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ABSTRACT
Today machine learning is entering many business and scienti�c
applications. The life cycle of machine learning applications con-
sists of data preprocessing for transforming the raw data into
features, training a model using the features, and deploying the
model for answering prediction queries. In order to guarantee
accurate predictions, one has to continuously monitor and update
the deployed model and pipeline. Current deployment platforms
update the model using online learning methods. When online
learning alone is not adequate to guarantee the prediction ac-
curacy, some deployment platforms provide a mechanism for
automatic or manual retraining of the model. While the online
training is fast, the retraining of the model is time-consuming and
adds extra overhead and complexity to the process of deployment.

Wepropose a novel continuous deployment approach for updat-
ing the deployed model using a combination of the incoming real-
timedata and thehistorical data.Weutilize sampling techniques to
include the historical data in the training process, thus eliminating
the need for retraining the deployed model. We also o�er online
statistics computation and dynamic materialization of the prepro-
cessed features, which further reduces the total training and data
preprocessing time. In our experiments, we design and deploy
two pipelines and models to process two real-world datasets. The
experiments show that continuous deployment reduces the total
training cost up to 15 times while providing the same level of qual-
itywhen compared to the state-of-the-art deployment approaches.

1 INTRODUCTION
In machine learning applications, a pipeline, a series of complex
data processing steps, processes a labeled training dataset and
produces a machine learning model. The model then has to be
deployed into a deployment platformwhere it answers prediction
queries in real-time. To properly preprocess the prediction queries,
typically the pipeline has to be deployed alongside the model.
A deployment platform must be robust, i.e., it should accom-

modate many di�erent types of machine learning models and
pipelines. Moreover, it has to be simple to tune. Finally, the plat-
formmust maintain the quality of the model by further training
the deployed model when new training data becomes available.

Online deployment of machine learning models is one method
for maintaining the quality of a deployed model. In the online
deployment approach, the deployment platform utilizes online
learning methods to further train the deployed model [13]. In on-
line learning, themodel is updated based on the incoming training
data. Online learning adapts the model to the new training data
and provides an up-to-date model. However, online learning is
sensitive to noise and outliers which may result in an increase in
the prediction error rate. Therefore, to guarantee a high level of
quality, one has to tune the online learning method to the speci�c
use case [22, 23]. Thus, e�ective online deployment of machine
learning models cannot provide robustness and simplicity.
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To solve the problem of degrading model quality, periodical
deployment approach is utilized. In the periodical deployment
approach, the platform, in addition to utilizing simple online learn-
ing, periodically retrains the deployed model using the historical
data. One of the challenges inmany real-world use cases is the size
of the training datasets. Typically, training datasets are extremely
large and require hours or days of data preprocessing and training
to result in a newmodel. Despite this drawback, in some applica-
tions, retraining the model is still critical, as even a small increase
in the quality of the deployed model can have a large impact. For
example, in the domain of ads click-through rate (CTR) prediction,
even a 0.1% accuracy improvement yields hundreds of millions
of dollars in revenue [21]. In the periodical deployment approach,
while the model is being retrained, new prediction queries and
training data are still arriving at the deployment platform. How-
ever, the platform has to answer the prediction queries using the
currently deployed model. Moreover, the platform appends the
new training data to the historical data. By the time the retrain-
ing process is over, enough training data is accumulated which
requires the deployment platform to perform another retraining.
As a result, the deployed model quickly becomes stale.

Although periodical deployment is robust and easy to tune, it
cannot maintain the quality of the deployed model without incur-
ring a high training cost. We propose a deployment platform that
eliminates the need for retraining, thus signi�cantly reducing the
trainingcostwhileachieving thesame levelofqualityas theperiod-
ical deployment approach. Our deployment platform is robust, i.e.,
it accommodatesmanydi�erent types ofmachine learningmodels
and pipelines. Moreover, similar to the periodical deployment, the
tuning process of our deployment platform is simple and requires
the same amount of user interaction as the periodical deployment.
Our deployment platform continuously updates the model us-

ing a combination of the historical and incoming training data.
Similar to existing deployment platforms, our platform also uti-
lizes online learning methods to update the model based on the
incoming training data. However, instead of the periodical retrain-
ing, our deployment platform performs regular updates to the
model based on samples of the historical data. Our deployment
platform o�ers the following two features:

Proactive training. Proactive training is the process of utilizing
samples of the data to update the deployedmodel. First, the deploy-
ment platform processes a given sample using the pipeline, then
it computes a partial gradient and updates the deployed model
based on the partial gradient. The updated model is immediately
ready for answering prediction queries. Our experiments show
that proactive training reduces the training time by one order
of magnitude while providing the same level of quality when
compared to the periodical deployment approach.

Online Statistics Computation and Dynamic Materialization. Be-
fore updating the model using proactive training, the pipeline has
to preprocess the training data. Every component of the pipeline
needs to scan the data, updates the statistics (for example themean
and the standard deviation of the standard scaler component), and
�nally, transform the data. Computing these statistics and trans-
forming the data are time consuming processes. Aside from the
proactive training, our deployment platform also employs online



learning methods to update the model in real-time. During the
online learning, we compute the required statistics and transform
the data. The deployment platform stores the updated statistics
for every pipeline component and materializes the transformed
features by storing them in memory or disk. In presence of a lim-
ited storage capacity, the platform removes the older transformed
features, and only re-materializes themwhen needed (through a
process called dynamic materialization). By reusing the computed
statistics and the materialized features during the proactive train-
ing, we eliminate the data preprocessing steps of the pipeline and
further decrease the proactive training time.

In summary, our contributions are:
• Aplatformforcontinuously trainingdeployedmachine learning
models and pipelines that adapts to the changes in the incoming
data. The platform accommodates di�erent types of machine
learning models and pipelines. In our experiments, we design
and deploy two di�erent machine learning pipelines.

• Proactive training of the deployed models and pipelines that
frequently updates the model using samples of the data which
completely eliminates the need for periodical retraining while
providing the same level of model quality.

• E�cient pipeline processing andmodel training by online statis-
tics computation and dynamic materialization, which provides
up-to-date models for answering prediction queries.
The rest of this paper is organized as follows: In Section 2, we

provide background information on the optimization strategy we
utilize in our continuous deployment platform and tuning mech-
anism of the existing deployment platforms. Section 3 describes
the details of our continuous training approach. In Section 4, we
introduce the architecture of our deployment platform. In Section
5, we evaluate the performance of our continuous deployment
platform. Section 6 discusses the related work. Finally, Section 7
presents our conclusion and the future work.

2 BACKGROUND
To continuously train the deployed model, we compute partial up-
dates based on the currentmodel parameters and a combination of
the incoming and existingdata. To compute thepartial updates,we
utilize StochasticGradientDescent (SGD) [36]. SGDhas several pa-
rameters (typically referred to as hyperparameters) and in order to
work e�ectively, they have to be tuned. In this section, we describe
the details of SGD and its hyperparameters and discuss the e�ect
of the hyperparameters on training machine learning models.

2.1 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is an optimization strategy uti-
lized by many machine learning algorithms for training a model.
SGD is an iterative optimization technique where in every iter-
ation, one data point or a sample of the data points is utilized to
update the model. SGD is suitable for large datasets as it does
not require scanning the entire data in every iteration [5]. SGD
is also suitable for online learning scenarios, where new training
data becomes available one at a time. Many di�erent machine
learning tasks such as classi�cation [23, 36], clustering [6], and
matrix factorization [19] utilize SGD in training models. SGD is
also the most common optimization strategy for training neural
networks on large datasets [12].
To explain the details of SGD, we describe how it is utilized to

traina simple linear regressionmodel. In linear regression, thegoal
is to �nd the weight vector(w) that minimizes the least-squares
cost function (J (w)):

J (w)=
1
2

N∑
i=1

(x iw−yi )2 (1)

where N is the size of the training dataset. To utilize SGD for
�nding the optimalw , we start from initial randomweights. Then
in every iteration, we update the weights based on the gradient
of the loss function:

wt+1=wt +η
∑
i ∈S

(yi−x iw)x i (2)

where η is the learning rate hyperparameter and S is the ran-
dom sample in the current iteration. The algorithmcontinues until
convergence, i.e., when the weight vector does not change after
an iteration.

