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Abstract—Apache Hive has been widely used for big data processing over large scale clusters by many companies. It provides a
declarative query language called HiveQL. The efficiency of filtering out query-irrelevant data from HDFS closely affects the
performance of query processing. This is especially true for multi-dimensional, high-selective, and few columns involving queries,
which provides sufficient information to reduce the amount of bytes read. Indexing (Compact Index, Aggregate Index, Bitmap Index,
DGFIndex, and the index in ORC file) and columnar storage (RCFile, ORC file, and Parquet) are powerful techniques to achieve this.
However, it is not trivial to choosing a suitable index and columnar storage based on data and query features. In this paper, we
compare the data filtering performance of the above indexes with different columnar storage formats by conducting comprehensive
experiments using uniform and skew TPC-H data sets and various multi-dimensional queries, and suggest the best practices of
improving multi-dimensional queries in Hive under different conditions.

Index Terms—Hadoop, Hive, multi-dimensional index, performance evaluation.
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1 INTRODUCTION

FOR today’s enterprises, fast and timely analysis on large
scale data has become an essential task, since it is the

cornerstone of decision-making for managers. Data models
that involve multiple dimensions are fairly common, espe-
cially for traditional enterprises, for example, Smart Grid
applications [29] and retail business analysis [11]. Queries
often contain multi-dimensional predicates and analyze
data from various perspectives. For these queries, only a
subset of data is query-related and it is crucial to filter out
irrelevant data, especially for I/O intensive applications.

Because of its flexible scalability, high availability, and
cost efficiency, Hadoop is adopted by many enterprises as
the underlying system to store various kinds of massive
data. Hive [38] is a data warehouse like tool on top of
Hadoop, and it provides the declarative query language
HiveQL, which empowers analysts to run deep analysis on
structured data stored on HDFS. After receiving a query,
Hive is responsible for transforming and optimizing it into
a directed acyclic graph (DAG) of MapReduce jobs. Com-
pared with other emerging SQL on Hadoop systems, for
example Presto [10], Drill [2], Pig [9], and Impala [7], Hive
features the most comprehensive index techniques. Exam-
ples of supported indexes are Compact Index [5], Aggregate
Index [3], Bitmap Index [4], index in the ORC file [25], and
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DGFIndex [29]. In addition, columnar storage is another
efficient technique to filter out data, because it can skip
query-irrelevant columns, examples of columnar storage in
Hive are RCFile [24], ORC file [25], and Parquet [1]. Thus,
index and columnar storage are effective techniques to filter
query-irrelevant data horizontally and vertically.

However, it is not trivial to choose suitable kinds of in-
dexes and columnar storage formats for specific application
scenarios, the reasons are as follows: (1) the storage form
of an index table is different, for example, ORC file embeds
index in data file, Compact Index stores its index table as
a Hive table. Different storage forms will lead to different
reading efficiency of index. (2) the filtering granularity is
different, for example, the minimum filtering granularity of
ORC file is 10000 lines, and that of Compact Index is a split.
(3) to improve the filtering performance of indexes, sorting
table is a frequently used pre-processing method, currently
Sort By, Order By and Cluster By are available methods
to achieve this. But different sorting methods will lead to
different relative order of records and different influence on
index performance. (4) these indexes also have different fil-
tering performance on different underlying storage formats.
(5) query selectivity, for example, some indexes is applicable
for large selectivity query and some are applicable for small
selectivity query. (6) there is no comprehensive description
and comparison of current indexes in Hive that can be used.
Thus, it is challenging problem to choose suitable index
technique in different scenarios for Hive users.

In addition, index comparison and selection has been
widely studied in traditional RDBMS area [15], [32] and
spatial database area [13], [26], [31], but they either focus on
one-dimensional indexes, or are mainly suitable for spatial
data. Moreover, because the storage and reading model of
index table and data table is different between traditional
database and Hive: for the former, the data is well-organized
as heap file or tree-based file and processed locally in
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one server. However, for the latter, the data is stored in
distributed file system (for example HDFS), and processed
by many servers parallel. Thus, the conclusions of previous
work can not be directly reference by Hive user. Besides, in
the SQL on Hadoop system area, the existing work [20] only
did a simple one-dimensional index benchmark of ORC file,
does not yet have comprehensive summary and comparison
of various indexes in Hive on multi-dimensional query
processing.

To provide guidelines for Hive user and find the best
practice of improving the multi-dimensional query process-
ing, we perform a detailed survey and summary on the
indexes of Hive. Besides, we use uniform TPC-H [11] and
skew TPC-H [37] workload to generate test data, and by
doing extensive experiments, to get insights of data filtering
characteristics and applicable scenarios of different indexes
in Hive. Moreover, we also analyze the influence of the
combination of index and columnar storage on reducing
redundant data I/O. Because all SQL on Hadoop systems
use HDFS as underlying storage and share the same data
reading schema, thus the best practice is also applicable to
other SQL on Hadoop systems.

Our contributions are three-fold:

1) We perform an extensive survey and comparison of cur-
rent indexing techniques in Hive, and we also point out
their strengths, weaknesses, and applicable scenarios.

2) For comparison fairness, we present two improvements
to the original DGFIndex: first, we migrate it to colum-
nar storage, RCFile, and ORC file. Second, we imple-
ment a z-order [30] based slice placement method to
improve the sequential reading performance.

3) We comprehensively benchmark multiple representa-
tive indexes on columnar storage in Hive and evaluate
related issues on data reading efficiency via indexes.
Based on the results, we present best practices to im-
prove multi-dimensional query performance with in-
dexes and columnar storage. Furthermore, we summa-
rize several important guidelines for index design in
SQL on Hadoop systems.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some background knowledge about
Hadoop and Hive. In Section 3, we survey current indexes
in Hive. In Section 4, we summarize the different prepro-
cessing methods to improve Compact Index and ORC file.
Section 5 introduces two improvements of DGFIndex. In
Section 7, we will give a detailed analysis of the experimen-
tal results. Section 6 summarizes the data filtering process of
various indexes in Hive. Section 8 gives a summary of the
evaluations results and provides some guidelines for best
practices of multi-dimensional query processing in Hive.
In Section 9, we present related work. Finally, Section 10
concludes the paper.

2 HADOOP AND HIVE OVERVIEW

In the following sections, we first give background informa-
tion about Hadoop and Hive. Here, we mainly focus on the
index-related perspective.

2.1 Hadoop

Hadoop is an open source implementation of the Google
File System [23] and MapReduce [16], namely Hadoop
File System (HDFS) and Hadoop MapReduce. Hadoop is
a master/slave architecture. The master of HDFS is called
NameNode, it stores the meta information of the file system,
which is held in memory to accelerate the accessing. The
meta information includes the structure of all directories, the
file-block mapping, locations of blocks on the DataNodes,
etc. The slaves of HDFS are called DataNodes, they store
all non meta data. In HDFS, data files are divided into
many equal-size chunks (default is 64MB), we refer to them
as a split in this paper. The splits that belong to a single
file are distributed over DataNodes by default with tripple
replications for fault tolerance. The master of MapReduce
is called JobTracker, and the slaves are called TaskTrackers.
JobTracker is responsible for getting the splits’ location of
input data file from NameNode and assigning a mapper for
each split to process it. Generally, a MapReduce job consists
of three phases: Map, Shuffle, Reduce. In the Map phase,
each mapper parses and reads every record from a split by
iteratively calling the next function of a specific RecordReader,
then applies the map function onto each record. In the
Shuffle phase, a Partitioner will assign each output record
of mappers to some reducer, the assignment method can be
specified by user. In the Reduce phase, reducer applies the
reduce function to the value list that has the same key.

