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ABSTRACT
Window aggregation is a core operation in data streamprocessing.
Existing aggregation techniques focus on reducing latency, elim-
inating redundant computations, and minimizing memory usage.
However, each technique operates under different assumptions
with respect to workload characteristics such as properties of ag-
gregation functions (e.g., invertible, associative), window types
(e.g., sliding, sessions), windowing measures (e.g., time- or count-
based), and stream (dis)order. Violating the assumptions of a tech-
nique can deem it unusable or drastically reduce its performance.

In this paper, we present the first general stream slicing tech-
nique for window aggregation. General stream slicing automat-
ically adapts to workload characteristics to improve performance
without sacrificing its general applicability. As a prerequisite, we
identify workload characteristics which affect the performance
and applicability of aggregation techniques. Our experiments
show that general stream slicing outperforms alternative con-
cepts by up to one order of magnitude.

1 INTRODUCTION
The need for real-time analysis shifts an increasing number of
data analysis tasks from batch to stream processing. To be able
to process queries over unbounded data streams, users typically
formulate queries that compute aggregates over bounded subsets
of a stream, called windows. Examples of such queries on win-
dows are average vehicle speeds per minute, monthly revenue
aggregations, or statistics of user behavior for online sessions.

Large computation overlaps caused by sliding windows and
multiple concurrent queries lead to redundant computations and
inefficiency. Consequently, there is an urgent need for general
and efficient window aggregation in industry [7, 41, 50]. In this
paper, we contribute a general solution which not only improves
performance but also widens the applicability with respect to win-
dow types, time domains, aggregate functions, and out-of-order
processing.Our solution is generally applicable to all data flowsys-
temswhich adopt a tuple-at-a-timeprocessingmodel (e.g., Apache
Storm, Apache Flink, and other Apache Beam-based systems).

To calculate aggregates of overlapping windows, the database
community has been working on aggregation techniques such as
B-Int [3], Pairs [28], Panes [30], RA [42] and Cutty [10]. These
techniques compute partial aggregates for overlapping parts of
windowsand reuse thesepartial aggregates to computefinal aggre-
gates for overlapping windows. We believe that these techniques
are not widely adopted in open-source streaming systems for two
main reasons: first, the literature on streaming window aggre-
gation is fragmented and, second, every technique has its own
assumptions and limitations. As a consequence, it is not clear
for researchers and practitioners under which conditions which
streaming window aggregation techniques should be used.
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General purpose streaming systems require a window operator
which is applicable to many types of aggregation workloads. At
the same time, the operator should be as efficient as specialized
techniques which support selected workloads only.

As our first contribution we identify the workload character-
istics which may or may not be supported by existing specialized
window aggregation techniques. Those characteristics are: i)win-
dow types (e.g., sliding, session, tumbling), ii)windowing measures
(e.g., time or tuple-count), iii) aggregate functions (e.g., associative,
holistic), and iv) stream order. We then conduct an extensive liter-
ature survey and classify existing techniques with respect to their
underlying concepts and their applicability.

We identify stream slicing as a common denominator on top of
which window aggregation can be implemented efficiently. Con-
sequently, our secondmain contribution is a general stream slicing
technique. Existing slicing-based techniques do not support com-
plex window types such as session windows [28, 30], do not con-
sider out-of-order processing [10], or limit the type of aggregation
functions [10, 28, 30].Withgeneral streamslicing,weprovidea sin-
gle, generally applicable, and highly efficient solution for stream-
ingwindow aggregation. Our solution inherits the performance of
specialized techniques, which use stream slicing, and generalizes
stream slicing to support diverse workloads. Because we integrate
all workloads into one general solution, we enable computation
sharing among all queries with different window types (sliding,
sessions, user-defined, etc.) and window measures (e.g., tuple-
count or time). General stream slicing is available open source and
can be integrated into streaming systems directly as a library1.

General stream slicing breaks down slicing into three opera-
tions on slices, namely merge, split, and update. Specific work-
load characteristics influence what each operation costs and how
often operations are performed. By taking into account the work-
load characteristics, our slicing technique i) stores the tuples them-
selves only when it is required which saves memory and ii) mini-
mizes thenumberof slices that are created, stored, and recomputed.
One can extend our techniques with additional aggregations and
window types without changing the three core slicing operations.
Thus, these core operationsmay be tuned by system experts while
users can still implement customwindows and aggregations.

The contributions of this paper are as follows:
(1) We identify the workload characteristics which impact

the applicability and performance limitations of existing
aggregation techniques (Section 4).

(2) We contribute general stream slicing, a generally applicable
and highly efficient solution for streaming window aggre-
gation in dataflow systems (Section 5).

(3) We evaluate the performance implications of different use-
case characteristics and show that stream slicing is gen-
erally applicable while offering better performance than
existing approaches (Section 6).

The remainder of this paper is structured as follows: We first pro-
vide background information in Section 2 and present concepts of
aggregation techniques in Section 3. We then present our contri-
butions in Section 4, 5, and 6 and discuss related work in Section 7.

1Open Source Link: https://github.com/TU-Berlin-DIMA/scotty-window-processor
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Figure 1: CommonWindow Types.

2 PRELIMINARIES
Streamingwindowaggregation involves special terminologywith
respect towindow types, timing, streamorder, and data expiration.
This section revisits terms and definitions, which are required for
the remainder of this paper.
WindowTypes.Awindowtype refers to the logicbasedonwhich
systems derive finite windows from a continuous stream. There
exist diverse window types ranging from common sliding win-
dows to more complex data-driven windows [17]. We address the
diversity of window types with a classification in Section 4.4. For
now, we limit the discussion to tumbling (or fixed), sliding, and
sessionwindows (Figure 1) which we use in subsequent examples.
A tumbling window splits the time into segments of equal length
l . The end of one window marks the beginning of the next win-
dow. Sliding windows, in addition to the length l , also define a
slide step of length ls . This length determines how often a new
window starts. Consecutive windows overlap when ls < l . In this
case, tuples may belong to multiple windows. A sessionwindow
typically covers a period of activity followed by a period of inactiv-
ity [1]. Thus, a session window times out (ends) if no tuple arrives
for some time gap lд . Typical examples of sessions are taxi trips,
browser sessions, and ATM interactions.
Notion of Time.One can define windows on different measures
suchas times and tuple-counts. The event-time of a tuple is the time
when an event was captured and the processing-time is the time
when an operator processes a tuple [1, 9]. Technically, an event-
time is a timestamp stored in the tuple and processing-time refers
to a systemclock. If not indicatedotherwise,we refer to event-time
windows in our examples because applications typically define
windows on event-time.
StreamOrder. Input tuples of a stream are in-order if they arrive
chronologically with respect to their event-times, otherwise, they
are out-of-order [1, 33]. In practice, streams regularly contain
out-of-order tuples because of transmission latencies, network
failures, or temporary sensor outages. We differentiate in-order
tuples from out-of-order tuples and in-order streams from out-of-
order streams. Let a stream S consist of tuples s1, s2, s3, ...where
the subscripts denote the order in which an operator processes
the tuples. Let the event-time of any tuple sx be te (sx ).
• A tuple sx is in-order if te (sx ) ≥ te (sy ) ∀y < x .
• A stream is in-order iff all its tuples are in-order tuples.

