
An Intermediate Representation for
Optimizing Machine Learning Pipelines

Andreas Kunft* Asterios Katsifodimos** Sebastian Schelter†

Sebastian Breß‡* Tilmann Rabl+ Volker Markl‡*

*TU Berlin **Delft University of Technology †New York University ‡DFKI +HPI, Universität Potsdam

ABSTRACT
Machine learning (ML) pipelines for model training and val-
idation typically include preprocessing, such as data clean-
ing and feature engineering, prior to training an ML model.
Preprocessing combines relational algebra and user-defined
functions (UDFs), while model training uses iterations and
linear algebra. Current systems are tailored to either of the
two. As a consequence, preprocessing and ML steps are op-
timized in isolation. To enable holistic optimization of ML
training pipelines, we present Lara, a declarative domain-
specific language for collections and matrices. Lara’s inter-
mediate representation (IR) reflects on the complete pro-
gram, i.e., UDFs, control flow, and both data types. Two
views on the IR enable diverse optimizations. Monads en-
able operator pushdown and fusion across type and loop
boundaries. Combinators provide the semantics of domain-
specific operators and optimize data access and cross-vali-
dation of ML algorithms. Our experiments on preprocess-
ing pipelines and selected ML algorithms show the effects of
our proposed optimizations on dense and sparse data, which
achieve speedups of up to an order of magnitude.

PVLDB Reference Format:
Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Se-
bastian Breß, Tilmann Rabl, and Volker Markl. An Intermedi-
ate Representation for Optimizing Machine Learning Pipelines.
PVLDB, 12(11): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3342263.3342633

1. INTRODUCTION
Modern data analysis pipelines often include preprocess-

ing steps, such as data cleaning and feature transformation,
as well as feature engineering and selection [61, 62, 39, 15,
9]. Once data is in an appropriate shape, machine learning
models are trained and evaluated. These training and model
evaluation cycles are repeated several times to find the most
suitable configuration of different features, machine learn-
ing (ML) algorithms, and hyperparameters. To build such
training pipelines, data scientists can choose from a variety
of tools and languages. Python and R offer popular libraries

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342633

that are easy to use and provide fast development cycles.
These libraries are embedded shallowly [29] in the host lan-
guage, i.e., they are executed as-is, without any inter-library
optimizations and support for large data [52]. General pur-
pose dataflow systems [70, 2] provide second-order functions
(e.g., map and reduce) to transform collections via user-
defined functions (UDFs). They defer program execution by
providing a type-based domain-specific language (DSL) that
builds an associated operator graph. This operator graph is
optimized and executed on a dedicated dataflow engine. In
order to develop ML algorithms in such DSLs, linear algebra
operations have to be retrofitted as UDFs on (distributed)
collections. As a result, ML algorithms are hardcoded by
experts and provided as library functions with fixed data
representations and execution strategies. Thus, the seman-
tics of linear algebra operations are concealed behind UDFs,
which are treated as black boxes by optimizers [35]. In con-
trast, dedicated systems for ML, such as SystemML [12] and
Tensorflow [1] provide linear algebra operations. However,
it is difficult to express pipelines that include preprocessing
and data transformation in these systems, as they lack dedi-
cated types for collection processing. In summary, dedicated
systems with type-based DSLs provide advantages over shal-
lowly embedded libraries, but still suffer from three major
problems in the context of end-to-end pipelines for model
training: (i) Development, maintenance, and debugging of
end-to-end pipelines is a tedious process in dedicated sys-
tems, and limits optimization potential and efficient execu-
tion. (ii) Preprocessing and ML are often executed in dif-
ferent systems in practice [59], which prevents optimizations
across linear and relational algebra. (iii) Neither shallowly
embedded libraries nor type-based DSLs can reason about
native UDFs and control flow.

To address these issues, we propose Lara, a DSL that
combines collection processing and machine learning.1 Lara
is based on Emma [3, 4], a quotation-based DSL [49] for
(distributed) collection processing. Emma’s DataBag alge-
braic data type enables declarative program specification
based on for-comprehensions, a native language construct
in Scala. In contrast to type-based DSLs, quotation pro-
vides access to the abstract syntax tree (AST) of the whole
program, allowing us to inspect and rewrite UDFs and na-
tive control flow. Emma’s intermediate representation (IR)
is based on monad comprehensions [33] and enables opera-
tor fusion and implicit caching. Lara extends Emma with
Matrix and Vector data types in its API and IR to execute
pipelines for model training on single machines. It provides

1
A preliminary short version has been published before [41].



two views on the IR to perform diverse optimizations: the
monadic view represents operations on both types, DataBag
and Matrix, as monad comprehensions in the IR. This com-
mon representation enables operator fusion and pushdown
of UDFs across type boundaries, e.g., filter pushdown from
a Matrix to a DataBag. Access to the control flow allows
Lara to reason about operator fusion over loop boundaries,
e.g., feature transformations that are iteratively applied over
column ranges. The combinator view captures high-level se-
mantics of relational and linear algebra operators as single
entities in operator trees similar to relational algebra trees.
It enables data dependent selection of specialized physical
operators and implicit data layout conversions based on in-
teresting properties [30]: similar to interesting properties of
relational operators, e.g., sorted data for joins, linear algebra
operators have preferred data access pattern, e.g., row-wise
or column-wise.

In summary, we make the following contributions:

1. We propose Lara, a quotation-based DSL for end-to-end
model training pipelines (Section 3).

2. We discuss our IR, which has access to the whole AST
of the pipeline, and two views on top of it: a view based on
monad comprehensions and a view based on the high-level
semantics of operators (Section 3 and 4).

3. We discuss the extensibility of our approach by intro-
ducing a custom high-level operator and optimizations for
k-fold cross-validation, a widely used technique to select hy-
perparameters for ML models (Section 4.4).

4. We conduct experiments on a typical preprocessing pipe-
line, and show the effects of data layout and cross-valida-
tion optimizations on selected ML algorithms for dense and
sparse data. The experiments achieve speedups of up to an
order of magnitude (Section 5).

2. BACKGROUND
In this section, we provide a brief overview of approaches

to implement domain-specific languages. We refer to Alexan-
drov et. al [5] for an in-depth discussion and comparison.

Shallowly-Embedded Libraries. Many general-purpose
programming languages (GPLs) provide dedicated libraries
for different domains, such as collection processing and ML,
e.g., Python’s Pandas [47] and scikit-learn [55]. These li-
braries are embedded shallowly [29] in the host language
(e.g., Python) and executed as is, i.e., without further opti-
mizations except for those hard-coded in the algorithms and
performed by the interpreter or compiler of the GPL.

Type-Based DSLs. Type-based or symbolic DSLs use the
operations defined on a type (e.g., the RDD in Spark) to con-
struct an operation graph, rather than directly executing
the operations. Examples are the APIs of dataflow engines,
such as Spark [70] and Flink [2], which mix the application
of UDFs in second-order functions (e.g., map) and relational
operators. More recent systems, such as MXNet [21] and
Tensorflow [1], provide APIs based on tensors for ML. In
contrast to shallowly embedded DSLs, type-based DSLs en-
able optimizations, such as choosing physical operator im-
plementations and operator chaining. However, since the IR
only reflects the operations defined on the type, host lan-
guage UDFs are generally treated as black-boxes [35], and
control flow is not visible. This can be partially addressed

by specialized loop constructs [69, 26], but still prevents lin-
guistic reuse [57] of the language’s native control flow.

Standalone DSLs. Standalone DSLs, such as SQL and
SystemML’s DML [28] overcome the problems stated above.
They provide a full-fledged compiler infrastructure for the
DSL. However, a programmer has to develop this infras-
tructure (including libraries and development tools) from
scratch, and support for complex UDFs written in GPLs is
hard to achieve [54]. Another problem is user acceptance,
i.e., to convince programmers to learn and adapt to the new
language. Often, standalone DSLs try to ease the transition
by staying close to the syntax of an existing language.

Quotation-Based DSLs. Quotation-based DSLs [49], such
as LINQ [48], LMS [58], and Squid [53], reuse the syntax
and type system of the host language and gives access to
the program’s AST during compilation and runtime. In
contrast to type-based and shallowly-embedded DSLs, quo-
tation gives access to the entire AST of the GPL, includ-
ing types, white-box UDFs, and control flow. The AST
can then be altered and optimized before execution. Thus,
quotation-based DSLs overcome the limitations of the pre-
viously presented approaches but require careful design of
domain-specific IRs.

3. LANGUAGE AND IR
In this section, we provide an overview of important de-

sign decisions for Lara, describe the IR of Lara, and intro-
duce two views on top of the IR used to perform the diverse
optimizations showcased in Section 4.

3.1 Language Design Decisions
We identified several shortcomings in current solutions,

which led to the design of Lara. It extends the API and IR
of Emma [3, 4], a quotation-based DSL for collection pro-
cessing, with support for matrices and vectors. Users can
express preprocessing and successive model training in the
same program, which is reflected in a common IR. The fol-
lowing Lara code excerpt highlights these design decisions.

1 @lib def vectorizeComment(c: Comment) = { /* UDF */ }
2 @lib def vectorizeUser(u: User) = { /* UDF */ } 1
3

4 optimize { 2
5 // Join "Comments" and "Users" and vectorize the result
6 val features = for {
7 c <- Comments // DataBag[Comment]
8 u <- Users // DataBag[User]
9 if u.user_id == c.user_id

10 } yield vectorizeComment(c) ++ vectorizeUser(u)
11 // Convert the DataBag "features" into matrix "X"
12 val X = Matrix(features) 3
13 // Filter rows that have values > 10 in the third column
14 val M = X.forRows(row => row(2) > 10) 4
15 // Calculate the mean for each column
16 val means = M.forCols(col => mean(col)) 5
17 // Deviation of each cell of "M" to the cell’s column mean
18 val U = M - Matrix.fill(M.nRows, M.nCols)((i,j) => means(j))
19 // Compute the covariance matrix
20 val C = 1 / (U.nRows - 1) * U ** U.t 6
21 }

Lara enables the declarative specification of relational op-
erators via Emma’s DataBag data type with for-comprehen-
sions. Line 6 – 9 illustrate a join between the datasets
Users and Comments. ML pipelines are expressed as high-
level linear algebra operators on the Matrix and Vector data
type. For example, a matrix multiplication is specified using
the ** method in Line 20. Operators of both domains can



be interleaved with calls to user-defined (aggregate) func-
tions: the tuples resulting from the join are converted to
vectors in Line 10, followed by a filter predicate, which is
applied to the rows of matrix X in Line 14. Separate types
with dedicated syntax in the user-facing API reduce the
impedance mismatch between relational and linear algebra,
e.g., users do not have to specify linear algebra in terms of
for-comprehensions over collections.

