

If the stream is out-of-order, there could theoretically be infinitely many open
window domains at once. In the current windowing architecture, infinitely many
processing branches would be needed, which the limited resources of an FPGA
cannot account for. Another approach would be to queue up records of windows
in memory as many CPU-based systems do, but FPGAs are generally equipped
with very little memory resources. A practical approach would be to create fixed-
size sliding windows on the stream and to sort the records in these windows. These
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Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro window size clk
dvi dvo[1..n] window slide rst

eowo[1..n] timestamp field( start, end)
busyo

Table 4: Interface of the timestamp-based sliding windowing operator. n
denotes the number of provisioned processing branches.

windows can then be processed as an in-order stream to get approximate results.

A window is empty when there are no records between two eow signals. These
windows also need to be processed to produce correct aggregation results (e.g.,
an element count of 0 within a window). Since the timestamp-based windowing
operator relies only on record timestamps to detect the end of windows, there is the
case that two successive records have a timestamp difference that requires multiple
empty windows to be emitted. While the operator is performing this process it
cannot accept any more incoming records. This blockage lasts as many clock cycles
as there are windows to be emitted divided by the number of parallel processing
branches, as one eow signal can be transmitted on each processing branch per clock
cycle. The busyo signal is set to high until all these empty windows are emitted to
signal upstream that records need to be buffered. This is one example of the local
buffering mechanism described in Section 3.1.3.

The throughput of the operator therefore depends on how often empty windows
have to be emitted. If this is never the case, then its throughput is one record per
clock cycle, otherwise it is 1−Pempty window where Pempty window is the probability of
an empty window having to be emitted in a clock cycle. The latency is unaffected
by this and is always one clock cycle.

Window synchronization Each window is processed by one of the parallel
processing branches. The streams that these branches output need to be merged
into a single stream again. A component called ”window synchronizer” is respon-
sible for that. It takes the records Ri[1..n], data valid signals dvi[1..n], and end of
window signals eowi[..n] of all parallel processing branches as input and outputs
a single stream based on Ro and dvo, as depicted in Table 5. Its configuration
interface only contains the number of processing branches that are actually in use
(since they can be over-provisioned in a configurable system) to not try to merge
unused branches.
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Processing interf. Configuration interface System interface
Inputs Outputs
Ri[1..n] Ro num windows clk
dvi[1..n] dvo rst
eowi[1..n]

Table 5: Interface of the window synchronizer. n denotes the number of
provisioned processing branches.

The merge process has to take the semantics of the windowing itself into account.
Since the windowing operator creates windows in a certain order, the same order
has to be preserved after the merge. Given windows w1 and w2 for example, where
w2 is a window that starts after w1. If w2 is processed faster than w1, the output
records of w2’s processing could arrive at the merge operator earlier than those
of w1. If the merge process would merge records only on the basis of when they
arrive, window processing results can get out-of-order. The window synchronizer
therefore has to perform a semantic merge, where it preserves the window order.

This synchronization is achieved by keeping track of which processing branch is
expected to output records next and only passing those records onto the output
stream. Since both presented windowing operators effectively assign windows to
processing branches in a round-robin fashion, the synchronizer expects branches
to output records in this same order. Once a processing branch indicates that
the window currently processed has ended, i.e., using the eow signal, the win-
dow synchronizer expects records from the next processing branch. While the
window synchronizer waits for the expected processing branch to output records,
the outputs from all other processing branches need to be buffered. The window
synchronizer has one FIFO-style buffer for each processing branch. As in local
buffering for handling back pressure, a wait signal on the buffer is used to control
whether it should output or queue up records. This wait signal will be set to out-
put records only for the buffer belonging to the processing branch of which records
are expected. The buffers will not only store records but also the eow signal to
not lose the association between both. Otherwise, given the contents of a buffer,
it could not be determined whether all the records belong to the same window or
multiple windows, again breaking window order.

As for performance metrics, the operator has a throughput of one record per clock
cycle as it buffers the incoming records of processing branches that it would not be
able to accept otherwise. The latency of a record depends on the input stream. If
all records arrive in the order of their respective windows, no buffering is necessary
and the operator has an overall latency of one clock cycle for the processing part
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and three clock cycles for the buffering part, since records still need to be passed
through the buffers (see Section 3.2.9).

3.2.5 Grouping

The grouping operator reorders the records of a window so that records with the
same value of their field a appear successively (γa). A simple approach to achieve
this functionality is sorting the records by this field a using the sorting operator.
A more efficient solution in terms of algorithmic complexity can be achieved by
making use of a hash map, albeit it incurs a higher memory usage. There is only
a limited amount of BRAM on an FPGA. Since all records of a window need to
be stored in the grouping operator, this puts an effective maximum processable
records per window limit into place.

Interface As with all other operators, the grouping operator receives records
using the Ri and dvi signals. In comparison to other operators, it does not output
records in the order in which they arrive. In fact, it needs to wait until it has seen
the last record of a window, as indicated by eowi, to determine the final output
ordering. The records are then emitted using the Ro and dvo signals and after all
records of the window have been emitted, the eowo signal is driven high for one
clock cycle. The implementation of the operator requires local buffering upstream
which the busyo signal is for. The field after which to group by is determined
through the field start and field end signals in the configuration interface.

Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro field( start, end) clk
dvi dvo rst
eowi eowo

busyo

Table 6: Interface of the grouping operator.

Implementation The grouping operator relies on a hash map to group records.
The field a to group after is extracted using a slicer component for each record.
This field is then input to combinational circuitry based on multipliers and shifters,
which resembles a hash function. The hash of the field determines the bucket in
which to place the record. Each bucket has a linked list of records associated
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with it. The operator utilizes two BRAMs, one for storing the records (”record
BRAM”) and one for storing the heads of the linked lists (”bucket BRAM”) as
depicted in Fig. 8. An entry in the record BRAM consists of the record itself, the
record BRAM address of the next record with the same hash, and a ”visited” bit
to determine whether a record has already been emitted. Entries in the bucket
BRAM only consist of the record BRAM address of the first record in that bucket.
These heads are initialized with zero, indicating a ”null pointer” and that there
are no records belonging to this bucket. That is also the reason why the record
BRAM address 0 is reserved.

Figure 8: BRAM layout and content after inserting some records. The
records are hashed here using the identity function, so hash(0x000n) = n.

If a record is received, the hash of its field is calculated. Then the current head of
the corresponding bucket is retrieved. This retrieval consists of setting the BRAM
read address to the hash and stalling for one clock cycle until the head address is
on the BRAM’s data wires. The operator signals upstream that it cannot accept
a new record by setting busyo high for this clock cycle.

The record is then inserted at the beginning of the linked list, i.e., it becomes the
new head. Records are inserted into the record BRAM in the order they arrive, so
the record BRAM’s write address is set to the next empty address and the data
wires contain the record, the current bucket head, and a zero visited bit. In the
same clock cycle, the bucket BRAM is updated by writing the address of the just-
inserted record as the head of the bucket. Writing to record BRAM and bucket
BRAM during the same clock cycle is the reason the two are separated. If a single
BRAM would have be used, one could only perform one write operation in each
clock cycle, requiring more clock cycles for an insertion. The operator has to stall
for one more clock cycle and indicates that it is ”busy” until the data has been
written into the BRAMs and a new record can be accepted.Figure 8 shows the
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BRAM contents after some insertions. One can observe that the head address of
a bucket will always point to its latest inserted record.

This process continues until the window end is indicated by a high eowi signal.
As the operator has to emit the groups now, it cannot accept incoming records so
as to not overwrite the BRAM contents. The busyo signal is set to high until all
records have been emitted. The output process consists of traversing the bucket
BRAM and following their linked lists, setting the visited bit of each record BRAM
entry to 1 when emitted. There can be collisions when two field values produce the
same hash and are therefore placed in the same bucket, even though the records
do not belong to the same group. When following the linked list of a bucket and
a collision is detected, then the head of the bucket will be set to the address of
the colliding entry and the colliding record will not be emitted (and its visited
bit will not be set to 1). If no collisions occur, the bucket head address is set to
0, indicating that there are no more records to output in that bucket. When a
collision happened, it will not be 0 and therefore the linked list will be traversed
again. This process continues until no more collisions occurred and thus all groups
have been emitted. This happens for each entry in the bucket BRAM until all
records have been emitted. Subsequently, the eowo signal is driven high to signal
that the window has ended and busyo is driven low to receive the next records.

This operator is implemented as a finite state machine to account for the different
states of processing it can be in. On the hardware level, the current state is stored
in a register. The logic of a given state is active when this register is set to the
respective state. States are transitioned between by updating the state register.

Another approach towards hash-map-like implementations in hardware is content-
addressable memory (CAM). CAM realizes associative storage in which entries
can be looked up by a prefix (thus content addressable). It is used in networking
devices for fast routing table lookups[13]. For FPGA designs, CAM has to be
synthesized using LUTs and cannot make use of BRAM blocks. Realizing large
amounts of memory is therefore not possible.

Performance The throughput and latency of the operator greatly depend on
the input stream and window size. Only after all records of a window have arrived,
the groups can be emitted. The latency of the operator is therefore the number
of clock cycles it takes to reorder the records. The throughput of the operator is
also dependent on the number of elements that fit into the bucket BRAM since
it is being traversed when emitting the grouped records. A detailed analysis is
deferred to Section 5.1.3. The analysis puts numbers to latency and throughput
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for different operator configurations and stream characteristics.

3.2.6 Group delimiter

If operations are to be performed on record groups, the start and end of these
groups need to be represented within the stream. Given an input stream of grouped
records (e.g., from the grouping operator), the group delimiter operator marks the
group bounds by setting an ”end-of-group” (eog) signal to high once a group is
over, a concept borrowed from windowing. The operator’s functionality is decou-
pled from the grouping operator itself because a stream of grouped records can
also be obtained using sorting, or the stream could already consist of grouped
records. Figure 9 shows an exemplary output stream of the operator.

Figure 9: Exemplary output stream of the group delimiter operator.

Interface The operator receives records using Ri and dvi, outputs records using
Ro and dvo, and signals the end of windows using eowi and eowo. The eogo signal
is set high for one clock cycle when the last record belonging to a group has been
emitted. This can be in the same clock cycle as when outputting the last record
of the group, or any time before the first record of the next group is emitted. The
field after which the records are grouped by is determined by the field start and
field end configuration signals.