Punctuations, Watermarks, and Allowed Lateness. Punctu-
ations are annotations embedded in a data stream [47]. Systems
use punctuations for different purposes: low-watermarks (in short
watermarks) indicate that no tuple will arrive with a timestamp
smaller than the watermark’s timestamp [1]. Many systems use
watermarks to control how long they wait for out-of-order tuples
before they output a window aggregate [2].Window punctuations
markwindowstarts andendings in the stream[14, 20].Theallowed
lateness, specifieshow long systems storewindowaggregates. If an
out-of-order tuple arrives after the watermark, but in the allowed
lateness, we output updated aggregates.
Partial Aggregates and Aggregate Sharing. The key idea of
partial aggregation is to compute aggregates for subsets of the

Memory Usage Example
1. Tuple
Buffer

| | ·size( )

2.
Aggregate

Tree

| | ·size( )

+( | |−1) ·size( )

3. Agg.
Buckets

|win| ·size( )

+|win| ·size( )

4. Tuple
Buckets

|win| ·[avg( per win.)

·size( ) +size( )]
5. Lazy
Slicing

| | ·size( )

6. Eager
Slicing

| | ·size( )

+( | |−1) ·size( )

7. Lazy
Slicing
on tuples

| | ·size( )

+| | ·size( )

8. Eager
Slicing
on tuples

| | · size( )

+| | ·size( )

+( | |−1) ·size( )

Legend: Tuple Aggregate Slice incl. Aggregate Bucket

Table 1: Memory Usage of Aggregation Techniques.

stream as intermediate results. These intermediate results are
shared among overlapping windows to prevent repeated compu-
tation [3, 28, 51]. In addition, one can compute partial aggregates
incrementally when tuples arrive [42]. This reduces the memory
footprint if a technique stores few partial aggregates instead of all
stream tuples in the allowed lateness. It also reduces the latency
because aggregates are pre-computed when windows end.

3 WINDOWAGGREGATIONCONCEPTS
In this section, we survey concepts for streaming window aggre-
gation and give an intuition for each solution’s memory usage,
throughput, and latency. We provide a detailed comparison of all
concepts in our experiments. Techniques which support out-of-
order streams store values for an allowed lateness (see above). In
the following discussion, we refer to allowed lateness only. Tech-
niques which do not process out-of-order tuples, store values for
the duration of the longest window.

Table 1 provides an overview of all techniqueswe discuss in the
following subsections. We write | | for the number of values (i.e.,
tuples), | | for the number of slices, and |win| for the number
of windows in the allowed lateness.

3.1 Tuple Buffer
A tuple buffer (Table 1, Row 1) is a straightforward solution which
does not share partial aggregates.

The throughput of a tuple buffer is fair as long as there are few
or no concurrent windows (i.e., no window overlaps), and there
are few or no out-of-order tuples. Window overlaps decrease the
throughput because of repeated aggregate computations. Out-of-
order tuples decrease the throughput because of memory copy
operations which are required for inserting values in the middle
of a sorted ring buffer.

The latency of a tuple buffer is high because aggregates are com-
puted lazilywhenwindows end. Thus, all aggregate computations
contribute to the latency at the window end.

A tuple buffer stores all tuples for the allowed lateness, which
is | | ·size( ). Thus, the more tuples we process per time, the
higher thememory consumption and the higher thememory copy
overhead for out-of-order tuples.



Figure 2: Example Aggregation with Stream Slicing.

3.2 Aggregate Trees
Aggregate trees such as FlatFAT [42] and B-INT [3] store partial
aggregates in a tree structure and share them among overlapping
windows (Table 1, Row 2). FlatFAT stores a binary tree of partial
aggregates on top of stream tuples (leaves) which roughly doubles
the memory consumption.

In-order tuples requirelog( | |) updates of partial aggregates in
the tree. Thus, the throughput is decreased logarithmically when
the number of tuples in the allowed lateness increases. Out-of-
order tuples decrease the throughput drastically: they require
the same memory copy operation as in tuple buffers. In addition,
they cause a rebalancing of the aggregate tree and the respective
aggregate updates.

The latency of aggregate trees is much lower than for tuple
buffers because they can compute final aggregates for windows
from pre-computed partial aggregates. Thus, only a few final ag-
gregation steps remain when windows end [39].

3.3 Buckets
Lietal. introduceWindow-ID (WID)[31–33], abucket-per-window
approach which is adopted bymany systems with support for out-
of-order processing [1, 2, 9]. Each window is represented by an
independent bucket. A system assigns tuples to buckets (i.e., win-
dows) based on event-times, independently from the order in
which tuples arrive [33]. Buckets do not utilize aggregate sharing.
Instead, they compute aggregates for each bucket independently.

Systemscancomputeaggregates forbuckets incrementally [42].
This leads tovery low latencies because thefinalwindowaggregate
is pre-computed when windows end.

We consider two versions of buckets. Tuple buckets keep in-
dividual tuples in buckets (Table 1, Row 4). This leads to data
replication for overlapping buckets.Aggregate buckets store par-
tial aggregates in buckets plus some overhead (e.g., start and end
times), but no tuples (Table 1, Row 3).

We prefer to store aggregates only in order to save memory.
However, some use-cases (e.g., holistic aggregates over count-
based windows) require us to keep individual tuples.

Buckets process in-order tuples as fast as out-of-order tuples
for most use-cases: they assign the tuple to buckets and incre-
mentally compute the aggregate of these buckets. The throughput
bottleneck for buckets are overlappingwindows. For example, one
sliding windowwith l =20s and ls =2s results in 10 overlapping
windows (i.e., buckets) at any time. This causes 10 aggregation
operations for each input tuple.

3.4 Stream Slicing
Slicing techniques divide (i.e., slice) a data stream into non-over-
lapping chunks of data (i.e., slices) [28, 30]. The system computes
a partial aggregate for each slice. When windows end, the system
computes window aggregates from slices.

We show stream slicing with an example in Figure 2. Slicing
techniques compute partial aggregates incrementally when tu-
ples arrive (bottom of Figure 2). We showmultiple intermediate
aggregates per slice to illustrate the workflow.

Partial aggregates (i.e., slices) are shared among overlapping
windowswhichavoids redundantcomputations. InFigure2,dashed
arrows mark multiple uses of slices. In contrast to aggregate trees
and buckets, slicing techniques require just one aggregation op-
eration per tuple because each tuple belongs to exactly one slice.
This results in a high throughput.

Similar to aggregate trees, the latency of stream slicing tech-
niques is low because only a few final aggregation steps are re-
quired when a window ends. We consider a lazy and an eager
version of stream slicing. The lazy version of stream slicing stores
slices including partial aggregates (Table 1, Row 5). The eager ver-
sion stores a tree of partial aggregates on top of slices to further re-
duce latencies (Table 1, Row 6). Both variants compute aggregates
of slices incrementally when tuples arrive. The term lazy refers
to the lazy computation of aggregates for combinations of slices.

There are usually many tuples per slice (| |≪ | |) which
leads to huge memory savings compared to aggregate trees and
tuple buffers. Some use-cases such as holistic aggregates over
count-based windows require us to keep individual tuples in ad-
dition to aggregates (Table 1, Row 7 and 8). In these cases, stream
slicing requires more memory than tuple buffers, but saves mem-
ory compared to buckets and aggregate trees.

In this paper, we focus on stream slicing because it offers a good
combination of high throughputs, low latencies, and memory sav-
ings. Moreover, our experiments show that slicing techniques
scale to many concurrent windows, high ingestion rates, and high
fractions of out-of-order tuples.

4 WORKLOADCHARACTERIZATION
In this section, we identify workload characteristics which either
limit the applicability of aggregation techniques or impact their
performance. These characteristics are the basis for subsequent
sections in which we generalize stream slicing.

4.1 Characteristic 1: StreamOrder
Out-of-order streams increase the complexity of window aggrega-
tion because out-of-order tuples can require changes in the past.
For example, tuple buffers and aggregate trees process in-order
tuples efficiently using a ring buffer (FIFO principle) [42]. Out-of-
order tuples break the FIFO principle and require memory copy
operations in buffers.