Learning Rate. An important hyperparameter of stochastic
gradient descent is the learning rate. The learning rate controls
the degree of change in the weights during every iteration. The
most trivial approach for tuning the learning rate is to initialize
it to a small value and after every iteration decrease the value
by a small factor. However, in complex and high-dimensional
problems, the simple tuning approach is ine�ective [27]. Adaptive
learning rate methods such as Momentum [26], Adam [18], Rm-
sprop [31], andAdaDelta [35] have been proposed. Thesemethods
adaptively adjust the learning rate in every iteration to speed up
the convergence rate. Moreover, some of the learning rate adap-
tation methods perform per coordinate modi�cation, i.e., every
parameter of the model weight vector is adjusted separately from
the others [18, 31, 35]. In many high-dimensional problems, the
parameters of the weight vector do not have the same level of
importance, therefore each parameter must be treated di�erently
during the training process.

Sample Size.Another hyperparameter of stochastic gradient
descent is the sample size (sometimes referred to as the mini-
batch size). Given proper learning rate tuning mechanism, SGD
eventually converges to a solution regardless of the sample size.
However, the sample size cangreatlya�ect the time that is required
to converge. Two extremes of the sample size are 1 (every iteration
considers 1 data item) andN (similar to batch gradient descent, ev-
ery iteration scans the entire dataset). Setting the sample size to 1
increases themodel update frequency but results in noisy updates.
Therefore, more iterations are required for the model to converge.
Using theentiredata inevery iteration leads tomore stableupdates.
As a result, the model training process requires fewer iterations to
converge. However, because of the size of the data, individual iter-
ations requiremore time to complete. A common approach ismini-
batch gradient descent. Inmini-batch gradient descent, the sample
size is selected in such a way that each iteration is fast. Moreover,
the training process requires fewer iterations to converge.

2.2 Tuning the Periodical Deployment
Typically, two groups of hyperparameters a�ect the e�ciency of
the periodical deployment approach. The �rst group (the deploy-
ment hyperparameters) control the frequency and amount of data
for every retraining. The second group (the training hyperparam-
eters) tune the algorithm for retraining procedure. In this work,
we are targeting training algorithms based on Stochastic gradient
descent. Therefore, the hyperparameters are the learning rate and
the sample size.
There are several existing approaches for tuning the training

hyperparameters, such as grid search, random search, and sequen-
tial model based search [4, 17]. The deployment hyperparameters,
however, are typically selected to �t the speci�c use case. For
example, in many of the real-world use cases, one retrains the
deployed model using the entire historical data (hyperparame-
ter for the amount of data for every retraining) on a daily basis
(hyperparameter for the frequency of the retraining). In the next
sections, we describe howwe tune the deployment and training
hyperparameters of our deployment framework.



3 CONTINUOUS TRAININGAPPROACH
In this section, we describe the details of our continuous training
approach. Figure 1 shows the work�ow of our proposed platform.
The platform processes the incoming training data through 5
stages:
1. Discretizing the data: To e�ciently preprocess the data and
update the model, the platform transforms the data into small
chunks and stores them in the storage unit. The platform assigns a
timestamp to every chunk indicating its creation time. The times-
tampacts asbothaunique identi�erandan indicatorof the recency
of the chunk.
2. Preprocessing the data: The platform utilizes the deployed
pipeline to preprocess the raw training data chunks and transform
them into feature chunks. Then, the platform stores the feature
chunks alongwith a reference to the originating rawdata chunk in
the storage unit. When the storage unit becomes full, the platform
starts removing the oldest feature chunks and only keep the ref-
erence to the originating raw data chunks. In case the later stages
of the deployment platform request a deleted feature chunk, the
platform can recreate the feature chunk by utilizing the referenced
raw data chunk. During the preprocessing stage, we utilize online
statistics computation to compute the required statistics for the
di�erent pipeline components. These statistics speed up the data
processing in later stages.
3. Sampling thedata: Asampler unit samples the feature chunks
from the storage. Di�erent sampling strategies are available to
address di�erent use-case requirements.
4. Materializing the data: Depending on the size of the stor-
age unit, some preprocessed feature chunks (results of step 2) are
not materialized. If the sampler selects unmaterialized feature
chunks, the platform recreates these feature chunks by utilizing
the deployed pipeline through a process called dynamic materi-
alization.
5. Updating the model: By utilizing the preprocessed feature
chunks, the platform updates the deployed model through a pro-
cess called proactive training.

In the rest of this section, we �rst describe the details of the
online statistics computation the platform performs during the
preprocessing step. Then we introduce the dynamic materializa-
tion approach and the e�ects of di�erent sampling strategies on
the materialization process. Finally, we describe the details of the
proactive training method.

3.1 Online Statistics Computation
Some components of the machine learning pipeline, such as the
standard scaler or the one-hot encoder, require some statistics of
the dataset before they process the data. Computing these statis-
tics requires scans of the data. In our deployment platform, we
utilize online training as well as proactive training. During the
online update of the deployedmodel,we compute all the necessary
statistics for every component. Every pipeline component �rst
reads the incoming data. Then it updates its underlying statistics.
Finally, the component transforms and forwards the data to the
next component. Online computation of the required statistics
eliminates the need to recompute the same statistics during the
dynamic materialization and proactive training.

Online statistics computation is only applicable to certain types
of pipeline components. The support for stateless pipeline com-
ponents is trivial as they do not rely on any statistics before trans-
forming thedata. For stateful operations, since the statisticsupdate
occurs during the online data processing, the platform can only
update the statistics that can be computed incrementally. Many

of the well-known data preprocessing components (such as stan-
dardization and one-hot encoding) require statistics that can be
computed incrementally (such as mean, standard deviation, and
hash table). However, some pipeline components require statistics
that cannot be updated incrementally (such as percentile) or the
algorithm utilized by the pipeline component is non-incremental
(such as PCA). As a result, our deployment platform does not
support such components. Fortunately, recent bodies of work are
devoted to developing novel techniques for online feature engi-
neering [32, 33] and approximate machine learning [25] that o�er
fast and incremental alternatives with theoretical error bounds
to non-incremental algorithms.

Theplatformcanalso facilitate theonline statistics computation
for user-de�ned pipeline components. In Section 4, we describe
how users can incorporate this feature into their custom pipeline
components.

3.2 DynamicMaterialization
In order to update the statistics of the pipeline components, each
component must �rst transform the data and then forwards the
transformed data to the next component. At the end of this pro-
cess, the pipeline has transformed the data chunks into feature
chunks that the model will utilize during the training process. In
our continuous deployment platform, we repeatedly sample the
data chunks to update the model. Storing the chunks as materi-
alized features greatly reduces the processing time as the entire
data preprocessing steps can be skipped during the model update.
However, in the presence of a limited storage capacity, one has to
consider the e�ect of storing the materialized feature chunks.