2.2 Hive

Hive is a kind of SQL on Hadoop system, which provides
HiveQL, a SQL-like declarative language. Hive can translate
each HiveQL program into a DAG of MapReduce jobs. In
the Map phase and Reduce phase of each MapReduce job,
they consists of various Hive operators. A table in Hive
is a directory in HDFS, the files in this directory store the
data of this table. The file’s storage formats are classified
into two categories: row storage (TextFile, SequenceFile, etc.)
and columnar storage (RCFile, ORC file, Parquet, etc.). The
minimum reading unit of row storage is one record, and the
minimum reading unit of columnar storage is a row group,
whose size is much smaller than split, but much larger than
one line. For example, the RCFile [24] stores the data file
as a sequence of 4MB row groups, in contrast to that, the
ORC file first organizes the data file into stripes and then
organizes the records in each stripe into row groups, whose
size is 10,000 lines.

An index stores the search key and the position informa-
tion of corresponding row groups. In Hive, the data filtering
process via indexes can be divided into three phases: (1)
searching the index, after receiving query, Hive first searches
the index table with the predicate to find the position infor-
mation of query-relevant row groups. (2) Filtering irrelevant
splits, second, Hive filters out the query-irrelevant splits that
do not overlap with the query-relevant row groups. After
the splits filtering, the candidate splits are as the input of
MapReduce job, and then processed by each mapper. (3)
Filtering irrelevant row groups in each split, in each mapper,
the next function of RecordReader can make use of the
above position information of query-relevant row groups
to skip unrelated row groups in each split. Moreover, with
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TABLE 1
Schema of a 3-dimensional Compact Index

Column Name Type
index dimension 1 type in base table
index dimension 2 type in base table
index dimension 3 type in base table

bucketname string
offset array<bigint>

columnar storage, each mapper only need to read the query-
related columns.

3 INDEXES IN HIVE

In this part, we survey current indexes in Hive, includ-
ing partition, Compact Index, the index in ORC file, and
DGFIndex. Because Parquet does not support index in latest
Hive [1], [8], we do not cover it in this section, but we still
use it as a baseline in our experiments.

3.1 Partition

Partition horizontally divides a table into several sub-tables
based on the value of the partition dimension (usually it is
a date or date range), each sub-table is a directory in HDFS.
When Hive processes a query with partitions, it can locate
relevant partitions as the input of the MapReduce job. Thus,
partition can be seen as a coarse-grained index. However,
for multi-dimensional queries, partition is not flexible, es-
pecially when the cardinality, which represents the number
of distinct values, of each dimension is very large. Creat-
ing partitions on multiple high-cardinality dimensions will
generate too many directories, which will occupy a large
amount of memory of the NameNode, because all metadata
of HDFS is stored in the NameNode’s memory as described
in Section 2.1. Besides, when processing query in the case
of too many partitions, Hive needs to read lots of meta
information about partitions from metastore, which will
create substantial overhead. However, partition is a good
complement for indexes, because indexes are always created
on each partition.

3.2 Compact Index

Compact Index [5], Aggregate Index [3], and Bitmap In-
dex [4] are the first kind of indexes that were developed
for Hive. Because Compact Index is the basis of the other
two indexes, we mainly focus on Compact Index. Compact
Index can only filter unrelated data in split granularity. The
index table is stored in a separate table of Hive, its schema
is shown in Table 1. When creating a Compact Index in
Hive, the HiveQL statement in Listing 1 is used to populate
the index table. The bucketname represents the data file
name, and the offset stores all the offsets in bucketname of
the corresponding combination of index dimensions. Thus,
the Compact Index table stores all the combinations of
multiple index dimensions that appear in the table and the
corresponding position information in different data files.

When processing queries with Compact Index, Hive first
runs a query with the same predicate of the original query
on the index table to get the relevant position information,
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Fig. 1. ORC file structure

and then uses it to filter irrelevant splits. However, for the
index dimensions with high cardinality, the Compact Index
table will be very large, because the number of the com-
binations of multiple index dimensions is extremely large.
Moreover, for queries with high-selectivity, Compact Index
will easily result in a memory overflow of the JobTracker,
because it needs to load the relevant position information
into memory and to filter unrelated splits before starting
the MapReduce job. Besides, the filtering performance of
Compact Index is sensitive to the relative order of records.
Thus, to improve Compact Index, users need to choose suit-
able sorting methods to preprocess the table before creating
Compact Index.

INSERT OVERWRITE TABLE IndexTable
SELECT <index dimension list>,

INPUT_FILE_NAME,
collect_set(BLOCK_OFFSET_INSIDE_FILE)

FROM BaseTable
GROUP BY <index dimension list>,

INPUT_FILE_NAME

Listing 1. Creation of a Compact Index

3.3 ORC File and Its Index

ORC (Optimized Row Columnar) file is a kind of colum-
nar storage format in Hive, and it supports a lightweight
index. Next, we will describe ORC file in the perspective
of indexing and query processing with an index. As shown
in Figure 1, an ORC file consists of a sequence of stripes,
each stripe is composed of index data, row data, and the stripe
footer. The default size of stripe is 64MB, and the default
block size for ORC file is 256MB, so each block contains 4
stripes. In a stripe, the index data records the min and max
value of each column for every 10,000 rows (a row group) as
an index entry. The row data stores the real data in columnar
style. The stripe footer records the location of index data and
row data, and the encoding method of each column. The
file footer records the min and max value of each column
for every stripe (stripe statistics). When reading an ORC
file, unrelated stripes can be filtered based on the predicate
and the stripe statistics in the file footer. Thus, splits that
contain no query-related stripes will be filtered out. Besides,
unrelated row groups of query-relevant columns in each
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Fig. 2. DGFIndex architecture

stripe can also be filtered out based on the index data. That
means, ORC file can filter data in row group granularity.
Because the index in ORC file is based on min and max
value of a column, it is sensitive to the relative order of
records in the data file, and users need to choose a suitable
sorting method to preprocess an ORC file to improve the
filtering performance.

3.4 DGFIndex

DGFIndex [29] is a multi-dimensional index that we pro-
posed for the case that some (or all) index dimensions
have a high cardinality, which will lead to extremely large
index table sizes for the Compact Index. Figure 2 shows a
2-dimensional DGFIndex, dimension X and Y can be any
two index dimensions of the base table. DGFIndex splits
the data space into small units with a grid file-like splitting
policy. The split unit is named as grid file unit (GFU). It
is stored as GFUKey/GFUValue. GFUKey is the left low-
er coordinate of each GFU in the data space. GFUValue
consists of two parts: the header and the location of the
data slice stored in HDFS. All records located in the same
GFU are stored as a continuous segment of a file in HDFS,
which is called a Slice. The header in GFUValue contains pre-
computed aggregations of numerical dimensions, which can
be any user defined function (UDF) supported by Hive. The
location in GFUValue contains the offset information of the
corresponding slice. All records in a slice belong to the same
GFU. In DGFIndex, the GFUKey/GFUValue pairs are stored
in HBase, which accelerates the reading speed of the index
with key-based and columnar reading style.