We differentiate whether or not out-of-order processing is re-
quired for a use-case. For techniques which support out-of-order
processing, we study how the fraction of out-of-order tuples and
the delay of such tuples affect the performance.

4.2 Characteristic 2: Aggregation Function
We classify aggregation functions with respect to their algebraic
properties. Our notation splits the aggregation in incremental
steps and is consistent with related works [10, 42]. We write input
values as lower case letters, the operation which adds a value
to an aggregate as ⊕, and the operation which removes a value
from an aggregate as ⊖. We first adopt three algebraic properties
used by Tangwongsan et al. [42]. These properties focus on the
incremental computation of aggregates:
(1) Associativity: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) ∀ x ,y, z
(2) Invertibility: (x ⊕ y) ⊖ y = x ∀ x ,y
(3) Commutativity: x ⊕ y =y ⊕ x ∀ x ,y

Stream slicing requires associative aggregate functions because
it computes partial aggregates per slice which are shared among
windows. This requirement is inherent for all techniques which
share partial aggregates [3, 10, 28, 30, 42]. Our general slicing ap-
proachdoesnot require invertibilityor commutativity, but exploits
these properties if possible to increase performance.



We further adopt the classification of aggregations in distribu-
tive, algebraic, and holistic [16]. Aggregations such as sum, min,
and max are distributive. Their partial aggregates equal the final
aggregates of partials and have a constant size. An aggregation
is algebraic if its partial aggregates can be summarized in an inter-
mediate result of fixed size. The final aggregate is computed from
this intermediate result. The remainder of aggregations, which
have an unbounded size of partial aggregates, is holistic.

4.3 Characteristic 3:WindowingMeasure
Windows can be specified using different measures (also called
time domains [8] or WATTR [31]). For example, a tumbling window
can have a length of 5 minutes (time-measure), or a length of 10
tuples (count-measure). To simplify the presentation, we refer to
timestamps in the rest of the paper. However, bear in mind that
a timestamp can actually be a point in time, a tuple count, or any
other monotonically increasing measure [10]:
• Time-Based Measures: Common time-based measures are
event-time and processing-time as introduced in Section 2.
• ArbitraryAdvancingMeasures are ageneralizationof event-
times. Typically, it is irrelevant for a stream processor if "times-
tamps" actually represent a time or another advancing measure.
Examples of other advancingmeasures are transaction counters
in a database, kilometers driven by a car, and invoice numbers.
• Count-BasedMeasures (also called tuple-based [31] or tuple-
driven [8]) refer to a tuple counter. For example, a window
can start at the 100th and end at the 200th tuple of a stream.
Count-based measures cause challenges when combined with
out-of-order processing: If tuples are ordered with respect to
their event-times and a tuple arrives out-of-order, it changes
the count of all other tuples which have a greater event-time.
This changes the aggregates of all count-based windows which
start or end after the out-of-order tuple.
If we process multiple queries which use different window-

measures, timestamps are represented as vectors which contain
multiple measures as dimensions. This representations allows
for slicing the stream with respect to multiple dimensions (i.e.,
measures) while slices are still shared among all queries [10].

4.4 Characteristic 4:Window Type
We classify window types with respect to the context (or state)
which is required to know where windows start and end. We
adopt theclassification incontext free (CF), forward-context aware
(FCA), and forward-context free (FCF) introduced by Li et al. [31].
Here we present those classes along with the most common win-
dow types belonging to those classes.
• Context Free (CF). Awindow type is context free if one can
tell all start and end timestamps ofwindowswithout processing
any tuples. Common sliding and tumbling windows are context
free because we can compute all start and end timestamps a
priori based on the parameters l and ls .
• Forward Context Free (FCF).Windows are forward context
free, if one can tell all start and end timestamps of windows up
to any timestamp t , once all tuples up to this timestamp t have
been processed. An example are punctuation-based windows
where punctuations mark start and end timestamps [14]. Once
we processed all tuples up to t (including out-of-order tuples),
we also processed all punctuations before t and, thus, we know
all start and end positions up to t .
• ForwardContextAware(FCA).Theremainingwindowtypes
are forward context aware. Such window types require us to
process tuples after a timestamp t in order to know all window
start and end timestamps before t . An example of suchwindows

Figure 3: Architecture of General Stream Slicing

areMulti-Measure Windows which define their start and end
timestamps on different measures. For example, output the last
10 tuples (count-measure) every 5 seconds (time-measure) is for-
ward context aware: we need to process tuples up to a window
end in order to compute the window begin.

5 GENERAL STREAM SLICING
We now present our general stream slicing technique which sup-
ports high-performance aggregation for multiple queries with
diverse workload characteristics. General stream slicing replaces
alternative operators for window aggregation without changing
their input or output semantics. Our technique minimizes the
number of partial aggregates (saving memory), reduces the final
aggregation steps when windows end (reducing latency), and
avoids redundant computation for overlapping windows (increas-
ing throughput). The main idea behind our technique is to exploit
workload characteristics (Section 4) and to automatically adapt ag-
gregation strategies. Such adaptivity is a highly desired feature of
an aggregation framework: current non-adaptive techniques fail
to support multiple window types, process in-order streams only,
cannot share aggregates amongwindowsdefinedondifferentmea-
sures, lack support for holistic aggregations, or incur dramatically
reduced performance in exchange for being generally applicable.

ApproachOverview. Figure 3 depicts an overviewof our general
slicing and aggregation technique. Users specify their queries in a
high-level language such as a flavor of stream SQL or a functional
API. The query translator observes the characteristics of a query
(i.e., window type, aggregate function, and windowmeasure) as
well as the characteristics of input streams (in-order vs. out-of-
order streams) and forwards them to our aggregator. Once those
characteristics aregiven toouraggregator, ourgeneral slicing tech-
nique adapts automatically to the given workload characteristics.

More specifically, general slicing detects if individual tuples
need to be kept in memory (to ensure generality) or if they can
be dropped after computing partial aggregates (to improve per-
formance). We further discuss this in Section 5.1. Queries can be
added or removed from the aggregator and due to that, the work-
load characteristics can change. To this end, our aggregator adapts
when one adds or removes queries. Weather we need to keep tu-
ples in memory or not solely depends onworkload characteristics.
Thus, there isnoneed toadaptonchanges in the inputdata streams
such as a changing ratio of out-of-order tuples. When processing
input tuples, the stream slicing component automatically decides
when it needs to apply our three fundamental slicing operations:
merge, split, and update (discussed in Section 5.2). General slicing
has extension points that can be used to implement user-defined
window types and aggregations (discussed in Section 5.4).

5.1 Storing Tuples vs. Partial Aggregates
General aggregation techniques [3, 42] achieve generality by stor-
ing all input tuples and by computinghigh-level partial aggregates.
Specialized techniques, on the other hand, only store (partial) ag-
gregates.Ageneral slicing techniqueneeds to decidewhen to store
what, according to workload characteristics of each of the queries



Figure 4: Decision Tree - Which workload characteristics
require storing individual tuples inmemory?

that it serves. In this section, we discuss howwematch the perfor-
mance of specialized techniques, by choosing on-the-fly whether
to keep tuples for a workload or to store partial aggregates only.

For example, consider an aggregation function which is non-
commutative (∃x ,y : x ⊕ y , y ⊕ x) defined over an unordered
stream.When an out-of-order tuple arrives, we need to recompute
aggregates from the source tuples in order to retain the correct
order of the aggregation. Thus, one would have to store the actual
tuples for possible later use. Storing all tuples for the whole dura-
tion of the allowed lateness requires more memory but allows for
computing arbitrary windows from stored tuples. The decision
tree in Figure 4 summarizeswhen storing source tuples is required
depending on different workload characteristics.
In-order Streams. For in-order streams, we drop tuples for all
context free and forward context free windows but must keep
tuples if we process forward context aware windows. For such
windows, forward context leads to additional window start or end
timestamps. Thus, we must be able to compute partial aggregates
for arbitrary timestamp ranges from the original stored tuples.
Out-of-order Streams. For out-of-order streams, we need to
keep tuples if at least one of the following conditions is true:
(1) The aggregation function is non-commutative.