Next, we highlight key aspects of Lara’s IR with respect
to the code snippet:

1 UDFs for the second-order functions of the DataBag (e.g.,
map or fold) and Matrix (e.g., forRows and forCols) are
defined as closures (Line 14) or provided as library func-
tions (Line 1 and 2). The body of library functions is in-
lined in case they are called within a pipeline (e.g., Line 10
and Line 16) and considered during optimization.

2 DataBag, Matrix, and Vector types can be used with-
out further optimization. This is useful to debug and test
pipelines during development. To enable optimization, the
very same pipeline is quoted by surrounding the code with
an optimize macro [16] (Line 4).

3 Type conversion methods (Line 12) in the API and the IR
track data provenance, i.e., which field of a DataBag element
corresponds to a given column in a Matrix and vice versa. It
decouples the specification and execution of relational and
linear algebra and enables joint optimization.

4 Type and operator choices in the user facing API do not
enforce a particular physical execution backend. A unified
representation of both types in a common formal represen-
tation in the IR enables operator pushdown and fusion of
UDFs over type boundaries. For instance, the filter UDF
applied on each row of the matrix X in Line 14 can be pushed
to the DataBag and fused with the vectorize UDFs applied
in a map on the join result in Line 10.

5 White-box UDFs in the IR enable reasoning about read
and write accesses to the processed elements (e.g., fields,
rows, and columns). In combination with access to the con-
trol flow in the IR, this provides opportunities to fuse UDF
applications that are executed iteratively in a loop, if their
read/write sets are disjoint. The iterative calculation of the
mean in Line 16 can be optimized. Instead of executing the
mean function on each column separately, it is executed for
all columns at once.

6 High-level linear algebra operators in the API (Line 20)
and an IR that captures the domain-specific semantics of
operators enable the selection of specialized operator imple-
mentations, e.g., BLAS [43] instructions for linear algebra.

3.2 Intermediate Representation
In this section, we describe how Lara’s IR facilitates the

design decisions described in the previous section. First,
we introduce the low-level intermediate representation (LIR)
provided by Emma. Then, we present two higher-level views
on top of the LIR. The monadic view represents monad
comprehensions [33] over the DataBag and Matrix types.
The combinator view represents high-level operators (e.g.,
matrix multiplication) as single entities or combinators [32]
in an operator tree.

Low-Level Intermediate Representation. Emma uses
the meta-programming features of Scala [16] to access the
AST of a quoted program. Emma transforms the original

AST into let-normal form (LNF), a functional representa-
tion of static single assignment form (SSA) [8], to overcome
several shortcomings of Scala’s AST. LNF offers a normal-
ized representation that encodes dataflow and control flow
information directly. LNF guarantees that variables are de-
fined only once, i.e., the single static assignment property.
Thus, def-use chains [6] can be implemented efficiently. This
property eases data dependency analysis, most notably the
detection of dependencies across control constructs, e.g., be-
tween iterations of loops. The LIR is used as basis two views,
which we introduce in the next paragraphs. The views com-
bine expressions of the LIR that represent certain opera-
tions, e.g., a matrix multiplication, and make their seman-
tics available for reasoning. The LIR augments the views by
providing efficient data- and control flow analysis.

Monadic View. Monad comprehensions [33] on the Bag
monad provide a concise and declarative way to specify
collection transformations with first-class support for user-
defined (aggregation) functions, as shown in the introduc-
tory example (Listing 3.1, Line 10). Matrices and vectors
can also be represented as a Set monad {(i, a)} of index-
value tuples, where i is a singular index in case of a vec-
tor and a tuple (row-index,column-index) in case of a ma-
trix [27]. Writing linear algebra operators as monad com-
prehensions at the user-level is tedious and error prone. As
a consequence, Lara offers high-level operators for linear
algebra in its API. Monad comprehensions in the IR en-
able Lara to examine and optimize applications of UDFs,
e.g., fusion and pushdown. These optimizations are not
bound to the concrete monad instance, but rely on the gen-
eral properties of monads. Lara extends the monad rep-
resentation of the DataBag in Emma with the Matrix and
Vector monad. A traversal over the LIR converts all explicit
second-order functions on a DataBag to monad comprehen-
sions (e.g., a map is converted to the corresponding compre-
hension). Calls to linear algebra methods and second-order
functions of the Matrix type are replaced by their corre-
sponding monad comprehensions. For instance, element-
wise addition of two vectors is written as x + y in the API
and represented as following AST nodes in the LIR:
Apply(Select(Ident("x"), "$plus"), Ident("y"))

In the monadic view, element-wise addition is represented
as following monad comprehension [27]:

for {
(idx_x, val_x) <- x // generator
(idx_y, val_y) <- y // generator
if idx_x == idx_y // guard

} yield (idx_x, val_x + val_y) // head

The comprehension contains two generators, which bind each
(index, value) pair of the two vectors x and y. The head
expression is called for each combination of pairs that satis-
fies the guard expression. The values of all pairs that have
the same index are added and form a new vector for the
result of the addition.

Combinator View. The monadic view allows Lara to ap-
ply fusion over UDFs based on the properties of monads. In
order to apply domain-specific optimizations and trace oper-
ator trees, data types and their respective high-level opera-
tions need to be represented explicitly in the IR [65]. Com-
prehension combinators [32] can be leveraged to represent
high-level, logical operators whose semantics are not present
in the monadic view. At the combinator view, relational op-
erators, such as join, and linear algebra operations, such as



Data Access Pattern:
row-wise
column-wise

X X

⊺

**

(a)

[X, row] [X, row]

⊺

**

(b)

[X, row] [X, row]

convert⊺

dgemm

(c)

Figure 1: Combinator view for gram matrix X⊺X.

a matrix multiplication are captured as single entities and
the program is viewed as a call or operator tree of these
entities. This enables optimizations known from relational
query processing (e.g., join reordering or the choice of differ-
ent physical operator implementations). At the same time,
it enables optimizations on the semantics of linear algebra.
Logical operators can be replaced with specialized physical
implementations, e.g., BLAS sub-routines [43]. Moreover,
operators can propagate interesting properties to their child
nodes, such as row- or column-wise access patterns to their
operands. Based on these properties, different plan variants
are generated. The combinator view for the computation of
the gram matrix X⊺X is illustrated in Figure 1a. Figure 1b
depicts the operator tree with propagated access patterns
– from the root expression to the sources. The matrix-
multiplication (**) prefers fast access to the rows (dotted
lines) of its left operand and the columns (snake lines) of
its right operand. The physical row-wise data layout of
the source matrix X is depicted in brackets in the Figure.
Figure 1c represents a physical plan variant. The matrix-
multiplication is replaced by a specialized BLAS instruction
called dgemm, which requests column-wise partitioned in-
put. An convert enforcer [30] establishes the data layout
desired by the dgemm instruction for its second operand.
We provide a detailed discussion in Section 4.3 and 4.4.

4. OPTIMIZING END-TO-END PIPELINES
In this section, we showcase how our IR enables differ-

ent optimizations and present the LIR’s interplay with the
monadic and combinator view.

Running Example. Listing 1 depicts our running example
of an end-to-end training pipeline, which leverages historical
data about clicks on advertisements to predict the number
of future clicks on other advertisements using a regression
model. The pipeline showcases common user-defined fea-
ture transformations. We omit the implementation of the
transformation UDFs for the sake of space. The categori-
cal features in columns 11 to 15 are dummy-encoded [34] as
sparse vectors in Line 4. The numerical features in columns
1 to 10 are normalized [31] to have zero mean and unit
variance in Line 9. We concatenate the numerical features
in Line 5 and combine them with the dummy-encoded fea-
tures in Line 6, in order to end up with one vector per input
record. After preprocessing, we evaluate different candidates
for the hyperparameter lambda with cross-validation [37]
on the normalized feature matrix X. Lara provides cross-
validation as utility method, similar to ML libraries such as
scikit-learn. The learning algorithm supplied to the cross-
validation is executed k times – for k different combinations
of training sets and test sets obtained from the feature ma-
trix X and target vector y. This example trains a ridge
regression model in Line 17 – 20, and calculates its test er-
ror in Line 22 – 23.

1 // Column 0 contains the target variable, columns 1-10 contain
2 // numerical and columns 11-15 contain categorical features
3 val dataset = readAndClean("/path/to/data")
4 val encoded = dummyEncode(dataset, 11 to 15)
5 val vectors = concatNumericalFeatures(encoded, 1 to 10)
6 val features = concatVectors(vectors)
7 // y = 0: extract 1st column as target vector y
8 val (M, y) = Matrix(features, y = 0)
9 val X = Matrix.normalize(M, 1 to 10)

10 // Grid search over hyperparameter candidates
11 val regCandidates: Seq[Double] = // ...
12 for (lambda <- regCandidates) {
13 // 3-fold cross-validation for the hyperparameter lambda
14 val errors = ML.crossValidate(3, X, y) {
15 (X_train, X_test, y_train, y_test) =>
16 // Ridge regression
17 val reg = Matrix.eye(X_train.numCols) * lambda
18 val XtX = X_train.t ** X_train + reg
19 val Xty = X_train.t ** y_train
20 val w = XtX \ Xty
21 // Calculate mean squared error on test set
22 val residuals = y_test - (X_test ** w)
23 residuals.map(r => r * r).agg(_ + _) / y_test.size
24 }
25 // Print mean error for chosen hyperparameter
26 println(errors.sum / k)
27 }

Listing 1: An ML training pipeline in Lara.

4.1 Operator Pushdown
Users can apply UDFs on Lara’s DataBag and Matrix

types. However, this does not enforce the concrete execu-
tion of the program, i.e., a UDF called in a Matrix operator
can be rewritten to a DataBag operation and vice versa.
For instance, consider the normalization of columns 1 – 10
in Listing 1, Line 9. Even though the user implements the
normalization on the Matrix representation, it is beneficial
to push the operation to the DataBag representation.