When creating a DGFIndex in Hive, the data in the base
table has to be reorganized to store the records in the same
GFU as a slice. Furthermore, the user has to specify the
splitting policy, i.e., the minimum value and interval size
of each index dimension and the aggregations that need
to be pre-computed. On the other hand, when querying
with DGFIndex, Hive first retrieves all related GFUKeys
from the DGFIndex based on the predicates of the query,
and retrieves all location information from HBase based
on the GFUKeys. Then Hive filters out unrelated splits
based on the location information. Third, each mapper can
skip unrelated slices when processing each split based on
the location information. However, for aggregation queries,
Hive only needs to process the data located in the boundary
GFUs (partially in the query region), then combine the sub

TABLE 2
Comparison of Sorting Methods

Method STime(s) Data actually read(MB) QTime(s)
sort by 6890 7039 157

cluster by 7231 6878 156
order by 8366 1944 122

result with the result that is computed via reading the pre-
computed aggregations from HBase.

4 PREPROCESSING–SORTING

4.1 Sorting Methods
From the description in Section 3.2 and 3.3, the data filtering
performance of Compact Index and the ORC file is closely
related to the relative order of records in data files. In
Compact Index, if query-related records are clustered in few
splits, it will filter out more irrelevant splits, and because the
index table does not need to record multiple locations for
each combination of index dimensions, the index table will
become smaller. Similarly, in ORC file, if the query-related
records are clustered in few stripes and few row groups
in these stripes, it will filter out more irrelevant stripes
and row groups. Otherwise, if the query-related records are
evenly distributed in data files, Compact Index and ORC
file will not filter out much data. Thus, changing the relative
order of records becomes crucial for improving the filtering
performance of Compact Index and the index in ORC file.

In practice, sorting is a common and efficient method to
change the relative order of records in Hive. Usually, users
need to sort base tables by index dimensions beforehand.
Currently, there are three kinds of sorting methods in Hive:
Sort By, Cluster By, and Order By. In the sorting process,
MapReduce first assigns each record to some reducer with
specific Partitioner, then each reducer sorts all records that it
receives based on the index dimensions: (1) Sort By assigns
each record to reducers based on the hash value that is
computed on the whole record. Records that have the same
key may be distributed in multiple reducers. Therefore, Sort
By can only guarantee the order of each reducer’s output
file, and it will not result in a global order. (2) Cluster By
assigns each record to reducers based on the values of the
index dimensions, so it can distribute the records that have
the same key into the same reducer. However, it also does
not result in a global order. Because it can not guarantee
the order between the output file of reducers. (3) Order By
uses the same way to assign records to reducers like Cluster
By, and it can produce a global order. Besides, it has two
implementations: the first one is serial Order By, it only
uses one reducer, which is very inefficient on large input
data and makes the time required for sorting unacceptable.
The second one is parallel Order By [6], which first samples
some data and decides the key range of each reducer to
achieve a global order. From above description, if the index
dimensions are highly skewed, some reducers in Cluster By
and parallel Order By will receive too many records, whose
performance will significantly deteriorate. However, Sort By
still works fine for high skew data, because it just randomly
assigns each record to reducer and the assignment is not
dependent on the value of index dimensions.
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Table 2 shows the cost time of different sorting methods
to preprocess base table and the influence on the query
performance, STime represents the cost time of sorting, data
actually read represents the amount of data that actually read
after being filtered by index, QTime represents the query
processing time, we use parallel Order By. For fairness, we
set the same number of reducers for all three methods. In
this experiment, we use the cluster setup in Section 7.1 and
Uniform500 data set in Section 7.2, which is stored as ORC
file and Q6 of TPC-H. From the result, we can see that Order
By has the best query performance, it is 22% faster than
Sort By and Cluster By. Furthermore, it can filter much more
data than other two methods. However, because Order By
requires an extra sampling procedure before sorting the base
table, it costs more time than other two methods. Because
parallel Order By has the best query performance, we will
use it to preprocess the RCFile (Compact Index) and the
ORC file in our benchmarks of Section 7.

4.2 Sorting Order

In addition, the different order of index dimensions when
sorting will lead to different relative order of records,
which will also influence the filtering performance of in-
dexes. Because the cardinality of index dimensions may

vary, different sorting order will place records into dif-
ferent row groups, which causes different content of row
groups. Figure 3 shows the influence of different sorting
orders on the query execution time and filtering perfor-
mance. We use the acronyms to represent the combination
of l discount(d, cardinality is 11), l shipdate(s, cardinality
is 2526), l extendedprice(e, cardinality is 3791046). In this
experiment, we use the cluster setup described in Section 7.1
and Uniform500 data set stored as ORC file and the queries
with different number of index dimension and different
selectivity in Section 7.2. From the results, we can see that se
has the best query performance in 2-dimensional scenario,
and dse has the best query performance in 3-dimensional
scenario. That is, sorting the base table in the order of
ascending cardinality will lead to better query efficiency.
The reason is that putting the low-cardinality dimension to
the front will lead to more clustered data file, so the index
can filter more query-irrelevant data based on the min and
max value. In our benchmarks of Section 7, we will use this
guideline to preprocess base table for ORC file and RCFile
(for Compact Index).

5 IMPROVED DGFINDEX

In this part, we describe two limitations of original DGFInd-
ex based on the description in Section 3.4, and propose two
corresponding improvements.

5.1 Storage Format

Original DGFIndex only supports TextFile format, which is
a raw row storage format that is inefficient on encoding and
decoding records compared to binary storage formats [17].
Moreover, it cannot decrease data I/O for queries that do not
read all columns of a table. Columnar storage formats are
efficient for OLAP query processing [36]. Currently, there
are several kinds of columnar storage formats in Hive, for
example, RCFile, ORC file, and Parquet. As an improvement
to the original DFGIndex, we have migrated DGFIndex to
RCFile and ORC file.

RCFile: RCFile is a widely used binary columnar storage
format. To enhance the limitation of row storage formats, we
have migrated DGFIndex to RCFile. In the original RCFile,
the table is horizontally split into many row groups, the
default size of a row group is 4MB. Each row group is stored
as a key/value pair, the value part stores the real data in
column-wise fashion, and the key part records the metadata
of each column, for example, the number of rows, the length
of each column and the length of each value in each column.
The row group is the minimum reading unit in RCFile. We
migrate DGFIndex to RCFile as follows: if the slice is smaller
than row group, then we store it as a row group (may be
smaller than 4MB), and DGFIndex records the start offset of
this row group. On the other hand, if the slice is larger than
row group, we store it as a sequence of row groups, and
DGFIndex records the offset of the first row group and the
last one.

ORC file: We use the reorganization method of DGFInd-
ex to create a row group in each stripe of a ORC file, not
like the original method (create a row group every 10,000
rows), which means all records in the same GFU are stored
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as a row group. In this case, DGFIndex becomes very similar
with the index of the ORC file, so we do not store the index
in HBase any more and directly use the index of the ORC
file to filter slices. Besides, the original index in ORC file
on other dimensions are not influenced. The reorganization
method of DGFIndex is a kind of multi-dimensional hashing
method, which is different with the sorting preprocessing
method of ORC file. This is because multi-dimensional
hashing methods treat each index dimension equally, while
sorting method needs to decide the importance of multiple
index dimensions.