An out-of-order tuple changes the order of the incremental
aggregation, which forces us to recompute the aggregate using
source tuples. For in-order processing, the commutativity of
aggregation functions is irrelevant because tuples are always
aggregated in-order. Thus, there is no need to store source
tuples in addition to partial aggregates.

(2) The window is neither context free nor a session window.
In combinationwith out-of-order tuples, all context awarewin-
dows require tuples to be stored. This is because out-of-order
tuples change backward context which can lead to additional
window start or end timestamps. Such additional start and
end timestamps require to split slices and to recompute the
respective partial aggregates from the original tuples. Session
windows are an exception, because they are context aware, but
never require recomputing aggregates [46].

(3) The query uses a count-based windowmeasure.
An out-of-order tuple changes the count of all succeeding tu-
ples. Thus, the last tuple of each count-based window shifts to
a succeeding window.

5.2 SliceManagement
Stream slicing is the fundamental concept that allows us to build
partial aggregates and share them among concurrently running
queries and overlapping windows. In this section, we introduce
three fundamental operations which we can perform on slices.
Slice Metadata. A slice stores its start timestamp (tstart), its
end timestamp (tend), and the timestamp of the first (tfirst) and
last tuple it contains (tlast). Note that the timestamps of the first

Figure 5: Decision Tree.
Are splits required?

Figure 6: Decision Tree.
How to remove tuples?

and last tuples do not need to conincide with the start and end
timestamps of a slice. For instance, consider a sliceA that starts at
tstart (A) = 1 and ends at tend (A) = 10 but the first (earliest) tuple
contained is timestamped as tfirst (A) = 2 and its last/latest one
as tlast (A) = 9.We remind the reader that the timestamp can refer
not only to actual time, but to anymeasure presented in Section 4.3.

We identify three fundamental operations which we perform
on stream slices. These operations are i ) merging of two slices
into one, ii ) splitting one slice into two, and iii ) updating the state
of a slice (i.e., aggregate and metadata updates). In the following
paragraphs, we discuss merge, split, and update as well as the
impact of our workload characteristics on each operation. We use
upper case letters to name slices and corresponding lower case
letters for slice aggregates.
Merge.Merging two slicesA and B happens in three steps:

1. Update the end ofA such that tend (A) ← tend (B).
2. Update the aggregate ofA such that a ← a ⊕ b.
3. Delete slice B, which is nowmerged intoA.

Steps one and three have a constant computational cost. The com-
plexity of the second step (a ← a ⊕ b) depends on the type of
aggregate function. For instance, the cost is constant for algebraic
and distributive functions such as sum, min, and avg because they
require just a few basic arithmetic operations. Holistic functions
such as quantiles can be more complex to compute. Except from
the type of aggregation function, no other workload character-
istics impact the complexity of the merge operation. However,
stream order and window types influence when and how oftenwe
merge slices. We discuss this influence in Section 5.3.
Split. Splitting a sliceA at timestamp t requires three steps:

1. Add slice B: tstart (B)←t +1 and tend (B)←tend (A).
2. Update the end ofA such that tend (A) ← t .
3. Recompute the aggregates ofA and B.

Note that splitting slices is an expensive operation because it re-
quires recomputing slice aggregates from scratch. Moreover, if
splitting is required, we need to keep individual tuples in memory
to enable the recomputation.

We show in Figure 5 when split operations are required. For
in-order streams, only forward context aware (FCA) windows re-
quire split operations. For suchwindows, we split slices according
to a window’s start and end timestamp as soon as we process the
required forward context. In out-of-order data streams, all con-
text aware windows require split operations because out-of-order
tuples possibly contain relevant backward context. We never split
slices for context free windows such as tumbling and sliding ones.
Update. Updating a slice can involve adding in-order tuples,
addingout-of-order tuples, removing tuples, or changingmetadata
(tstart, tend, tfirst, and tlast).

Metadata changes are simple assignments of new values to
the existing variables. Adding a tuple to a slice requires one in-
cremental aggregation step (⊕), with the exception of processing
out-of-order tupleswith a non-commutative aggregation function.



Figure 7: The Stream Slicing and Aggregation Process

For this, we recompute the aggregate of the slice from scratch to
retain the order of aggregation steps.

For some workloads we need to remove tuples from slices. We
show in Figure 6when andhowwe remove tuples from slices. Gen-
erally, a remove operation is required only if a window is defined
on a count-based measure and if we process out-of-order tuples.
An out-of-order tuple changes the count of all succeeding tuples.
This requires us to shift the last tuple of each slice one slice further
starting at the slice of the out-of-order tuple. If the aggregation
function is invertible, we exploit this property by performing an
incremental update. Otherwise, we have to recompute the slice
aggregate from scratch. If the out-of-order tuple has a small delay,
such that it still belongs to the latest slice, we can simply add the
tuple without performing a remove operation.

5.3 Processing Input Tuples
The stream slicing and aggregation logic (bottom of Figure 3) con-
sistsof fourcomponentswhichweshowinFigure7.TheAggregate
Store is our shared data structure which is accessed by the Stream
Slicer to create new slices, by the Slice Manager to update slices,
and by theWindowManager to compute window aggregates.

The input stream can contain in-order tuples, out-of-order tu-
ples, and watermarks. Note that in-order tuples can either arrive
from an in-order stream (i.e., one that is guaranteed to never con-
tain an out-of-order tuple) or from an out-of-order stream (i.e.,
one that does not guarantee in-order arrival). If the the stream
is in-order (i.e., all tuples are in-order tuples), there is no need
to ingest watermarks. Instead, we output windows directly since
there is no need to wait for potentially delayed tuples.

Step 1 - The Stream Slicer. The Stream Slicer initializes new
slices on-the-fly when in-order tuples arrive [28]. In an in-order
stream, it is sufficient to start slices when windows start [10]. In
an out-of-order stream, we also need to start slices whenwindows
end to allow for updating the last slice of windows later on with
out-of-order tuples. We always cache the timestamp of the next
upcoming window edge and compare in-order tuples with this
timestamp. As soon as the timestamp of a tuple exceeds the cached
timestamp, we start a new slice and cache the timestamp of the
next edge. This is highly efficient because the majority of tuples
do not end a slice and require just one comparison of timestamps.

The Stream Slicer does not process out-of-order tuples and
watermarks but forwards them directly to the Slice Manager. This
is possible because the slices for out-of-order tuples have already
been initialized by previous in-order tuples.

Step 2 - The Slice Manager. The Slice Manager is responsible
for triggering all split, merge, and update operations on slices.

First, the Slice Manager checks whether a merge or split op-
eration is required. We always merge and split slices such that all
slice edges match window edges and vice versa. This guarantees
that we maintain the minimum possible number of slices [10, 46].

In an out-of-order stream, context aware windows can cause
merges or splits. In an in-order stream, only forward context
awarewindows can cause these operations. Context freewindows
never require merge or split operations, as the window edges
are known in advance and slices never need to change.

In-order tuples can be part of the forward context which indi-
cates window start or end timestamps earlier in the stream.When
processing forward context aware windows, we check if the new
tuple changes the context such that it introduces or removes win-
dowstart or end timestamps. In such case,weperform the required
merge and split operation to match the new slice and window
edges. Out-of-order tuples can change forward and backward con-
text such that a merge operation or split operation are required.