To address the storage capacity issue,weutilize dynamicmateri-
alization. While creating the feature chunks, the platform assigns
a unique identi�er (the creation timestamp) and a reference to the
originating raw data chunk. In dynamicmaterialization, when the
size of the stored feature chunks exceeds the storage capacity, the
platform removes the content of the oldest materialized feature
chunks from the storage and only keeps the unique identi�er and
the reference to the rawdata chunk (similar to cache eviction). The
next time the sampler selects one or more of the evicted feature
chunks, the platform re-materializes each feature chunk from the
raw data chunk by reapplying the deployed pipeline to the raw
data chunk. Figure 2 shows the process of dynamicmaterialization
in twopossible scenarios. Forboth scenarios, therearea total 6data
chunks (rawand feature) available in the storage (with timestamps
t0 to t5). The sampling operation selects the chunks at t0, t2, and t5.
In Scenario 1, all the feature chunks are materialized. Therefore,
the platformdirectly utilizes them toupdate themodel. In Scenario
2, the platform has previously evicted some of the materialized
feature chunks due to the limit on the storage capacity. In this sce-
nario, the platform �rst re-materializes the evicted chunks using
the deployed pipeline components before updating the model.

It is important to note that the continuous training platform as-
sumes the raw data chunks are always stored and are available for
re-materialization. If someof the rawdata chunks arenot available,
the platform ignores these chunks during the sampling operation.
A similar issue arises in the periodical deployment approach. If
there is not enough space to store all the historical and incoming
data, at every retraining, the platform only utilizes the available
data in the storage.

3.2.1 Storage requirement for materialized feature chunks. In
order to estimate the storage requirement for the preprocessed
feature chunks, we investigate the size complexity of di�erent
pipeline components in terms of the input size (raw data chunks).
Table 1 shows the categories of the pipeline components and their
characteristics. Let us assume the total number of the values in a



1. Discretize 2. Preprocess

Storage

3. Sample 4. Materialize Model
Raw Data Raw Data

Chunks
Preprocessed

Features

Repeat

5. Update

Figure 1: Work�ow of our continuous deployment approach. (1) The platform converts the data into small units (2) The
platform utilizes the deployed pipeline to preprocess the data and transform the raw data into features and store them in
the storage. (3) The platform samples the data from the storage. (4) The platform materializes the sampled data (5) Using
the sampled data, the deployment platform updates the deployedmodel.

Storage

t0 t1 t2 t3 t4 t5

Sample s = {t0, t2, t5}

t0 t2 t5

Update

Model

raw chunk
materialized feature 

chunk

Storage

t0 t1 t2 t3 t4 t5

Sample s = {t0, t2, t5}

t0 t2 t5

Update

Model

Materialize

evicted feature 
chunk

Scenario 1:
All chunks are materialized

Scenario 2:
Some chunks are evicted

Figure 2: DynamicMaterialization process

Component type Unit of work Characteristics
data transformation data point (row) �ltering or mapping
feature selection feature (column) selecting some columns
feature extraction feature (column) generating new columns

Table 1: Description of the pipeline component types. Unit
of work indicates whether the component operates on a
row or a column.

dataset where R represents the rows and C represents columns is
p, where p= |R |×|C|. Data transformation and feature selection
operations either perform a one-to-one mapping (e.g., normaliza-
tion) or remove some rows or columns (e.g., anomaly �ltering and
variance thresholding). Therefore, the complexity of data trans-
formation and feature selection operations is linear in terms of the
input size (O(p)). The case for feature extraction is more compli-
cated as there are di�erent types of feature extraction operations.
Inmany cases, the feature extraction process creates a new feature
(column) by combining one ormore existing features (such as sum-
mingormultiplying features together).This results inacomplexity
of O(p) as the increase in size is linear with respect to the input
size. However, in some case, the feature extraction process gener-
ates many features (columns) from a small subset of the existing
features. Prominent examples of such operations are one-hot en-
coding and feature hashing. One-hot encoding converts a column
of the data with categorical values into several columns (1 column
for each unique value). For every value in the original column,
the encoded representation has the value of 1 in the column the
value represents and 0 in all the other columns. Consider the case
when we are applying the one-hot encoding operation to every
column ∀c ∈ C. Furthermore, let us assume q =max∀c ∈C |U(c)|,
whereU is the function that returns the unique values in a column

(U(x) ∈ [1, |R |]). Thus, the complexity of the one-hot encoding
operation is O(pq) (each existing value is encoded with at most q
binary values). Based on the value of q, two scenarios may occur:
• if q�|R|⇒O(pq)=O(p)

• if q≈ |R|⇒O(pq)=O(p |R |)=O(p
p

|C|
)=O(p2)

The second scenario represents the worst-case scenario where
almost every value is unique and we have very few columns (if
the number of columns is large then the complexity is lower than
O(p2)). A quadratic growth rate, especially in the presence of large
datasets, is not desirable and may render the storage of even a few
feature chunks impossible. However, both one-hot encoding and
feature hashing produce sparse datawhere for every encoded data
point, only one entry is 1 and all the other entries are 0. There-
fore, by utilizing sparse vector representation, we guarantee a
complexity of O(p).
Since the complexity is in worst-case scenario linear with re-

spect to the size of the input data and the eviction policy gradually
dematerializes the older feature chunks, the platform ensures the
size of the materialized features will not unexpectedly exceed the
storage capacity.

3.2.2 E�ects of sampling strategies on the dynamic material-
ization. Our platform o�ers three sampling strategies, namely,
uniform, window-based, and time-based (Section 4.2). The choice
of the sampling strategy a�ects the e�ciency of the dynamicmate-
rialization.Here,weanalyze the e�ects of dynamicmaterialization
in reducing the data processing overhead.

We de�neN as themaximumnumber of the raw data chunks,n
as the number of existing raw chunks during a sampling operation,
m as themaximumnumber of thematerialized feature chunks (cor-
responds to the size of the dedicated storage for the materialized
feature chunks), and s as the sample size (in each sampling oper-
ation, we are sampling s chunks out of the available n chunks)1.
Let us de�neMS as the number of materialized feature chunks in
a sampling operation. The variableMS follows a hypergeometric
distribution2 (sampling without replacement) where the number
of success states ism, and the number of draws is s . Therefore, the
expected value ofMS for a sampling operation with n chunks is:

En [MS]=s
m

n
To quantify the e�ciency of the dynamic materialization, we in-
troduce the materialization utilization rate with n raw chunks,
which indicates the ratio of the materialized feature chunks:

µn =
En [MS]

s
Finally, theaveragematerializationutilization rate for thedynamic
materialization process is:

µ=

∑N
n=1µn

N
(3)

1The value N corresponds to the size of the storage unit dedicated for raw data
chunkswhich bounds the variablen. If we assumen is unbounded, then as l imn→∞ ,
the probability of sampling materialized feature chunks becomes 0.
2https://en.wikipedia.org/wiki/Hypergeometric_distribution



µ indicates the ratio of the feature chunks that do not require
re-materialization before updating the model (a µ of 0.5 shows on
average half of the sampled chunks are materialized). To simplify
the analysis, we assume the platform performs one sampling op-
eration after every incoming data chunk. In reality, a scheduler
component governs the frequency of the sampling operation (Sec-
tion 4.1). Next, we describe how the sampling strategy a�ects the
computation of µ.

Random Sampling: For the random sampling strategy, we
compute µn as:

µn =


1, if n≤m

En [MS]

s
=

s
m

n
s
=
m

n
, otherwise

Since for the�rstm samplingoperations thenumberof rawchunks
(n) is smaller than the total size of the materialized chunks (m), µn
is 1.0 (every sampled chunk is materialized).