For DGFIndex users, it is hard to choose an optimal
splitting policy based on the file storage format and the fea-
tures of an application. According to our experiments, 32MB
and 16MB are empirical better slice sizes for DGFIndex on
RCFile and DGFIndex on ORC file. Therefore, a user only
needs to specify the min value and interval size for each
index dimension, and makes Equation 1 equals this slice
size. We will use these two slice size in our experiments.

#dimension∏
i=1

max(di)−min(di)

interval(di)
(1)

5.2 Slice Placement Method

In the construction of the original DGFIndex, each mapper
calculates the GFUKey for every record and the partitioner
randomly assign each GFUKey to a reducer based on the
default hash function of the MapReduce framework. In each
reducer, the slices are sorted by the GFUKey. This can be
seen as a random slice placement method. The random
slice placement method may occupy too many mapper slots
when processing a query and each mapper reads only few
slices or frequently skips unrelated slices, which causes
inefficient batch data reading. For example, as shown in
Figure 4, the query-relevant slice set consists of three slices,
two of them are placed in the first split, and the another one
is placed in the second split. When processing the query,
Hadoop will use two mappers to read the data, the first
mapper reads Slice 1, then skips unrelated data and then
read Slice 2, which does not achieve good sequential reading
performance. To overcome this, we implement a z-order-
based slice placement method. Z-order [30] is a kind of space
filling curve, whose purpose is mapping multi-dimensional
data to one-dimensional data while maintaining the data
locality in the data space. In the partitioner, it divides the
whole z-order value range into several ranges, where the
number of ranges is same as the number of reducers. In
each reducer, the slices are sorted by the z-order value of
each slice. By doing this, we can significantly decrease the
number of occupied mapper slots and increase the efficiency
of batch data reading.

Table 3 shows the influence of different DGFIndex im-
provements on the number of mappers, the amount of data
actually read after being filtered by index and query cost
time. This experiment uses the cluster setup in Section 7.1
and Uniform500 data set in Section 7.2, and Q6 in TPC-H.
From the results, We can see that when using the z-order
based slice placement method, the number of mappers and
the query processing time both decrease. The reason is that it

Slice 1
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Slice 2
Slice 3

Slice 1

Random 
Placement

Z-Order 
Placement

 

Fig. 4. Random placement and Z-order placement methods

TABLE 3
Performance of DGFIndex Optimizations

Item #Mapper #GB to read #QTime(s)
TextFile 382 13.1 123.6

TextFile zorder 95 13.1 107.3
RCFile 369 4.5 99.1

RCFile zorder 91 4.5 79.7
ORC 1159 2.6 109.1

ORC zorder 1163 2.6 93.6

puts slices in less splits, which are processed by less mapper-
s and also improve the sequential reading efficiency of each
mapper. When migrating DGFIndex to the RCFile and ORC
file, which are both columnar storage, the number of bytes
that need to read considerably decrease in comparison to the
TextFile format because both can filter out query-irrelevant
columns when reading each row group. Moreover, ORC file
has an efficient data type-based encoding method, so it can
further reduce the amount of data read compared to RCFile.
For ORC file, discontinuous stripes in the same split will
use individual mappers for processing, so the number of
mappers is bigger than for TextFile and RCFile, even when
using the z-order-based slice placement method.

6 DATA FILTERING PROCESS SUMMARY

In this part, we summarize the index and columnar storage
based data filtering process in Hive, it is divided into 4 steps:
(1) searching the index, (2) filtering irrelevant splits, (3) filtering
irrelevant row groups in each split, (4) filtering irrelevant columns

TABLE 4
Summary of Index Size and Reading Method

Name Size Read

Compact
∑

idx combinations

num(row groups) ∗ c scan

ORC file (
|table|
|stripe|

∗ o1 +
|table|

|row group|
∗ o2) ∗ colNum scan

DGFIndex
#dimension∏

i=1

max(di)−min(di)

interval(di)
∗ d key-based
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in each row group. Besides, we discuss the potential factors in
each step, which may influence the data filtering efficiency.
At last, we explain reasons why the filtering process is the
computation framework independent.

6.1 Searching the Index

Searching the index is formalized as Equation 2, that is, get-
ting the offsets of query-related data(row groups or stripes).
The performance of reading index is related with two fac-
tors: the index size and reading method, that is summarized in
Table 4.

offsetsquery = serach(index, predicate) (2)

For Compact Index, the index size is proportional to the
product of the number of index dimensions combinations
and corresponding offsets of row groups. c is a constant
representing the size of each index entry. For some table,
the number of index dimensions combinations is fixed, and
it is proportional to the cardinality of index dimensions.
The number of row groups that some combination locate
in depends on the layout of records in data files. Sorting
can cluster these records with same combination in less row
groups. Thus, sorting can decrease greatly the index size of
Compact Index. The reading method of Compact Index is
MapReduce-based full table scan.

For the index in ORC file, its index size is proportional to
the table size and column number. Compared with Compact
Index, its index size is not related with records order in data
file, but the filtering performance is. Actually, the index in
ORC file is 2-level index, first it records the min and max
value for each column of stripe, which is coarse-grained.
Second, in each stripe, it records the min and max value for
each row group, which is fine-grained. In this step, ORC file
only needs to read the first level index. o1 and o2 represent
the size of index entry in different levels. The first level
index reading is scan-based, and the second level index
reading is also scan-based, but only read the index entry
chosen by first level.

For DGFIndex, its index size is proportional to the
number of GFU, which is decided by the splitting policy
specified by user. Similar with the index in ORC file, its size
is not related with the records orders in row group and the
row groups order in data files. The reading method is key-
based, only reading the query related GFUKeys.

6.2 Filtering Irrelevant Splits

After index reading, the data filtering process in Hive is
showed in Figure 5. This step happens in the InputFor-
mat.getSplit(). Filtering irrelevant splits is formalized as
Equation 3. The number of chosen splits represents the par-
allelism of query processing and the computing resource(
for example, the mapper slot) occupation.

Splitschosen = getSplits(offsetsquery, Splitsall) (3)

For Compact Index, the number of chosen splits is relat-
ed with records order in data file. We can find that sorting
not only decreases the index size, but also reduces the

Split 1 Split 2 Split 3

Split 1 Split 3

TableScanOperator

FilterOperator

SelectOperator

....

Map 
Phase

Data File

Query-related 
Splits

Query-related 
Row Group

Inputformat.getSplits()

RecordReader.next()
Query-related 

Column

 

Fig. 5. index-based data flow

number of chosen splits, thus sorting is crucial to improve
the performance of Compact Index.

For ORC file, the number of chosen splits is also related
with records order in data file. Besides, the adjacent query-
related stripes in each HDFS block are seen as one split, the
nonadjacent query related stripes in each HDFS block are
seen as different split.

For DGFIndex, the number of chosen splits is not related
with the records order in row group, but related with the
row groups order in data file. That is, the query-related row
groups are fixed, different row group placement methods
will influence the number of chosen splits and the query-
related data amount in each split.