If thenewcontext causesnewwindowedges and, thus,mergeor
split operations, we notify theWindowManager which outputs
window aggregates up to the current watermark.

Finally, the Slice Manager adds the new tuple to its slice and
updates the slice aggregate accordingly. In-order tuples always
belong to the current slice and are added with an incremental
aggregate update [42]. For out-of-order tuples, we look up the
slice which covers the timestamp of the out-of-order tuple and
add the tuple to this slice. For commutative aggregation functions,
we add the new tuple with an incremental aggregate update. For
non-commutative aggregation functions, we need to recompute
the aggregate from individual tuples to retain the correct order.

Step 3 - The Window Manager. The Window Manager com-
putes the final aggregates for windows from slice aggregates.

When processing an in-order stream, the Window Manager
checks if the tuple it processes is the last tuple of a window. There-
fore, each tuple can be seen as a watermark which has the times-
tamp of the tuple. If a window ended, the windowmanager com-
putes and outputs the window aggregate (final aggregation step).

For out-of-order streams, we wait for the watermark (see Sec-
tion 2) before we output results of windows which ended before
a watermark.

The Slice Manager notifies theWindows Manager when it per-
forms split, merge, or update operation on slices. Upon such
notification, theWindowManager performs two operations:
(1) If an out-of-order tuple arrives within the allowed lateness but

after the watermark, the tuple possibly changes aggregates
of windows which were output before. Thus, the Window
Manager outputs updates for these window aggregates.

(2) If a tuple changes the context of context aware windows such
that newwindows end before the current watermark, the win-
dowmanager computes and outputs the respective aggregates.

Parallelization.We parallelize stream processing with key parti-
tioning which is the common approach used in stream processing
systems [21] such as Flink [9], Spark [4], and Storm [44]. Key
partitioning enables intra-node as well as inter-node parallelism
and, thus, results in good scalability. Since our generic window
aggregation is a drop in replacement for the window aggregation
operator, the input and output semantics of the operator remains
unchanged. Thus, neither the query interface nor optimizations
unrelated to window aggregations are affected.

5.4 User-DefinedWindows and Aggregations
Our architecture decouples the general logic of streamslicing from
the concrete implementation of window types and aggregation
functions. Thismakes it easy to addwindowtypes andaggregation
functions as no changes are required in the slicing logic. In this
section, we describe how we implement aggregation functions
and window types.

5.4.1 ImplementingAggregation Functions. Weadopt the same
approach of incremental aggregation introduced byTangwongsan
et al. [42]. Each aggregation type consists of three functions: lift,
combine, and lower. In addition, aggregations may implement an



invert function. We now discuss the concept behind these func-
tions, and refer the reader to the original paper for an overview
of different aggregations and their implementation.

Lift. The lift function transforms a tuple to a partial aggregate.
For example, consider an average computation. If a tuple ⟨t ,v⟩
contains its timestamp t and a valuev , thelift functionwill trans-
form it to ⟨sum←v, count←1⟩, which is the partial aggregate of
that one tuple.
Combine. The combine function (⊕) computes the combined ag-
gregate from partial aggregates. Each incremental aggregation
step results in one call of the combine function.
Lower. The lower function transforms a partial aggregate to a
final aggregate. In our example, the lower function computes the
average from sum and count: ⟨sum, count⟩ 7→ sum/count.
Invert. The optional invert function removes one partial aggre-
gate from another with an incremental operation.

In this work, we consider holistic aggregation functions which
have an unbounded size of partial aggregates. Awidely used holis-
tic function is the computation of quantiles. For instance, win-
dowedquantiles are the basis for billingmodels of content delivery
networks and transit-ISPs [13, 23]. For quantile computations, we
sort tuples in slices to speed up succeeding merge operations and
apply run length encoding to save memory [37].

5.4.2 Implementing Different Window Types. We use a com-
mon interface for the in-order slicing logic of all windows. We
extend this interface with additional methods for context-aware
windows. One can add additional window types by implementing
the respective interface.

Context FreeWindows. The slicing logic for context free win-
dows depends on in-order tuples only. When a tuple is processed,
the slicingcore initializesall slicesup to the timestampof that tuple.
Our interface for context free windows has twomethods: The first
method has the signature long getNextEdge(long timestamp).
It receives a timestamp as parameter and returns the next window
edge (begin or end timestamp) after this timestamp.We use this
method to retrieve the next window edge for on-the-fly stream
slicing (Step 1 in Section 5.3). For example, a tumbling window
with length l would return timestamp + l − (timestamp mod l ).

The second method triggers the final window aggregation ac-
cording to a watermark and has the following signature:
void triggerWin(Callback c, long prevWM, long currWM).
TheWindowManager calls this method when it processes a wa-
termark. c is a callback object, prevWM is the timestamp of the
previous watermark and currWM is the timestamp of the current
watermark.Themethodreports allwindowswhichendedbetween
prevWM and currWM by calling c.triggerWin(long startTime,
long endTime). This callback to theWindowManager triggers
the computation and output of the final window aggregate.
ContextAwareWindows.Contextawarewindowsuse thesame
interface as context free windows to trigger the initialization of
slices when processing in-order tuples. In addition, context aware
windows require to keep a state (i.e., context) in order to derive
window start and end timestamps when processing out-of-order
tuples. We initialize context aware windows with a pointer to
the Aggregate Store. This prevents redundancies among the state
of the shared aggregator and the window state. When the Slice
Manager processes a tuple, it notifies context aware windows
bycallingwindow.notifyContext(callbackObj, tuple). This
method can then add and remove window start and end times-
tamps through the callback object and the SliceManager splits and
merges slices as required to match window start and end times-
tamps.We detect whether or not a window is context aware based

on the interface which is implemented by the window specifica-
tion. We provide examples for different context free and context
aware window implementations in our open source repository.

6 EVALUATION
In this section, we evaluate the performance of general stream
slicing and compare stream slicing with alternative techniques
introduced in Section 3.
6.1 Experimental Setup
Setup.We implement all techniques on Apache Flink v1.3. We
run our experiments on a VM with 6 GB main memory and 8
processing cores with 2.6 GHz.
Metrics. In our experiments, we report throughput, latency, and
memory consumption. Wemeasure throughput as in the Yahoo
Streaming Benchmark implementation for Apache Flink [12, 48].
We determine latencies with the JMH benchmarking suite [35].
JMH provides precise latency measurements on JVM-based sys-
tems. We use the ObjectSizeCalculator of Nashorn to determine
memory footprints [36].
Baselines.We compare an eager and a lazy version of general
stream slicing with non-slicing techniques from Section 3: As
representative for aggregate trees, we implement FlatFAT [42].
For the buckets technique, we use the implementation of Apache
Flink [9]. For tuple buffers, we use an implementation based on
a ring buffer array. We also include Pairs [28] and Cutty [10] as
specialized slicing techniques where possible.
Data.We replay real-world sensor data from a football match [34]
and from manufacturing machines [25]. The original data sets
track the position of the football with 2000 and the machine states
with 100 updates per second. We generate additional tuples based
on the original data to simulate higher ingestion rates. We add 5
gaps perminute to separate sessions. This is representative for the
ball possessionmoving fromone player to another. If not indicated
differently, we show results for the football data. The results for
other data sets are almost identical because the performance de-
pends onworkload characteristics rather than data characteristics.
Queries.Webase our queries (i.e.,window length, slide steps, etc.)
on the workload of a live-visualization dashboard which is built
for the football datawe use [45]. If not indicated differently, we use
the sum aggregation in Sections 6.2 and Section 6.3. In Section 6.4,
we use the M4 aggregation technique [26] to compress the data
stream for visualization. M4 computes four algebraic aggregates
per window (i.e., minimum, maximum, first and last value of each
window). We show in Section 6.3.2 how the performance differs
among diverse aggregation functions. Because we do not change
the input and output semantics of thewindow and aggregation op-
eration, there is no impact on upstreamor downstreamoperations.
We ensure that windowing and aggregation are the bottleneck
and, thus, wemeasure the performance of aggregation techniques.