µ=

N∑
n=1

µn

N
=

m×1.0+
N∑

n=m+1

m

n

N

=

m+m(
1

m+1
+

1
m+2

+...+
1
N

)

N

=
m(1+(HN −Hm ))

N

≈
m(1+ln(N )−ln(m))

N

(4)

The highlighted section corresponds to the Harmonic numbers
[30]. The t-th harmonic number is:

Ht =1+
1
2
+
1
3
+...+

1
t
≈ln(t)+γ+

1
2t

−
1

12t2
whereγ ≈0.5772156649 is the Euler-Mascheroni constant. In our
analysis, since t is su�ciently large (more than 1000), we ignore
1
2t

−
1

12t2
.

Window-based Sampling: In the window-based sampling,
we have an extra parameter w which indicates the number of
chunks in the active window. Ifm≥w then µ=1, as all the feature
chunks in the active window are always materialized. However,
whenm<w :

µn =


1, if n≤m
En [MS]

s
=
m

n
, ifm<n≤w

Ew [MS]

s
=
m

w
, ifw <n

therefore:

µ=

N∑
n=1

µn

N
=

m+
w∑

n=m+1

m

n
+(N −w)

m

w

N

≈

m+m(Hw −Hm )+(N −w)
m

w
N

=

m(1+ln(w)−ln(m)+
N −w

w
)

N

(5)

Time-based Sampling: For the time-based sampling strategy,
there is no direct approach for computing the expected value of
MS (the number of the materialized chunks in the sample). How-
ever, we are assigning a higher sampling probability to the recent
chunks. As a result, we guarantee the time-based sampling has a
higher average materialization utilization rate than the uniform
sampling. In the experiments, we empirically show the average
materialization utilization rate.

In our experiments, we execute a deployment scenario with a
total of 12,000 chunks (N =12000), where each chunk is around 3.5
MB (a total of 42 GB). For the uniform sampling strategy, in order
to achieve µ=0.91, using Formula 4, we set the maximum number
of the materialized chunks to 7,200 (m=7200). This shows that, in
the worst-case scenario (when uniform sampling is utilized), by
materializing around 25 GB of the data, we ensure the deployment
platform does not need to re-materialize the data 91% of the time.

3.3 Proactive Training
Updating the model is the last step of our continuous deployment
platform. We update the model through the proactive training
process. Unlike, the full retraining process that is triggered by a
certain event (such as a drop in the quality or certain amount of
time elapsed since the last retraining), proactive training continu-
ously updates the deployed model. The proactive training utilizes
the mini-batch stochastic gradient descent to update the model
incrementally. Each instance of the proactive training is analo-
gous to an iteration of the mini-batch SGD. Algorithm 1 shows
the pseudocode of the mini-batch SGD algorithm. In mini-batch

Algorithm 1mini-batch Stochastic Gradient Descent
Input: D= training dataset
Output: m= trained model
1: initializem0
2: for i=1...n do
3: si = sample fromD
4: д=∇J (si ,mi−1)
5: mi =mi−1−ηi−1д
6: end for
7: returnmn

SGD, we �rst initialize the model (Line 1). Then, in every iteration,
we randomly sample points from the dataset (Line 3), compute
the gradient of the loss function J (Line 4), and �nally update the
model based on the value of the gradient and the learning rate
(Line 5). Since the platform executes the proactive training in ar-
bitrary intervals, we must ensure each instance of the proactive
training is independent of the previous instances. According to
the mini-batch SGD algorithm, each iteration of the SGD only
requires the model (mi−1) and the learning rate (ηi−1) of the previ-
ous iteration (Lines 4 and 5). Given these parameters, iterations of
SGD are conditionally independent of each other. Therefore, to ex-
ecute the proactive training, the deployment platform only needs
to store the model weights and the learning rate. By proactively
training the deployedmodel, the platform ensures themodel stays
up-to-date and provides accurate predictions.

Proactive training is a form of incremental training [14] which
is limited to SGD-based models. In our deployment platform, one
can replace the proactive trainingwith other forms of incremental
training. However, we limit the platform’s support to SGD for two
reasons. First, SGD is simple to implement and isused for traininga
variety ofmachine learningmodels in di�erent domains [6, 19, 23].
Second, since the combination of the data sampling and the proac-
tive training is similar to themini-batch SGDprocedure, proactive
training provides the same regret bound on the convergence rate
as the existing stochastic optimization approaches [18, 36].

4 DEPLOYMENT PLATFORM
Our proposed deployment platform comprises of �ve main com-
ponents: pipeline manager, data manager, scheduler, proactive
trainer, and execution engine. Figure 3 gives an overview of the
architecture of our platform and the interactions among its com-
ponents. At the center of the deployment platform is the pipeline



manager. The pipeline manager monitors the deployed pipeline
andmodel,manages the processing of the training data and predic-
tion queries, and enables the continuous update of the deployed
model. The data manager and the scheduler enable the pipeline
manager to perform proactive training. The proactive trainer com-
ponent manages the execution of the iterations of SGD on the
deployed model. The execution engine is responsible for execut-
ing the actual data transformation andmodel training components
of the pipeline.

4.1 Scheduler
The scheduler is responsible for scheduling the proactive training.
The scheduler instructs the pipeline manager when to execute
the proactive training. The scheduler accommodates two types
of scheduling mechanisms, namely, static and dynamic. The static
scheduling utilizes a user-de�ned parameter that speci�es the
interval between executions of the proactive training. This is a
simple mechanism for use cases that require constant updates to
the deployed model (for example, every minute). The dynamic
scheduling tunes the scheduling interval based on the rate of the
incoming predictions, prediction latency, and the execution time
of theproactive training. The scheduler uses the following formula
to compute the time when to execute the next proactive training:

T ′=S∗T ∗pr ∗pl (6)
whereT ′ is the time in secondswhen the next proactive training is
scheduled to execute,T is the total execution time (in seconds) of
the last proactive training,pl is the average prediction latency (sec-
ond per item), and pr is the average number of prediction queries
per second (items per second). S is the slack parameter. Slack is
a user-de�ned parameter to hint the scheduler about the possi-
bility of surges in the incoming prediction queries and training
data. During a proactive training, a certain number of predictions
queries arrive at the platform (T ∗pr ) which requires T ∗pr ∗pl
seconds to be processed. The scheduler must guarantee that the
deployment platform answers all the queries before executing
the next proactive training (T ′ >T ∗pr ∗pl). A large slack value
(≥ 2) results in a larger scheduling interval, thus allocatingmost of
the resources of the deployment platform to the query answering
component. A small slack value (1≤S ≤ 2) results in smaller sched-
uling intervals. As a result, the deployment platform allocates
more resources for training the model.

Continuous Deployment Platform

Pipeline Manager

Scheduler

Execution Engine

Data Manager Proactive Trainer

Figure 3: Architecture of the Continuous Deployment
Platform

4.2 DataManager
The data manager component is responsible for the storage of
historical data and materialized features, receiving the incoming
training data, and providing the pipelinemanager with samples of
the data. Thedatamanager has fourmain tasks. First, the dataman-
ager discretizes the incoming training data into chunks, assigns a
timestamp (which acts as a unique identi�er) to them, and stores
them in the storage unit. Second, it forwards the data chunks (and
the prediction queries) to the pipeline manager for further pro-
cessing. Third, after the pipelinemanager transforms the data into

feature chunks, the data manager stores the transformed feature
chunks in the storage unit along with a reference to the originat-
ing raw data chunk (i.e., the timestamp of the raw data chunk). If
the storage unit reaches its limit, the data manager removes old
feature chunks. Finally, upon the request of the pipeline manager,
the data manager samples the data for proactive training.
During the sampling procedure, the data manager randomly