Analogous to many other common feature transforma-
tions (such as dummy or tf-idf [56] encoding), normalization
is performed in two steps. These two steps are often called
fit and transform, e.g., in scikit-learn and Spark MLlib. The
fit step computes an aggregate over the feature column in a
fold, e.g., the mean and variance in case of the normalize
function. The successive transform step changes the values
of the feature column based on the aggregation result of the
fit step in a map, e.g., by subtracting the mean and dividing
by the variance in case of the normalize function. These
steps are then repeated for all columns 1 – 10. In our run-
ning example, the normalization is defined on the Matrix

type – after all features are combined in a single sparse vec-
tor. Both functions, the fold and the map, call their UDF
separately for each row. Thus, if the functions are executed
on a Matrix in Compressed Sparse Row (CSR) format (as in
our running example), the UDF performs the element-wise
lookup of the column value on a sparse vector, which has
logarithmic complexity in the number of non-zero values.
However, the numerical features are still separate entries in
the array element type (with constant time access) of the
DataBag, before they are combined to a sparse vector with
the categorical features in Line 5 and 6.

In the following, we detail how Lara can push UDF ap-
plications from one type to another in the IR. To this end,
we first introduce conversion methods, which allow Lara to
track data provenance across type conversions, i.e., how and
where features are stored in both types. We then describe
how a unified representation of DataBag and Matrix as mon-
ads in the IR enables the pushdown of UDFs.



Background: Conversion Methods. Generic type con-
versions correspond to a categorical concept called natural
transformations [46]. Unfortunately, this concept can not
be used directly when converting a DataBag to a Matrix. In
this case, the container type changes from Bag to Set and
the element type changes from A to ((i, j),A) to introduce
the row- and column-index for the values. To overcome
this problem, the conversion methods (Listing 1, Line 8)
accept only DataBags with instances of Lara’s vector type
as elements or expect an index function of form idx ∶ A →
((i, j),A). We provide instances for Product, Array, and
Vector in the moment. Therefore, Lara can track data
provenance, i.e., how the access to a Matrix cell ((i, j),A)

commutes with access to a (i, V ector[A]) element in a Data-
Bag. The explicit representation of conversion methods and
types as monad comprehensions, allows us to define map-
pings for the second-order functions that apply UDFs from
the Matrix type to the DataBag.

Pushing down Bulk Operations. The unified represen-
tation as monads (and the corresponding conversions) en-
ables us to reason about push downs of bulk operations (i.e.,
operations that apply UDFs to all the rows/columns of a
DataBag/Matrix) in a sound way. For instance, consider the
method forRows(udf: Vector => Double), which applies
an aggregation function to all rows of a Matrix. Intuitively,
the UDF can be executed in a map on the DataBag, as its el-
ements represent rows. The monad comprehensions for the
forRows method exemplify this intuition:

1 for { rowCells <- M.groupBy(cell => cell.index.rowIndex) }
2 yield {
3 val rowVector = for { elem <- rowCells.values }
4 yield (elem.index.colIndex, elem.value)
5 val aggregate = udf(rowVector)
6 (rowCells.key, aggregate)
7 }

The Matrix cells are grouped by their rowIndex in Line 1.
Next, all values in a group (i.e., all cells of a row) are con-
verted to a row vector {(colIndex, value)} in Line 3 – 4 and
then passed to the UDF in Line 5. The grouping and the
conversion to a vector revert the conversion method. Thus,
if we pushdown the UDF through the conversion method,
the UDF can be executed in a map on the DataBag. Ta-
ble 1 depicts mappings for all bulk-operations on rows of
a Matrix after pushdown. Using the same mechanisms, we
can execute bulk-operations defined over all columns, but
need to convert to a DataBag of columns. For instance, exe-
cuting the operation forCols(a: Vector => Double) on a
DataBag requires the following comprehensions: flatmap.

groupBy.map.map(a) as listed in Table 1.

Pushing down Row/Column Range Access. UDFs are
often applied to particular row or column ranges. An exam-
ple is the normalization in Line 9 of Listing 1, where the first
10 columns are normalized. Selection of a row in a Matrix is
pushed to the DataBag as a withFilter method. A partic-
ular column is accessed via the M.column(index) method,
which corresponds to the following monad comprehensions:

1 for { colCells <- M.groupBy(cell => cell.index.colIndex)
2 if colCells.key == index
3 } yield {
4 for { elem <- colCells.values }
5 yield (elem.index.colIndex, elem.value)
6 }

The guard (i.e., filter predicate) in Line 2 selects the group
that matches the requested column index. Pushing the col-
umn selection to a DataBag, requires us to repartition its
elements by their column index, as depicted in Table 1.

4.2 Operator Fusion
As discussed in Section 4.1, feature transformations ap-

ply two consecutive steps: the fit step aggregates column
values (e.g., the mean and variance for normalization) in a
fold. The transform step changes the column values based
on the aggregate in a map. If the feature transformation
is applied on multiple disjoint columns, Lara can fuse the
consecutive fold and map applications. This allows us to
share a given pass over the data, and only requires a sin-
gle fold and map operation, independent of the number of
transformed columns.

We briefly discuss operator fusion techniques, before we
introduce the control flow and dependency analysis, which
Lara applies to verify the applicability of operator fusion.

Background: Fold-Fusion. Fusion is based on two core
operations of an algebraic data type T with element type A:
the function application on each element

T[A].map[B](f: A => B): T[B]

and the generic structural recursion

T[A].fold[B](zero: B)(init: A => B, plus: (B, B) => B): B}

Function composition has been applied on several types [67,
22]. It fuses consecutive applications of UDFs in map second-
order functions into a single, composed function call:

T.map(f1).map(...).map(fN) = T.map(fN ○ . . . ○ f1)

Fold-fusion combines multiple fold applications on a type
to a single fold. In the following example code, the mean
over a DataBag[Int] is calculated by computing the sum
and the count of its elements:

val sum = bag.fold(0)(e => e, (s1, s2) => s1 + s2)
val count = bag.fold(0)(e => 1, (c1, c2) => c1 + c2)
val mean = sum / count

The banana-split [10] law states that pairs of folds that are
applied on the same data type can be fused into a single
fold, resulting in following code:

val (sum, count) = bag.fold((0,0))
(e => (e, 1), ((s1, c1), (s2, c2)) => (s1 + s2, c1 + c2))

val mean = sum / count

The cata-fusion [10] law enables us to fuse map and filter
operations into a consecutive fold application. Lara lever-
ages the fusion capabilities of Emma [5], and applies them
to the monad representations of Matrix and Vector.

Operator Fusion over Loops. We demonstrate operator
fusion on the dummyEncode method of our running example
(Listing 1, Line 4), which is implemented as follows. We hide
the implementation details of the fit and transform UDFs
and indicate their data dependencies with colored boxes.

1 def dummyEncode(bag: DataBag[Array[Any]], columns: Seq[Int]) = {
2 var encoded = bag
3 for ( columnIndex <- columns) {
4 // Fit: build a dictionary of column values
5 val columnIndex = encoded.fold( fit-UDAF )
6 // Transform: create encoding in sparse vector
7 encoded = encoded.map( transform-UDF )
8 }
9 encoded

10 }

columnIndex

fit-UDAFdictionary

transform-UDFtransform-UDF def
use

Line 5 and 7 depict the dummy encoding for a single col-
umn, which is applied iteratively for all columns defined by
the columns parameter. The fold creates a dictionary that
maps each distinct column value to a unique index. The con-
secutive map replaces the categorical values by sparse vectors



containing a single non-zero entry at the index obtained by
a dictionary lookup. A näıve execution of the code (i.e., in-
dependently on each column) is suboptimal, as it requires
two passes over the data per column. In order to fuse the
UDFs and save multiple passes over the data, Lara performs
(i) a dependency analysis of the loop variable columnIndex,
and (ii) an analysis of the UDFs to determine their access
patterns to the elements of the DataBag.

Dependency Analysis. At first glance, it is not obvious
that the operators can be fused. The fold in Line 5 appears
to be a fusion barrier, as the previously built dictionary is
required to perform a lookup in the map operator in Line 7.
A closer lock reveals that the code accesses only a distinct
feature column within each iteration. Thus, when we would
unroll the loop, we could fuse the consecutive fold appli-
cations (Background: Fold-Fusion), if disjoint columns are
accessed. Analogously, we could fuse all map applications.
Lara analyses the loop based on the direct style control flow
representation of the LIR. It validates that no loop-carried
dependencies [6] exist and that the read and write accesses
to the array elements inside the fit and transform UDFs are
conducted with the columnIndex loop variable. Thus, Lara
can verify that each consecutive iteration step reads and
writes on disjoint columns, if the values of the loop variable
are known at compile time (a constant sequence for instance,
e.g., 11 to 15) or the function semantics guarantee disjoint
access (e.g., all Bulk-Operations in Table 1).

Fusion. After the dependencies have been evaluated suc-
cessfully, Lara unrolls the loop to enable operator fusion.
First, the banana-split [10] rule combines the UDFs exe-
cuted in the fold operations, as they are applied on the
same dataset; all dictionaries are created by executing a
single combined fold only (Background: Fold-Fusion). Sec-
ond, the successive transformations to sparse vectors in the
map UDFs are fused, in order to apply all transformations in
a single map operation. Thus, the optimized code executes a
single fold and a single map only, independent of the number
of transformed columns.

In general, operator fusion is always limited by pipeline
breakers [50], i.e., (aggregated) data, which is required by an
successive operator and thus, has to be materialized. While
Lara can not overcome this inherent limitation, it can fuse
multiple folds that are applied on the same data and thus,
reduce the cost to a single pass over the data. Similar fusion
techniques have been proposed in the Stubby [44] optimizer
for Hadoop [7]. Lara leverages white-box UDFs and control
flow analysis to ensure disjoint field access an thus enables
these techniques over loop boundaries. In the moment, Lara
requires direct access to the loop variable in its dependency
analysis and does not support complex index expressions.

Type-based DSLs (e.g., in Spark and Flink) must execute
the loop as-is, which is suboptimal as it prevents pipelining
and fusion. Their IR can only reason about the operators,
e.g., the fold and map higher-order functions in the example.
Control flow and UDFs are not visible, which prevents the
required dependency analysis.

4.3 Choosing a Data Layout
Choosing efficient physical operators for linear algebra op-

erations, such as matrix-matrix multiplications, can have a
huge impact on the runtime of ML pipelines [66]. We lever-
age the combinator view to choose appropriate physical im-
plementations of operators based on the layout of the data.

