
Myriad – Parallel Data Generation on Shared-Nothing
Architectures

Alexander Alexandrov*1 Berni Schiefer†2 John Poelman‡3

Stephan Ewen*1 Thomas O. Bodner*4 Volker Markl*1

*TU Berlin †IBM Toronto Lab ‡IBM Silicon Valley Lab
Germany Canada United States

1
firstname.lastname@tu-berlin.de

2
lastname@ca.ibm.com

3
lastname@us.ibm.com

4
thomas.o.bodner@campus.tu-berlin.de

ABSTRACT
The need for efficient data generation for the purposes of
testing and benchmarking newly developed massively-parallel
data processing systems has increased with the emergence of
Big Data problems. As synthetic data model specifications
evolve over time, the data generator programs implementing
these models have to be adapted continuously – a task that
often becomes more tedious as the set of model constraints
grows. In this paper we present Myriad - a new parallel
data generation toolkit. Data generators created with the
toolkit can quickly produce very large datasets in a shared-
nothing parallel execution environment, while at the same
time preserve with cross-partition dependencies, correlations
and distributions in the generated data. In addition, we re-
port on our efforts towards a benchmark suite for large-scale
parallel analysis systems that uses Myriad for the generation
of OLAP-style relational datasets.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Software Engineering, Testing and Debugging, Testing Tools,
Scalable Data Generation

Keywords
Scalable Data Generation Myriad Parallel Data Generator
Toolkit

1. INTRODUCTION
In recent years, due to the exponential growth of the vol-

ume of Internet traffic, managing and processing large data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASBD October 10, 2011, Galveston Island
Copyright 2012 ACM 978-1-4503-1439-8/12/04 ...$15.00.

volumes have become increasingly important both for busi-
ness and research. Currently, a wide range of new projects
influenced by Google’s MapReduce architecture [4] are of-
fering a scalable, fault tolerant and cost effective solution
to these problems. Some projects provide a programming
abstraction in terms of a high-level language [3] or a domain
specific API [7] while other extend the underlying parallel
programming model and execution runtime [1, 2].

Since all these tools are still in active development, there
is a clear need to test, analyze, and evaluate them. But
developing realistic use cases for such systems can be a chal-
lenging task, especially if the Big Data for the use case is
not available, e.g. due to privacy concerns or because at this
level of magnitude data transfer over the Internet is sim-
ply too expensive. What is normally well known, though,
is the schema for a particular use case. In case of absent
real-world datasets, developers often assume some statisti-
cal data model and generate corresponding synthetic data
that is used for performance testing. However, developing
scalable and efficient data generators is a non-trivial task
that may consume a lot of programming effort, especially as
it requires careful consideration of advanced programming
aspects such as concurrency, synchronization, and sampling
from various probability distributions.

To support the developer in the process of specifying and
implementing use case specific data generators from scratch,
we developed the Myriad parallel data generator toolkit.
The toolkit provides a set components and extension points
that can be reused in order to minimize the time and effort
required for the implementation of data generator programs
for user-defined data models. The produced generators im-
plement a partition-based execution model that enables lin-
ear scale-out in a shared-nothing environment. We use a
special class of pseudo-random number generators to facili-
tate parallelization and ensure that even complex statistical
constraints such as correlated values between records can be
achieved without moving data across nodes.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the basic mathematical concepts behind
pseudo-random number generators in the context of generat-
ing pseudo-random sequences of user-defined domain types.
Section 3 describes the fundamentals behind our parallel ex-
ecution model and Section 4 provides an architectural over-
view of the system. Section 5 presents a benchmark draft
for large-scale analysis systems which also served as a first

30

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2377978.2377983&domain=pdf&date_stamp=2011-10-10


use case for the data generator toolkit. Finally, section 6
provides an overview of the related work and Section 7 con-
cludes with ideas for future development.

2. TECHNICAL BACKGROUND
We start with a brief review of pseudo-random number

generators, and then show how these gan be generalized to
pseudo-random sequences of arbitrary domain types.

A pseudo-random number generator (PRNG) is a sequence
of integers si ∈ R, typically defined recursively by a transi-
tion function sn = f(sn−1) and an initial seed s0. Since for
virtually all transition functions the produced sequence is
cyclic, the si values are often normalized to the [0, 1) inter-
val by dividing each number by the upper bound (modulus)
of the function mf , i.e. ri = si/mf . From a statistical per-
spective the main requirement for a good PRNG algorithm
is the uniform distribution of the ri values for arbitrary car-
dinality imax and initial seed s0. For algorithms consuming
a large number of random numbers the length of the ri cy-
cle is of critical importance for the quality of the algorithm
results.