selects a set of chunks by using their timestamp as key. Then, the
data manager proceeds as follows. For every sampled timestamp,
if the transformed feature chunk exists in the storage, then the
data manager forwards it to the pipeline manager. However, if
the data manager has previously removed the transformed fea-
ture chunks from the storage unit, the data manager forwards the
raw data chunk to the pipeline manager and noti�es the pipeline
manager to re-transform the raw data chunk (i.e., the dynamic
materialization process).
The data manager provides three sampling strategies, namely,

uniform, time-based, and window-based. The uniform sampling
strategy provides a random sample from the entire data where
every data chunk has the same probability of being sampled. The
time-based sampling strategy assignsweights to every data chunk
based on their timestamp such that recent chunks have a higher
probability of being sampled. The window-based sampling strat-
egy is similar to the uniform sampling, but instead of sampling
from the entire historical data, the data manager samples the
data from a given time range. Based on the speci�c use-case, the
user chooses the appropriate sampling strategy. In many real-
world use cases (e.g., e-commerce and online advertising), the de-
ployedmodel should adapt to the more recent data. Therefore, the
time-based and window-based sampling provide more appropri-
ate samples for training.However, in someuse cases, the incoming
training data is not time-dependent (e.g., image classi�cation of
objects). In these scenarios, the window-based and the time-based
sampling strategies may fail to provide a non-biased sample. In
Section 5, we evaluate the e�ect of the sampling strategy on both
the total deployment cost and the quality of the deployed model.

4.3 PipelineManager
The pipeline manager is the main component of the platform. It
loads the pipeline and the trained model, transforms the data into
features using the pipeline, enables the execution of the proactive
training, and exposes the deployed model to answer prediction
queries.
Each pipeline component must implement two methods: up-

date and transform. Furthermore, every pipeline component has
an internal state for storing the statistics (if needed). During the
online training, when new training data becomes available, the
pipeline manager �rst invokes the updatemethod which enables
the component to update its internal statistics using the incoming
data. Then, the pipeline manager invokes the transformmethod,
which transforms the data. After forwarding the data through
every component of the pipeline, the pipeline manager sends the
transformed features to the data manager for storage.

When the scheduler component informs the pipeline manager
to execute proactive training, the pipeline manager requests the
datamanager to provide itwith a sample of the data chunks for the
next proactive training. If some of the sampled data chunks are not
materialized, the pipeline manager re-materializes the chunks by
invoking the transformmethodsof thepipeline components.Then,
it provides theproactive trainerwith thecurrentmodelparameters
and the materialized sample of the features. Once the proactive
training is over, the pipeline manager receives the updated model.
The data manager also forwards the prediction queries to the

pipeline manager. Similar to the training data, the pipeline man-
ager sends the prediction queries through the pipeline to perform



the necessary data preprocessing (by only invoking the transform
method of every pipeline component). Using the same pipeline to
process both the training data and the prediction queries guaran-
tees that the same set of transformations are applied to both types
of data. As a result, the pipeline manager prevents inconsistencies
between training and inference that is a common problem in the
deployment ofmachine learning pipelines [3]. Finally, the pipeline
manager utilizes the deployed model to make predictions.

4.4 Proactive Trainer
The proactive trainer is responsible for training the deployed
model by executing iterations of SGD. In the training process, the
proactive trainer receives a training dataset (sampledmaterialized
features) and the currentmodel parameters from the pipelineman-
ager. Then, the proactive trainer performs one iteration of SGD
and returns the updatedmodel to the pipelinemanager. The proac-
tive trainer utilizes advanced learning rate adaptation techniques
such as Adam, Rmsprop, and AdaDelta to dynamically adjust the
learning rate parameter when training the model.

In order for the proactive training to update the deployedmodel,
the machine learning model component of the deployed pipeline
must implement an updatemethod, which is responsible for com-
puting the gradient. To provide support for other types of incre-
mental training approaches, one needs to implement the training
logic in the updatemethod of the model. However, as described
in Section 3.3, the proactive training with data sampling can guar-
antee convergence only when the SGD optimization is utilized.

4.5 Execution Engine
The execution engine is responsible for executing the SGD and
the prediction answering logic. In our deployment platform, any
data processing platform capable of processing data both in batch
mode (for proactive training) and streaming mode (online learn-
ing and answering prediction queries) is a suitable execution en-
gine. Platforms such as Apache Spark [34], Apache Flink [7], and
GoogleDataFlow [2] are distributed data processing platforms
that support both stream and batch data processing.

5 EVALUATION
To evaluate the performance of our deployment platform, we
perform several experiments. Our main goal is to show that the
continuous deployment approach maintains the quality of the de-
ployed model while reducing the total training time. Speci�cally,
we answer the following questions:
1. How does our continuous deployment approach perform in
comparison to online and periodical deployment approaches with
regards to model quality and training time?
2. What are the e�ects of the learning rate adaptation method,
the regularization parameter, and the sampling strategy on the
continuous deployment?
3. What are the e�ects of online statistics computation and dy-
namic materialization optimizations on the training time?
To that end, we �rst design two pipelines each processing one

real-world dataset. Then, we deploy the pipelines using di�erent
deployment approaches.

5.1 Setup
Pipelines.We design two pipelines for all the experiments.
URL pipeline. The URL pipeline processes the URL dataset for

classifying URLs, gathered over a 121 days period, into malicious
and legitimate groups [22]. The pipeline consists of 5 components:
inputparser,missingvalue imputer, standardscaler, featurehasher,
and an SVMmodel. To evaluate the SVMmodel, we compute the
misclassi�cation rate on the unseen data.

Taxi Pipeline.The Taxi pipeline processes theNewYork taxi trip
dataset and predicts the trip duration of every taxi ride [8]. The
pipeline consists of 5 components: input parser, feature extrac-
tor, anomaly detector, standard scaler, and a Linear Regression
model. We design the pipeline based on the solutions of the top
scorers of the New York City (NYC) Taxi Trip Duration Kaggle
competition3. The input parser computes the actual trip duration
by �rst extracting the pickup and drop o� time �elds from the
input records and calculating the di�erence (in seconds) between
the two values. The feature extractor computes the haversine dis-
tance4, the bearing5, the hour of the day, and the day of the week
from the input records. Finally, the anomaly detector �lters the
trips that are longer than 22 hours, smaller than 10 seconds, or the
trips that have a total distance of zero (the car never moved). To
evaluate the model, we use the Root Mean Squared Logarithmic
Error (RMSLE) measure. RMSLE is also the chosen error metric
for the NYC Taxi Trip Duration Kaggle competition.

Deployment Environment. We deploy the URL pipeline on
a single laptop running a macOS High Sierra 10.13.4 with 2,2 GHz
Intel Core i7, 16 GB of RAM, and 512GB SSD and the Taxi pipeline
on a cluster of 21 machines (Intel Xeon 2.4 GHz 16 cores, 28 GB
of dedicated RAM per node). In our current prototype, we are
usingApache Spark 2.2 as the execution engine. The datamanager
component utilizes the Hadoop Distributed File System (HDFS)
2.7.1 for storing the historical data [28]. We leverage the SVM, Lo-
gisticRegression, and the GradientDescent classes of the machine
learning library in Spark (MLlib) to implement the proactive train-
ing logic.We represent both the rawdata and the feature chunks as
RDDs. Therefore,we can utilize the cachingmechanismofApache
Spark to simply materialize/dematerialize feature chunks.

Datasets. Table 2 describes the details of the datasets such as
the size of the raw data for the initial training, and the amount of
data for the prediction queries and further training after deploy-
ment. For the URL pipeline, we �rst train a model on the �rst day
of the data (day 0). For the Taxi pipeline, we train a model using
the data from January 2015. For both datasets, since the entire data
�ts in the memory of the computing nodes, we use batch gradient
descent (sampling ratio of 1.0) during the initial training. We then
deploy the models (and the pipelines). We use the remaining data
for sending prediction queries and further training of the deployed
models.