Table 1: Operator pushdown between DataBag and Matrix.

DataBag (row-wise) Matrix

B
u

lk
-O

p
er

a
ti

o
n

s map(m:Vector => Vector) forRows(m:Vector => Vector)

map(a:Vector => Double) forRows(a:Vector => Double)

withFilter(f:Vector => Boolean) forRows(f:Vector => Boolean)

flatmap : split in (colIdx, (rowIdx, value))
forCols(m:Vector => Vector)
forCols(a:Vector => Double)
forCols(f:Vector => Boolean)

.groupBy : group by colIdx

.map : (rowIdx, value) : values as vector
+ .map(m) or .map(a) or .withFilter(f)

R
a
n

g
es

withFilter(index:Int) row(index:Int)

flatmap : split in (colIdx, (rowIdx, value))
.groupBy : group by colIdx
.withFilter : select column with index

.map : (rowIdx, value) : values as vector column(index:Int)

Figure 2 depicts three plan variants for the ridge regression
algorithm (Listing 1, Line 17 – 20) in the combinator view.
Operators are represented as single entities in an operator
graph (e.g., ** denotes matrix multiplication). Similarly to
query optimization on relational algebra trees [30], Lara ap-
plies the following optimizations: (i) expressions (i.e., sub-
graphs) are transformed into equivalent expressions based on
algebraic rules, (ii) logical operators are replaced by physi-
cal operator implementations and (iii) the desired physical
data layouts are established by enforcers [30] based on in-
teresting properties.

Transformation Rules. Lara provides an extensible set
of rules to check for the applicability of backend specific op-
erators. We define transformation rules to replace our de-
fault implementations of linear algebra operations in Scala.
Lara applies these transformations for BLAS level 2 (i.e.,
matrix-vector) and level 3 (i.e., matrix-matrix) operations
on dense data.2 For instance Lara replaces the whole sub-
tree for X⊺X + I ∗ λ with a general level 3 BLAS matrix-
matrix multiplication dgemm (Figure 2b). Similarly, the
general BLAS matrix-vector multiplication dgemv is used
to multiply X⊺y.

Physical Properties. Access patterns (row-, column-, or
element-wise) of linear algebra operators and implementa-
tions can differ per operand. For example, a sparse matrix
multiplication has fast access to the rows of the left operand
and fast column-wise access to the right operand in the best
case. Matching those access patterns has a large impact on
the performance. For instance, suboptimal access pattern to
Compressed Sparse Column (CSC) or CSR formats increases
the asymptotic complexity from constant to logarithmic in
the number of non-zero values.

To overcome this problem, we annotate the edges of plan
variants with the access pattern of operators in a top-down
traversal, similar to interesting properties in Volcano [30].
For instance, the default Scala implementation of a matrix-
matrix multiplication (**) in Figure 2a yields the best per-
formance in case of fast row-wise access to the left and fast
column-wise access to the right operand. In contrast, BLAS
sub-routines expect column-wise partitioned inputs, shown
in Figure 2b for dgemm and dgemv. Lara considers the ini-
tial data format of matrices (depicted in brackets next to the
matrices) to create plan variants by implicitly inserting con-
version operators. Enforcers establish a certain data format,
if the sources do not match the propagated access pattern.
Furthermore, certain operator implementations can produce
different output formats, which allows us to choose the for-

2
http://www.netlib.org/blas/#_blas_routines

http://www.netlib.org/blas/#_blas_routines


[X, row] [X, row]

⊺

**

[eye, ∅] [λ, const]

*

+

[X, row]

⊺

[y, ∅]

**

∖

(a)

Data Access Pattern:
row-wise
column-wise

[X, row] [X, row]

⊺

[eye, ∅] [λ, const]

dgemm

[X, row]

⊺

[y, ∅]

dgemv

∖

(b)

[X, row] [X, row]

convert⊺

[eye, ∅] [λ, const]

dgemm

[X, row]

⊺

[y, ∅]

dgemv

∖

(c)

Figure 2: (a) the combinator view for ridge regression (Listing 1, Line 17 – 20) with default operators, (b) replaced sub-trees
with equivalent BLAS instructions, and (c) an enforcer convert for the interesting properties of plan variant (b).

������������

k = 3

X

m

n

y

1

X

m/k

n

x2

y

1

y2
m/k

m/k

x1

x3

y1

y3

 �!"��#$�%&�'�()

*��+��,-&���'�(���(�.-�'��/

x
i
T x

i

x=x1*

x=x3*
x=x2*

x
i
T y

i

x=y1*

x=y3*
x=y2*

=XT X x +

=XT y x

=w

x2
x3

y2
y3

1.

XT X  \  XT y

=XT X x +

=XT y x

=w

x3
x1

y3
y1

2.

XT X  \  XT y

=XT X x +

=XT y x

=w

x1
x2

y1
y2

3.

XT X  \  XT y

0�1�'���(�2�����'�(��

=XT X + +

=XT y +

=w

x2*
x3*

y2*
y3*

1.

XT X  \  XT y

=XT X + +

=XT y +

=w

x3*
x1*

y3*
y1*

2.

XT X  \  XT y

=XT X + +

=XT y +

=w

x1*
x2*

y1*
y2*

3.

XT X  \  XT y

345

Figure 3: Cross-validation for ridge regression. Steps 1 and
2 depict the näıve execution with redundant computations.
Steps A, B and C depict the optimized execution, which
computes partial results outside the cross-validation loop.

mat depending on the properties of the parent node. Con-
sider the plan variant in Figure 2b as an example. Remem-
ber that dgemv and dgemm expect column-oriented inputs,
while the matrix X is in a row-wise format. The interest-
ing properties of the dgemv BLAS instruction match: the
transposition ⊺ inverts the column-wise properties, match-
ing the original row-wise format of X. The same happens
to the dgemm BLAS instruction: the layout of matrix X
matches the expectation of the first operand of dgemm, but
not the second (i.e., X has to be converted to a column-wise
layout). Figure 2c depicts a plan variant with an enforcer to
convert X to a column-wise data layout. The eye method,
which creates an identity matrix, can produce the requested
column-wise format seamlessly.

Rule-Based Plan Selection. Lara currently employs a
heuristic plan selection strategy which is based on rules de-
rived from the results of micro-benchmarks for operators.
In case of dense data, we observe that BLAS instructions
heavily outperform our self-implemented operators. There-
fore, we greedily select the plan that replaces the highest
number of operators with the lowest numbers of BLAS in-
structions, i.e., we promote the usage of BLAS instructions
that cover the largest sub-trees. In case of sparse data, the
layout choice has a major impact on the performance, and
we choose plan variants that match the desired properties
with enforcers. Note that we leave building a cost-model as
well as a cost-based optimizer for future work.

4.4 Cross-Validation
Lara enables the integration of new high-level operators

into its API and the definition of additional optimizations
based on their semantics. To showcase this feature, we intro-
duce an optimization for k-fold cross-validation [37], which is
a common technique in ML pipelines to select well-working
hyperparameters for models. Lara pre-computes linear alge-
bra operations on the individual training set splits outside
of the validation loop to avoid redundant computations.

Language Integration. We implement cross-validation as
utility function (Listing 1, Line 14). In our running example,
we use cross-validation to select a regularization constant
lambda for the ridge regression model.3 Its execution is il-
lustrated on the left side of Figure 3. Step 1 is independent
of the validation algorithm and partitions the specified fea-
ture matrix X and target vector y into k splits. In Step 2 ,
the ridge regression algorithm is executed k times. For k = 3,
the algorithm is executed once with X1 as test set and X2,3

as training set, next with X2 test set and X3,1 as training
set, and finally with X3 as test set and X1,2 as training set.

Lara leverages the semantics of cross-validation to exe-
cute certain linear algebra operations more efficiently. We
concentrate our detailed discussion on model training and,
without loss of generality, leave the calculation of the test
error in Line 22 – 23 out of the discussion.

Detecting Redundant Computations. If we look care-
fully at the execution of the learning algorithm in Figure 3,
we observe that each feature matrix and target vector split
is used twice (k − 1 times in general) as part of the training
set. Thus, the training algorithm is executed k − 1 times
on each split. This overlap poses potential for optimiza-
tion: we can avoid redundant computations by (partially)
pre-computing the algorithm on the individual splits outside
of the validation loop.

The semantics of cross-validation guarantee that the indi-
vidual splits do not overlap. Therefore, we can treat the
splits as block-wise partitioning of the feature matrix X
with size m × n into k matrix blocks X1 . . .Xk with size
m
k
× n. Block-partitioned matrices can be multiplied when

they have conformable partitions [25], i.e., the block ma-
trix itself and the individual blocks obey the rules of matrix
multiplication. For example, X⊺X can be calculated as sum
over its k splits (i.e., matrix blocks X1 . . .Xk) using the dis-
tributive law: ∑k

i=1 X⊺
i Xi. This allows us to pre-compute the

matrix multiplication of the individual splits X⊺
i Xi once out-

side of the cross-validation loop (Figure 3, Step B ). In each
particular iteration, the pre-computed results of the test-set
splits have to be added to calculate the final result (Fig-
ure 3, Step C ). The time complexity for X⊺X for a matrix
with m rows and n columns is O(n ∗m ∗ n). Under regu-
lar execution, the multiplication has to be executed for each
training set with m−m

k
rows and n columns. Thus, the over-

all complexity for all k iterations in the regular execution is
O(k[n∗(m−m

k
)∗n]) ≡ O((k−1)mn2). In the optimized exe-

cution, the multiplication is performed once for all individual
splits in Step B . Each split has m

k
rows and n columns, re-

sulting in the complexity of O(k[nm
k
n]) ≡ O(mn2) for all k

splits. In each iteration k we only have to add (k − 1) pre-

3
Ridge regression is used for presentation reasons only – other algo-

rithms, e.g., generalized linear models are supported as well.



Table 2: Linear algebra operations and their respective cost
in cross-validation. ⊕ stands for element-wise operations.

