
Doppler: Understanding ServerlessQuery Execution
Thomas Bodner, Tobias Pietz, Lars Jonas Bollmeier, Daniel Ritter

Hasso Plattner Institute, University of Potsdam
{thomas.bodner,daniel.ritter}@hpi.uni-potsdam.de,{tobias.pietz,lars.bollmeier}@student.hpi.de

ABSTRACT
Analyzing and understanding query execution dynamics in dis-
tributed cloud-based databases is difficult and requires laborious sys-
tem designs. Serverless query execution, with its massive amount
of small, short-lived, and stateless query workers, is even more
challenging. To meet this challenge and materialize the economic
benefits of serverless computing, all system components have to be
serverless themselves. We demonstrate Doppler, a serverless toolkit
designed to trace serverless data processing systems with minimal
performance and cost overhead and to provide a deep understand-
ing of their query execution. We highlight Doppler’s features and
capabilities through a proof-of-concept implementation with the
serverless data processing system Skyrise.

CCS CONCEPTS
• Information systems→ Database utilities and tools; Database
query processing; Relational parallel and distributed DBMSs; • Com-
puter systems organization→ Cloud computing.

KEYWORDS
Debug Logging, Performance Diagnosis, System Behavior, Server-
less Computing, Serverless Functions.

ACM Reference Format:
Thomas Bodner, Tobias Pietz, Lars Jonas Bollmeier, Daniel Ritter. 2022.
Doppler: Understanding Serverless Query Execution. In Big Data in Emer-
gent Distributed Environments (BiDEDE’22), June 12, 2022, Philadelphia, PA,
USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3530050.
3532919

1 INTRODUCTION
Recent work on serverless data processing systems [8, 14, 15] de-
veloped sufficient solutions for cost-efficient, interactive, analytical
query processing on large amounts of data that is required for cur-
rent enterprise and analytical applications. Therefore, these systems
leveraged serverless function-as-a-service (FaaS) technology like
AWS Lambda [3] or Google Cloud Functions [10] for interactive, in-
situ query processing and ad-hoc, massive scaling, as illustrated in
Fig. 1. However, working with massive amounts of cloud functions
/ serverless workers that communicate via a shared, serverless
storage and complex query plans (i. e., stage 1 to stage n), among

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BiDEDE’22, June 12, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9346-1/22/06. . . $15.00
https://doi.org/10.1145/3530050.3532919

Coordinator

Scheduler

Stage n

Query Compiler
Serverless Worker

Scheduler
Query Plans

λ

Stage 1
λλ λ

Import

Operator Operator

Operator

Export

Serverless Storage

lo
ad

 (b
as

e
ta

bl
es

)

store (result)

Figure 1: Serverless query execution engine.

others, many issues like delayed execution during load / store
(i. e., stragglers) [15]) can occur.

Moreover, the ad-hoc, short-lived, and ephemeral nature of these
functions, used for data processing, render the analysis and under-
standing of such distributed query processing difficult. Addition-
ally, to materialize the economic benefits of serverless computing,
systems have to be serverless themselves. Unfortunately, current
distributed tracing systems (e. g., Dapper [16]), database observ-
ability approaches (e. g., [7]), or serverless application tracing (e. g.,
[9, 12]) do not cover these challenges.

To make serverless query execution understandable, we devel-
oped Doppler, a serverless toolkit designed to trace serverless data
processing systems with a minimal cost and performance overhead
and provide a deep understanding of their query execution. Doppler
uses a post-mortem approach to cover a wide variety of use cases.
We highlight Doppler’s features and capabilities through a proof-of-
concept implementation with the serverless data processing system
Skyrise [8].

We discuss the Doppler toolkit and its features next. In Sect. 3,
we describe the scenarios we present in our demonstration and
highlight the utility of Doppler’s techniques.

2 THE DOPPLER DEBUGGING AND
PERFORMANCE PROFILING TOOLKIT

Doppler instruments query processing systems to generate and
disseminate traces with query context at little overhead.