Dataset size # instances Initial Deployment
URL 2.1 GB 2.4 M Day 0 Day 1-120
Taxi 42 GB 280 M Jan15 Feb15 to Jun16

Table 2: Description of Datasets. The Initial and Deploy-
ment columns indicate the amount of data used during
the initial model training and the deployment phase
(prediction queries and further training data)

Evaluationmetrics. For experiments that compare the qual-
ity of the deployed model, we utilize the prediction queries to
compute the cumulative prequential error rate of the deployed
models over time [11]. For experiments that capture the cost of the
deployment, wemeasure the time the platforms spend in updating
the model, performing proactive training (retraining for the pe-
riodical deployment scenario), and answering prediction queries.

Deployment process. The URL dataset does not have times-
tamps. Therefore, we divide every day of the data into chunks of
1 minute which results in a total of 12000 chunks, each one with
the size of roughly 200KB. The deployment platform �rst uses the
chunks for prequential evaluation and then updates the deployed
3https://www.kaggle.com/c/nyc-taxi-trip-duration/
4https://en.wikipedia.org/wiki/Haversine_formula
5https://en.wikipedia.org/wiki/Bearing_(navigation)
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Figure 4: Model Quality and Training cost for di�erent deployment approaches

model. The Taxi dataset includes timestamps. In our experiments,
each chunkof theTaxi dataset contains onehour of the data,which
results in a total of 12382 chunks, with an average size of 3MB per
chunk. The deployment platform processes the chunks in order
of the timestamps (from 2015-Feb-01 00:00 to 2016-Jun-30 24:00,
an 18 months period).

5.2 Experiment 1: Deployment Approaches
In this experiment, we investigate the e�ect of our continuous
deployment approach onmodel quality and the total training time.
We use 3 di�erent deployment approaches.
• Online: deploy the pipeline, then utilize online gradient descent
with Adam learning rate adaptation method for updating the
deployed model.

• Periodical: deploy the pipeline, then periodically retrain the
deployed model.

• Continuous: deploy the pipeline, then continuously update the
deployed model using our platform.
The periodical deployment initiates a full retraining every 10

days and every month for URL and Taxi pipelines, respectively.
Since the rate of the incoming training and prediction queries are
known, we use static scheduling for the proactive training. Based
on the size and rate of the data, our deployment platform executes
the proactive training every 5 minutes and 5 hours for the URL
and Taxi pipelines, respectively. To improve the performance of
the periodical deployment, we utilize thewarm starting technique,
used in the TFX framework [3]. In warm starting, each periodical
training uses the existing parameters such as the pipeline statistics
(e.g., standard scaler), model weights, and learning rate adaptation
parameters (e.g., the average of past gradients used in Adadelta,
Adam, and Rmsprop) when training newmodels.

Figure 4 (a) and (c) show the cumulative error rate over time
for the di�erent deployment approaches. For both datasets, the
continuous and the periodical deployment result in a lower error
rate than the online deployment. Online deployment visits every
incoming training data point only once. As a result, the model
updates are more prone to noise. This results in a higher error
rate than the continuous and periodical deployment. In Figure 4
(a), during the �rst 110 days of the deployment, the continuous
deployment has a lower error rate than the periodical deployment.
Only after the �nal retraining, the periodical deployment slightly
outperforms the continuous deployment. However, from the start
to the end of the deployment process, the continuous deployment
improves the average error rate by 0.3% and 1.5% over the period-
ical and online deployment, respectively. In Figure 4 (c), for the
Taxi dataset, the continuous deployment always attains a smaller
error rate than the periodical deployment. Overall, the continuous
deployment improves the error rate by 0.05% and 0.1% over the
periodical and online deployment, respectively.
When compared to the online deployment, periodical deploy-

ment slightly decreases the error rate after every retraining. How-
ever, between every retraining, the platform updates the model
using online learning. This contributes to the higher error rate
than thecontinuousdeployment,where theplatformcontinuously
trains the deployed model using samples of the historical data.

In Figure 4 (b) and (d), we report the cumulative cost over time
for every deployment platform. We de�ne the deployment cost
as the total time spent in data preprocessing, model training, and
performing prediction. For the URL dataset (Figure 4 (b)), online
deployment has the smallest cost (around 34 minutes) as it only
scans each data point once (around 2.4 million scans). The contin-
uous deployment approach scans 45million data points. However,



the total cost at the end of the deployment is only 50% larger than
the online deployment approach (around 54 minutes). Because
of the online statistics computation and the dynamic material-
ization optimizations, a large part of the data preprocessing time
is avoided. For the periodical deployment approach, the cumu-
lative deployment cost starts similar to the online deployment
approach. However, after every o�ine retraining, the deployment
cost substantially increases. At the end of the deployment process,
the total cost for the periodical deployment is more than 850 min-
utes which is 15 times more than the total cost of the continuous
deployment approach. Each data point in the URL dataset has
more than 3 million features. Therefore, the convergence time for
each retraining is very high. The high data-dimensionality and
repeated data preprocessing contribute to the large deployment
cost of the periodical deployment.

For the Taxi dataset (Figure 4 (d)), the cost of online, continuous,
and periodical deployments are 262, 308, and 1765minutes, respec-
tively. Similar to the URL dataset, continuous deployment only
adds a small overhead to the deployment cost when compared
with the online deployment. Contrary to the URL dataset, the
feature size of the Taxi dataset is 11. Therefore, o�ine retraining
converges faster to a solution. As a result, for the Taxi dataset,
the cost of the periodical deployment is 6 times larger than the
continuous deployment (instead of 15 times for URL dataset).

5.3 Experiment 2: System Tuning
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Figure 5: Result of hyperparameter tuning during the
deployment
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Figure 6: E�ect of di�erent samplingmethods on quality

In this experiment, we investigate the e�ect of di�erent parame-
ters on the quality of themodels after deployment. As described in
Section 3.3, proactive training is an extension of the stochastic gra-
dient descent to the deployment phase. Therefore, we expect the
set of hyperparameters with the best performance during the ini-
tial training also performs the best during the deployment phase.

ProactiveTrainingParameters. Stochastic gradient descent
is heavily dependent on the choice of learning rate and the regular-
ization parameter. To �nd the best set of hyperparameters for the

initial training, we perform a grid search. We use advanced learn-
ing rate adaptation techniques (Adam,Adadelta, and Rmsprop) for
both initial and proactive training. For each dataset, we divide the
initial data (from Table 2) into a training and evaluation set. For
each con�guration,we�rst train amodel using the training set and
then evaluate the model using the evaluation set. Table 3 shows
the result of the hyperparameter tuning for every pipeline. For the
URL dataset, Adamwith regularization parameter 1E-3 yields the
model with the lowest error rate. The Taxi dataset is less complex
than the URL dataset and has a smaller number of feature dimen-
sions. As a result, the choice of di�erent hyperparameter does not
have a large impact on the quality of the model. The Rmsprop
adaptation technique with the regularization parameter of 1E-4
results in a slightly better model than the other con�gurations.

After the initial training, for every con�guration, we deploy the
model and use 10 % of the remaining data to evaluate the model
after deployment. Figure 5 shows the results of the di�erent hy-
perparameter con�gurations on the deployed model. To make
the deployment �gure more readable, we avoid displaying the
result of every possible combination of hyperparameters and only
show the result of the best con�guration for each learning rate
adaptation technique. For the URL dataset, similar to the initial
training, Adamwith regularization parameter 1E-3 results in the
best model. For the Taxi dataset, we observe a similar behavior to
the initial training where di�erent con�gurations do not have a
signi�cant impact on the quality of the deployed model.
This experiment con�rms that the e�ect of the hyperparame-

ters (learning rate and regularization) during the initial and proac-
tive training are the same. Therefore, we tune the parameters of
the proactive training based on the result of the hyperparameter
search during the initial training.