Implementation The operator has to set the eogo signal to high when it emits
the last record of a group. But it only knows a record is the last one of the group
when it has seen the next record. It will therefore store the incoming record and
only emits it when the next record has arrived. It determines whether two records
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Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro field( start, end) clk
dvi dvo rst
eowi eowo

eogo

Table 7: Interface of the group delimiter operator.

belong to the same group by comparing their respective fields, which have been
extracted using a slicer based on the configuration. One can see in Fig. 9 that the
end of a window is automatically the end of a group. In this case, the operator
will output the record right away and not wait for the next one.

Performance The operator’s throughput is one record per clock cycle as it can
accept a record all the time. Its latency is two clock cycles because it stores the
last received record and only emits it when the next record (or end-of-window)
has arrived.

3.2.7 Aggregation

The aggregation operator allows the calculation of aggregates on a collection of
records. It does that based on an aggregation function and a given record field.
This work has so far introduced two record collections: windows and record groups.
Both are represented using a delimiter signal (eow and eog respectively). By tying
onto that mechanism, the aggregation operator can be used on windows as well as
on groups.

Interface The operator uses a generic ”end-of-collection” signal (eoci) to which
an eow or eog signal can be wired to. Regardless of the eoci signal, it relays window
information using the eow signals. For the functions min, max, and median, the
operator output is the corresponding record and Ro is the same width as Ri. For
all other functions, the output is only the aggregate. This aggregate (and therefore
Ro has the width of the field which is aggregated on (except for count where it
is a 64-bit unsigned integer). These different widths of Ri and Ro only apply in
a non-configurable system. Since the function and record field can change in a
configurable system, Ro has the same width as Ri there.
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Only outputting the aggregate is different from Glacier [9], where the aggregation
operator places the aggregation result into a field of the input record. In a config-
urable system where the record size is limited, this has the disadvantage that the
record needs to have spare space to accommodate the aggregation result. For ag-
gregations that produce large results or multiple aggregations that are performed
in sequence, such an approach is unfeasible as it limits processing capabilities. In
the system described here, the record is carried on a separate stream, and aggre-
gates are merged back at a later stage. This process is described in when sample
queries are presented in Section 3.4.

To calculate a median aggregation, the operator expects a sorted input stream
and the collection sizei signal to be set. This signal is part of the output of the
sorting operator, allowing to chain an aggregation operator directly after a sorting
operator to calculate median aggregates. It is irrelevant for all other aggregation
functions.

Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro function ∈ {count,min, clk
dvi dvo max, avg,median, sum} rst
eoci eowo field( start, end)
eowi

collection sizei

Table 8: Interface of the aggregation operator.

Implementation The aggregation operator calculates aggregates incrementally
as records arrive, by storing an intermediate aggregate in a register. When the col-
lection has ended, indicated by eoci, it emits the aggregate and resets the register.
Each time a new record arrives, it updates the intermediate aggregate (e.g., for
sum it adds the current record to the intermediate sum). By additionally counting
the number of elements in the collection, all aggregation functions from Table 8
can be realized, except for median.

For median aggregation, the operator expects an input sorted by the record field to
aggregate on. Furthermore, the collection sizei signal has to be set to the number
of elements belonging to the collection currently being processed. This allows the
operator to know the element count of the collection before it has received all
its records, and therefore the index of the median record. This signal is part of
the output of the sorting operator to allow for placing a sorting operator directly
upstream of an aggregation operator to realize median aggregation.
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In a configurable system, the aggregation function can change and therefore the
logic to realize all functions need to be present. In a non-configurable system, the
synthesizer will retain only the logic necessary to implement a single function.

Performance The throughput of the operator is one record per clock cycle since
it can accept a record in each clock cycle. The latency naturally depends on the
window size, since the first record of the window only has an effect on the output
stream (aggregate) once all elements of that window have arrived. More interesting
is the latency when the last record of the window is received. It then takes the
operator only one clock cycle to calculate and output the aggregate since the
aggregate is calculated incrementally.

3.2.8 Sorting

Sorting the records of a window can be useful for grouping or for realizing a median
aggregation. Two successive sorting operators also allow performing grouping on
multiple fields of the record which are not next to each other. This is not achievable
using the grouping operator since it accepts only a contiguous range as the field
to group by. The group delimiter operator can then be used downstream of the
sort operator to ingest the end-of-group signal into the stream.

Interface Similar to the grouping operator, the sort operator does not output
records in the order in which they arrive. It also has to wait until it has seen the last
element of a window, as indicated by eowi, to perform the sorting process. When
the sorted records have been emitted, the end of the window is also signaled using
the eowo signal. The busyo signal communicates upstream that the operator cannot
accept any more incoming records. During the sorting phase, this signal will be
driven high. The field after which to sort by is determined through the field start
and field end signals in the configuration interface. The sort order is given through
the order configuration signal. The collection sizeo signal indicates the number of
elements in the current window. It allows to place a median aggregation directly
downstream to the sort operator since the aggregation needs to know the collection
size to extract the median element from it.

Implementation There exists a plethora of sort algorithms that could be imple-
mented in hardware. For this work, the focus was on low memory requirements,
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Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro field( start, end) clk
dvi dvo order ∈ {asc, desc} rst
eowi eowo

busyo
collection sizeo

Table 9: Interface of the sort operator.

since memory is a scarce resource on FPGAs. Furthermore, the sort algorithm
should be able to make use of the parallelism that custom hardware can provide.

The algorithm implemented is an optimized insertion sort since it sorts in-place.
The optimization lies in a bitonic sorting network to create already sorted parts
of the collection. A bitonic sorting network is combinational circuitry that sorts
a fixed number of elements. The logic resource usage of a sorting network grows
quadratically[10], so one cannot create a sorting network to sort an entire window
for instance.

The sort algorithm would queue up incoming records in batches of 16 and then
use a bitonic sorting network to sort these 16 records combinationally. The sorted
batch is then stored in BRAM. When all records of a window have arrived, the
BRAM contains sorted sub-collections. The operator then iterates of the heads
of all sub-collections, finding the lowest element and emitting it. This process
is repeated until all records have been emitted. One has to note here that no
actual BRAM contents are changed during this output process. The only thing
modified are the addresses of the sub-collection heads. This is possible since it is
not required to have the entire sorted window in BRAM at the end of the sorting
process because, in a streaming system, the operator can simply emit records in
the correct order one by one.

Performance As for the grouping operator, throughput and latency depend on
the input stream characteristics. Unlike the grouping operator, the latency is
not dependent on the maximum number of records in a window but only on its
algorithmic complexity of ( records

2
)2. A detailed analysis and comparison with the

grouping operator are deferred to Section 5.1.3.
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3.2.9 Stream management operators

The operators presented in this section do not serve data processing purposes but
are utilities for handling streams.

Stream fork The stream fork operator duplicates its input stream by splitting
the wires of the input record and other stream signals (dv, eow, eog) into two.
This process is combinational.

Figure 10: Signal layout between the stream fork and stream join opera-
tors. The fork operator creates two identical streams that are processed
in sub-queries of which the lower half of the output is merged by the join
operator into the output stream. fn denotes the join function.

Stream join The stream join operator does the opposite of the stream fork
but is also combinational. It combines two input streams into one without much
semantics (in contrast to a relational join). To achieve this, the input wire pairs
cannot be simply merged with each other like the stream fork operator splits
them. Given a configurable system that can handle a maximum record width
of N , because it has N wires to propagate records between operators: while the
stream fork can simply create two streams each of width N , the stream join cannot
merge them into a stream of width 2N , because it would violate the maximum
record width limit. Without creating operators that can handle and propagate
records of different widths, one has to perform a merge where parts of the input
are discarded.
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Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro join function
dvi dvo
eowi eowo

eogi eogo

Table 10: Interface of the stream join operator.

Figure 10 shows the signal layout when splitting and merging streams. The stream
join operator will take only the lower half of the record wires RA and RB to form
the record on its output stream. The other signals are determined using the
join function configuration signal. This signal is four bits wide and can therefore
represent all 16 binary boolean functions. The bits represent the output given a
boolean assignment, i.e., the bits ”abcd” stand for the boolean assignments ”11”,
”10”, ”01” and ”00” respectively. The logical and function would therefore be
represented using the four bits ”1000”, or would be ”1110” and xor would be
”0110”. Given the logical and function for instance, the stream join operator
will only produce an output record when both of its input streams carry a valid
record. The same goes for the eow and eog signals, which are merged using the
same function. This flexibility allows for combining multiple parallel selection
operators to form complex boolean expressions.

Stream delay The stream delay operator is used to synchronize data dependen-
cies in streams that are processed in parallel. It increases the latency of a record
and associated eow and eog signals by a predefined number of clock cycles. With
a delay of n the record is propagated n clock cycles after it has been received. In
hardware, this is realized by inserting records into a queue made out of registers
and shifting the queue contents forward in each clock cycle.

The necessary delay is inherently defined by the structure of the query. To synchro-
nize a processing pipeline with a latency of 5 with another pipeline with a latency
of 2, an operator with a delay of 3 has to be added to the latter. In a configurable
system where the query structure does not change, the delay will therefore also
not change, requiring no configurability of this operator. In a composable system
where the query structure can change, the highest flexibility is achieved by only
providing stream delay operators with a delay of one clock cycle, because these
can then be chained to create variable delays. Because of these reasons, there is
no need to allow the delay of this operator to be reconfigured at run-time.
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Stream buffer As already lined out in Section 3.1.3, stream buffers are used for
local buffering. They are used upstream to operators that cannot accept records in
each clock cycle. These operators signal that they are busy using an busyo signal.
In normal operation, the stream buffer will just pass through incoming records,
but when this busy signal is high, then the stream buffer will stop passing through
records and will queue them up. If the busy signal falls low again, then the buffer
will output these queued-up records and continue passing records through while
maintaining record order.

The queue is implemented using BRAM. Since BRAM cannot be dynamically
allocated at run-time, there is no re-configuration possible for this operator and
the BRAM size has to be defined at synthesis time. In practice, this is not a large
problem, since global buffering will come into effect once the allocated BRAM is
full. The size of stream buffers only determines the capability to alleviate small
spikes in record frequency.

The throughput of the buffer is one record per clock cycle, while the latency is
three clock cycles. It constitutes of one cycle for writing the record, one cycle
for setting the read address, and one cycle for reading and outputting the record.
There is no latency difference between queuing up and passing-through records.