We do not alternate between tumbling and sliding windows
because they lead to identical performance: For example, 20 con-
current tumblingwindowqueries cause 20 concurrentwindows (1
window for each query at any time). This is equivalent to a single
sliding window with a window length of 20 seconds and and a
slide step of one second (again 20 concurrent windows). In the
following, we refer to concurrent windows instead of concurrent
tumbling window queries. Sliding window queries yield identical
results if they imply the same number of concurrent windows.
Structure.We split our evaluation in three parts. First, we com-
pare streamslicingandalternativeapproacheswith respect to their
throughput, latency, and memory footprint (Section 6.2). Second,
we study the impact of each workload characteristic introduced
in Section 4 (Section 6.3). Third, we integrate general slicing in
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Figure 8: In-order Processing with Context FreeWindows.

Apache Flink and show the performance gain for a concrete appli-
cation (Section 6.4). Sections 6.2 and 6.3 focus on the performance
per operator instance. Section 6.4 studies the parallelization.

6.2 Stream Slicing Compared to Alternatives
We now compare stream slicing with alternative techniques dis-
cussed in Section 3. We first study the throughput for in-order
processing on context-free windows in Section 6.2.1. Our goal
is to understand the performance of stream slicing compared to
alternative techniques, including specialized slicing techniques.
In Section 6.2.2, we evaluate how the throughput changes in the
presence of out-of-order tuples and context-aware windows. In
Section6.2.3,weevaluate thememory footprintand inSection6.2.4
the latency of different techniques.

6.2.1 Throughput.

Workload. We execute multiple concurrent tumbling window
queries with equally distributed lengths from 1 to 20 seconds.
Thesewindow lengths are representative of window aggregations
which facilitate plotting line charts at different zoom levels (Ap-
plication of Section 6.3). We chose Pairs [28] and Cutty [10] as
example slicing techniques because Pairs is one of the first and
most cited techniques and Cutty offers a high generality with
respect to window types.

Results.We show our results in Figure 8. All three slicing tech-
niques process millions of tuples per second and scale to large
numbers of concurrent windows.

Buckets achieves orders of magnitude less throughput than
Slicing techniques and does not scale to large numbers of concur-
rent windows. The reason is that we must assign each tuple to
all concurrent buckets (i.e., windows). Thus, tuples belong to up
to 1000 buckets causing 1000 redundant aggregation steps per tu-
ple. In contrast, slicing techniques always assign tuples to exactly
one slice. Similar to buckets, the tuple buffer causes redundant
aggregation steps for each window as we compute each window
independently. Aggregate Trees show a throughput which is or-
ders of magnitude smaller than the one of slicing techniques. This
is because each tuple requires several updates in the tree.

Summary.We observe that slicing techniques outperform alter-
native concepts with respect to throughput and scale to large
numbers of concurrent windows.

6.2.2 Throughput under Constraints. We now analyze the
throughput under constraints, i.e., including out-of-order tuples
and context-aware windows.

Workload. The workload remains the same as before but we add
a time-based session window (lд = 1sec.) as representative for
a context-aware window. We add 20% out-of-order tuples with
random delays between 0 and 2 seconds.
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Figure 9: Increasing the number of concurrent windows
including 20% out-of-order tuples and session windows.

Results. We show the results in Figure 9. Slicing techniques
achieve an order of magnitude higher throughput than alterna-
tive techniques which do not use stream slicing. Moreover, slic-
ing scales to large numbers of concurrent windows with almost
constant throughput. This is because the per-tuple complexity
remains constant: we assign each tuple to exactly one slice. Lazy
Slicing has the highest throughput (1.7Million tuples/s) because it
uses stream slicing and does not compute an aggregate tree. Eager
Slicing achieves slightly lower throughput than Lazy Slicing. This
is due to out-of-order tuples which cause updates in the aggregate
tree. Buckets show the same performance decrease as in the previ-
ous experiment. The performance decrease for the Tuple Buffer is
intensified due to out-of-order inserts in the ring buffer array. Ag-
gregateTreesprocess less than1500 tuples/swith 20%out-of-order
tuples. This is because out-of-order tuples require expensive leaf
inserts in the aggregate tree (rebalance and update of inner nodes).
Eager slicing seldom faces this issue because it stores slices instead
of tuples in the aggregate tree. Themajority of out-of-order tuples
falls in anexisting slicewhichprevents rebalancing.Weexemplary
show our results on two different datasets for this experiment.
Because the performance depends on workload characteristics
rather than data characteristics, the results are almost identical.
We omit similar results for different data sets in the following
experiments and focus on the impact of workload characteristics.

Summary. For workloads including out-of-order tuples and
context-aware windows, we observe that general stream slicing
outperforms alternative concepts with respect to throughput and
scales to large numbers of concurrent windows.

6.2.3 Memory Consumption. We now study the memory con-
sumption of different techniques with four plots: In Figures 10a
and 10c, we vary the number of slices in the allowed lateness and
fix the number of tuples in the allowed lateness to 50 thousand.
In Figures 10b and 10d, we vary the number of tuples and fix the
number of slices to 500. We experimentally compare time-based
and count-basedwindows.Ourmeasurements include allmemory
required for storing partial aggregates and metadata such as the
start and end times of slices.

Results for Time-BasedWindows. Figures 10a and 10b show
the memory consumption for time-based windows, which do not
require to store individual tuples. For Stream Slicing and Buckets,
the memory footprint increases linearly with the number of slices
in theallowed lateness.Thememory footprint is independent from
the number of tuples. The opposite holds for Tuple Buffers andAg-
gregate Trees. Slicing techniques store just one partial aggregate
per slice, while buckets store one partial aggregate per window.
Tuple Buffers and Aggregate Trees store each tuple individually.



100 500 1000103
104
105
106
107

slices in allowed latenessM
em

or
y
Re

qu
ire

m
en
t[
by

te
]

Lazy Slicing Eager Slicing Buckets
Agg. Tree Tuple Buffer

1
2

3

4
5

1 2 3

4 5

(a) Raising slices/time
with Time-BasedWindows

100 1000 10000103
104
105
106
107

tuples in allowed latenessM
em

or
y
Re

qu
ire

m
en
t[
by

te
]

1 2 3

4

5

(b) Raising tuples/time
with Time-BasedWindows

100 500 1000103
104
105
106
107

slices in allowed latenessM
em

or
y
Re

qu
ire

m
en
t[
by

te
]

1
2

3
4

5

(c) Raising slices/time
with Count-BasedWindows

100 1000 10000103
104
105
106
107

tuples in allowed latenessM
em

or
y
Re

qu
ire

m
en
t[
by

te
]

1 2 3 4

5

(d) Raising tuples/time
with Count-BasedWindows

Figure 10: Memory Experiments with Unordered Streams.

Results for Count-BasedWindows. Figures 10c and 10d show
the memory consumption for count-based windows, which re-
quire individual tuples to be stored. The experiment setup is the
same as in Figures 10a and 10b.

The memory consumption of all techniques increases with the
number of tuples in the allowed lateness because we need to store
all tuples for processing count-based windows on out-of-order
streams (Figure 10d). Starting from 1000 tuples in the allowed
lateness, the memory consumed by tuples dominates the over-
all memory requirement. Accordingly, all curves become linear
and parallel. Buckets show a stair shape because of the under-
lying hash map implementation [49]. Slicing techniques start at
roughly 105 byte which is the space required to store 500 slices.
The memory footprint of buckets also increases with the number
of slices because more slices correspond to more window buckets
(Figure 10c). Each bucket stores all tuples it contains which leads
to duplicated tuples for overlapping buckets.