6.3 Filtering Irrelevant Row Groups in Each Split
This step happens in the RecordReader.next() of Figure 5,
it is formalized as Equation 4. This step helps Hive skip
query-irrelevant row groups. The data filtering process of
Compact Index does not include this step, because it only
can filter data in split granularity.

row groupschosen = next(offsetsquery, row groupsall)
(4)

For the index in ORC file, it will read the second level
index to get the offsets of query-related row group in each
stripe. The number of chosen row row groups is related
with records order in each stripe. We can find that sorting
not only decrease the number of chosen splits, but also the
number of chosen row groups. Thus, sorting is crucial for
ORC file to improve the index performance.

For DGFIndex, it still uses the offsets in step 1 to get
the chosen row groups. The number of chosen row groups
is related with row groups order in data files. We can find
that z-order based slice placement method can decrease the
number of chosen splits and increase the number of chosen
row groups in each split, but the total number of chosen row
groups does not change.

6.4 Filtering Irrelevant Columns in Each Row Group
Index only affect the first three steps. In this step, columnar
storage helps Hive only read the query-related columns in
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each row group. Which is showed in Figure 5 and formal-
ized as Equation 5.

columnsquery = read(columnsall) (5)

The cost of reading each column is related with the
encoding method of different columnar storage, ORC file
and Parquet use more encoding methods than RCFile, we
expect that they will have better reading efficiency than
RCFile.

6.5 Computation Framework Independence
The indexes in Hive currently only influence the single table
reading process, the data reading-related operators in the
Map phase are showed in Figure 5. The TableScanOperator
is responsible for gathering statistics when needed, it has
not effect in index-based data reading. The FilterOperator
is responsible for filtering records with query predicate.
The SelectOperator is responsible for selecting query-related
columns. From the process, we can find that no matter
which kind of index we use, the number of records after
FilterOperator is the same. Moreover, for current SQL on
Hadoop systems and SQL on Spark systems, they all use
HDFS as the main underlying storage system, and they also
use the same columnar storage(RCFile, ORC file and Par-
quet) and corresponding InputFormats with Hive. Thus, the
conclusions and best practice are also applicable for these
systems, they are computation framework independent.

7 EXPERIMENTAL RESULTS

7.1 Cluster Setup
We conduct the experiments on a cluster of 32 virtual nodes,
each one has 12 cores CPU, 26GB memory and 600GB disk.
These virtual nodes are hosted on 8 physical servers. One
node is used for the JobTracker, one for the Namenode
and Hive, one for the HMaster, all other nodes are work-
er nodes of Hadoop and HBase. All nodes run CentOS
7.0, Java 1.7.0 65 64bit, Hadoop-1.2.1, and HBase-0.94.23
(stores the DGFIndex table). DGFIndex is implemented in
Hive-0.14.0, we also use other indexes and columnar file
formats in Hive-0.14.0. Every worker node in Hadoop is
configured with 6 mappers and 2 reducer. The block size of
HDFS is set to 256MB, which is consistent with the default
block size of the ORC file. The io.sort.mb is set to 400MB,
and mapred.child.java.opts is set to -Dchild -Xmx1000m -Xmx
3000m. All other configurations of Hadoop, HBase, and Hive
are default values. Before each experiment, we free the OS
cache to make each query read from disk, not from memory.
Each experiment runs three times and the average result is
reported.

7.2 Workloads
Datasets: In real applications, the distribution of index
dimension may be uniform, with low skew, or with high
skew. Thus, in our experiments, we use uniform [11] and
skewed [37] TPC-H data generators to generate uniform
data and skewed data. Skewed TPC-H can generate skewed
data with Zipf distribution. We use the lineitem table which
is the largest table in TPC-H. Table 5 shows the data sets

TABLE 5
Data Sets

Name Size(GB) SkewFactorTextFile RCFile ORC Parquet
Uniform250 263 244 149 135 0
Uniform500 529 488 299 270 0

LowSkew250 263 243 139 94 1
LowSkew500 529 483 276 188 1
HighSkew250 264 243 136 76 2

TABLE 6
Cardinality of Index Dimensions

Dimension(abbreviation) Cardinality Data Set
l dicount(d) 11 all
l quantity(q) 50 all
l shipdate(s) 2, 526 all

l extendedprice(e) 82, 561 HighSkew250
l extendedprice(e) 3, 790, 000 others

l orderkey(o) 525, 000, 000 250GB dataset
l orderkey(o) 1, 050, 000, 000 500GB dataset

that are used in the following experiments. The LowSkew
data sets are generated by setting skew factor z=1 and
the HighSkew data sets are generated by setting z=2. For
example, the percentage of records with l discount value
0.04 is 9% for Uniform data set, 13% for LowSkew data
set, and 62% for HighSkew data set. RCFile and Parquet
do not use any compression by default, while ORC file uses
compression by default. For fairness, we do not enable the
default compression of the ORC file. In addition, because the
performance of Compact Index is related to the cardinality
of index dimension, we summarize the cardinalities in Table
6, which also shows the abbreviation of each dimension
name.

SELECT SUM(l_extendedprice*l_discount)
AS revenue

FROM lineitem WHERE <predicate>

Listing 2. SQL template

Queries: The queries are shown in Table 7. The abbre-
viation in parentheses represent the query dimensions or
index dimensions. For example, 2-d index(q,s) means we
create index on dimension l quantity and l shipdate, and 2-d
query(q,s) means the query predicate contains l quantity and
l shipdate. The query identifier pattern is Q-query dimensions-
index dimensions. These queries are designed on the consid-
eration of two common query parttern: (1) the query dimen-
sions are fixed, we can create index on these dimensions to
improve query performance. That is, the query dimensions
are same with index dimensions. The corresponding queries
are the first four ones in Table 7, they are 1-dimensional,
2-dimensional and 3-dimensional query respectively. For 3-
dimensional query, we add a high-cardinality dimensions
query (Q-dse-dse) to show the its influence on index perfor-
mance. (2) the query dimensions are always changing. That
is, the query dimensions may only part of index dimensions.
The corresponding queries are the rest queries in Table 7.
As described in Section ??, query different index dimension
may have different index performance, so we query any one
or two dimensions of the three index dimensions.
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TABLE 7
Workloads

Identifier Query Type Index Type
Q-o-o 1-d query(o) 1-d index(o)

Q-qs-qs 2-d query(qs) 2-d index(qs)
Q-qds-qds 3-d query(qds) 3-d index-1(qds)
Q-dse-dse 3-d query(dse) 3-d index-2(dse)
Q-q-qds 1-d partial query(q) 3-d index-1(qds)
Q-d-qds 1-d partial query(d) 3-d index-1(qds)
Q-s-qds 1-d partial query(s) 3-d index-1(qds)
Q-e-dse 1-d partial query(e) 3-d index-2(dse)

Q-qd-qds 2-d partial query(qd) 3-d index-1(qds)
Q-qs-qds 2-d partial query(qs) 3-d index-1(qds)
Q-ds-qds 2-d partial query(ds) 3-d index-1(qds)

We design the queries with the SQL template( Q6 in
TPC-H) in Listing 2 by changing the dimensions and the
number of dimensions in predicate. Besides, we select point,
5%, 10%, 15% and 25% (the selectivity is an approximate
value) query selectivity for each query type by altering the
query dimension range in predicate. Because of the limitation
of space, all detailed query forms are listed at the website
given in Section 10.