Stream metadata A stream consists of data signals (the record R) and control
signals (dv, eow, eog). For multi-query processing (see Section 3.4.3) it is necessary
to make control signals part of the data signal. The metadata operator allows
placing the values of these signals onto the record wires. Which byte of the record
to place them is defined through the configuration signals that can be seen in
Table 11. This process is completely combinational and makes the operator not
require a clock or reset signal.

Processing interf. Configuration interface System interface
Inputs Outputs
Ri Ro dv byte
dvi dvo eow byte
eowi eowo eog byte
eogi eogo

Table 11: Interface of the stream metadata operator.

The operator drives dvo always high, i.e., the operator produces an output record
each clock cycle, even when there was no input record. Otherwise, the operator
would only output records where the value of the byte denoted by dv byte is 1. If
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there is no input record, then this information is represented through a value of
0 in the byte denoted by dv byte. The signals eowi and eogi on the other hand
can be passed through. Figure 11 shows how its output signals are set based on
its input signals.

Figure 11: Output of the stream metadata operator based on its input
signals.

3.3 Run-time reconfiguration

Configurable operators have a set of input signals whose values represent the con-
figuration of the operator. The configuration is not stored within the record, so
a valid configuration has to be present on these signals in each clock cycle. This
can be achieved by storing the configuration in registers and wiring their outputs
directly to the configuration signals. The configuration can then be updated by
writing new values to the registers. Figure 12 shows the configuration register for
an exemplary selection operator.

Figure 12: Configuration register value for selection that compares the
field consisting of bytes 10 (excl.) down to byte 2 for equality with the
constant 9.

The collection of operator configurations forms the configuration of the query. To
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reconfigure the query and therefore all operators, the query interface is extended by
a configuration signal C with width n. This width equals the width of all operator
configurations combined. By driving the cv (”configuration valid”) signal high,
the configuration registers are updated and all operators can process based on the
new configuration in the following clock cycle. This leads to an overall theoretical
reconfiguration latency of one clock cycle. How the configuration is received from
a host is described in Section 4.

Figure 13: Operator configuration stored in registers (grey) which are
wired to the individual operator configuration signals.

One can see in Fig. 13, which shows how parts of the configuration register are
wired to operators, that the query configuration is tightly coupled with the query
structure. When setting a configuration, one has to make sure that the individual
operator configurations are in the correct order. Furthermore, in the presented
design, all operator configurations are always updated together and at once. The-
oretically, it would also be possible to only reconfigure a single operator (or even a
single configuration signal) which would reduce the amount of configuration infor-
mation that has to be received from the host. But this would require additional
control information as to which part of the query configuration register should be
written, requiring additional logic resources. Since the query configuration register
can be very wide (thousands of bits wide in large queries), the associated signal
routing logic would be very complex.

3.4 Sample queries

This section presents queries and describes how they can be realized through the
combination of operators.
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3.4.1 Timestamp-based tumbling window word count

This query takes a stream of records consisting of an 8B timestamp in microseconds
and a 32B word as input. It creates tumbling windows of 1 second in length and
counts the number of occurrences of each word in each window. It outputs a
record for each word of the window that includes the word itself and how often it
occurred.

Figure 14: Timestamp-based tumbling window word count query. White
boxes represent operators and grey boxes indicate the record layout.

The processing stages are as follows and are visualized in Fig. 14:

1. The first operator in the query is a timestamp-based windowing operator
with an upstream buffer because the operator can be in a state where it can-
not accept incoming records, requiring them to be buffered. The windowing
operator then emits the end-of-window signal according to the record times-
tamp.

2. The subsequent operator is a grouping operator, also with an upstream
buffer. The grouping operator reorders the records in the window such that
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they form consecutive groups in which the word is the same.

3. The group delimiter operator adds the end-of-group signal to the stream that
delimits these consecutive groups of records.

4. The stream is now split using a stream fork operator into two parallel pro-
cessing branches.

(a) The first processing branch performs a count aggregation based on the
end-of-group signal to count the records within each group. Since each
group consists of records of the same word, it will output the number
of occurrences of each word.

(b) The second processing branch uses a projection operator to only retain
the word field in the record. The aggregation operator has a latency of
one clock cycle, while the projection operator is combinational (’zero’
latency), so an additional delay of one clock cycle has to be added to
this processing branch to synchronize them.

5. The two processing branches are merged by a stream join operator using the
logical and function that makes it only output a record when both input
branches carry a record. While the first processing branch emits the aggre-
gate, the second processing branch emits the word identifying the group. The
join operator will then output a single record for the group which contains
the result of the first processing branch (aggregate) and second processing
branch (word). If these are the last elements of the window, it will also
forward this end-of-window signal to not lose the association of groups to
windows.

3.4.2 Fixed-size sliding window sum aggregation

This query takes a stream of trades that consist of a trade id and the profit or loss
(”PnL”) as input. It creates sliding windows of size 10 and slide 1 to calculate a
rolling sum of the profit. If this PnL sum is greater than 1,000 or is lower than
-1,000 within a window, the query outputs a record that contains this cumulative
PnL, the trade with the lowest PnL within the window, and the trade with the
highest PnL within the window.

The processing stages are as follows and are visualized in Fig. 15:

1. The first operator is the fixed-size sliding window operator that assigns
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Figure 15: Cumulative PnL outlier detection query. White boxes represent
operators and grey boxes indicate the record layout.

records to 100 parallel processing branches and emits the end-of-window
signal accordingly.

2. These processing branches all contain the same logic.

(a) First, two stream fork operators separate the stream into three parallel
processing branches.

i. The first branch uses an aggregation operator based on the end-of-
window signal to extract the record with the lowest PnL within the
window.

ii. The second branch uses an aggregation operator based on the end-
of-window signal to extract the record with the highest PnL within
the window.

iii. The third branch uses an aggregation operator based on the end-
of-window signal to calculate the sum of the PnLs of the records
within the window.
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(b) The first two branches are then merged using a stream join operator
based on the logical and function since both branches always carry a
record at the same time.

(c) A subsequent projection operator compresses the join result.

(d) The third processing branch is now merged with the first two, also based
on the logical and join function. All three processing branches have the
same latency of one clock cycle. The resulting record now consists of
the trade with minimum PnL, trade with maximum PnL, and the sum
of PnLs.

3. Each time the windowing operator ingests a record into any of the processing
branches, exactly one window will be finished. That means that no multiple
processing branches will ever output a record at the same time, making
window synchronization needless. So all outputs of the branches can just be
or-ed together.

4. A stream fork will now create two parallel processing branches.

(a) The first branch uses a selection operator to only retain records for
which the PnL sum is greater than 1,000. A subsequent projection
operator prepares the record for merging by only retaining a single field
that would otherwise be discarded by the stream join.

(b) The second branch uses a selection operator to only retain records for
which the PnL sum is lower than -1,000. A subsequent projection op-
erator prepares the record for merging by compressing its field layout
and omitting the field output by the first branch.

5. A stream join operator now merges both branches. Since the requirement is
to emit records where the PnL is greater than 1,000 or lower than -1,000,
the merge happens based on the logical or function.

3.4.3 Multi-query system

The presented operators are also capable of producing a system that processes
multiple queries at once. There are two concepts that differ in how records are
ingested into these multiple queries. In a record-concurrent multi-query system
only one record, which can belong to either of the queries, is ingested in one clock
cycle. The record contains a field indicating which query it belongs to. For record-
parallel multi-query processing, multiple records can be ingested in the same clock
cycle.
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Figure 16: Comparison of record-concurrent (above) and record-parallel
(below) multi-query approaches with two queries.

Figure 16 shows the architecture of both multi-query approaches. In a record-
concurrent multi-query, the record contains an additional field that indicates which
query it belongs to. The stream is then split by a stream fork operator into two
identical streams. A selection operator now filters records based on this additional
field to only pass the correct records into the queries. The output records of the
queries can simply be merged into the output stream with the additional field
again indicating which query this output record belongs to.

In a record-parallel multi-query system multiple records are ingested at the same
time. That means that the record signal has to be split up to accommodate two
smaller records. Since there is only one data valid signal but two records, a per-
stream data valid signal is transmitted within the record and the ”global” data
valid signal is always high, because now the per-stream data valid signals are used
to indicate whether the record data is valid. A stream fork operator again splits
the stream up into two identical sub-streams. Each stream now filters based on
the per-stream data valid signals, e.g., only when the dv1 is high, query 1 will
process the record. This essentially means that the dv1 and dv signals of the
sub-stream now have the same value. The query then outputs an output record
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and associated data valid signal. A stream metadata operator now allows placing
this data valid signal back into the record to obtain a per-stream data valid signal
again. A stream join operator then merges the records of both streams into one
output stream, now containing both records again. One can see that the output
record has the same signal layout as the input record.

Both approaches seem to be equivalent in the amount of data they process. While
a record-concurrent system processes one full-size record per clock cycle, a record-
parallel system processes two half-size records per clock cycle. When having a
closer look, the amount of data processable with a record-parallel system is lower
than that of a record-concurrent system since part of the record signal has to be
reserved for the per-stream data valid signals.

It has to be noted that these multi-query approaches are just examples. While
these examples realize two sub-queries, by using more stream forks and joins, one
can obtain more sub-queries. Furthermore, there does not have to be an exclusive
query selection. It is also possible to design a system in which a record is processed
by multiple queries instead of just one. One has to be cautious here to not exceed
maximum query throughput since multiple output records would be generated
from one input record.

3.5 Query composition

This work has so far explained how configurable operators can be implemented
and how they can be configured. This allows for creating configurable queries,
i.e., queries that can be reconfigured at run-time, but that have an immutable
query structure. This section will show how the next step of configurability can
be achieved in which also the query structure can be changed at run-time through
reconfiguration - a composable query.

3.5.1 Operator interconnect

An operator has a certain set of input signals and output signals. In a non-
composable system, the output wires of an operator are hard-wired to its down-
stream operator. For a composable query, this wiring needs to be made dynamic
in a way that allows communication from one operator to any other operator. An
operator interconnect is introduced that allows for n:n communication paths in-
stead of doing 1:1 connections between operators. This interconnect is essentially
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a signal matrix that allows routing signals from one operator to all other operators.
This also has the advantage that an operator can have multiple downstream and
upstream operators, allowing for flexible communication schemes. There is one
such signal matrix for dv, eow, eog, and R (which is technically a signal cubus
because it is a matrix of logic vectors). A contrasting design approach to an in-
terconnect is to have multiple fixed ”query templates” into which operators can
be ”plugged”, as presented by Najafi. This comes at the cost of less flexibility but
higher optimization potential.