SamplingMethods. The choice of the sampling strategy also
a�ects the proactive training. Each instance of the proactive train-
ing updates the deployedmodel using the provided sample. There-
fore, the quality of the model after an update is directly related
to the quality of the sample. We evaluate the e�ect of three dif-
ferent sampling strategies, namely, time-based, window-based,
and uniform, on the quality of the deployed model. The sample
size is similar to the sample size during the initial training (16k
and 1M for URL and Taxi data, respectively). Figure 6 shows the
e�ect of di�erent sampling strategies on the quality of the de-
ployedmodel. For the URL dataset, time-based sampling improves
the average error rate by 0.5% and 0.9% over the window-based
and uniform sampling, respectively. As new features are added to
the URL dataset over time, the underlying characteristics of the
dataset gradually change [22]. A time-based sampling approach is
more likely to select the recent items for the proactive training. As
a result, the deployed model performs better on the incoming pre-
diction queries. The underlying characteristics of the Taxi dataset
are known to remain static over time. As a result, we observe that
di�erent sampling strategies have the same e�ect on the quality
of the deployed model. Our experiments show that for datasets
that gradually change over time, time-based sampling outper-
forms other sampling strategies. Moreover, time-based sampling
performs similarly to window-based and uniform sampling for
datasets with stationary distributions.

5.4 Experiment 3: Optimizations E�ects
In this experiment, we analyze the e�ect of the system optimiza-
tions, i.e., online statistics computation and the dynamic material-
ization on the total deployment cost.We de�ne thematerialization
rate (i.e., mn , as described in Section 3.2) as the ratio of the number
of materialized chunks over the total number of chunks (both URL
andTaxi have around12,000 chunks in total). For bothdatasets, the
materialization rates of 0.0, 0.2, 0.6, and 1.0 indicates that 0, 2400,



URL Taxi

Adaptation 1E-2 1E-3 1E-4 1E-2 1E-3 1E-4
Adam 0.030 0.026 0.035 0.09553 0.09551 0.09551
RMSProp 0.030 0.027 0.034 0.09552 0.09552 0.09550
Adadelta 0.029 0.028 0.034 0.09609 0.09610 0.09619

Table 3:Hyperparameter tuningduring initial training (boldnumbers show thebest results for eachadaptation techniques)

7200, and 12000 chunks are materialized. For the window-based
sampling strategy, we set the window size to 6,000 chunks (half
of the total chunks). In this experiment, we assume the raw data
is always stored in memory. The total size of the datasets after
materialization is 5.2 GB and 59 GB for the URL and Taxi datasets,
respectively. Therefore, when setting the materialization rate to a
speci�c value, we must ensure we have enough memory capacity
to store both the materialized and the raw data. Table 4 shows

URL Taxi

Sampling m
n =0.2 m

n =0.6 m
n =0.2 m

n =0.6
Uniform 0.52 (0.52) 0.91 (0.91) 0.51 (0.52) 0.90 (0.91)
Window-based 0.58 (0.58) 1.0 (1.0) 0.57 (0.58) 1.0 (1.0)
Time-based 0.68 0.97 0.65 0.97

Table 4: Empirical computation and theoretical estimates
(bold numbers) of µ for di�erent sampling strategies and
materialization rates (mn ). We omit the materialization
rates 0.0 and 1.0 since both the empirical and theoretical
estimates of µ are 0.0 and 1.0 for every sampling strategy.

the empirical values and theoretical estimates of µ for di�erent
settings. For both the uniform and time-based sampling, the em-
pirical and analytical computation yield similar values. Moreover,
the empirical computation shows that the time-based strategy
performs better than the uniform sampling strategy. When the
number of materialized feature chunks is 0 or 12000, the design of
the deployment platform guarantees that µ is 0.0 and 1.0, respec-
tively. Therefore, we do not report those results in the table.
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Figure 7: E�ect of the online statistics computation and
dynamicmaterialization on the deployment cost

To examine the e�ect of µ on the deployment cost, we plot
the total deployment cost using di�erent sampling strategies and
materialization rates (mn ) for the URL and Taxi deployment sce-
narios in Figure 7. When the materialization rate is 0.0 or 1.0, the
sampling strategies have similar e�ects on the deployment cost.
Therefore, the total deployment cost for every sampling strategy is
90minutes for URL and 600minutes for Taxi deployment scenario,
when the materialization rate is 0.0. Similarly, the deployment

cost is 54 minutes for URL and 308 minutes for Taxi, when the
materialization rate is 1.0 (an improvement of 40% for URL and
49% for Taxi deployment scenarios).

For the URL deployment scenario, when the materialization
rate is 0.2, time-based, window-based, and uniform sampling im-
prove the deployment cost by 30%, 25%, and 23% in comparison
with the materialization rate of 0.0. Similarly, in the Taxi deploy-
ment scenario, time-based, window-based, and uniform sampling
improve the deployment cost by 22%, 16%, and 12%, respectively.
Time-based sampling performs better since it has a higher µ value
than the other two sampling strategies (Table 4).When themateri-
alization rate is 0.2, the rate of the decrease in the deployment cost
for theURL scenario is greater than the Taxi scenario.We attribute
this di�erence in the decrease in the deployment cost to two rea-
sons. First, the number of sampled chunks in the Taxi deployment
scenario is larger than the URL (720 for Taxi and 100 for URL).
Before updating the model, we utilize the context.union operation
of Spark, to combine all the non-materialized and materialized
chunks. The union operation incurs a larger overhead when the
number of underlying chunks is bigger. Second, we execute the
URL deployment scenario on a single machine with SSD. Since
materializing data that resides on an SSD is faster than an HD, we
observe a larger decrease in the deployment cost.
When the materialization rate is 0.6, window-based sampling

has the best performance. Since the size of the window is smaller
than thenumberof thematerialized feature chunks, every sampled
feature chunk is materialized. For the URL deployment scenario,
window-based, time-based, and uniform sampling improves the
performance by 40%, 36%, and 33%, respectively. For the Taxi
deployment scenario, window-based, time-based, and uniform
sampling improves the performance by 49%, 46%, and 37%, respec-
tively. Similar phenomena explain the di�erence in performance
improvement at materialization rate of 0.6 between the Taxi and
theURLdeployment scenarios. Atmaterialization rate of 0.6,more
than 90% of the chunks are materialized. Therefore, the Taxi de-
ployment scenario gains relativelymore than theURLdeployment
scenario from a smaller number of disk I/O operations.
To analyze the e�ect of the online statistics computation on

the deployment cost, we also execute the deployment scenarios
without the online statistics computation and the dynamicmateri-
alization optimizations. In this case, the deployment platform �rst
accesses the sampled raw data chunk directly from the disk. Then,
the platform recomputes the required statistics of every compo-
nentby scanning thedata. Finally, it transforms the rawdata chunk
into the preprocessed feature chunks by utilizing the deployed
pipeline. Without the optimizations, the choice of the sampling
strategy does not a�ect the total deployment time (similar to the
materialization rate of 0.0). Therefore, when the optimizations are
disabled, we only show the results for the time-based sampling
(depicted as NoOptimization in Figure 7). The extra disk access
and data processing result in an increase of %110 for the URL
(Figure 7a) and %170 for the Taxi deployment scenarios (Figure
7b) when compared with a fully optimized execution (with online
statistics computation and materialization rate of 1.0). Similar to
the dynamic materialization case, we observe a larger increase in
the deployment cost of the Taxi deployment scenario due to the
larger overhead of disk I/O.