Operation Time Complexity

Baseline Pre-Computation Per-Iteration Baseline Static Loop Ratio

X⊺X ∀i,0 < i ≦ k ∶ X∗
i = X⊺

i Xi ∑k−1
i=1 X∗

i (k − 1)mn2 mn2 (k − 1)kn2 1 ∶ (k − 1)
XX⊺ ∀i,0 < i ≦ k ∶ X∗

i = XiX
⊺ concat X∗

[i..k] kn(m − m
k
)2 m2n (k − 1)m2 1 ∶ (k − 2)

X⊺y ∀i,0 < i ≦ k ∶ y∗i = X⊺
i yi ∑k−1

i=1 y∗i (k − 1)mn mn (k − 1)kn 1 ∶ (k − 1)
Xy ∀i,0 < i ≦ k ∶ y∗i = Xiy concat y∗[i..k] kn(m − m

k
) mn (k − 1)m 1 ∶ (k − 1)

X⊕X ∀i,0 < i ≦ k ∶ y∗i = Xi ⊕Xi concat X∗
[i..k] (k − 1)mn mn (k − 1)mn k ∶ (k − 1)

calculated partitions of size n × n, resulting in the overall
complexity of O(k[(k − 1)nn]) for all iterations.

Cost Improvements. ML algorithms are composed of
several operators for which we also exploit the data redun-
dancy introduced by cross-validation. Table 2 (Time Com-
plexity) shows a cost comparison for matrix-matrix, matrix-
vector and element-wise operations. The calculation depicts
the overall cost of executing the operator k times during
cross-validation on a feature matrix X with m rows and n
columns. X is divided into k splits and each split has m

k
rows

and n columns. This results in m− m
k

rows per training set.
Baseline shows the combined cost to execute the operator
for all training sets, i.e., the overall cost for using the opera-
tor in standard k-fold cross-validation. Static is the one-time
cost for the part of the operator that can be pre-computed
statically on each split. Loop is the combined cost to cal-
culate the final result based on the statically pre-computed
values for all cross-validation iterations for the particular
operator. Ratio depicts the ratio between the complexity of
the baseline and the optimized version, e.g., 1 ∶ (k−1) means
the baseline has (k − 1) × more time complexity. Such cost
computations can also be applied to estimate the additional
memory required to store pre-computed results.

Eliminating Redundant Computations. We introduced
the cross-validation function in Lara’s IR. Lara pattern
matches calls to the cross-validation function and uses the
combinator view to represent the linear algebra operations
of the cross-validation UDF. It then traverses the combina-
tor view of the UDF in post-order (i.e., from the sources)
and checks if rewrites can be applied based on the rules
of the currently traversed operator node. Matching oper-
ator nodes are split and the algorithm extracts operator
trees for the Pre-Computation. The former sub-trees in the
original tree are replaced with calls to their results, as de-
picted in Figure 4 for the ridge regression example. Two
trees for the Pre-Computation are created, which calculate
the matrix-matrix multiplication for X⊺X and matrix-vector
multiplication X⊺y for the individual splits (Table 2 (Op-
eration)). The extracted sub-trees from the Per-Iteration
tree are replaced with the operation of the corresponding
sub-tree root node (Table 2 (Per-Iteration)). An additional
optimization pass eliminates remaining shortcomings once
the optimization for the cross-validation body is finished,
e.g., dead code elimination and common subexpression elim-
ination (CSE) [6]. For instance, after the two trees for the
Pre-Computation are created, the transposition (⊺) of the
splits X[1..k] would be calculated for each tree separately.
After CSE, the transposition is executed only once.

Often, cross-validation is also part of an outer loop (e.g.,
when different hyperparameter candidates are validated). In
such cases, Lara moves loop-invariant Pre-Computations out
of the loop. As a result, the Pre-Computations are computed

X[1..k] X[1..k]

⊺

∗∗

X[1..k] y[1..k]

⊺

∗∗

Pre-Computation

eye λ

∗sum(x∗[k−1])

+

sum(y∗[k−1])

∖

Per-Iteration

Figure 4: Optimized operator tree for ridge regression.

only once in our example and we improve the performance
by a factor of 1 ∶ (k − 1) ∗ h compared to naive execution,
where h denotes the number of hyperparameter candidates.
Thus, larger hyperparameter spaces can be explored in the
same time, which potentially finds better models.

5. EVALUATION
We implemented Lara and the outlined optimizations in

Scala, based on Emma v0.2.3. Operations on collections are
backed by Scala Streams. The matrix/vector types apply
netlib-java v1.1.2 for native BLAS routines in case of dense
data, and ScalaNLP Breeze v0.13.1 for sparse data.

Experiment Setup. We conducted our experiments on a
server node with a Intel E5530 processor (2.4GHz, 8 cores),
and 48GB main memory. We run on Oracle Java 8 VM
(build 1.8.0 72-b15, -Xmx40g) and use Scala version 2.11.11.

Datasets. We conducted our experiments on synthetic data
and two real world datasets: (i) the Criteo4 dataset contains
click feedback of display ads. (ii) The Reddit5 dataset con-
tains comments of the news aggregator website reddit.com.

Overview. We evaluate the optimizations for the prepro-
cessing pipelines based on the introductory example (Sec-
tion 3.1) and our running example (Listing 1) and validate
the importance of operator pushdown in Section 5.1 and 5.2.
We measure the impact of data layout optimizations on
ML algorithms for dense and sparse data in Section 5.3.
We benchmark the optimizations for cross-validation in Sec-
tion 5.4 and hyperparameter tuning in Section 5.5.

5.1 Preprocessing
In this experiment, we evaluate the presented optimiza-

tions on the preprocessing pipeline of our running example
depicted in Listing 1, Line 3 – 9. We conducted the bench-
mark on differently sized versions of the Criteo dataset.
We evaluate the impact of operator fusion and pushdown
on each of the three preprocessing steps in Figure 5. Fig-
ure 5a depicts the runtime without pushing the normaliza-
tion to the array representation of the data, while the push-
down is performed in the experiment represented in Fig-
ure 5b. Encode includes reading and converting the lines
of the raw datafile to an array representation, as well as
dummy encoding the categorical features to sparse vectors
(Listing 1, Line 4). Normalize transforms the numerical fea-
tures to have zero mean and unit variance (Listing 1, Line 9).
Concat combines the numerical and the dummy encoded
features in a single sparse vector (Listing 1, Line 5 – 6).
In Figure 6, we compare Lara to scikit-learn, Spark, and
Tensorflow Transform on different data sizes.

Discussion. Baseline shows the runtime for the pipeline ex-
ecuted without any optimizations. Lara depicts the results

4
http://labs.criteo.com/2013/12/download-terabyte-click-logs-2/

5
http://files.pushshift.io/reddit/comments/

http://labs.criteo.com/2013/12/download-terabyte-click-logs-2/
http://files.pushshift.io/reddit/comments/


Normalize

Concat

Encode

(a) without pushdown

Normalize

Concat

Encode

(b) with pushdown

Figure 5: Preprocessing steps in detail on a 5GB sample.

Figure 6: Preprocessing on different data sizes and systems.

with operator fusion and function composition (Section 4.2).
Figure 5a depicts the results without operator pushdown for
the normalization. Thus, the normalization is executed on
sparse vectors. Under baseline execution, (i) the encoding is
conducted for each column separately, requiring 5∗2 passes
over the data. (ii) the value concatenation is executed in
two separate map operators, and (iii) the normalization is
applied to each column separately, requiring 10 ∗ 2 passes
over the data. Lara enables the following optimizations: (i)
Instead of separately encoding each column, a single fold
creates all column dictionaries and then leverages these for
encoding the column values in a single map operation. This
reduces the complexity to two passes, independent of the
number of encoded columns. (ii) Lara fuses the two map
UDFs for concatenating the vector into a single map, which
reduces the number of functions calls. (iii) The normaliza-
tion benefits in the same way as the encoding, and reduces
the number of passes to two. As the normalization is not
pushed to the array representation, access to the numeri-
cal features in the UDFs suffers from the slow element-wise
access of the sparse vectors: element-wise access requires a
binary search with a cost that is logarithmic in the number
of non-zero values of the row. Figure 5b depicts the results
with operator pushdown in the baseline and Lara. As the
elements are still stored in an array, read and write access
to the features has constant cost. The scaling benchmarks
in Figure 6 show that Lara and Spark scale linear with the
increasing data size. Both execute in a streaming fashion
and thus, are not affected by growing data sizes. Scikit-
learn loads the whole dataset in memory, which leads to
degrading performance for larger data sizes.

Results. The baseline without pushdown of the feature nor-
malization takes 5.75× longer than Lara without pushdown
and 16.1× than the completely optimized version. Over-
all, the baseline with pushdown is 7.3× slower than Lara.
Lara improves the runtime for encoding by 4.7× compared
to the baseline as the number of passes over the data is
independent from the number of encoded features. Normal-
ization with pushdown is 12.5× faster. This is roughly twice
as much improvement compared to the encoding. This is
expected as twice as much columns are normalized. Even
though the access to the columns in logarithmic time de-

grades the overall runtime of Lara without pushdown, it is
still 6.2× faster than the baseline without pushdown. Con-
catenation of the features to a single sparse vector requires
no data materialization, as only map operators are used.
Thus, the baseline and Lara can both stream data, and the
function composition applied by Lara does not yield sig-
nificant benefits. Figure 6 shows that scikit-learn initially
outperforms single core Spark but degrades heavily and fails
to execute for the 25GB sample due to out-of-memory er-
rors. It already uses 15GB of memory for the smallest sam-
ple. For the 15GB sample, scikit-learn uses the whole 48GB
main-memory available on the cluster node, which leads to
10.7× worse performance compared to the initial data sam-
ple. Lara outperforms scikit-learn by 2.1 and 7.3×. Lara
consistently executes around 3× faster than single threaded
execution in Spark. Spark with 8 parallel executors outper-
forms Lara (on a single core) by a factor of 2.2×. Tensorflow
runs on Apache Beam, but only supports Google Dataflow
and the unoptimized DirectRunner as backends in the mo-
ment. We ran Tensorflow Transform (TFT) on our cluster
node with the DirectRunner, which failed with an realloc
error after successfully applying the preprocessing for the
5GB sample. It fails to execute on the larger samples.

5.2 Operator Pushdown
In this experiment series, we evaluate the effects of op-

erator pushdown based on Line 6 – 14 in the introductory
example in Section 3.1, which applies a filter on the third
column of the vectorized join result. The baseline executes
the pipeline as specified, applying the filter on the matrix
type. Lara pushes the filter application to the DataBag rep-
resentation, before it is converted to a matrix. We con-
duct the experiments on a normalized version of the Reddit
dataset with 1.4 million users and 31 million comments. The
vectorize UDFs extract the id, down-votes, up-votes, and
perform feature-hashing [68] of the n-grams obtained from
the user-name (n = 2) and comment-text (n = 10) to a fixed,
sparse vector space of 10000 and 50000.