Operators are addressed by unique IDs that correspond to indices in the signal
matrices. If operator 1 wants to send the eow signal to operator 3, it would set
eow matrix(1)(3) <= ’1’. Operator 3 receives signals from all operators on the
orthogonal axis of the matrix eow matrix(1..n)(3). One can see that an operator
would technically be able to output to all other operators simultaneously. That
means that a downstream operator has to decide how to interpret all incoming
signals. Using a logical or gate to, e.g., combine all record input signals, is not
feasible, since the validity of the record signal is tied to the dv signal. Instead one
can take the record signal at the index where there is a logic high in the dv-matrix.

Figure 17: Interconnect schematic including source and sink nodes. Each
arrow represents signal wires for R, dv, eow and eog.

Figure 17 shows the schematic of signal routes between operators. In addition
to the operators, there is also one source and one sink node. The source node
receives the query input stream and has an outgoing route to all other operators.
The sink node only has incoming signals from other operators and relays them
onto the query output. The source is associated with id 0, while the sink has the
id corresponding to the last index in the signal matrices. For n operators, the
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signal matrices will therefore be of size n+ 2× n+ 2, because they include source
and sink.

3.5.2 Interconnect configuration

In a composable query, each operator not only has its operator configuration but
also an interconnect configuration that essentially determines the query operator
graph. This configuration includes information as to which operators to receive
data from and to which operators to output data, with the operators being iden-
tified by their IDs. Depending on the kind of operator, this configuration can
differ. Figure 18 shows a simple 1:1 operator interconnection on the left and a
more complex n:m interconnection on the right of the figure. Operators with a 1:1
interconnection are all operators only having one input and one output stream.
The windowing operator is 1:n, the stream fork operator is 1:2, the stream join
operator is 2:1, and the window synchronizer is n:1. The interconnect input and
output switching is implemented using multiplexers that determine which of the
input wires to receive data from and which of the output wires to put data on.

Figure 18: 1:1 operator interconnect with configuration (left) and n:m
operator interconnect with configuration (right).

3.5.3 Operator provisioning

Composable operators allow for restructuring queries at run-time, but the opera-
tors to be incorporated need to be present in the FPGA design. This raises the
interesting question which operators should be provisioned and in which quantity.
This work will not answer this question in detail, since more research is necessary
to investigate the operator requirements of common streaming tasks. But as a
general rule, it makes sense to fully utilize the available logic resources on the
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FPGA with composable operators. Furthermore, many streaming tasks will not
require more than one windowing operation, but as Section 3.1.2 has shown, will
heavily rely on stream management operators and record manipulation operators.

Section 3.3 has introduced the way a query is configured. As it is always configured
in its entirety, for a composable query, all present operators have to be configured,
whether used in the query or not. This is necessary to route their eventually
undefined output signals away from operators that belong to the query. The
larger the number of composable operators is, the larger the query configuration
is, which has an impact on reconfiguration time. Figure A.1 shows VHDL code
that resembles the configuration of a composable system.
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This section outlines how the system presented in the previous section can be
interfaced with a host to receive records and configurations. Furthermore, the
practical approach towards query compilation is described.

The system presented in Section 3.1.2 assumed the stream source and sink not to be
part of the query, resulting in a record-based interface. Section 3.1.3 described how
global buffering can be achieved using a query-global ”busy” signal and Section 3.3
extended the interface with input signals for reconfiguration. A holistic view of
the queries’ interface is shown in Fig. 19.

Figure 19: Holistic view of the interface of the query.

4.1 AXI-Stream interface

To make the system universally usable, the interface of the query is translated
into the AXI4-Stream protocol2 which has been developed by ARM and is used
for transporting data streams. The protocol requires three signals for each the
primary and secondary side:

• DATA: The data bus of n bits (user-defined) width. Output of a primary
and input to a secondary.

• VALID: Single wire that indicates whether the DATA wires contain valid
data. Output of a primary and input to a secondary.

2https://developer.arm.com/documentation/ihi0051/a
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• READY: Single wire that indicates whether data can be received. Input to
a primary and output of a secondary.

One can see parallels between these protocol signals and the R, dv and busy signals
used for communication between operators in the query. The DATA signals can
propagate n bits in each clock cycle, while the V ALID and READY signals are
used for flow control. When having a composable query, it makes sense to set the
maximum record size to the width of the DATA signal since this is the amount of
data that can be received in a single clock cycle. The actual width of the DATA
signal is usually constrained by the hardware interface to the host.

4.2 Stream protocol

The AXI-Stream only represents one data stream, which can be used to transport
records, but the query also expects the configuration as an input. A stream pro-
tocol can be employed that allows to transport records as well as configuration
information within a single AXI-Stream. A simple approach would be to annotate
each piece of data transmitted in the stream with an annotation of whether it
represents a record or a (part) of a configuration. Given that the configuration
usually only changes very infrequently in comparison to the stream of records, this
would incur an overhead of one ”control byte” per clock cycle. A more efficient
solution is using a stateful protocol where messages determine the state the pro-
tocol is in, e.g, receiving records or receiving a configuration. This also makes it
possible to define more message types such as a ”query reset” signal that allows to
reset the state of the query, e.g., after a reconfiguration. Each such message has
exactly the width of the DATA signal and one message can be received per clock
cycle. A ”protocol interpreter” component is introduced that has an AXI-Stream
DATA and V ALID signal as input and has a query reset signal rst, record signal
R, record valid signal dv, configuration signal C and configuration valid signal cv
as outputs towards the query.

The state machine of the protocol is depicted in Fig. 20. In the initial ”control”
state, either the ”records control” (”r” byte), ”configuration” (”c” byte) or ”reset”
(”0” byte) message are expected next. If the ”reset” message is received, the rst
output signal is held up for one clock cycle and the protocol goes back into the
”control” state. If the ”records control” message is received, the next expected
message is supposed to include the number of records to receive. This number
is stored in the num variable. The protocol will then be in the ”records” state
as long as there are still records left that have been announced. Each time a
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Figure 20: State machine depicting the protocol for receiving records and
configuration on the same stream. Bold variables represent signals. The
V ALID signal has been omitted from transition conditions.

record is received, it is output using the R and dv signals. Once all num expected
records have been received, the protocol goes back into the ”control” state. If
the next incoming message is a configuration message, the protocol stays in the
”configuration” state until all parts of the configuration have been received. Since
the configuration size Csize is static, there is no message necessary that indicates
the configuration size. After all parts have been collected, the entire configuration
is output using the C and cv signals.

When the configuration changes infrequently compared to the data stream and
when larger batches of records are announced, the overhead of this protocol design
is negligible. It is also extensible, as more messages can be added, similar to the
reset message. A possible addition could be the ability to also send end-of-window
signals from the host.

4.3 AXI-Stream-to-query

Figure 21 shows how the query and protocol interpreter are integrated into an AXI-
Stream environment. The AXI secondary input signals DATAi and V ALIDi are
used by the protocol interpreter to extract record, configuration and reset signals.
These are then passed into the query. For global buffering (see Section 3.1.3),
the query emits a query-global ”busy” signal that indicates that the query is not
able to accept any more incoming records. To halt the stream source (which is
essentially the input AXI-Stream) from delivering more records, this busy signal is
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Figure 21: Integration of query and protocol interpreter into AXI-Stream
system.

negated and wired to the READYi signal. If the busy signal is high, then the ready
signal will be low, indicating that data delivery has to be halted. There is also the
READYo signal that indicates whether the stream sink is able to accept data. If
this signal is low this indicates that the system has to stop emitting records. The
stream is buffered to alleviate small spikes in record frequency, but if this buffer
becomes full, then the source is also instructed to stop delivering data using the
READYi signal. This concept is the same as the combination of local buffering
and global buffering described in Section 3.1.3.

4.4 SNAP host memory interface

The system now has an AXI-Stream input and output interface which makes it
easy to integrate with other hardware components and frameworks. The stream
processing system has been integrated into the IBM CAPI SNAP framework[2],
which is a framework for building FPGA-accelerated, so-called, ”actions”. It allows
cache-coherent direct host memory access using the IBM ”Coherent Accelerator
Processor Interface” (CAPI) present in POWER hosts. The framework is geared
towards software engineers as it allows to create actions using HLS but also RTL-
languages like VHDL and Verilog[22]. It can be used with a variety of FPGAs of
different vendors. The processing model is job-based, i.e., the user submits a job
that includes the parameters for a given action which is then executed.

A SNAP action has been developed that reads records from host memory and
writes them to an AXI-Stream. This AXI-Stream is input to the stream processing
system, which in turn outputs an AXI-Stream of which the action writes records
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back into host memory. The overall system therefore allows stream processing
from host memory into host memory. The SNAP framework version 1 allows to
receive 64 bytes every clock cycle. Therefore in a composable system the maximum
record size has been set to that number. The parameters that the action gets
comprise of an input memory region, the number of bytes to read, and an output
memory region. This allows for ”true streaming” when setting the number of
bytes to read to the size of one record. Since there is an overhead associated
with starting an action and reading only a single record from memory, it is also
possible to do batching by placing multiple records in the input memory region
and selecting a higher number of bytes to read. The host memory access is then
done in bursts, where data is requested in batches of 64 records. This results in
better performance, as outlined in Section 5.3.

4.5 Query generation

Query generation is the process of obtaining an FPGA design from a query de-
scription. A query description can be an operator graph and a design could be
obtained by translating that query description into VHDL code which can then
be synthesized. The composable query presented in Section 3.5 has the interest-
ing property of being completely defined by a query configuration. This query
configuration is in fact just a query description. By combining this property with
the synthesizers’ ability to optimize unused logic resources away, one can generate
queries of varying configurability. When hard-coding a configuration into the com-
posable query, the synthesizer will essentially generate a non-configurable query.
When only hard-coding the interconnect configuration, the query structure will be
static, but the operators will still be configurable (i.e., a configurable query). This
query generation process is entirely synthesizer-based and does not require to de-
velop a tool that converts a query description into synthesizable VHDL code. The
impact that these additional processing and optimization steps have on synthesis
time is analyzed in Section 5.2.4.
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5 System evaluation

This section evaluates the stream processing system presented in this work. The
evaluation can be roughly separated into two parts: static analysis and execution
analysis. The static analysis evaluates the system from an execution-less perspec-
tive, i.e., an analysis of the system and operator design in itself. Section 5.1 will
present statically-inferred performance metrics of some of the queries that have
been presented in Section 3.1.2, based on operator implementation and query
structure. The impact that different levels of configurability have on logic usage,
performance, and synthesis time is presented thereafter in Section 5.2. As part
of the execution analysis, Section 5.3 will evaluate the host integration which has
been described in Section 4 by presenting benchmark results.