Summary.When we can drop individual tuples and store partial
aggregates only (Figure 10a and 10b), the memory consumptions
of slicing and buckets depends only on the number of slices in the
allowed lateness. In this case, stream slicing and buckets scale to
high ingestion rates with almost constant memory utilization. If
we need to keep individual tuples (Figure 10c and 10d), storing
tuples dominates the memory consumption.

6.2.4 Latency. The output latency for window aggregates de-
pends on the aggregation technique, the number of entries (tuples
or slices) which are stored, and the aggregation function. In Fig-
ure 11, we show the latency for different situations.

DistributiveandAlgebraicAggregation. For the sumaggrega-
tion (Figure 11a), Lazy Slicing and Tuple Buffer exhibit up to 1ms
latency for 105 entries (no matter if 105 tuples or 105 slices). Eager
Slicing and Aggregate Trees show latencies below 5µs. Buckets
achieve latencies below 30ns. Lazy aggregation has higher laten-
cies because it computes final aggregates upon request. Eager
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Figure 11: Output Latency of Aggregate Stores

Aggregation uses precomputed partial aggregates from an aggre-
gate treewhich reduces the latency. Buckets pre-compute the final
aggregate of each window and store aggregates in a hash map
which leads to the lowest latency.

Holistic Aggregation. The latencies for the holistic median ag-
gregation (Figure 11c) are in the same order of magnitude and
follow the same trends. Buckets exhibit the same latencies as be-
fore because they precompute the aggregate for each bucket. Thus,
amore complex holistic aggregation decreases the throughput but
does not increase the latency. The latency of slicing techniques in-
creases for themedian aggregation becausewe combine partial ag-
gregates tofinal aggregateswhenwindows end. This combine step
is more expensive for holistic aggregates than for algebraic ones.

Summary.We observe a trade-off between throughput and la-
tency. Lazy aggregation has the highest throughput and the high-
est latency. Eager aggregationhas a lower throughput but achieves
microsecond latencies. Buckets provide latencies in the order of
nanoseconds but have an order of magnitude less throughput.

6.3 StudyingWorkload Characteristics
Wemeasure the impact of the workload characteristics from Sec-
tion 4 on the performance of general slicing. For comparison, we
also show the best alternative techniques.

6.3.1 Impact of Stream Order. In this experiment, we inves-
tigate the impact of the amount of out-of-order tuples and the
impact of the delay of out-of-order tuples on throughput (Fig-
ure 12). We use the same setup as for the throughput experiments
in Section 6.2.2 with 20 concurrent windows.

Out-of-order Performance. In Figure 12a, we increase the frac-
tion of out-of-order tuples. Slicing and Buckets process out-of-
order tuples as fast as in-order tuples. The throughput of the other
techniques decreases when processing more out-of-order tuples.

Slicing techniques process out-of-order tuples efficiently be-
cause they perform only one slice update per out-of-order tuple.
Eager slicing also updates its aggregate tree. This update has a
low overhead because there are just a few hundred slices in the
allowed lateness and, accordingly, there are just a few tree levels
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Figure 12: Impact of StreamOrder on the Throughput.

which require updates. Aggregate Trees on tuples have a much
larger number of tree levels because they store tuples instead of
slices as leaf nodes.

Buckets have a constant throughput as in the previous exper-
iments. Tuple Buffers and Aggregate Trees exhibit a through-
put decay when processing out-of-order tuples. Tuple Buffers
require expensive out-of-order inserts in the sorted buffer array.
Aggregate Trees require inserting past leaf nodes in the aggregate
tree. This causes a rebalancing of the tree and the respective re-
computation of aggregates. Eager Slicing seldom faces this issue
(see Section 6.2.2).

Delay Robustness. In Figure 12b, we increase the delay of out-
of-order tuples. We use equally distributed random delays within
the ranges specified on the horizontal axis.

All techniques except Tuple Buffers are robust against increas-
ing delays. Slicing techniques always update one slice when they
process a tuple. Small delays can sightly increase the throughput
compared to longer delays if out-of-order tuples still belong to the
most recent slice. In this case, we require no lookup operations
to find the correct slice. The throughput of Buckets is indepen-
dent of the delay because Flink stores buckets in a hashmap. The
throughput of the tuple buffer decreases with increasing delay of
out-or-order tuples, because the lookup and update costs in the
sorted buffer array increase.

Summary. Stream slicing and Buckets scale with constant
throughput to large fractions of out-of-order tuples and are robust
against high delays of these tuples.

6.3.2 Impact of Aggregation Functions. We now study the
throughput of different aggregation functions using the same
setup as before (20 concurrent windows, 20% out-of-order tuples,
delays between0 and2 seconds) in Figure 13.Wedifferentiate time-
basedandcount-basedwindows to showthe impactof invertibility.
We implement the same aggregation functions as Tangwongsang
et al. [42]. The original publication provides a discussion of these
functions and an overview of their algebraic properties. We addi-
tionally study the median and the 90-percentile as examples for
holistic aggregation. Moreover, we study a naive version of the
sum aggregation which does not use the invertibility property.
This allows for making a deduction with respect to not invertible
aggregations in general.

Time-BasedWindows. For time-based windows, the through-
put is similar for all algebraic and distributive aggregations with
small differences due to different computational complexities of
the aggregations.Holistic aggregations (medianand90-percentile)
show amuch lower throughput because they require to keep all
tuples in memory and have a higher complexity.

Co
un

t

Su
m

M
ax

M
in

A
rit
hm

et
ic
M
ea
n

Ge
om

et
ric

M
ea
n

M
ax
Co

un
t

M
in
Co

un
t

Sa
m
pl
eS
td
D
ev

Po
pu

la
tio

nS
td
D
ev

A
rg
M
in

A
rg
M
ax

su
m
w
/o
in
ve
rt

M
ed
ia
n

90
-p
er
ce
nt
ile

0
2
4
6
8
10
12
14
16
18

th
ro
ug

hp
ut

[1
00
k
tu
pl
es
/s
]

time-based
count-based

Figure 13: Impact of Aggregation Types on Throughput.
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Figure 14: Throughput forMedian Aggregation.

Count-Based Windows. We observe lower throughputs than
for time-based windows, which is because of out-of-order tuples.
For count-based windows, an out-of-order tuple changes the se-
quence id (count) of all later tuples. Thus, we need to shift the
last tuple of each slice to the next slice. This operation has low
overhead for invertible aggregations because we can subtract and
add tuples from aggregates. The operation is costly for not in-
vertible aggregations because it requires the recomputation of
the slice aggregate. Time-based windows do not require an invert
operation because out-of-order tuples only change the sequence
id (count) of later tuples but not the timestamps.

Impact of invertibility. There is a big difference between the
performance for different not invertible aggregations on count-
basedwindows.AlthoughMin,Max,MinCount,MaxCount,ArgMin,
and ArgMax are not invertible, they have a small throughput decay
compared to time-basedwindows (Figure 13). This is becausemost
invert operations do not affect the aggregate and, thus, do not re-
quire a recomputation. For example, it is unlikely that the tuplewe
shift to the next slice is the maximum of the slice. If the maximum
remains unchanged, max, MaxCount, and ArgMax do not require a
recomputation. In contrast, the sum w/o invert function shows
the performance decay for a not invertible function which always
requires a recomputation when removing tuples.