The reasons of using Q6 and the lineitem table of unifor-
m and skew TPC-H are as follows: First, the benchmark
workload TPC-H is widely used. Second, after searching
the index, Q6 can be processed by Hive in one MapReduce
job, which is easy to analyze and compare the influence of
indexes on query cost time, query-irrelevant data filtering
performance. Besides, since the indexes in Hive only affect
the data reading action of single table, even for complex
queries that contain multiple tables joining, the indexes only
work for each individual table, so it is sufficient to choose
Q6, an aggregation query on a single table to benchmark
the filtering performance of indexes in Hive. Third, Q6 is a
typical representative of multi-dimensional queries in TPC-
H.

In our experiments, the index benchmark candidates are:
Compact Index on sorted RCFile, sorted ORC file, DGFInd-
ex on RCFile, and DGFIndex on ORC file. The sorted RCFile
and sorted ORC file mean the base table is preprocessed
with the guidelines driven in Section 4. Besides, we use
the z-order-based slice placement method for DGFIndex
on RCFile and DGFIndex on ORC file. For fairness, we
do not use the pre-computation technique of DGFIndex. In
addition, because partition has similar effect on the different
indexing techniques, we do not partition the base table.

7.3 Metrics
In practice, the data that needs to be analyzed is usually
first stored as TextFile, for example, collected log files. Then,
for efficient storage and query performance, the data is con-
verted into other storage formats, and then preprocessed to
create an index on it. In our experiments, we model similar
data workflow: first we suppose that there is a lineitem table
stored as TextFile, then we convert it into RCFile or ORC
file with the SQL in Listing 3, which can sort the data in the
meantime. Third, we create Compact Index or DGFIndex on
it. At last, we run the various kinds of query on the base
table. In the experiments, we mainly focus on the below
metrics:
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Fig. 6. Converting time from TextFile to other format

INSERT OVERWRITE TABLE lineitem_rc/orc
SELECT *
FROM lineitem_textfile
[ORDER BY <index dimensions>]

Listing 3. Storage format converting SQL

(1) Index creation time means the cost time to make base
table ready to efficient query, including the time on storage
format converting and creating index. For instance, for
Compact Index on RCFile, the time includes the time of
converting (sorting is also done in this step) lineitem table
from TextFile into RCFile and the time of creating Compact
Index. For sorted ORC file, the time only includes the time of
converting lineitem table from TextFile into ORC file, because
the sorting is done during the conversion.

(2) Storage efficiency includes base table storage effi-
ciency and index table storage efficiency. Because different
file storage formats have different data encoding methods,
the table size will be different. Besides, Compact Index and
DGFIndex store the index table as a separate table, the size
of index table will affect the reading efficiency of index, so
we also treat it as a metric.

(3) Query efficiency includes four metrics: (1) the time
to process a query, which represents the elapsed time from
emitting the query to getting the result. (2) The number of
mappers used, which represents the computing resources
usage, it may affect the concurrent throughput of the SQL
on Hadoop systems. (3) The number of records actually
read after being filtered by index, which represents the
efficiency and accuracy of index. (4) The amount of bytes
actually read after being filtered by index, which represents
the encoding efficiency of corresponding storage file format
and accuracy of index. We use the Counter Map input records
and HDFS BYTES READ to get the value of (3) and (4).

7.4 Baseline

We use various columnar storage formats (RCFile, ORC
file, Parquet) without index as the baseline to highlight the
efficiency of index in the following parts.

Figure 6 shows the converting time from TextFile to
RCFile, ORC file, and Parquet. From the results, we can see
that Parquet has smallest file size as shown in Table 7 and
it takes minimum converting time for different data sets.
ORC file is 6%-22% slower than Parquet, RCFile is 27%-42%
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slower than ORC file, and 40%-60% slower than Parquet.
The query efficiency results of RCFile, ORC file, and Parquet
will be shown and analyzed with formal index benchmark
results in Section 7.7.

7.5 Index Creation Time
In this part, we analyze the index creation time of various
indexes in Hive. The cost time of converting file format and
creating index of Uniform250, Uniform500, LowSkew250
and LowSkew500 is shown in Figure 7. Because the result
(index creation time and query efficiency) of HighSkew250
is very different from the other results, we will discuss it
separately in Section 7.8. For 3-dimensional index 3-d index-
2(dse), to avoid the extreme big index table of Compact In-
dex, we only create 2-dimensional index on low-cardinality
dimensions (ds). For example, the index size reaches to
150GB for Uniform250.

From the results, we can see that (1) for Compact Index,
the index creation time increases with the increasing of
cardinality, for example, for each data set, the cost time of 1-
d index cost more time than others. Besides, the converting
and sorting take the majority of time, because we limit
the cardinality of the index dimensions, thus the index
creation does not cost too much time. (2) For sorted ORC file,
compared with original ORC, the sorting takes 1.6-3.4 times
more time than converting, but it takes 16%-120% less time
than DGFIndex. (3) For DGFIndex on RCFile and DGFInex
on ORC file, they cost the maximum time among all indexes,
and the index creating cost the majority time. Besides,
compared with the results of Uniform250 and Uniform500,
we can find that the index creation time of LowSkew250 and
LowSkew500 cost more time for all indexes. For Compact
Index on RCFile and sorted ORC file, the reason is that the
parallel Order By relies on sample data to split the value
range for each reducer. Since the data is skewed, some
reducers may receive much more data than other reducers.
As a result, these reducers will take more time to sort the
received records, which will slow down the sorting process.
DGFIndex assigns a value range for each reducer by evenly
splitting the whole z-order value range, therefore, some
reducer may receive much more slices than other reducers.
In summary, sorted ORC file cost the least time for index
creation, DGFIndex cost the most. The index creation time
of Compact Index is acceptable for low-cardinality index
dimensions. Moreover, the skew of index dimension will
increase the index creation time.

7.6 Storage Efficiency
Table size. From Table 5, we can see that compared with
RCFile and ORC file, Parquet has the best storage efficiency
and it has the minimum file size for the same data set. The
more skewed the data set is, the smaller the data size is. The
reason is that when the data is more skewed, there are more
repeated records and the encoding efficiency turns better,
for example, the run length encoding technique.

Index size. Because the results of Uniform data and
LowSkew data are similar, we only show the results of
Uniform data sets, as shown in Figure 8. Since the index
in ORC file is embedded in file, it is difficult to get its index
size, we skip it here. As described in Section 6.1, the size of
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Fig. 8. Index size of Compact Index and DGFIndex

the Compact Index is proportional to the cardinality of index
dimension and not related with data size. When creating 1-
dimensional Compact Index on l orderkey, the size of index
table is 41GB (for Uniform250) and 82GB (for Uniform500).
The reason is that the cardinality of l orderkey of Unifor-
m500 is two times of that of Uniform250. Besides, since
the cardinality of other index dimensions does not change
for different data sets, the index size of Compact Index
does not change. In addition, we also find that after sorting
the RCFile, the size of the Compact Index is significantly
reduced. The reason is that before sorting, the records with
same value are scattered in many row groups, therefore,
the Compact Index needs to store all combinations of index
dimensions and corresponding offset of row groups. After
sorting, the records with the same value are clustered in less
row groups, therefore, only few row group offsets need to
be stored for each combination of index dimensions. For
DGFIndex, it divides the high-cardinality dimension into
many intervals, and its size is proportional to the number
of intervals of index dimensions and, therefore, is much
smaller than the Compact Index.