Discussion. As described in Section 5.1, the element type
of the DataBag representation (product types for user and
comment) provides constant time access. The filter UDF
of the forRows method is called for each row of the CSR
matrix. Element-wise access to a particular value in the
sparse row vector has logarithmic complexity. In a CSC
matrix, the filter UDF could be evaluated for all non-zero
values of the vector that represents the filtered column, but
would require a conversion beforehand. It is important to
note that the pushdown is only possible, because the filter is
applied on the numerical feature down-votes. An inherent
barrier for the pushdown of a function f , applied on columns
c, is any previously applied function g, which is applied on
the same columns c and has no inverse function. The feature
hashing transformation has no inverse and thus, prevents
operator pushdown.

Results. Lara takes 120.60 seconds to create the matrix
representation of the filtered join result. Without filter push-
down, the execution is 7.3× slower and takes 881.41 seconds.

5.3 Data Layout
In this experiment series, we benchmark the impact of

the matrix data layout on the performance of ML algo-
rithms. We first evaluate ridge-regression as shown in List-
ing 1, Line 17 – 20. It calculates the solution directly using a



Table 3: Benchmarks on data access patterns.

Algorithm Variant
Feature Layout

column-wise row-wise

Ridge Regression
Scala 22.81 ± 0.155 s 56.57 ± 0.346 s
BLAS 0.44 ± 0.272 s 0.46 ± 0.072 s
BLAS+Convert 0.63 ± 0.003 s 0.64 ± 0.097 s

Logistic Regression w/ BGD

1 Iteration
Breeze 1.36 ± 0.074 s 1.53 ± 0.075 s
Breeze+Convert 0.09 ± 0.002 s 0.07 ± 0.003 s

Logistic Regression w/ BGD

100 Iterations
Breeze 130.37 ± 2.579 s 168.99 ± 8.080 s
Breeze+Convert 0.92 ± 0.143 s 0.87 ± 0.041 s

1 var weights = Vector(...) // initialize weight vector
2 for (_ <- 0 until Iterations) {
3 val hyp = X ** w
4 val exp = hyp.map(value => 1 / (1 + math.exp(-1 * value)))
5 val loss = exp - y
6 weights = weights - alpha * ((X.t ** loss) / X.numRows)
7 }

Listing 2: Logistic regression with BGD in Lara.

solver. Next, we evaluate logistic regression with batch gra-
dient descent (BGD). The algorithm calculates the model
iteratively over a fixed number of iterations. An implemen-
tation in Lara is depicted in Listing 2. We use a synthetic
dataset with 10000 rows and 1000 columns.

Discussion. All results are depicted in Table 3. Ridge re-
gression is conducted on dense data with row- and column-
wise formats of feature matrix X. Scala depicts the result for
our own Scala implementations of dense linear algebra op-
erators. BLAS depicts the results with BLAS instructions.
BLAS+Convert depicts the results with BLAS and enforcers
that establish the desired data layout for the dgemm instruc-
tion. Scala executes the plan depicted in Figure 2a for row-
wise and column-wise features. BLAS executes the variant
shown in Figure 2b for both layouts. For row-wise features,
BLAS+Convert executes the plan shown in Figure 2c. For
column-wise features, BLAS+Convert executes a plan vari-
ant that converts the input to the transpose (⊺), both for
the dgemm and dgemv instruction, to achieve a compliant data
layout. The results for logistic regression are conducted on
sparse data (10 percent non-zero values). Analogous to the
ridge regression example, we conducted the experiments on
row- and column-wise features X. Breeze depicts the results
for Lara, which internally uses the Breeze library to execute
sparse linear algebra on matrices in compressed sparse row
(CSR) and column (CSC) layout. Breeze+Convert depicts
the results when an enforcer establishes the desired data
layouts of the operators (Listing 2): for row-wise features,
Breeze+ Convert converts the feature matrix X used in the
multiplication with the loss vector X.t ** loss; for column-
wise features, Breeze+Convert introduces an enforcer for X
read in the multiplication with the weight vector X ** w.

Results. The benchmarks for ridge regression on dense
data show the importance of specialized physical operators.
BLAS is 51.8× faster for column-wise and 122× faster for
row-wise features compared to the Scala implementation.
For the Scala implementation, the column-wise feature lay-
out matches the properties of the operators (Figure 2a) and
is 2.4× faster than the row-wise feature layout. Converting
the matrix for the BLAS instructions (BLAS+Convert) in-
troduces a performance overhead of 1.43× for column and
1.39× for row-wise features: faster execution of the BLAS
instruction can not overcome the overhead of the conversion.

The experiments for sparse data show the importance of
choosing the best-suited data format. The initial feature
layout only satisfies the access pattern of one of the two

5000 10000 50000 100000

rows

100

101

102

t
im

e
 [

s
]

Baseline Lara

(a) 5 folds, dense data

5000 10000 50000 100000

rows

100

101

102

103

t
im

e
 [

s
]

Baseline Lara

(b) 10 folds, dense data

Figure 7: Cross-validation with ridge regression.

matrix-vector multiplications. Column-wise partitioned fea-
tures are slightly faster, as the loss vector used in X.t **

loss is larger than the weight vector (by factor 10 in our
experiments). The variants that introduce an enforcer to
satisfy the desired access pattern of the operators increase
the performance by a factor of 15.1× for 1 and up to 141.7×
for 100 iterations in case of column-wise partitioned fea-
tures. A enforcer for row-wise partitioned features brings
the execution time on par with the column-wise features
and achieves an up to 194× performance improvement for
100 iterations. This is due to the asymptotic access cost,
which changes from logarithmic to constant.

5.4 Cross-Validation
In this experiment series, we benchmark the impact of the

proposed rewrites for cross-validation. We evaluate ridge
regression as shown in Listing 1, Line 17 – 20 and logistic
regression with batch gradient descent (BGD) (Listing 2).
Each figure depicts the results for synthetic data with a fixed
number of columns (1000) and folds (5 and 10). The number
of rows in the dataset is scaled on the x-axis.

Ridge Regression Discussion. Figure 7 depicts the re-
sults for dense data. The Baseline implementation exe-
cutes the algorithm without the proposed optimizations for
cross-validation described in Section 4.4. Lara executes the
matrix-matrix and matrix-vector multiplications in a Pre-
Computation step on each split before the cross-validation
iterations are executed.

Ridge Regression Results. Lara is up to 65× faster than
the Baseline for five folds and up 136× faster for ten folds.
This heavily exceeds the expected ratio from the cost estima-
tion in Table 2. We relate this to the very small intermediate
result for the Pre-Computation of X⊺X. The intermediate
results for the individual splits have the size n × n, where n
is the number of columns in the training matrix X.

Logistic Regression Discussion. Figure 8a and 8b de-
pict the results on dense data, while Figure 8c and 8d depict
the results for sparse data. The experiment setup matches
the previous experiment series on ridge regression. In the
Baseline, the two most expensive operations are the multi-
plication Xw of the feature matrix X with the weight vector
w, and the multiplication X⊺loss of the transposed feature
matrix with the loss vector loss to calculate the gradient.
Lara is able to extract these operations to lower the compu-
tational complexity, as described in Section 4.4. The Pre-
Computation of the hypothesis hyp can now be calculated
for all k weight vectors wk in a single matrix multiplication
XkW, by stacking all weight vectors into a matrix W.

Logistic Regression Results. On dense data, Lara is up
to 4.8× faster for 5 folds and 8.6× faster for 10 folds than



5000 10000 50000 100000

rows

0

50

100

150

200

250

300

350

400
t
im

e
 [

s
]

Baseline Lara

(a) 5 folds, dense data

5000 10000 50000 100000

rows

0

200

400

600

800

1000

t
im

e
 [

s
]

Baseline Lara

(b) 10 folds, dense data

5000 10000 50000 100000

rows

0

100

200

300

400

500

t
im

e
 [

s
]

Baseline Lara

(c) 5 folds, sparse data

5000 10000 50000 100000

rows

0

200

400

600

800

1000

1200

t
im

e
 [

s
]

Baseline Lara

(d) 10 folds, sparse data

Figure 8: Cross-validation with logistic regression.

the baseline (Figure 8a and 8b). The impact of the redun-
dant computations in the baseline grows with the number
of rows in the training set. Additionally, Lara benefits from
the more efficient execution that leverages a single matrix-
matrix multiplication instead of multiple matrix-vector mul-
tiplications in the baseline. On sparse data, Lara achieves
a speedup of up to 1.2× for 5 folds and 1.4× for 10 folds
compared to the baseline (Figure 8c and 8d). The cross-
validation optimization is only beneficial once the number
of rows is larger than 50000 rows. In contrast to the dense
implementation, the Pre-Computations for sparse data can-
not leverage more efficient instructions, and the speedup is
solely based on the cross-validation optimization.

5.5 Hyperparameter Tuning
In this experiment series, we benchmark the performance

impact of our proposed rewrites for the cross-validation util-
ity function with hyperparameter tuning. We evaluate ridge
regression with different lambda values for the regularization
matrix, as shown in the running example. Next, we evaluate
logistic regression with BGD with different initializations of
the weight vector w. The feature matrix has 1000 columns in
both experiment series, while we scale the number of rows.
We tune for 5 different hyperparameters and validate them
with 5-fold cross validation. The logistic regression with
BGD runs for a fixed amount of 100 iterations.

Ridge Regression Discussion. Figure 9 depicts the re-
sults of the benchmark. The Baseline executes the cross
validation and hyperparameter loop without rewrites, but
uses BLAS instructions. We provide experiments for two
optimization variants: Lara (CV only) depicts the results of
optimized cross-validation without removing loop invariant
code. Lara depicts the results after the loop invariant code
is pulled out of the hyperparameter loop.

Ridge Regression Results. As expected, the baseline
implementation takes 5× longer than the single cross valida-
tion (Section 5.4). Lara (CV only) is up to 141× faster than
the baseline, which is analogous to the improvements for a
single cross-validation. Lara with all optimizations achieves
up to 800× speedups compared to the baseline and is up to
8× faster than Lara (CV only).

5000 10000 50000 100000
rows

100

101

102

103

ti
m

e
 [

s
]

Baseline Lara Lara (CV only)

Figure 9: Hyperparameter tuning for ridge regression.