To formulate a theoretical framework for the supported
user-defined data generator programs, we embed the PRNGs
concept into a broader set of pseudo-random sequences for
arbitrary user-defined domain types. Let T be a user-defined
record type with l scalar fields, CT be the desired sequence
cardinality, and rT0 be the initial seed of the associated un-
derlying PRNG subsequence. We define the pseudo-random
domain type generator for T (denoted PRDGT ) as the se-
quence of T records (ti)i∈0≤i<CT

obtained by mapping ad-
jacent fixed-length PRNG chunks from rT to the random
field values of the corresponding t record.

We refer to the mapping function gT : R → T as the
value setter chain for T . Value setter chains are constructed
as concatenation of primitive value setters, where each value
setter gTi : T ×R → T ×R consumes a fixed number of el-
ements from the PRNG structure rT ∈ R, synthesizes a
field in the record t and returns the updated (t, rT ) argu-
ments pair. Formally, this means that gT = πT ◦ g

T
l−1 ◦ . . . ◦

gT0 ◦newT , where newT is the T record constructor and πT

projects the first component of the obtained T ×R pair.

3. EXECUTION MODEL
This section covers key runtime-related aspects of the Myr-

iad toolkit. We explain our scalable parallel execution strat-
egy and present two complementary techniques that facili-
tate the lightweight implementation of complex data gener-
ation constraints.

3.1 Parallelization Strategy
Myriad uses horizontal partitioning for parallel data gen-

eration. Assume a parallel setup with n data generator
nodes. For each data type T , the corresponding PRDGT se-
quence is range-partitioned into n equally long adjacent sub-
sequences. During the the initialization phase, all data gen-
erator nodes compute the boundaries of their subsequences
and upon that generate them completely independently from
each other. For an efficient implementation of this partition-
based parallelization strategy we use only PRNGs that sup-
port direct computation of ri for an arbitrary index i, i.e.
where ri is derived directly from i rather than implicitly
by i applications of the transition function f on the initial

seed s0. This means we can adjust the starting positions of
all generated PRDG subsequences for a particular node in
constant time.

Consider a domain model with two data types U and
V and cardinality CU and CV . The PRDG sequences for
both types are divided into equally large subsequences of
size cU := CU/n and cV := CV /n, where n is the number
of data generator nodes, and then assigned to a generator
node according to the following schema:

Node# PRDGU subsequence PRDGV subsequence
1 [u0, ucU−1] [v0, vcV −1]
.
.
.

.

.

.

.

.

.

i [u(i−1)cU , uicU−1] [v(i−1)cV , vicV −1]
.
.
.

.

.

.

.

.

.

n [u(n−1)cU , uCU−1] [v(n−1)cV , vCV −1]

All generator nodes will adjust the starting position of
their local PRNG components rU and rV before they enter
the generation loops for the two PRDG sequences.

3.2 Re-Computing Referenced Records
To realize certain constraints the value setter chain for

a sequence PRDGU may be required to access referenced
records from an associated sequence PRDGV that in gen-
eral are generated on a different node. Consider an example
where you want to set proper foreign keys to V in U . A naive
implementation could achieve this in a two passes: generate
the two sequences (without the FKs), shuffle each u to its
associated v record, and finally read all v records and set
the FKs in the co-located u records. This solution is ineffi-
cient because the shuffle step causes extra I/O and network
overhead and enforces a global synchronization barrier.

Myriad overcomes this problem with the help of random
access PRNGs. The foreign key setter logic is implemented
in a single pass in Myriad as follows: (1) sample an index
j for the referenced record vj ; (2) adjust the rV position to
o(j) – the offset that marks the start of the PRNG chunk
responsible for vj ; (3) use the value setter chain for V to
locally re-compute the vj , i.e. set vj = gV (rVo(j)). This

strategy requires a single random access operation on rV in
step (2), but avoids the additional network or I/O overhead
which we have in the naive two pass implementation.

The sample technique for local re-computation of refer-
enced records can be used to realize more complex data
distribution constraints, for example correlations between
record fields that belong to connected record pairs.