7.7 Query Efficiency
Because the results of Uniform250 and Uniform500,
LowSkew250 and LowSkew500 have similar tendency,
here we only analyze the results of Uniform500 and
LowSkew500, the results of Uniform250 and LowSkew250
are shown in the web site given at the end of this paper.
Figure 9 and Figure 10 show the results of Uniform500 and
LowSkew500, including query cost time, mapper number
that is used to process the query, number of records, and
amount of data actually read after being filtered by index.
The baseline results are represented with a dotted line, the
results of various indexes are represented with solid lines.
From the results, we can make the following observations:

For the baseline: RCFile, ORC file, and Parquet, on
Uniform500, the query performance of ORC file is 1.5-2.6
times faster than RCFile, and Parquet is 30%-80% faster
than ORC file. The reason is that Parquet has smaller data
size than RCFile and ORC file for the same data set. The
fluctuation of RCFile, ORC file and Parquet for different
queries in Figure 9(d) shows the data size of different query-
related column set. As shown in Figure 9(c)(d), for each
query except Q-o-o, RCFile, ORC file and Parquet read all the
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Fig. 7. Cost time of converting and creating index

records from base table, but they read different amount of
data, which shows the encoding efficiency of corresponding
columnar storage. Besides, as shown in Figure 9(c), the
index in ORC file does not filter any records, since the query-
related records evenly distributed in every row groups,
in this situation, even only one record in a row group is
query-related, the whole row group needs to be read. On
LowSkew500, the query performance of ORC file is 2.3-3.8
times faster than RCFile, and Parquet is 37%-88% faster
than ORC file. We can see that when the data becomes
skewed, the query performance of ORC file and Parquet
gets better. The reason for ORC file is that, for skew data,
the records are more clustered than uniform data for some
values, for example l discount(0.04), thus ORC file can filter
out more query-irrelevant row groups than Uniform500,
which leads to the reduction of reading records and data
size as shown in Figure 10(c)(d). For Parquet, the reason
is that more repetitive records improve the efficiency of
encoding method, for example, run-length encoding, which
causes the data size of LowSkew500 is much smaller than
Uniform500. Thus, compared with 9(d), Parquet read much
less data than Uniform500, so the query performance is
better. However, Q-o-o is an exception, in this case, ORC
file is 0.8-1.5 times faster than Parquet on Uniform500, and
0.4-1 times on LowSkew500. Because l orderkey is originally
sorted in TPC-H, the index in ORC file can help it filter
lots of query-irrelevant row groups. In summary, unless the
data is original sorted by query dimensions, Parquet has the
best query performance among all widely used columnar
storage formats in Hive. Surprisingly, for LowSkew500 data
set, Parquet’s query performance is almost same with all
indexes when the query selectivity is over 15%.

For Compact Index on RCFile, as shown in Figure 9(a)
and 10(a), sorting the base table by index dimensions and
creating proper Compact Index can improve query perfor-
mance 2-13 times over the original RCFile. However, the
limitation is that we only can create Compact Index on low-
cardinality dimensions, otherwise, the large index table will
reduce the query performance, like Q-o-o with 25% selectiv-
ity. For Q-e-dse, because we only create index on l discount
and l shipdate, the query will not use the index. Among four
kinds of indexes, Compact Index on RCFile has the worst
query performance, the reason is that (1) Compact Index

needs to start another MapReduce job to scan the index
table, which costs more time than other indexes, especially
when the index table is big. (2) Compact Index only can
filter query-irrelevant data in split granularity, which will
cause redundant data reading as shown in 9(d). However,
Compact Index on RCFile uses much less mappers to pro-
cess the same query than sorted ORC file and DGFIndex
on ORC file as shown in 9(b) and 10(b). In addition, be-
cause the RCFile is sorted by the index dimensions, when
querying the latter dimensions in the sorting order, data
filtering performance of Compact Index becomes worse. For
example, Q-s-qds, we sort RCFile in the order of increasing
cardinality: dqs, which causes that the value of l shipdate is
more scattered than l discount and l quantity, causing more
redundant data reading. In summary, if the data is stored
as RCFile, and the index dimensions do not have large-
cardinality, then Compact Index is suitable candidate index
to improve multi-dimensional query performance.

For sorted ORC file, sorting can improve query perfor-
mance 1-2.4 times over the original ORC file. In addition,
because the ORC file can filter out data in row group
granularity, it has better performance than Compact Index,
especially for high-selectivity queries. The sorted ORC file
has similar query performance as DGFIndex on ORC file,
but Q-e-dse is an exception, for this query, the sorted OR-
C file’s query performance is about 2 times worse than
DGFIndex on RCFile. The reason is same with Q-s-qds of
Compact Index on RCFile. But for DGFIndex on ORCFile, its
data reorganization method is based on multi-dimensional
hash, all index dimensions are treated equally, thus it will
not have the problem like sorted ORC file. Furthermore,
when the query selectivity is over 15%, sorted ORC file
has similar query performance as DGFIndex on RCFile and
DGFIndex on ORC file. However, ORC based indexes, for
example ORC file, sorted ORC file, and DGFIndex on ORC
file, use much more mappers than DGFIndex on RCFile
and Compact Index on RCFile, which may influence the
concurrent throughput of Hive. In summary, if the user does
not care about the concurrent throughput, and the multi-
dimensional query always has high selectivity, for example
over 15%, then sorted ORC file is a suitable candidate index.

DGFIndex on RCFile has similar query performance
with sorted ORC file, and better query performance when
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Fig. 9. Query cost time, Mapper numbers used to process query, records number and amount of data actually read after being filtered by index on
Uniform500

the query selectivity is equal or less than 15%. Besides,
DGFIndex on RCFile occupies much less mapper slots than
sorted ORC file and DGFIndex on ORC file, which can im-

prove the concurrent throughput and computation resource
utilization of clusters. We also find that although DGFIndex
on RCFile reads more amount of data than sorted ORC file
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Fig. 10. Query cost time, Mapper numbers used to process query, records number and amount of data actually read after being filtered by index on
LowSkew500

as shown in Figure 9(d) and Figure 10(d), it has better query
performance. The reason is that processing sorted ORC file

uses many mappers, which needs to run in multiple waves.
In other hand, for DGFIndex on ORC file, it has almost the
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same query performance with sorted ORC file, but it does
not have the drawback of sorted ORC file, for example Q-
e-dse. In summary, if the user cares about the concurrent
throughput and computation resource utilization and the
query selectivity is not very large, then DGFIndex on RCFile
is a suitable candidate index. DGFIndex on ORC file is a
better fit if the query selectivity is large and user is not
sensitive to the concurrent throughput.