The result of this experiment shows that even under limited
storage we can bene�t from the dynamic materialization, espe-
cially for the time-based and window-based sampling strategies.
Furthermore, online statistics computation can improve the total
deployment cost, especially when the expected amount of incom-
ing data is large.

5.5 Discussion
Trade-o� between quality and training cost. In many real-
world use cases, even a small improvement in the quality of the
deployed model can have a signi�cant impact [21]. Therefore,
one can employ more complex pipelines and machine learning
training algorithms to train better models. However, during the
deployment where prediction queries and training data become
available at a high rate, onemust consider the e�ect of the training
time. To ensure the model is always up-to-date, the platformmust
constantly update the model. Long retraining time may have a
negative impact on the prediction accuracy as the deployedmodel
becomes stale. Figure 8 shows the trade-o� between the average
quality and the total cost of the deployment. By utilizing con-
tinuous deployment, we reduce the total cost of the deployment
6 to 15 times when compared with the periodical deployment,
while providing the same quality (even slightly outperforming
the periodical deployment by 0.05% and 0.3% for the Taxi and URL
datasets, respectively.)
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Figure 8: Trade-o� between average quality and deploy-
ment cost

Stalenessof themodelduringtheperiodicaldeployment.
In the experiments of the periodical deployment approach, we
pause the in�ow of the training data and prediction queries. How-
ever, in real-world scenarios, the training data and the prediction
queries constantly arrive at the platform. Therefore, the periodical
deployment platform pauses the online update of the deployed
model and answers the prediction queries using the currently de-
ployed model (similar to how Velox operates [9]). As a result, the
error rate of the deployed model may increase during the retrain-
ing process. However, in our continuous deployment platform, the
average time for the proactive training is small (200ms for theURL
dataset and 700ms for the Taxi dataset). Therefore, the continuous
deployment platform always performs the online model update
and answers the predictions queries using an up-to-date model.

6 RELATEDWORK
Traditional machine learning systems focus solely on training
models and leave the task of deploying and maintaining the mod-
els to the users. It has only been recently that some platforms, for
example LongView [1], Velox [9], Clipper [10] , and TensorFlow
Extended [3] haveproposed architectures that also considermodel
deployment and query answering.

LongView integrates predictive machine learning models into
relational databases. It answers predictive queries and maintains

andmanages themodels. LongViewuses techniques such as query
optimization and materialized view selection to increase the per-
formance of the system. However, it only works with batch data
and does not provide support for real-time queries. As a result, it
does not support continuous and online learning. In contrast, our
platform is designed to work in a dynamic environment where it
answers prediction queries in real-time and continuously updates
the model.
Velox is an implementation of the common periodical deploy-

ment approach. Velox supports online learning and can answer
prediction queries in real-time. It also eliminates the need for the
users to manually retrain the model o�ine. Velox monitors the
error rate of the model using a validation set. Once the error rate
exceeds a prede�ned threshold, Velox initiates a retraining of the
model using Apache Spark. However, Velox has four drawbacks.
First, retraining discards the updates that have been applied to the
model so far. Second, the process of retraining on the full dataset
is resource intensive and time-consuming. Third, the platform
must disable online learning during the retraining. Lastly, the
platform only deploys the �nal model and does not support the
deployment of the machine learning pipeline. Our approach dif-
fers from Velox as it exploits the underlying properties of SGD to
integrate the training process into the platform’s work�ow. Our
platform replaces the o�ine retraining with proactive training.
As a result, our deployment platformmaintains the model quality
with a small training cost. Moreover, our deployment platform
deploys the machine learning pipeline alongside the model.

Clipper is another machine learning deployment platform that
focuses on producing high-quality predictions by maintaining an
ensemble of models. For every prediction query, Clipper exam-
ines the con�dence of every deployed model. Then, it selects the
deployed model with the highest con�dence for answering the
prediction query. However, it does not update the deployed mod-
els, which over time leads to outdated models. On the other hand,
our deployment platform focuses onmaintenance and continuous
update of the deployed models.
TensorFlow Extended (TFX) is a platform that supports the

deployment of machine learning pipelines and models. TFX au-
tomatically stores new training data, performs analysis and val-
idation of the data, retrains new models, and �nally redeploys
the new pipelines and models. Moreover, TFX supports the warm
starting optimization to speed up the process of training new
models. TFX aims to simplify the process of design and training
of machine learning pipelines and models, simplify the platform
con�guration, provide platform stability, and minimize the dis-
ruptions in the deployment platform. For use cases that require
months to deploy newmodels, TFX reduces the time to produc-
tion from the order of months to weeks. Although TFX uses the
term "continuous training" to describe the deployment platform,
it still periodically retrains the deployed model on the historical
dataset. On the contrary, our continuous deployment platform
performsmore rapid updates to the deployedmodel. By exploiting
the properties of SGD optimization technique, our deployment
platform rapidly updates the deployedmodels (seconds tominutes
instead of several days or weeks) without increasing the overhead.
Our proactive training component can be integrated into the TFX
platform to speed up the process of pipeline and model update.
Weka [15], ApacheMahout [24], andMadlib [16] are systems

that provide the necessary toolkits to trainmachine learningmod-
els. All of these systems provide a range of training algorithms
for machine learning methods. However, they do not support the
management and deployment of machine learning models and
pipelines. Our platform focuses on continuous deployment and
management of machine learning pipelines and models after the
initial training.



MLBase [20] and TuPaq [29] are model management systems.
They provide a range of training algorithms to create machine
learningmodels andmechanism formodel search aswell asmodel
management. They focus on training high-quality models by
performing automatic feature engineering and hyper-parameter
search. However, they only work with batch datasets. Moreover,
the users have to manually deploy the models and make them
available for answering prediction queries. On the contrary, our
deployment platform focuses on the continuous deployment of
pipelines and models.

7 CONCLUSIONS
We propose a deployment platform for continuously updating
machine learning pipelines and models. After a machine learn-
ing pipeline is designed and initially trained on a dataset, our
platform deploys the pipeline and makes it available for answer-
ing prediction queries. To ensure that the model maintains an
acceptable error rate , existing deployment platforms periodically
retrain the deployed model. However, periodical retraining is a
time-consuming and resource-intensive process. As a result of
the lengthy training process, the platform cannot produce fresh
models. This results in model-staleness which may decrease the
quality of the deployed model.

We propose a training approach, called proactive training, that
utilizes samples of thehistorical data to train the deployedpipeline.
Proactive training replaces the periodical retraining, which pro-
vides the same level of model quality without the lengthy retrain-
ing process. We also propose online statistics computation and
dynamic materialization of the preprocessed features which fur-
ther decreases the training time.Wepropose amodular design that
enables our deployment platform to be integrated with di�erent
scalable data processing platforms.

We implement a prototype using Apache Spark to evaluate the
performance of our deployment platform. In our experiments,
we develop two pipelines with twomachine learning models to
process two real-world datasets. We discuss how to tune the de-
ployment platform based on the available historical data. Our
experiments show that our continuous deployment reduces the
total deployment cost by a factor of 6 and 15 for the Taxi and URL
datasets, respectively.Moreover, continuous deployment platform
provides the same level of quality for the deployed model when
compared with the periodical deployment approach.
Currently, we provide support for anomaly and concept drift

detection through components of the machine learning pipeline.
However, given the large impact of the concept drift and anom-
alies on the performance of a deployed model, in the future work,
we plan to extend our platform to provide native support for
both concept drift and anomaly detection and alleviation. Fur-
thermore, we plan to integrate more complex machine learning
pipelines and models (e.g., neural networks) into our deployment
platform.
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