5.1 Static analysis

This section will present how the performance properties of a query can be inferred
from its operators. It will do this based on two example queries: the ”timestamp-
based tumbling window word count” (see Section 3.4.1) and the ”fixed-size sliding
window sum aggregation” query (see 3.4.2). These two queries have been chosen
for this evaluation because they exhibit different structures. While the word count
query has tumbling windows, the aggregation query has 10 parallel processing
branches for its sliding window. On the other hand, the word count query has to
group records, which is a bottleneck, as seen in Section 5.1.3. This does not apply
to the aggregation query, but it has eleven times as many operators as the word
count query.

Generally, the latency of a query is the latency of the longest processing path. The
latency of a processing path is in turn the sum of the latencies of the operators
within that path. Section 3.2 presented operators and their latencies. Sometimes
the latency of an operator is dependent on stream characteristics, e.g., for the
grouping operator. For that case one uses the worst-case latency of an operator
to derive the worst-case latency of a query, which is also measured in clock cycles
(C).

The throughput of a query is the minimum of the throughputs of all processing
paths. The throughput of a processing path is the minimum of the throughputs
of the operators in the path. Therefore the query throughput is determined by
the ”slowest” operator. Query throughput is measured in records per clock cycle
(1/C). Based on this, one can also infer actual execution properties. An FPGA
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clocked at 250MHz that runs a query with a throughput of 1, can process 250
million records per second (assuming that records can be ingested fast enough).
With a query throughput of 0.1, the number of records per second is 25 million.

5.1.1 Fixed-size sliding window sum aggregation

To defer the latency and throughput of this query, one has to look at the indi-
vidual operator metrics, which are shown in Table 12. The windowing operator
creates 10 fixed-size windows, which all share the same logic and therefore the
same performance characteristics. Within one window, three processing paths are
created using two stream fork operators: Path 1a, 1b, and 2. Each of these paths
has a latency of 1 clock cycle, which is caused by the aggregation operator in each.
Since these paths are parallel, the window processing has an overall latency of
one clock cycle. Apart from this window processing and the windowing operator,
all other logic is combinational, i.e., having a (theoretical) latency of zero. The
overall query thus has a latency of two clock cycles. Investigating throughput, all
operators within the query have a throughput of one record per clock cycle. This
means the overall query can also process one record per clock cycle.

5.1.2 Timestamp-based tumbling window word count

Table 13 shows individual operator latencies and throughputs for the word count
query. In comparison to the fixed-size sliding window sum query, the operators
exhibit other performance characteristics. The windowing operator has varying
throughput because it has to stall when empty windows have to be emitted. The
grouping operator has a varying latency and throughput because its complexity is
dependent on the number of maximum records per window and the actual input
stream of which the records have to be reordered. This section also includes a
detailed performance analysis for this operator. This analysis assumes records
to be equally distributed over the grouping operator’s buckets and that windows
always contain the maximum number of elements.

The windowing operator creates tumbling windows, so there is only one processing
path and no parallel processing of windows. Within the processing of this single
window, a stream fork creates two parallel processing paths, the first one including
an aggregation and the second one including a projection and stream delay. The
latency of this parallel processing is one clock cycle. The sole reason for the
existence of the stream delay in the second path is to bring both parallel processing
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Operator Latency (C) Throughput (1/C)
fixed-size windowing 1 1
stream fork 0 1
1: stream fork 0 1
a: aggregation 1 1
b: aggregation 1 1

1: stream join 0 1
1: projection 0 1
2: aggregation 1 1

stream join 0 1
or 0 1
stream fork 0 1
1: selection 0 1
1: projection 0 1
2: selection 0 1
2: projection 0 1

stream join 0 1
Query 2 1

Table 12: Individual operator latencies and throughputs for the fixed-size
sliding window sum aggregation query described in Section 3.4.2. Inden-
tations indicate parallel processing paths.

paths to the same latency to avoid data races. Adding up the latencies of all
operators, the query has an overall latency of 10 clock cycles plus the latency
of the grouping operator, which is variable and will be analyzed in detail in the
upcoming section.

The throughput of the query is either limited by the windowing or grouping oper-
ator. If the probability that the windowing operator has to emit an empty window
within a clock cycle (Pempty window) is greater than 8/9 (≈ 88.89%), then the query
bottleneck is the windowing operator, otherwise it is the grouping operator. The
query cannot accept a record in each clock cycle and once the stream buffers
become full, the query-global busy signal halts the source.

5.1.3 Grouping performance

In comparison to other operations, the process of grouping is computationally
heavy and constitutes a bottleneck in query throughput. Therefore this section
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Operator Latency (C) Throughput (1/C)
stream buffer 3 1
timestamp-based windowing 1 1− Pempty window

stream buffer 3 1
grouping Rmax per window ∗ 9 1/9
group delimiter 2 1
stream fork 0 1
1: aggregation 1 1
2: projection 0 1
2: stream delay (delay=1) 1 1

stream join 0 1
Query 10 +Rmax per window ∗ 9 min(1− Pempty window, 1/9)

Table 13: Individual operator latencies and throughputs for the
timestamp-based tumbling window word count query described in Sec-
tion 3.4.1. Indentations indicate parallel processing paths. Assuming
equally-distributed records and fully-utilized windows for the grouping
operator.

will analyze the grouping operator in detail and compares it to the approach of
using sorting instead of a hash map to create groups.

Grouping operator latency The grouping operator’s performance depends on
two variables: the maximum number of records per window Rmax per window and the
actual number of records Rwindow within the window. This distinction is necessary
since the operator traverses the bucket BRAM, of which the size is based on
Rmax per window, to emit groups. In the worst case, it has to traverse the entire
BRAM, regardless of the actual number of records. The latency of accessing one
entry in the bucket BRAM is two clock cycles: one cycle to set the BRAM address
to read from and one cycle to read the result. Traversing the entire (empty) bucket
BRAM therefore takes 2 ∗ Rmax per window clock cycles plus a negligible number
of cycles for initialization. Writing a record takes two clock cycles. If there are
multiple records in a bucket, it takes four clock cycles to process one record. When
records are equally distributed across buckets, it takes seven clock cycles to read
one record. Taking this worst-case scenario and assuming that the BRAM of the
operator is fully utilized, the latency per record would be 2 (write) + 7 (read)
= 9 clock cycles. The overall formula to approximate the operator’s worst-case
latency L is therefore L ≈ 2 ∗ (Rmax per window − Rwindow) + (2 + 7) ∗ Rwindow =
2 ∗ Rmax per window + 7 ∗ Rwindow. As indicated, the actual latency depends on the
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distribution of records across buckets.

Grouping operator throughput The throughput of the grouping operator is
the fraction of clock cycles it is able to accept records in. It takes two clock cycles to
write a record to memory and it takes up to seven cycles to read and emit it again.
That means the operator has a throughput of 1

2
records per clock cycle in the write

phase and zero in the read and emit phase because the operator cannot accept new
records during that time. To approximate the overall throughput T , these phases
need to be weighted by the fraction of total clock cycles they constitute: T ≈
1
2
∗ 2∗Rwindow

L
+ 1

2
∗0 = 1

2
∗ 2∗Rwindow

2∗Rmax per window+7∗Rwindow
. When Rwindow = Rmax per window,

then T ≈ 1
9
, or when Rwindow = 1

4
∗ Rmax per window, then T ≈ 1

15
, being able to

accept a new record every 15 clock cycles on average.

Sort operator performance The sorting operator implements an optimized
insertion sort algorithm of which the complexity is only based on the number of
records in the window but not its maximum number of records. The latency L
of the sorting algorithm is the number of clock cycles it takes to sort the records
in the window, which is approximately (Rwindow

2
)2 = 1

4
∗ Rwindow

2. The average
throughput of the operator is the inverse of the number of clock cycles it takes to
sort because the operator has to block incoming records during sorting.

Comparison Since grouping is dependent on the maximum number of records
within a window, but sorting is not, it is worthwhile to investigate which approach
has the best performance characteristics in which scenario. Both operator im-
plementations have been simulated using random records and different values for
Rwindow and Rmax per window, of which the results can be seen in Table A.1. First
of all one can see that the approximation formulas, especially for the grouping
operator, produce values close to the measured numbers. This shows that rea-
soning based on static analysis is a feasible task. When Rmax per window is large
and Rwindow is small, the grouping operator performs poorly in comparison to the
sorting operator. When the window contains 16 records and the maximum win-
dow size is 220 (= 1, 048, 576), the sorting operator produces results 16,000 times
faster than the grouping operator. While the sorting operator is better suited
in all instances where Rwindow is 16, when Rwindow is 256, the sorting operator is
only better when Rmax per window is larger than 216. For 212 (= 4, 096) records in a
window, the grouping operator is consistently better suited, because the complex-
ity of the sorting algorithm rises quadratically with the number of elements in a
window. For 216 (= 65, 536) records, the sorting simulation did not even succeed.
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Using the approximation formulas, one can calculate the break-even point between
grouping and sorting performance for different levels of ”window utilization” (i.e.,

Rwindow

Rmax per window
). For a utilization of 100%, sorting is better than grouping for less

than 36 records, for a utilization of 10%, the break-even point is 108 records, for
1% it is ca. 800, for 0.1% it is ca. 8,000, and for 0.01% it is ca. 80,000 records.

One has to note that there are also sorting algorithms with better algorithmic
complexity. The implementation presented in this work sorts in-place and uses
minimal amounts of memory, which is a scarce resource on FPGAs. Faster al-
gorithms like QuickSort require more memory and would be outperformed by a
hash-map implementation in most cases anyway. The memory overhead of the
grouping operator in comparison to the sorting operator is the additional bucket
BRAM and control structures in record BRAM. For 220 (= 1, 048, 576) records
and a record size of 64 bytes, the grouping operator uses 35% more memory than
the sorting implementation.