3.3 Clustered Sequences
The second technique is used in cases where the set of

records eligible for reference sampling is restricted by a par-
ticular field value. Think about modeling user preferences
when generating orders for a retailer domain model (as the
one presented in Figure 1). To generate a lineitem we first
sample an enclosing order and then pick a random product
offer. Each order is associated with a particular customer,
and each customer has a preference type that specifies the
product classes in which he or she is interested. To ensure
that the generated lineitems respect this constraint, we have
to restrict the sampling range for the product offers based

31



on the preference type of the current customer1. The most
efficient way to achieve that is to cluster the product offers
PRDG sequence by product class, so we can identify the
product offers with the desired product class at runtime.
The major drawback of this strategy is the unrealistic clus-

tering side-effect imposed on the clustered sequence (for ex-
ample, the user might not want the product offers clustered
by product class). In such situations, the user can de-cluster
the data in a post-processing step. To do this, we reuse a
method relying on multiplicative groups to generate per-
mutated sequences of numbers of predefined cardinality [5].
The basic idea is to pick a prime number p slightly larger
then the desired cardinality and work with the multiplicative
group (Z/pZ)×. Since p is prime, the group is guaranteed to
be cyclic and to have exactly p − 2 elements corresponding
to the integers 1 . . . p − 1. We can choose an appropriate
generator element g for the group cycle xi = gi, enumerate
gi as extra field in the clustered ti and then sort on this field
to randomize the clustered values.

4. ARCHITECTURE
Myriad’s extensible architecture consists of six separate

modules. These are record objects for the domain model, a
generator subsystem that produces random record sequences,
a configuration module, mathematical tools such as PRNGs
and probability distributions, an I/O subsystem that for-
mats the generated records and a simple CLI frontend for
multi-process execution. This section describes each but the
last component.

Record Objects provide an object-oriented view of the
domain model. All records share a common base record type
and contain only simple getter and setter methods (similar
to the data transfer objects known from application pro-
gramming design patterns). There is one record for each
type in the domain model.

The Generator Subsystem handles the creation of all
domain type sequences. Besides for random, we also provide
support for deterministic and static record sequences. The
value setter chains for the random sequences are defined as
a chain of value setters in line with the PRDG framework
presented in Section 2. The overall generation process for
each node is supervised by a driver program.

The Config Module parses configuration files and ex-
tracts user-defined data generation parameters, static record
sets, and probabilities. The information is used by the gen-
erators to derive sequence cardinalities, subsequence bound-
aries, and to instantiate the value setter chains.

The Math Tools provide common probability functions
(e.g. Pareto and Gaussian) and a standard PRNG compo-
nent with.

The I/O Subsystem receives synthesized records and
writes them to an output stream. The output stream and
record format are fully exchangeable so that the data can
either be loaded directly into the target system (e.g. a large-
scale data processor or a classic RDBMS) or persistently
stored on a local or distributed file system.

5. USE CASE
There is a big trend in industry to complement the tra-

ditional analysis of relational data in databases with deep

1To obtain the referenced order and customer records we
use the re-computation technique described in Section 3.2

analysis of the relational data together with semi-structured
as well as unstructured data from additional sources. The
latter is typically done with tools like MapReduce. Together,
the diverse characteristics of the data and queries pose a va-
riety of different challenges to the analytical systems. To our
knowledge, no benchmark today reflects those diverse char-
acteristics and is able to define the sweet spot of different
systems, like RDBMSs or MapReduce, in a coherent way.
We used the Myriad toolkit to devise a benchmark scenario,
addressing that issue. Due to space constraints, this section
gives only a rough overview. For details, we are making the
full specification available online. In its core, the benchmark
builds upon the TPC-DS benchmark specification. We sim-
plified it and added new tables and different queries. TPC-
DS reflects the relational part of the scenario. Our modified
version represents a web retailer scenario with customers,
orders, order-returns, external re-sellers, web-logs, recom-
mendations, and fraud detection. Figure 1 shows the re-
sulting schema. It contains a representative relational part
(star schema warehousing), which also provides data for ad-
ditional deep analytical queries, like clustering of re-sellers
by their profile of offers, or collaborative filtering to recom-
mend products to customers. For the non-relational part,
we added server logs, which are frequently used to analyze
the searching, browsing, and decision making process of cus-
tomers. We divided the queries into six different categories.
Each category contains queries that pose a different kind of
challenge to the analytical system:

Embarrassingly Parallel Queries run parallel instances
of the query without communicating or exchanging data be-
tween them. The result of the query is the union of the
different instances’ result. We count also queries in this
category that require a simple finalizing step, such as the
computation of a total sum from partial sums.