5000 10000 50000 100000

rows

102

103

t
im

e
 [

s
]

Baseline Batch Lara

(a) Dense data

5000 10000 50000 100000

rows

102

103

t
im

e
 [

s
]

Baseline Batch Lara

(b) Sparse data

Figure 10: Hyperparameter tuning for logistic regression.

Logistic Regression Discussion. We evaluate the hyper-
parameter tuning for logistic regression on dense and sparse
matrix representation with 10 percent non-zero values. Fig-
ure 10a depicts the results for dense matrix representation
and Figure 10b for sparse matrix representation. We pro-
vide results for an implementation that uses batching as ad-
ditional baseline (similar to the approach presented in Tu-
PaQ [62]) to provide a reference point for our optimization.
Batching reduces the number of times the dataset has to be
read from n times (i.e., for each hyperparameter individu-
ally) to one time. It batches the model training by combin-
ing the weight vectors w (i.e., the hyperparameters) into a
matrix W, and thereby replaces n matrix-vector multipli-
cations h = Xw with a single matrix-matrix multiplication
Y = XW. Lara applies the optimizations presented in Sec-
tion 4.4. The hyperparameter loop adds an additional nest-
ing layer: we do not use a single weight vector w per split
k, but a matrix W, which contains all the weight candi-
dates as columns, thus hyp = [W0, ...,Wk]. Therefore, the
resulting Pre-Computation for the individual splits involves
k2 iterations, as shown in the following code snippet:

for (i <- 0 until k) {
for (j <- 0 until k) { // Wj from hyp-list

val h = X_traini ** Wj
val exp = h.map(value => 1 / (1 + math.exp(-1 * value)))
val loss = exp - y_traini
val si,j = X_traini.t ** loss

}
}

Logistic Regression Results. Batching outperforms the
baseline by up 5× for 10 hyperparameters. Lara achieves
speedups of up to 8× compared to the baseline. Up to 10000
rows, Lara and batching provide comparable performance.
For larger number of rows, Lara outperforms batching by
up to 1.8×. For the sparse matrix representation we can ob-
serve that the baseline outperforms batching and Lara until
a scaling factor of 50000 rows. For small number of rows, the
baseline is up to 1.5× faster. Batching outperforms Lara by
1.1× and the baseline by 1.2×. We account the loss in Laras
performance for smaller data sizes to the management and
access cost of the weight matrices for the different hyperpa-
rameters. In future work, we plan to integrate batching as
a rewrite rule for sparse data.



6. RELATED WORK
ML Libraries & Languages. SystemML [11] and Ma-
hout Samsara [60] have R-like linear algebra abstractions
and execute locally or distributed on Hadoop and Spark.
They apply pattern-based rewrites and inter-operator op-
timizations such as operator fusion, and SystemML’s exe-
cution strategy is based on cost estimates. Mahout Sam-
sara does not provide substantial relational algebra capabil-
ities. SystemML provides a transform function to apply
pre-defined feature engineering methods, such as dummy
encoding, binning, and missing value imputation, to raw
datasets. SystemML can fuse the specified transformations,
as their semantics guarantee disjoint column access. In con-
trast to Lara, users can not specify their own transforma-
tion UDFs in SystemML. OptiML [64] is a DSL for machine
learning based on the Delite [18] framework. It shares a lot
of ideas with Lara, as it provides pattern-based rewrites for
linear algebra operations and operator fusion to avoid in-
termediate results. OptiML does not provide optimizations
based on control flow analysis and is restricted to linear al-
gebra operations. KeystoneML [63] executes ML pipelines
on Apache Spark, automatically chooses solvers, and selects
data materialization strategies. Due to its type-based DSL,
KeystoneML can not apply operator re-ordering and fusion.
To the best of our knowledge, Lara is the first language ab-
straction to combine linear and relational algebra, which is
at the same time able to reason and optimize across the two
algebraic abstractions, control flow and UDFs.

ML Specific Optimizations. Kumar et al. [40] propose
learning of linear models on data in relational databases,
which was later extended to linear algebra operators [20].
In this work, linear algebra operations can be pushed down
to relations in databases, similar to [19]. Control flow, UDFs
and general preprocessing pipelines are not considered. Sys-
temML provides a ParFOR [14] primitive that executes the
body of the loop in parallel or distributed. The operator
fusion over loops, presented in Section 4.2, detects indepen-
dent tasks (e.g., encoding of distinct columns), but fuses
them instead of executing them in parallel. SystemML also
performs operator fusion [23, 13] and generates linear alge-
bra kernels based on skeleton classes. During a cost-based
selection, the best plan with regards to fusion and caching
for pipeline breakers is chosen. While the fusion techniques
used in SystemML are superior to those presented in this
work, SystemML does not consider collection processing for
fusion. Yuan Yu et al. [69] extend TensorFlow with support
for dynamic control flow, but, to the best of our knowledge,
do not perform control flow and UDFs analysis to apply re-
writes such as operator fusion. TuPaQ [62] is a framework
for automated model training and supports custom opti-
mizations such as batching to train multiple hyperparame-
ters for linear models in parallel, which can be integrated
in Lara. MLBase [38] provides high-level abstractions for
ML tasks and basic support for relational operators. Its
optimizer can choose between different ML algorithm im-
plementations. In contrast to Lara, it does not consider
relational operators during optimization and thus provides
no capabilities for holistic optimizations.

Execution Engines. Weld [51] focuses on efficient data
movement of data-parallel operators between different li-
braries. Domain-specific optimizations such as reordering
linear algebra and operator pushdown are not supported.

Scalable linear algebra on a relational database system [45]
proposes a system to efficiently execute and optimize linear
algebra over a parallel relational DBMS. It uses the for-
eign function interface of the DBMS to execute UDFs and
complex linear algebra operations, which prohibits holistic
optimizations and requires data movement in case of end-
to-end pipelines. Meta-Dataflows [17] proposes a framework
for exploratory execution of dataflows. It provides a high-
level API with ML algorithms as function calls and does not
focus on optimizing pipelines including UDFs.

7. CONCLUSION
In this paper, we present Lara, a DSL and IR for ML

training pipelines. We based Lara on three key require-
ments that a DSL design should adhere to, in order to en-
able holistic optimizations: (i) The user-facing API should
be declarative and provide dedicated types for both domains
– the execution order and operator implementation is inde-
pendent of the program specification. (ii) The complete
pipeline should be visible by the optimizer – next to the
data types and operations, UDFs and control flow have to
be analyzed to perform certain optimizations. (iii) The IR
should provide different levels of abstraction for diverse op-
timizations – a unified representation of types is required to
reason about operator fusion and pushdown, while domain-
specific optimizations require a high-level representation of
operator semantics. We showcase such a DSL and IR and
presented concrete optimizations for ML training pipelines.
Our evaluation shows that the proposed optimizations can
yield speedups of up to an order of magnitude.

Limitations & Future Work. Our prototype is not in-
tegrated in a dedicated runtime nor uses code-generation in
the moment. This would alleviate several shortcomings of
our current implementation: we did not yet implement a
robust caching mechanism, e.g., to test different models on
the same feature set. Memory-safe caching requires runtime
support; simply caching data in the Java Virtual Machine
(JVM) heap is subject to out-of-memory errors. Emma sup-
ports caching for the DataBag type, but Lara misses a robust
implementation for matrices in the moment. The common
view as monads enables fusion of linear algebra operators
with applications of UDFs. Lara currently does not apply
fusion of linear algebra operators and UDFs applications,
as our current dense (BLAS) and sparse (Breeze) backends
do not support fused operators. Future work could extend
our optimizations on data layout access patterns to generate
kernels for sparse linear algebra operations with UDF sup-
port and hardware-efficient code by integrating ideas from
recent work [36, 13, 42]. Furthermore, one could extend the
combinator view by integrating more data representations
(e.g., block-wise or compressed [24]). Finally, to support
layout optimizations for intermediate results, we plan to ex-
tend Lara with runtime code analysis and an cost-based op-
timizer. Layout decisions that are dependent on dynamic
control flow also require analysis at runtime, e.g., for condi-
tional operations that depend on predicates that have to be
evaluated at runtime.

Acknowledgments. This work has been supported by the
EU project E2Data (ref. 780245), the German Ministry for
Education and Research as BBDC 2 (ref. 01IS18025A) and
BZML (ref. 01IS18037A), and the Moore-Sloan Data Sci-
ence Environment at New York University.



8. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[2] A. Alexandrov et al. The stratosphere platform for big
data analytics. VLDB Journal, 23(6):939–964, 2014.

[3] A. Alexandrov et al. Implicit parallelism through deep
language embedding. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 47–61. ACM, 2015.

[4] A. Alexandrov et al. Emma in action: Declarative
dataflows for scalable data analysis. In SIGMOD,
2016.

[5] A. Alexandrov, G. Krastev, and V. Markl.
Representations and optimizations for embedded
parallel dataflow languages. ACM Transactions on
Database Systems (TODS), 44(1):4, 2019.

[6] R. Allen and K. Kennedy. Optimizing compilers for
modern architectures: a dependence-based approach,
volume 1. Morgan Kaufmann San Francisco, 2002.

[7] Apache Hadoop, http://hadoop.apache.org.

[8] A. W. Appel. Ssa is functional programming. ACM
SIGPLAN Notices, 33(4):17–20, 1998.

[9] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y.
Foo, Z. Haque, S. Haykal, M. Ispir, V. Jain, L. Koc,
et al. Tfx: A tensorflow-based production-scale
machine learning platform. In Proceedings of the 23rd
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
1387–1395. ACM, 2017.

[10] R. Bird and O. De Moor. The algebra of programming.
In NATO ASI DPD, pages 167–203, 1996.

[11] M. Boehm et al. SystemML’s optimizer: Plan
generation for large-scale machine learning programs.
IEEE Data Eng. Bull., 37(3):52–62, 2014.

[12] M. Boehm et al. SystemML: Declarative machine
learning on spark. VLDB, 9(13):1425–1436, 2016.

[13] M. Boehm, B. Reinwald, D. Hutchison, P. Sen, A. V.
Evfimievski, and N. Pansare. On optimizing operator
fusion plans for large-scale machine learning in
systemml. Proceedings of the VLDB Endowment,
11(12):1755–1768, 2018.

[14] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,
Y. Tian, D. R. Burdick, and S. Vaithyanathan. Hybrid
parallelization strategies for large-scale machine
learning in systemml. Proceedings of the VLDB
Endowment, 7(7):553–564, 2014.