Impact ofHolistic Aggregations. In Figure 13, we observe that
holistic aggregations have a much lower throughput than alge-
braic and distributive aggregations. In Figure 14, we show that
stream slicing still outperforms alternative approaches for these
aggregations. The reason is that stream slicing prevents redun-
dant computations for overlapping windows by sorting values
within slices and by applying run length encoding. In contrast,
Buckets and Tuple Buffer compute each window independently.
The machine data set shows slightly higher throughputs because
the aggregated column has only 37 distinct values compared to
84232 distinct values in the football dataset. Fewer distinct values
increase the savings achieved by run length encoding. Aggregate
trees (not shown) can hardly compute holistic aggregates. They
maintainpartial aggregates for all innernodes of a large treewhich
is extremely expensive for holistic aggregations.
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Summary.On time-based windows, stream slicing performs di-
verse distributive and algebraic aggregations with similarly high
throughputs. Considering count-based windows and out-of-order
tuples, invertible aggregations lead to higher throughputs than
not invertible ones.

6.3.3 Impact of Window Types. The window type impacts
the throughput if we process context-aware windows because
these windows potentially require split operations. Note that con-
text aware windows cover arbitrary user-defined windows which
makes it impossible to provide a general statement on the through-
put for all these windows. Thus, we evaluate the time required
to recompute aggregates for slices of different sizes when a split
operation is performed (Figure 15). Given a context awarewindow,
one can estimate the throughput decay based on the number of
split operations required and the time required for recomputing
aggregates after splits. We show the sum aggregation as represen-
tative for an algebraic function and the median as example for a
holistic function.

The processing time for the recomputation of an aggregate
increases linearly with the number of tuples contained in the ag-
gregate. If split operations are required to process a context aware
window, a system should monitor the overhead caused by split
operations and adjust the maximum size of slices accordingly.
Smaller slices requiremorememory and cause repeated aggregate
computationwhen calculating final aggregates forwindows. In ex-
change, the aggregates of smaller slices are cheaper to recompute
when we split slices.

6.3.4 Impact of WindowMeasures. We compare different win-
dowmeasures in Figure 16. We use the same setup as before (20%
out-of-order tuples with delays between 0 and 2 seconds).

Time-BasedWindows. For time-based windows, the through-
put is independent from the number of concurrent windows as
discussed in our throughput analysis in Section 6.2.2. The through-
put for arbitrary advancingmeasures is the same as for time-based
measures because they are processed identically [10].

Count-BasedWindows. The throughput for count-based win-
dows is almost constant for up to 40 concurrent windows and de-
cays linearly for larger numbers. For up to 40 concurrentwindows,
most slices are larger than the delay of tuples. Thus, out-of-order
tuples still belong to the current slice and require no slice updates.
The more windows we add, the smaller our slices become. Thus,
out-of-order tuples require an increasing number of updates for
shifting tuples between slices which reduces the throughput. Tu-
ple buffers are the fastest alternative to Slicing in our experiment.
For 1000 concurrentwindows, slicing is still an order ofmagnitude
faster than tuple buffers.
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Figure17:Parallelizingtheworkloadofa live-visualization
dashboard (80 concurrentwindows per operator instance).

Summary. The throughput of time-based windows stays con-
stant whereas the throughput of count-based windows decreases
with a growing number of concurrent windows.

6.4 Parallel Stream Slicing
In this experiment, we study stream slicing on the example of our
dashboard application [45] which uses the M4 aggregation [26].
We vary the degree of parallelism to show the scalability with
respect to the number of cores. We compare Lazy Slicing with
Buckets which are used in Flink.
Results. In Figure 17, we increase the number of parallel operator
instances of the windowing operation (degree of parallelism). The
throughput scales linearly up to a degree of parallelism of four
(Figure 17a). Up to this degree, each parallel operator instance runs
on a dedicated core with other tasks (data source operator, writing
outputs, operating system overhead, etc.) running on the remain-
ing four cores. For higher degrees of parallelism the throughput
and the CPU load increase logarithmically, approaching the full
800% CPU utilization (Figure 17b). Slicing achieves an order of
magnitude higher throughput than buckets, because it prevents
assigning tuples to multiple buckets (cf. Section 6.2.1). The mem-
ory consumption scaled linearly with the degree of parallelism
for both techniques.
Summary. We conclude that stream slicing and buckets scale
linearly with the number of cores for our application.

7 RELATEDWORK
OptimizingWindow Aggregations.Our general slicing tech-
niques utilizes features of existing techniques such as on-the-
fly slicing [28], incremental aggregation [42], window group-
ing [18, 19], and user-defined windows [10]. However, general
stream slicing offers a unique combination of generality and per-
formance. We base our general slicing implementation on a spe-
cialized techniquewhichwepresented earlier as a poster [46]. One
can extend other slicing techniques based on this paper to reach
similar generality and performance. Existing slicing techniques
such as Pairs [28] and Panes [30] are limited to tumbling and slid-
ing windows. Cutty can process user-defined window types, but
does not support out-of-order processing [10]. Several publica-
tions optimize sliding window aggregations focusing on different
aspects such as incremental aggregation [6, 15, 42] or worst-case
constant time aggregation [43]. Hirzel et al. conclude that one
needs to decide on a concrete algorithm based on the aggregation,
window type, latency requirements, stream order, and sharing
requirements because each specialized algorithm addresses a dif-
ferent set of requirements [22]. Instead of alternating between
different algorithms, we provide a single solution which is gen-
erally applicable and allows for adding aggregation functions and
window types without changing the core of our technique.



Stream Processing in Batches. In contrast to our techniques,
whichadoptsa tuple-at-a-timeprocessingapproach, severalworks
split streams in batches of data which they process in parallel [5,
27, 52]. SABER introduceswindow fragments to decouple slide and
range of sliding windows from the batch size [27]. However, in
contrast to our work, SABER does not consider aggregate shar-
ing among queries. Balkesen et al. use panes to share aggregates
among overlapping windows [5]. None of these works addresses
the general applicability with respect to workload characteristics.
Complementary Techniques. Weaving optimizes execution
plans to reduce the overall computation costs for concurrent win-
dow aggregate queries [18, 19, 38]. We use a similar approach to
fusewindowaggregationquerieswhenwindowedgesmatch. This
optimization is orthogonal to the generalization of slicing which
is the focus of this paper. Huebsch et al. study multiple query op-
timization when aggregating several data streams which arrive
at different nodes [24]. General stream slicing complements this
work with an increased per-node performance. Truviso proposes
an alternative technique based on independent stream partitions
to correct outputs when tuples arrive after the watermark [29].
While our work focuses on slicing streams and computing partial
aggregations for slices, recent publications of Shein et al. further
accelerate the final aggregation step which is required when win-
dows end [39, 40]. Trill [11] is an analytics system that supports
streaming, historical, and exploratory queries in the same system.
Trill supports incremental aggregation and performs aggregations
on snapshots, the state of the window at a certain point in time.
Zeuch et al. [53] integrate stream slicing in a lock-free window ag-
gregation operator to optimize throughput on modern hardware.

8 CONCLUSION
Stream slicing is a technique for streaming window aggregation
which provides high throughputs and low latencies with a small
memory footprint. In this paper, we contribute a generalization of
stream slicing with respect to four key workload characteristics:
Stream (dis)order, aggregation types, window types, and window
measures. Our general slicing technique dynamically adapts to
these characteristics, for example, by exploiting the invertibility
of an aggregation or the absence of out-of-order tuples.

Our experimental evaluation reveals that general slicing is
highly efficient without limiting generality. It scales to a large
number of concurrent windows, and consistently outperforms
state-of-the-art techniques in terms of throughput. Furthermore,
it efficiently supports application scenarios with large fractions of
out-of-order tuples, tupleswith high delays, time-based and count-
based windowmeasures, context-aware windowing, and holistic
aggregation functions. Finally,we observed that the throughput of
general slicing scales linearlywith the number of processing cores.
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