Parallel Aggregations require to establish a partition-
ing on the grouping keys, because either the aggregation
functions cannot be decomposed into pre-aggregation and
final aggregation, or the number of distinct groups is too
large to be finally aggregated in an efficient way by a single
node.

Parallel Joins come in a variety of flavors. This category
contains single joins with varying characteristics, including
symmetric and asymmetric input sizes, varying result set
sizes and different opportunities to reuse partitionings in
the input.

Multi-Join BI Queries extend the previous category,
by testing how well the system handles compositions of joins
and aggregations. The queries contain longer pipelines and
require optimization across multiple joins or aggregations.
Examples for such queries are manifold in the original TPC-
DS or in the TPC-H specification.

Borderline relational Queries are queries that can be
expressed in SQL in a cumbersome way, but don’t perform
well in parallel. On the other hand, they are expressible
for example in MapReduce with relatively little effort. An
example is the decomposition of click-streams into sessions,
which are the consecutive activity of a single user with a
specified maximal delay between two clicks.

Non-relational Queries operate on non-relational data
and frequently perform operations that are not expressible
in terms of relational operators. In our example, this cate-
gory contains machine-learning queries for collaborative fil-

32



Figure 1: Schema for the Use Case Benchmark

tering via matrix factorization, as well as certain clustering
algorithms.

6. RELATEDWORK
Gray et al. [5] were the first to discuss strategies for scal-

able parallel data generation, including a scheme for dense
unique random data generation which we reuse for the pur-
pose of randomizing clustered values (see Section 3.3). Hoag
et al. [6] present a parallel synthetic data generator and an
XML-based synthetic data description language similar to
the one we intend to implement in our system, but their
parallel execution approach is limited by the lack of remote
field inspection support. More recently Rabl et al. [8] in-
troduced a parallel data generation framework which im-
plements a similar execution model, most notably the use
of a fast SeedSkip operation for sequence partitioning and
recomputation of referenced remote fields.

The idea to employ generators with fast SeedSkip support
in order to partition the data was inspired by of Xu et al.
[9] who use a similar technique to facilitate parallel Monte-
Carlo simulations in the evaluation of queries on uncertain
data in a cluster-computing environment.

7. CONCLUSION
The data generator provides an easy and efficient means

to generate large amounts of data with certain statistical
features. It is, however, still quite a challenge to identify and
define relevant features, whether in the course of designing
a benchmark dataset, or when creating a synthetic dataset
that is supposed to reflect the statistical properties of an
existing one.

In the future, we want to improve the data generator suite
in a two fold way: First, we will add a lightweight way of
specifying those distributions and correlations in a profile,
such that no code has to be written to adopt the genera-
tor. Second, we plan to add a tool that, given a dataset
and workload, automatically extracts the relevant statisti-
cal properties of the dataset and generates a profile for the
data generator. The generator can use that profile to create

a synthetic dataset that reflects the statistical features of
the original dataset.

The current version of the Myriad toolkit is available at
http://www.myriad-toolkit.com.

8. REFERENCES
[1] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and

D. Warneke. Nephele/PACTs: A programming model
and execution framework for web-scale analytical
processing. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 119–130, New
York, NY, USA, 2010. ACM.

[2] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li,
N. Onose, R. Vernica, A. Deutsch,
Y. Papakonstantinou, and V. J. Tsotras. Asterix:
towards a scalable, semistructured data platform for
evolving-world models. Distributed and Parallel
Databases, 29(3):185–216, 2011.

[3] K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. E.
C.-C. Kanne, F. Ozcan, and E. J. Shekita. Jaql: A
scripting language for large scale semistructured data
analysis. PVLDB, 2011.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51:107–113, January 2008.

[5] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger. Quickly Generating Billion-Record
Synthetic Databases. In ACM SIGMOD Conference,
1994.

[6] J. E. Hoag and C. W. Thompson. A parallel
general-purpose synthetic data generator. ACM
SIGMOD Record, 36(1), 2007.

[7] A. Mahout.
[8] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A

Data Generator for Cloud-Scale Benchmarking. In
TPCTC, 2010.

[9] F. Xu, K. Beyer, V. Ercegovac, P. J. Haas, and E. J.

Shekita. E = MC3: managing uncertain enterprise data
in a cluster-computing environment. In ACM SIGMOD
Conference, 2009.

33