[15] J.-H. Böse, V. Flunkert, J. Gasthaus,
T. Januschowski, D. Lange, D. Salinas, S. Schelter,
M. Seeger, and Y. Wang. Probabilistic demand
forecasting at scale. Proceedings of the VLDB
Endowment, 10(12):1694–1705, 2017.

[16] E. Burmako. Scala macros: let our powers combine!:
on how rich syntax and static types work with
metaprogramming. In Proceedings of the 4th
Workshop on Scala, page 3. ACM, 2013.

[17] R. Castro Fernandez, W. Culhane, P. Watcharapichat,
M. Weidlich, V. Lopez Morales, and P. Pietzuch.
Meta-dataflows: Efficient exploratory dataflow jobs. In
Proceedings of the 2018 International Conference on
Management of Data, pages 1157–1172. ACM, 2018.

[18] H. Chafi et al. A domain-specific approach to
heterogeneous parallelism. ACM SIGPLAN Notices,
2011.

[19] S. Chaudhuri and K. Shim. Including group-by in
query optimization. In VLDB, 1994.

[20] L. Chen, A. Kumar, J. Naughton, and J. M. Patel.
Towards linear algebra over normalized data.
Proceedings of the VLDB Endowment,
10(11):1214–1225, 2017.

[21] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A
flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[22] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream
fusion: From lists to streams to nothing at all. In
ACM SIGPLAN Notices, volume 42, pages 315–326.
ACM, 2007.

[23] T. Elgamal, S. Luo, M. Boehm, A. V. Evfimievski,
S. Tatikonda, B. Reinwald, and P. Sen. Spoof:
Sum-product optimization and operator fusion for
large-scale machine learning. In CIDR, 2017.

[24] A. Elgohary et al. Compressed linear algebra for
large-scale machine learning. PVLDB, 9(12):960–971,
2016.

[25] H. W. Eves. Elementary matrix theory. Courier
Corporation, 1980.

[26] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.
Spinning fast iterative data flows. Proc. VLDB
Endow., 5(11):1268–1279, July 2012.

[27] L. Fegaras and D. Maier. Optimizing object queries
using an effective calculus. ACM Transactions on
Database Systems (TODS), 25(4):457–516, 2000.

[28] A. Ghoting et al. SystemML: Declarative machine
learning on mapreduce. In ICDE, pages 231–242.
IEEE, 2011.

[29] J. Gibbons and N. Wu. Folding domain-specific
languages: Deep and shallow embeddings (functional
pearl). In ACM SIGPLAN Notices, volume 49, pages
339–347. ACM, 2014.

[30] G. Graefe and W. J. McKenna. The volcano optimizer
generator: Extensibility and efficient search. In ICDE,
pages 209–218. IEEE, 1993.

[31] J. Grus. Data science from scratch: first principles
with python. ” O’Reilly Media, Inc.”, 2015.

[32] T. Grust. Comprehending queries. 2000.

[33] T. Grust and M. Scholl. How to comprehend queries
functionally. Journal of Intelligent Information
Systems, 12(2):191–218, 1999.

[34] D. Harris and S. Harris. Digital design and computer
architecture. Morgan Kaufmann, 2010.

[35] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer,
R. Bergmann, A. Krettek, and K. Tzoumas. Opening
the black boxes in data flow optimization. Proceedings
of the VLDB Endowment, 5(11):1256–1267, 2012.

[36] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and
S. Amarasinghe. The tensor algebra compiler. Proc.
ACM Program. Lang., 1(OOPSLA):77:1–77:29, Oct.
2017.

[37] R. Kohavi et al. A study of cross-validation and
bootstrap for accuracy estimation and model



selection. In Ijcai, volume 14, pages 1137–1145.
Montreal, Canada, 1995.

[38] T. Kraska et al. Mlbase: A distributed
machine-learning system. In CIDR, volume 1, pages
2–1, 2013.

[39] A. Kumar, R. McCann, J. Naughton, and J. M. Patel.
Model selection management systems: The next
frontier of advanced analytics. ACM SIGMOD Record,
44(4):17–22, 2016.

[40] A. Kumar, J. Naughton, and J. M. Patel. Learning
generalized linear models over normalized data. In
SIGMOD, pages 1969–1984. ACM, 2015.

[41] A. Kunft, A. Alexandrov, A. Katsifodimos, and
V. Markl. Bridging the gap: towards optimization
across linear and relational algebra. In Proceedings of
the 3rd ACM SIGMOD Workshop on Algorithms and
Systems for MapReduce and Beyond, page 1. ACM,
2016.

[42] A. Kunft, A. Katsifodimos, S. Schelter, T. Rabl, and
V. Markl. Blockjoin: efficient matrix partitioning
through joins. Proceedings of the VLDB Endowment,
10(13):2061–2072, 2017.

[43] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for fortran
usage. ACM Transactions on Mathematical Software
(TOMS), 5(3):308–323, 1979.

[44] H. Lim, H. Herodotou, and S. Babu. Stubby: A
transformation-based optimizer for mapreduce
workflows. Proceedings of the VLDB Endowment,
5(11):1196–1207, 2012.

[45] S. Luo, Z. Gao, M. Gubanov, L. L. Perez, and
C. Jermaine. Scalable linear algebra on a relational
database system. IEEE Transactions on Knowledge
and Data Engineering, 2018.

[46] S. Mac Lane. Categories for the working
mathematician, volume 5. Springer Science & Business
Media, 2013.

[47] W. McKinney. Python for data analysis: Data
wrangling with Pandas, NumPy, and IPython. ”
O’Reilly Media, Inc.”, 2012.

[48] E. Meijer. The world according to linq. Commun.
ACM, 54(10):45–51, Oct. 2011.

[49] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler.
Everything old is new again: Quoted domain-specific
languages. In Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program
Manipulation, PEPM ’16, pages 25–36, New York,
NY, USA, 2016. ACM.

[50] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. Proceedings of the VLDB
Endowment, 4(9):539–550, 2011.

[51] S. Palkar et al. Weld: A common runtime for high
performance data analytics. In Conference on
Innovative Data Systems Research (CIDR), 2017.

[52] S. Palkar, J. Thomas, D. Narayanan, P. Thaker,
R. Palamuttam, P. Negi, A. Shanbhag,
M. Schwarzkopf, H. Pirk, S. Amarasinghe, et al.
Evaluating end-to-end optimization for data analytics
applications in weld. Proceedings of the VLDB
Endowment, 11(9):1002–1015, 2018.

[53] L. Parreaux, A. Voizard, A. Shaikhha, and C. E.

Koch. Unifying analytic and statically-typed
quasiquotes. Proceedings of the ACM on Programming
Languages, 2(POPL):13, 2017.

[54] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data,
pages 165–178. ACM, 2009.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

[56] A. Rajaraman and J. D. Ullman. Mining of massive
datasets. Cambridge University Press, 2011.

[57] T. Rompf, N. Amin, A. Moors, P. Haller, and
M. Odersky. Scala-virtualized: linguistic reuse for
deep embeddings. Higher-Order and Symbolic
Computation, 25(1):165–207, Mar 2012.

[58] T. Rompf and M. Odersky. Lightweight modular
staging: a pragmatic approach to runtime code
generation and compiled dsls. In ACM SIGPLAN
Notices, 2010.

[59] S. Schelter, F. Biessmann, T. Januschowski,
D. Salinas, S. Seufert, G. Szarvas, M. Vartak,
S. Madden, H. Miao, A. Deshpande, et al. On
challenges in machine learning model management.
Data Engineering, page 5, 2018.

[60] S. Schelter, A. Palumbo, S. Quinn, S. Marthi, and
A. Musselman. Samsara: Declarative machine learning
on distributed dataflow systems. In Machine Learning
Systems workshop at NeurIPS, 2016.

[61] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F.
Crespo, and D. Dennison. Hidden technical debt in
machine learning systems. In Advances in Neural
Information Processing Systems, pages 2503–2511,
2015.

[62] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin,
M. I. Jordan, and T. Kraska. Automating model
search for large scale machine learning. In Proceedings
of the Sixth ACM Symposium on Cloud Computing,
pages 368–380. ACM, 2015.

[63] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J.
Franklin, and B. Recht. Keystoneml: Optimizing
pipelines for large-scale advanced analytics. In Data
Engineering (ICDE), 2017 IEEE 33rd International
Conference on, pages 535–546. IEEE, 2017.

[64] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi,
M. Wu, A. Atreya, M. Odersky, and K. Olukotun.
Optiml: an implicitly parallel domain-specific
language for machine learning. In Proceedings of the
28th International Conference on Machine Learning
(ICML-11), pages 609–616, 2011.

[65] R. Y. Tahboub, G. M. Essertel, and T. Rompf. How
to architect a query compiler, revisited. In Proceedings
of the 2018 International Conference on Management
of Data, pages 307–322. ACM, 2018.

[66] A. Thomas and A. Kumar. A comparative evaluation
of systems for scalable linear algebra-based analytics.
Proceedings of the VLDB Endowment,



11(13):2168–2182, 2018.

[67] P. Wadler. Deforestation: Transforming programs to
eliminate trees. In European Symposium on
Programming, pages 344–358. Springer, 1988.

[68] K. Weinberger, A. Dasgupta, J. Attenberg,
J. Langford, and A. Smola. Feature hashing for large
scale multitask learning. arXiv preprint
arXiv:0902.2206, 2009.

[69] Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows,
A. Davis, J. Dean, S. Ghemawat, T. Harley,
P. Hawkins, M. Isard, M. Kudlur, R. Monga,
D. Murray, and X. Zheng. Dynamic control flow in
large-scale machine learning. In Proceedings of the
Thirteenth EuroSys Conference, EuroSys ’18, pages
18:1–18:15, New York, NY, USA, 2018. ACM.

[70] M. Zaharia et al. Spark: Cluster computing with
working sets. HotCloud, 10(10-10):95, 2010.


	Introduction
	Background
	Language and IR
	Language Design Decisions
	Intermediate Representation

	Optimizing End-to-End Pipelines
	Operator Pushdown
	Operator Fusion
	Choosing a Data Layout
	Cross-Validation

	Evaluation
	Preprocessing
	Operator Pushdown
	Data Layout
	Cross-Validation
	Hyperparameter Tuning

	Related Work
	Conclusion
	References