5.1.4 Reconfiguration latency

Section 3.3 described how operators are configured and Section 4 presented how
a configuration can be received using an AXI-Stream. The reconfiguration la-
tency can be defined as the number of clock cycles it takes to receive the new
configuration and to apply the configuration.

The stream processing system has been integrated using a 512-bit wide AXI-
Stream. It can therefore receive 64 bytes of data within a single clock cycle.
Taking the configuration of the timestamp-based tumbling window word count
query as an example, which is 67 bytes large, it would take two clock cycles to
receive it. But there is also overhead induced by the stream protocol. Assuming
we are in the ”control” state, there is one additional message (i.e., one additional
clock cycle) that announces the start of the configuration. Therefore it takes three
clock cycles in total to receive the configuration. The configuration is stored in
the configuration registers in the same clock cycle as the last configuration part
arrived and the next incoming record can be processed based on it. This brings
the total reconfiguration latency to 3 clock cycles or in general 1 + ⌈ |C|

64B
⌉ clock

cycles, where |C| is the size of the configuration in bytes. At 250MHz clock speed,
the latency would be 12 nanoseconds.
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5.2 Configurability analysis

This section will investigate the impact that different levels of configurability have
on logic usage, performance characteristics, and synthesis time of the design. This
can give insights into which level of configurability is feasible for a certain appli-
cation scenario.

5.2.1 Methodology

A query design has been synthesized using Xilinx Vivado 2019.2 for the Xilinx
Alveo U200 card3 as a non-configurable, configurable and composable query. The
query is a timestamp-based sliding window word count with 4 parallel window
processing branches. The query requires one timestamp-based windowing opera-
tor, one window synchronizer, 4 grouping operators, 4 group delimiter operators,
4 aggregation operators, 4 stream forks, 4 stream joins, 4 stream delay opera-
tors, and 4 projection operators. The composable query would technically allow
to over-provision operators, i.e., there are more operators available than needed
for the query. In order to be able to precisely extract the logic resource over-
head between the three configurability levels, there are only as many operators as
needed provisioned for the composable variants of the queries. The record size of
64 bytes and the amount of BRAM for operators, e.g. for grouping, was also the
same for the configurable and composable query. The non-configurable query was
configured to expect a 5-byte input record and to output a 9-byte output record.
The synthesized design only includes the query logic and no components for host
interfacing.

5.2.2 Logic usage

Operators Configuration Interconnect
LUTs FFs BR LUTs FFs BR LUTs FFs BR

Non-config. 1,734 2,003 30 0 0 0 0 0 0
Configurable 513,818 23,838 200 0 189 0 0 0 0
Composable 513,818 23,997 200 0 1,314 0 444,264 2,261 0

Table 14: Logic resource utilization of the sample query by operator, con-
figuration and interconnect logic.

3https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
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Query logic usage Table 14 shows the queries’ overall logic resource usage
separated into operator, configuration, and interconnect logic as output by Xilinx
Vivado’s hierarchical utilization report. It has to be noted that these numbers
are not 100% accurate, since it is not entirely possible to trace the synthesized
components back to their design sources. Especially when optimizations have
already been conducted, the logic boundaries of operators are fluid. Nonetheless,
the numbers give a rough idea of how many logic resources can be attributed to a
certain design entity.

One can see that the non-configurable query has the lowest resource usage: It
uses 7,134 look-up tables (LUTs), 2,003 flip-flops (FFs), and 30 BRAM blocks
in total. As it has no configurability and interconnect logic, its resource usage
in those categories is zero. The configurable queries’ operators have a 296 times
higher LUT usage, use 12 times as many FFs, and 6.6 as many BRAM blocks. 189
additional FFs can be attributed to storing the configuration. It does not have any
interconnect resource usage as the query structure is static. In comparison to the
configurable query, the composable query uses the same logic resources for the op-
erators, but 7 times as many FFs for the configuration, which can be traced back
to the configuration also having to represent query structure information. The
interconnect logic uses almost as many LUTs as the operators. The BRAM usage
between the composable and configurable query is the same. In total, the compos-
able query uses 86% more LUTs than the configurable query, and 55,152% more
LUTs than the non-configurable query. The composable query has a 15% higher
flip-flop usage than the configurable query and a 1,276% higher usage compared
to the non-configurable query.

Operator logic usage One can also analyze the resource usage on an opera-
tor level. Table 15 shows the LUT, FF, and BRAM usage of the sample query’s
operators by configurability level. The first thing to note is that the stream fork
and stream join operator have no logic usage at all in the non-configurable and
configurable queries. This is because these operators are used to represent query
structure, which is static for both these configurability levels. Similarly, the pro-
jection operator has been optimized out of the non-configurable query, because the
operator’s configuration was static and therefore the projection could be resolved
at synthesis time. Section 3.2.3 has shown that projection is essentially just a re-
ordering of wires. In general, all operators use significantly less resources in the
non-configurable query, because of the optimization possible given a configuration
that is already known at synthesis time. As mentioned before, this configuration
represented a word count query that uses 5 bytes out of the 64-byte input record
and uses 9 bytes from the 64-byte output record for the result. The synthesizer
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can optimize out all logic that does not reflect in these 9 output bytes. This is
the case for all logic resource types, including BRAM: While the grouping oper-
ator uses 40 BRAM blocks in total in the configurable and composable query, in
the non-configurable query only 5 BRAM blocks are used because not the entire
64-byte record has to be stored, but only the part of the record that reflects in
the output. The aggregation operator only has to perform the count aggregation
and the synthesizer can optimize all other aggregation logic away, as can be seen
in the mere 11 LUTs that the aggregation operator uses in the non-configurable
query.

Non-configurable Configurable Composable
LUTs FFs BR LUTs FFs BR LUTs FFs BR

Windowing 449 365 2 16,120 1,804 8 25,559 2,481 8
Window synchr. 225 282 8 2,179 2,208 32 4,066 2,229 32
Grouping 245 291 5 33,468 2,133 40 66,875 2,768 40
Group delimiter 8 22 0 55,129 1,030 0 66,875 1,060 0
Aggregation 11 24 0 34,971 1,069 0 44,638 1,103 0
Projection 0 0 0 37,268 72 0 48,557 101 0
Stream delay 1 2 0 1 2 0 7,987 542 0
Stream fork 0 0 0 0 0 0 9,515 32 0
Stream join 0 0 0 0 0 0 5,136 26 0

Table 15: Logic resource utilization per operator for the sample query.
The numbers include both operator, configuration, and interconnect logic.

The orders of magnitude higher logic usage of the configurable and composable
query can mainly be traced back to the larger record size that can be processed.
While for the non-configurable query, the synthesizer can optimize based on the
configuration, for the other query types, the record fields that the operators operate
on might change at any time. Therefore the operators have to be synthesized to
handle records up to the maximum record size (64 in this case). The logic resource
difference between the composable and configurable query is almost entirely caused
by interconnect logic.

Interconnect complexity The resource usage of the interconnect logic greatly
depends on the number of operators to interconnect. For example, the composable
form of the timestamp-based tumbling window word count query (Section 3.4.1)
has an operator usage of 24,972 LUTs and interconnect usage of 166,600 LUTs,
since it only has 10 operators. The sample word count query presented in this
section has 45 operators, a 513,818 LUTs operator usage, and 444,264 LUTs in-
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terconnect usage. With 89 operators the biggest query presented in this work,
the fixed-size sliding window sum aggregation query (Section 3.4.2) uses 1,585,581
LUTs for operators and 1,926,010 LUTs for interconnect logic, because of its ten
parallel window processing branches.

FPGA utilization Based on the measured logic resource usage, one can inter-
polate the maximum query size with regard to the number of operators for a given
FPGA device. The Xilinx Alveo U200 for example has 892,000 LUTs. Based
on the sample word count query LUT usage, one could fit the non-configurable
query 514 times on there. On the other hand, the configurable query already
occupies 57.6% of available LUTs and the composable query would not even fit.
This of course greatly depends on the actual query: a composable version of the
timestamp-based tumbling window word count query could fit almost 5 times onto
the FPGA. It has to be noted that these are estimations that can vary because of
actual logic layout requirements on the chip, but nonetheless, give a decent idea of
maximum query complexity. Furthermore, research has shown that not more than
70-80% of available LUTs in an FPGA should actually be occupied by logic[3].

Table 15 also gives a good idea as to how many individual operators can fit onto
an FPGA for different levels of configurability. One can also see that logic usage
greatly differs between operators. While aggregation and grouping are expensive in
terms of logic usage, stream management operators require fewer resources because
they are of lower complexity.

5.2.3 Performance

The performance properties of operators do not differ between composable, con-
figurable and non-configurable instances. The observations made in 5.1 apply to
all configurability levels, i.e., a fixed-size windowing operator will always have one
clock cycle latency and one record per clock cycle throughput. But the effectively
realizable clock speed of an FPGA is tied to the longest signal path in the syn-
thesized design. How long this signal path is, depends on the actual query and
the used operators. Since some operators are combinational, such as selection or
projection, one cannot chain an arbitrary amount of them together in a query,
since eventually, the resulting combinational signal path will not allow clocking
the FPGA at the desired frequency. Instead, a register (i.e., a signal delay oper-
ator) has to be inserted at a suitable position to buffer the result between clock
cycles. While this helps to achieve timing, the latency is increased by one clock
cycle.
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While the sample word count query achieves the desired timing closure of 250MHz
for its non-configurable and configurable versions, it becomes tricky for compos-
able queries. The issue here is that the communication paths are not defined at
synthesis time, since the interconnect can be configured dynamically. When there
are combinational operators within a composable query, there technically exists
one long signal path through all of them. There can also exist combinational
loops since operators can form loops through the interconnect. Without knowing
the query configuration at synthesis, it is hard to analyze whether the design will
achieve timing. A sub-optimal solution for this could be to prohibit combinational
operators, i.e., every operator has an output register. This will increase latency
and prohibit optimizations in which multiple combinational operators fit in the
same clock cycle.

5.2.4 Synthesis time

The main argument for reconfigurable stream processing queries is the avoidance of
long synthesis times on query changes. The sample word count query has been syn-
thesized as a non-configurable, configurable, and composable query on a machine
with an AMD EPYC 77424 processor with 64 cores. It is noteworthy that Xilinx
Vivado does not utilize all available cores for synthesis. Some parts of the synthesis
process are even only single-threaded5. Synthesizing the non-configurable query
took 114 seconds, while the reconfigurable query took 710 seconds to synthesize.
The composable query had a significantly higher synthesis time, which was 2,319
seconds.