7.8 HighSkew250

As described in Section 4.1 and 5.2, Cluster By, parallel
Order By, and the z-order-based slice placement method
of DGFIndex all rely on the value of the index dimension
to assign records to reducers. Thus, for the HighSkew250
data set, when sorting or creating DGFIndex on base table,
few reducers will receive the majority of the data and the
index creation time becomes unacceptably long. Therefore,
DGFIndex on RCFile and DGFIndex on ORC file are not
suitable for high skew data. For sorted ORC file and Com-
pact Index on RCFile, we use Sort By to sort the base table.
The query cost time is shown in Figure 11. Because Sort By
can not make the base table as clustered as parallel Order
By, the query performance of sorted ORC file is not better
than original ORC file, but even worse. Although Compact
Index still improves the query performance on RCFile 1-7
times, it is much worse than sorted ORC file, ORC file, and
Parquet. Since Parquet has the minimum file size, its query
performance is faster 10%-150% than ORC file and sorted
ORC file. In Summary, for high skew data, original ORC
file or Parquet is more suitable than other file formats and
indexes, sorting does not improve the query performance.

8 BEST PRACTICE AND DISCUSSION

With our extensive summary and comprehensive experi-
ments of current indexes and columnar storage formats in
Hive, we suggest the best practice to improve the multi-
dimensional indexes: (1) Choosing low-cardinality partition
dimensions. Usually, date or enumeration dimension are
good candidates, under the assumption that they do not
generate too many partitions. (2) Choosing query dimen-
sions always used by user as index dimensions, then follow
the steps in Figure 12 to choose a suitable indexing tech-
nique: (a) whether users require good concurrent through-
put or computation resource occupation ratio, if yes, the
user needs to use DGFIndex on RCFile or Compact Index
on RCFile. (b) Using group by to analyze data distribution,
if it is high skew, Parquet is the best indexing technique.
(c) Analyzing the user’s queries, if the query selectivity is
small, for example less than 15%, DGFIndex on RCFile is
suitable. (d) At last, whether there is an index dimension
with extremely large cardinality and corresponding partial
query, if yes, DGFIndex on ORC file should be chosen, if no,
sorted ORC file should be chosen. After choosing a suitable
index based on the features of the application, the index
performance can be optimized as follows: (1) for sorted
ORC file and Compact Index on RCFile, the data needs
to be sorted in the base table by the order of increasing
cardinality of the index dimensions with parallel Order By.
(2) for DGFIndex on RCFile and DGFIndex on ORC file, the

Sensitive to 
concurrent 
throughput

DGFIndex on 
RCFile/Compact 
Index on RCFile

Yes

Data distribution

No

Parquet/ORC fileHigh skew

Query selectivity

Low Skew
Uniform

DGFIndex on 
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index dimension

Large

Sorted ORC file

No

DGFIndex on ORC 
file

Yes

Start

 

Fig. 12. Best practice of improving multi-dimensional query in Hive

z-order-based slice placement method should be used, and
choose empirical 32MB and 16MB slice size respectively.

From the experimental results, we find that each index
or columnar storage format still has some limitations: Sorted
ORC file occupies too many mapper slots, even if the query-
relevant amount of data is small. The creation of DGFIndex
costs too much time. Parquet still has no index support (the
index is under development). A Compact Index’ index table
becomes too large for high cardinality dimensions. How-
ever, each index has its sweet spot and no one fits all use
cases. Furthermore, based on our experiments, we summa-
rize some important index design guidelines: (1) Two-level
indexes are more efficient than one-level indexes. Two-
level indexes mean first filtering data in coarse-grained level
(split or stripe), then filtering data in fine-grained level (slice
or row group), like DGFIndex and sorted ORC file. This
way, the indexes can filter large amount of irrelevant data.
(2) Clustering frequently used records always is crucial to
improve index performance. Like sorting in sorted ORC
file and reorganization in DGFIndex, storing the records
that frequently are read together can greatly improve the
sequential reading efficiency and reduce the amount of
unnecessary data reads (3) Considering data skew. Less or
high data skew may reduce the index performance or even
fail the index design.

9 RELATED WORK

In this paper, we analyzed various indexes on columnar
storage, which has the advantage of eliminating query-
irrelevant I/O. In recent years, many excellent columnar
storage file formats have been proposed for Hadoop and
Hive, such as CFile [28], Column Format [21], Record
Columnar File [24], Optimized Record Columnar File (ORC
file) [25] and Parquet [1]. They all provide a way to filter
data vertically and can be improved with efficient index
techniques.

In the context of index in Hadoop and Hive,
HadoopDB [12] uses the index data engine of relational
databases to accelerate the query processing on Hadoop,
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Fig. 11. Query Cost Time of HighSkew250

we have compare it with DGFIndex in [29]. [27] proposes
a 1-dimensional index on sorted files of HDFS, each index
entry records the location information of the corresponding
data slice. [18] proposes the Trojan index and the Trojan
join index, the Trojan index records the first key, end key,
and the number of records in each split, and the Trojan join
index is used to co-partition two tables that are joined and
improves the join performance. [19] proposes a range index,
that creates an inverted index for string type dimensions.
[34] proposes a zero-overhead static and adaptive index for
Hadoop. The above works either focus on one-dimensional
indexing, or only can filter unrelated data in a coarse-
grained manner. Also, they can not be used in Hive directly.

In the context of benchmark in Hadoop and Hive. [33]
and [35] compare the performance of Hadoop and parallel
relational databases. In recent years, the industry hopes
to analyze big data using SQL in high speed, which has
resulted in the development of many SQL on Hadoop
systems, examples are Hive, Impala, Shark, Presto, and
Tajo. [20] benchmarks the performance of Hive and Impala,
and tests the efficiency of the range index in the ORC
file on processing one-dimensional queries. The authors do
not benchmark multi-dimensional query performance. [14]
compares the query performance of several SQl on Hadoop
systems. [22] compares the performance of MongoDB, SQL
Server, Hive and parallel databases with TPC-H. All of the
above work either does not test the efficiency of indexes on
improving query processing performance, or only test the
simple one-dimensional case.

In the context of index benchmark in spatial database
and traditional RDBMS, [26] characterizes the spatial-
temporal indexing problem and proposes a benchmark for
the performance comparison of spatial indexes. [13] mainly
focus on moving-object indexes, and propose a benchmark
for the comparison of existing and future indexing tech-
niques. [31] propose a performance benchmark for Location-
Based Services(LBS) related dynamic spatial indexing. The
three work mainly focus on spatial data processing, not
traditional data processing like ours. [32] proposes a star
schema benchmark for the index comparison of RDBMS,
but no detailed comparison. [15] proposes several kinds
of B-Tree index, but no experimental evaluations on them.
Moreover, because the cost model and computation model
of these work are different with Hive, thus user can not

directly use these conclusions. As far as we know, our
work is the first work on comparison of multi-dimensional
indexes in Hadoop and Hive area.

10 CONCLUSION

In this paper, we benchmark the efficiency of various in-
dexes and columnar storage formats in Hive on process-
ing multi-dimensional queries. Based on the experimental
results, we provide the best practices of improving multi-
dimensional query processing based on the requirements
of applications. Furthermore, we also summarize the im-
portant design guidelines of future index design in SQL on
Hadoop systems.

The source code of DGFIndex, detailed query forms and
the results of Uniform250 and LowSkew250 are available
online1.
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[18] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). Proceedings of the VLDB Endowment,
3(1-2):515–529, 2010.
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