The synthesis time of a composable query depends on a number of factors, such
as the number of operators and which operators have been provisioned. More
complex operators such as sorting or grouping can take longer to synthesize than
simple stream management operators. For contrast, a composable version of the
timestamp-based tumbling window word count query (Section 3.4.1) took 3 hours
and 32 minutes to synthesize, while the fixed-size sliding window sum aggregation
query (Section 3.4.2) took 12 hours and 50 minutes to synthesize.

Query generation through composable query optimization One can ob-
tain a non-configurable query either by writing code that combines operators or by
synthesizing a composable query with a non-changing configuration, as described

4https://www.amd.com/de/products/cpu/amd-epyc-7742
5https://docs.xilinx.com/v/u/2019.2-English/ug904-vivado-implementation
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in Section 4.5. To evaluate the optimization effort necessary when synthesizing
using a composable query with constant configuration, the sample word count
query has been over-provisioned with operators: 4 additional selection operators,
4 additional sorting operators, 4 additional stream metadata operators, and one
additional fixed-size windowing operator. Synthesis took 13 hours and 38 minutes,
which is approximately 430 times as long as synthesizing the non-configurable
query from code.

5.3 Execution analysis

This section evaluates the performance of the timestamp-based tumbling window
word count query (see Section 3.4.1) and fixed-size sliding window sum aggregation
query (see Section 3.4.2) when executed on actual hardware.

5.3.1 Methodology

The non-configurable versions of the queries have been integrated into the SNAP
framework as described in Section 4 and synthesized for the Nallatech N250S card
that includes a Xilinx Kintex US KU060 FPGA. The FPGA card was connected to
an IBM S824L Power 8 host and has been clocked to 250MHz. The host interface
width is 64 bytes, allowing in theory a throughput of 250 million 64B-records per
second. In practice, the host integration cannot satisfy these speeds, as seen in
this section. The burst size has been set to 64, so the system requests records
in batches of 64 from host memory. This increases throughput at the expense of
having to perform batching. One experiment has also been carried out where the
burst size was set to 1. To be able to compare the query performances with a
baseline, a design with an empty query has been synthesized additionally, i.e., a
query that just passes records through.

5.3.2 Stream characteristics

The records passed to the query were randomly generated, except for the times-
tamp fields for the word count query, which have to be steadily increasing. As this
query performs grouping, the maximum number of records per window for this
query has been set to 65,536 and all windows were utilized 100%, i.e., the actual
number of records per window was also 65,536. This will reflect in the throughput
of the query, as described in Section 5.1.3.

61



5.3 Execution analysis

5.3.3 Results

The latency of the system has been obtained by measuring the processing time of
one single record. As the system streams from host memory into host memory,
this latency is the end-to-end latency. The baseline latency measured is 55µs.
The aggregation query has the same latency because its latency is only two clock
cycles, as presented in Section 5.1. The word count query on the other hand has a
measured latency of 586 µs, because of the large latency of the grouping operator.
Using the grouping operator’s latency approximation formula from Section 5.1.3,
a latency of 131,089 clock cycles can be calculated for the query. Divided by the
clock frequency of 250MHz, the operator’s latency is 524µs. Adding the 55µs
baseline latency, approximately sums up to the 586µs of measured latency. It has
to be noted here that this higher latency is only obtained because the window to
which the record belongs has been ended, triggering the reordering logic of the
grouping operator. If the windows were not ended, the latency would be the same
as the baseline, as the grouping operator would only write the record to memory
and not do further processing, resulting only in a dozen clock cycles latency.

Remember that the processing model of the host integration framework is job-
based and requires specifying a host memory region with the input records. The
latency reflects how long it takes to start a job and to process one record, so
throughput depends on the number of records submitted per job. In a ”true”
streaming case this would be one record per job. The baseline throughput, in
this case, is 18,000 records per second or 9.3Mbit/s, as can be seen in Fig. 22.
Transmitting ten records per job also has a ten times higher throughput since the
number of records read from host memory is still smaller than the burst size of 64.
This means it roughly takes as long to transmit one record as it takes to transmit
ten. Transmitting 100 records per job takes two bursts, i.e., two read requests to
the host. The throughput only increases by a factor of 8.9 now in comparison to
ten records per job. The more records per job the more negligible the job start
overhead becomes. When transmitting 10,000 records per job, the throughput is
16.2 million records per second or 8,311.7 Mbit/s respectively. At the maximum
number of records per job, which is ca. 32 million, throughput is 18.9 million
records or 9,668.1 Mbit per second.

Similarly to latency, the aggregation query has the same throughput as the base-
line, because its throughput is one record per clock cycle, resulting in no stalling.
The word count query on the other hand consistently has around nine times lower
throughput, caused by its grouping operator being a bottleneck. Section 5.1.3
has shown that the approximate throughput of the grouping operator is one-ninth
when windows are fully utilized. This is now also resembled in the actual execution
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5.3 Execution analysis
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Figure 22: Throughput comparison between baseline, fixed-size sliding
window sum aggregation, and timestamp-based tumbling window word
count queries. See sources in Table A.2, Table A.4, Table A.3.

throughput.

The burst size specifies how many records are requested from the host at once.
This also affects throughput. With the maximum records per job, requesting only
one instead of 64 records at once results in a throughput of 649.9 Mbit/s, which
is a 93.3% reduction. This shows that the burst size and number of records per
job have to be chosen sensibly because both have an impact on throughput when
batching is reduced.
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6 Discussion

This section discusses some of the results of the previous section and provides
directions for further research.

Partial configurability A configurable query has a significantly higher logic
resource usage than its non-configurable counterpart. The difference can be or-
ders of magnitude higher, depending on the constant ”configuration” of the non-
configurable query, which essentially defines the optimization potential. A way to
limit the impact the configurability has, one could reduce the range of configura-
tion options. The observations made in this work are based on the configurable
query allowing all parameters of all operators to be configured and the composable
query allowing each operator to be interconnected with every other operator. If it
is in advance known that certain parameters will not need to be configured, this
could be indicated at synthesis time. This would allow for more optimization and
possibly lower resource usage and synthesis time.

Interconnect optimization This work has shown that the interconnect com-
plexity is significant. This is due to it providing a connection from all operators to
all operators, i.e., it has quadratic complexity. This could be alleviated by lower-
ing the number of operator interconnections. A heuristic could be developed that
gives an answer as to which operators should be interconnected and which not
based on whether it makes sense to have them as successive operators in a query.
There might be, e.g., no reason why two windowing operators or two aggregation
operators should be interconnected. Interconnecting two projection or two selec-
tion operators on the other hand seems reasonable. Nonetheless, an operator not
necessarily has to be interconnected with all other operators. It might be a reason-
able limitation to interconnect an operator with just a fraction of all operators as
long as there is at least a connection with one operator of each type possible. This
comes close to the ideas of Najafi, where there are query templates in which oper-
ators can be ”plugged” in, albeit limiting flexibility less. One could also think of
not allowing combinational operators in composable queries, since combinational
operators cause long signal paths in combination with the interconnect logic. This
could aid in determining the timing properties of composable queries better but
would increase latencies.
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Partial reconfiguration for composable operators Even when using a com-
posable query, one is limited by the set of operators available in the design. What
operators are available is determined at synthesis time of the composable query.
When other operators than the currently provisioned are required, one has to
synthesize a new composable query. This work has shown that this is a lengthy
process. A solution to this could be partial reconfiguration of the FPGA, which
is the process of just replacing parts of the design on it. One could have multiple
precompiled partially-reconfigurable modules that contain a certain set of opera-
tors. When another set of operators is required in the composable query, these
modules could be swapped in and out of the design. Dennl et al. have already
presented such a ”module library” for SQL acceleration. Performing a partial re-
configuration is faster than recompiling an entire design but slower than the query
reconfiguration mechanism presented in this work.

Multiple stream widths Composable queries presented in this work have a
globally-defined maximum record size that determines the width of interconnects
and what record size operators can process. It might make sense to have operators
and interconnects of different sizes within one system. This would allow wider
or shallower local processing pipelines, leading to better resource utilization and
removing processing limitations. An example where this could bring a benefit is
the stream join operator that merges two input streams of width N into one stream
of width N , having to discard parts of the input streams. With multiple stream
widths, the stream join operator could output a stream of width 2N to downstream
operators that can handle this record width. Eventually, a 2:1 projection operator
could shrink the stream of width 2N back into a stream of width N . While this can
greatly increase processing capabilities, it also limits flexibility as now there are
incompatibilities between different operators. Stream adapters would be necessary
to convert between stream widths.

Multiple reset domains All operators have a reset input signal that allows
resetting their state. This is useful after a reconfiguration so that new incoming
records can be processed immediately based on this new configuration. The reset
signal in this work is global, i.e., there is one reset signal that is distributed to
all operators. If a reset is triggered this would reset all operators, but there are
instances where a global reset is not desired. This work has shown in Section 3.4.3
how multi-queries can be realized. If only one of the queries shall be reset, a global
reset signal is impractical. Local reset signals are needed to facilitate targeted
resets. This could be achieved by having a reset signal for each operator that can
be controlled individually. To partially reset the query one would have to send a
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bitmap that indicates which operators should receive the reset signal and which
not as part of the host interface protocol.

HBM for large state Limitations of the presented system are that it only
supports in-order streams and that there is a maximum number of records per
window. Both stem from little memory resources on FPGAs. Some FPGA boards
come with HBM (high bandwidth memory) equipped that is of significantly larger
size than the available BRAM. For instance, the Xilinx Alveo U200 card6 comes
with 35MB of on-chip RAM and up to 64GB of off-chip memory. There has already
been work around using HBM for data processing showing promising results[15,
26]. A problem with HBM in comparison to on-chip RAM is its lower throughput
and higher latency. On the U200 card, on-chip RAM can be accessed with 31TB/s
bandwidth, while off-chip RAM only has a 77GB/s bandwidth.

6https://www.xilinx.com/products/boards-and-kits/alveo/u200.html
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7 Related work

There has already been some work around stream processing on FPGAs, some of
which is outlined in this section.

Glacier[9] is a system developed by Mueller et al. that can compile SQL queries
into FPGA-based stream processing queries. Many of its principles are similar
to the system presented in this work, such as record propagation or logic replica-
tion for parallel processing branches. In comparison to the system presented in this
work, Glacier only generates non-configurable queries. A major difference arises in
the concept of grouping. Glacier uses content-addressable memory (CAM), which
has very fast lookup speeds, to determine one of multiple processing branches on
which to process the record. This concept requires a certain number of processing
branches to be provisioned, which also means the number of groups has to be
known beforehand. This concept may not scale well for a large number of distinct
groups. There is also a difference as to where to place the result of operations.
Glacier allocates a record bus of fixed width, which is propagated between opera-
tors. An operator, e.g. selection, places its result within that bus. That imposes
a limit on the state that can be carried along a record because the bus is fixed in
width. A query in this work would split the stream before an aggregation operator
and merge the branches after, realizing more flexible computation, at the expense
of being more complicated.

Teubner et al. have also pointed out that compilation time poses a limiting fac-
tor when adaptations to hardware-based processing are necessary[21]. They in-
troduced a hardware implementation for XML projection that is configurable at
run-time. They build upon finite state automata for parsing XML nodes. Similar
to query reconfiguration in this work, the processing behavior is based on param-
eters that can be updated at run-time. The new parameters come immediately
into effect, resulting in low reconfiguration times. They store these parameters in
BRAM, which could also be a viable option for the system presented in this work.

The Flexible Query Processor[12] (FQP) has been introduced by Najafi, which is
a configurable streaming processor for FPGAs tailored around joining streams. It
is based on operator blocks that support bidirectional data flow, which is required
for joining. The operator blocks can be reconfigured using an instruction set.
The system allows coarse-grained control for composing queries. It provides query
templates of which the operator blocks can be configured, in contrast to the fine-
grained query composition mechanism presented in this work in which operators
can be arbitrarily connected.
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As a more general parametrizable processing system, IBM Netezza[17] provides re-
configurable circuits for data processing in data warehousing environments. Netezza
uses a commodity FPGA to push processing closer to the data source and designs
for it can be compiled quickly. But there are limitations with regards to the queries
that can be realized as it only supports selections and projections.
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8 Conclusion

This work has presented a stream processing system in which operators can be
reconfigured at run-time with minimal latency impact. Furthermore, a config-
urable operator interconnect has been introduced that allows to also change query
structure at run-time.

Based on the results presented in this work, one can conclude that the level of
configurability has a significant impact on the logic resource usage and synthesis
time, but less on performance characteristics. Naturally, a non-configurable query
shows a lower resource usage than a configurable or composable version. But the
actual difference is significant because a non-configurable query allows for inten-
sive optimization, while for configurable and composable queries, optimization is
traded for flexibility. For a sample word count query, it has been demonstrated
that its configurable version uses almost 300 times as many look-up tables when
synthesized. A composable query consisting of the same operators would even use
approximately 550 times as many look-up tables. Given that FPGA resources are
not endless, this puts limits to the maximum query complexity that can be realized
on an FPGA. In a composable system, where query structure is defined dynam-
ically, the logic resource usage is also dependent on the number of provisioned
operators. Since the presented operator interconnect connects each operator with
every other operator, it has a quadratic complexity in terms of switching logic.

One large factor here is also the maximum record size for which operators have
to be provisioned since it defines the amount of logic within operators to handle
this records size as well as the amount of wiring necessary to transfer records
between operators. In non-configurable queries, the synthesizer can optimize out
all logic that does not have an effect on output pins, reducing the necessary logic
resources drastically. This also applies to BRAM blocks, since these will only have
to store the actually necessary parts of the record instead of entire records. In a
configurable query, BRAM has to be designed to span the full width of the record.
This is especially wasteful considering that scarce memory resources are often a
limiting factor of FPGA-based data processing[7].

The synthesis of the configurable query took over six times as long as for the
non-configurable query. For a composable query, the effect is even more severe,
resulting in synthesis times over 19 times higher. It is not feasible to acquire a non-
configurable query by synthesizing a composable query with a constant configura-
tion, as synthesis times can now extend into hours. Synthesizing a non-configurable
query from code was 430 times faster than from a composable query. The per-
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formance characteristics of operators do not differ between a non-configurable,
configurable, and composable query. It depends on the specific query whether
timing closure is achieved for a non-configurable or configurable query, where the
query structure is static. In a composable query, it is hard to determine timing
properties since there could be long combinational paths in the design, caused by
combinational operators.

A static evaluation has shown that performance characteristics of a hardware-
based query can be inferred from its operators, of which the characteristics can in
turn be inferred from their design. This is an advantage over CPU-based systems,
in which it is incredibly hard to reason over performance metrics on a clock cycle
level. Comparing the statically-inferred throughput of the grouping operator with
actual benchmark execution results, one can see that both approaches yield similar
results: the grouping throughput for full windows can be approximated to 1

9
, and

the fraction of baseline throughput that the word count query achieves in bench-
marks is also similar to that number. On the other hand, theoretical observations
do not always translate into reality. While an FPGA clocked at 250MHz could
theoretically process 250 million records per second using the presented system, in
reality, the setup was limited by the host integration, only achieving around 18.9
million records per second. But the static analysis has also demonstrated very
low reconfiguration latencies, within double-digit nanoseconds, depending on the
query configuration size.

In summary, there is a significant cost to pay for configurability, since far less
optimization is possible than for non-configurable queries. A compromise could be
to limit configurability only to parts of the query or operators, gaining optimization
potential but again losing flexibility.
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sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der auf-
geführten Quellen und Hilfsmittel angefertigt habe. Die selbstständige und eigen-
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A Appendix

Rwindow Rmax per window Lmeasured Lapprox T−1
measured T−1

approx

grouping

24

28
589 624 36.8 39

sort 129 64 8.1 4
grouping

212
8,269 8,304 516.8 519

sort 129 64 8.1 4
grouping

216
131,634 131,184 8,227.1 8,199

sort 129 64 8.1 4
grouping

220
2,097,229 2,097,264 131,076.8 131,079

sort 129 64 8.1 4
grouping

28

28
2,319 2,304 9.1 9

sort 16,535 16,384 64.6 64
grouping

212
9,524 9,984 37.2 39

sort 16,535 16,384 64.6 64
grouping

216
132,354 132,864 517.0 519

sort 16,535 16,384 64.6 64
grouping

220
2,098,429 2,098,944 8,197.0 8,199

sort 16,535 16,384 64.6 64
grouping

212

212
37,378 36,864 9.1 9

sort 4,006,197 4,194,304 978.1 1,024
grouping

216
152,128 159,744 37.1 39

sort 4,006,197 4,194,304 978.1 1,024
grouping

220
2,117,639 2,125,824 517.0 519

sort 4,006,197 4,194,304 978.1 1,024
grouping

216
216 595,322 589,824 9.1 9

grouping 220 2,434,473 2,555,904 37.1 39
grouping 220 220 9,520,545 9,437,184 9.1 9

Table A.1: Comparison of grouping and sorting operator performance.
Lmeasured is the measured latency, while Lapprox is the latency approxi-
mated using the latency formula. T−1

measured is the inverse throughput, i.e.,
the number of clock cycles it takes to process one record. T−1

approx is the
result of the throughput approximation formula.



constant c_timestamp_word_count_query_configuration : std_logic_vector := (

-- 9: sink

-- 8: stream delay (next_id=7)

x"0007" &

-- 7: stream join (in1_id=3, in2_id=8, next_id=9)

x"0003" & x"0008" & x"0009" &

-- 6: stream fork (next1_id=3, next2_id=1)

x"0003" & x"0001" &

-- 5: timestamp_sliding_window (field_end=0, field_start=8,

-- parallel_windows=1, window_slide=1000000,

-- window_size=1000000, nexts={2})

x"0000" & x"0008" & x"00000001" & x"000F4240" & x"000F4240" &

"0000000000000100" &

-- 4: group_delimiter (field_end=0, field_start=8, next_id=6)

x"0008" & x"0028" & x"0006" &

-- 3: aggregation (fn=0(count), field_end=8, field_start=40, next_id=7)

x"00" & x"0008" & x"0028" & x"0007" &

-- 2: grouping (field_end=8, field_start=40, next_id=4)

x"0008" & x"0028" & x"0004" &

-- 1: projection (keep_bytes={5,4,3,2,1}, move_len=0, move_dest=0,

-- move_src=0, next_id=8)

"0000000000000000000000001111111111111111111111111111111100000000" &

x"0000" & x"0000" & x"0000" & x"0008" &

-- 0: source (next_id=5)

x"0005"

);

Figure A.1: VHDL code resembling a configuration of the timestamp-
based tumbling window word count query within a composable query.



Records Execution time (ms) Throughput (106 R/s) Throughput (Mb/s)
100 0.055 0.018 9.3
101 0.055 0.181 93.1
102 0.062 1.613 825.8
103 0.116 8.621 4,413.8
104 0.616 16.234 8,311.7
105 5.663 17.658 9,041.1
106 53.330 18.751 9,600.6
107 529.838 18.874 9,663.3
3.2 ∗ 107 1,741.840 18.883 9,668.1
3.2 ∗ 107 (no burst) 25,908.713 1.267 649.9

Table A.2: Baseline execution measurements.

Records Execution time (ms) Throughput (106 R/s) Throughput (Mb/s)
100 0.586 0.002 0.9
101 0.586 0.017 8.7
102 0.595 0.168 86.0
103 1.057 0.946 484.4
104 5.729 1.746 893.9
105 53.264 1.877 961.0
106 492.410 2.031 1,039.9
107 4,823.354 2.073 1,061.4
3.2 ∗ 107 15,841.163 2.077 1,063.4

Table A.3: Execution measurements for the timestamp-based tumbling window
word count query from Section 3.4.1.

Records Execution time (ms) Throughput (106 R/s) Throughput (Mb/s)
100 0.055 0.018 9.3
101 0.055 0.181 93.1
102 0.062 1.613 825.8
103 0.117 8.547 4,376.1
104 0.620 16.129 8,258.0
105 5.657 17.677 9,050.6
106 53.331 18.751 9,600.1
107 529.458 18.887 9,670.3
3.2 ∗ 107 1,740.897 18.893 9,673.2

Table A.4: Execution measurements for the fixed-size sliding sum aggregation
query from Section 3.4.2.
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