Doppler then collects the traces resulting from distributed queries
“post mortem” to present multiple analysis techniques and visualiza-
tions. This process is depicted in Fig. 2 along the involved Doppler
components. Subsequently, we describe each process step in detail.

https://doi.org/10.1145/3530050.3532919
https://doi.org/10.1145/3530050.3532919
https://doi.org/10.1145/3530050.3532919

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA Thomas Bodner, Tobias Pietz, Lars Jonas Bollmeier, Daniel Ritter

Serverless Storage

Data

Serverless
Workers

Serverless
Workers...

Traces

Doppler
Trace

Library

Doppler Backend

Doppler User Interface1-4

Collector

Analyzer

load

an
al

yz
e

plot
interact

Figure 2: Doppler’s system architecture.

2.1 Putting Query Context into Traces
A serverless query processor may run many queries, each over a
multitude of serverless query workers. The workers each execute a
query stage’s physical sub-plan containing multiple operators (cf.
Fig. 1). In order to be able to match the resulting execution traces
back to a specific query run, every trace is enriched with context
information: A coordinator and a worker context (cf. Fig. 3).

The coordinator context includes the software version, user ID,
cloud provider region, query arrival time, a hash of the query SQL
string, and the active query stage. It allows linking a trace to a
query and stage. The worker context is provided by every individual
worker function and changes with the actively executed operator.
To allow for inter-operator parallelism, there are sub-contexts per
thread, such that traces of the threads are not intermixed. The
worker context links a trace to a cloud function invocation and a
query operator. Both the coordinator and the worker contexts can
be extended with additional user-defined attributes to allow further
contextualization of the traces.

A trace may represent metrics of the query execution or error
log messages. The metrics required by Doppler for its analyzes
include the start and end times of cloud function and operator
executions and the row counts and bytes consumed and produced
by the operators, amongst others. Errors include the HTTP request
status messages from third-party services, such as cloud storage
systems. We also install signal handlers, e. g., for out-of-memory
events and segmentation faults to report on these types of errors.

For our integration with Skyrise, we pass the coordinator context
to the worker as part of the JSON body of the AWS Lambda function
invocation request. On the worker side, the AWS SDK’s logging
facility is initialized with this context as prefix to every trace.

2.2 Collecting Traces from Serverless Functions
Doppler is targeted at engineers to conduct a posteriori analysis of
slow and failed serverless query executions. To help investigating
such pathological scenarios without the need for reproduction,
tracing has to be active by default. As such, the overhead of tracing
must be low in terms of both performance and operational cost.

For this reason, Doppler’s tracing library is built on top of the
base logging service of the cloud provider. In AWS, this is Cloud-
Watch Logs [2]. Other major cloud platforms offer similar services
at similar price points [11, 13]. From experiments not presented
in detail for brevity, the performance and cost overhead of this
approach is negligible, even when running queries with thousands

Query Context
Query Hash
Arrival Time

Stage Context
Stage ID

Function Context
Function Name
Log Stream ID
Invocation ID

Operator Context
Operator Name

Operator ID

Trace Body
Level
Tag

Message

Session Context
Software Version

User ID
Region ID

Skyrise-0.3.0; John.Doe; us-east-1; ...

... [INFO]; TupleCount; 5916815

 ...

Prefix:

... 8743b52063; 1648215263000; B64A ...

... WorkerFunction;D2...52; B1...59; AggregateHashOperator; F2...EC; ...

Coordinator

Worker

 ...

 ...

 ...

 ...

 ...

Figure 3: Context information for linking traces and queries.

of serverless functions over terabyte-scale datasets. The additional
request and storage cost incurred by the logging service is about
three orders of magnitute lower than the actual query cost.

After a query run ended with all related cloud functions shut
down, the query’s traces are typically available for retrieval from
the logging service within seconds (although this may take up to 10
minutes [1]). On the Doppler backend, the trace collector takes the
context information uniquely identifying a query run and fetches
all of the corresponding traces. The traces are parsed and combined
into a structured file (e. g., CSV) for subsequent analysis.

2.3 Analyzing Distributed Traces
The Doppler backend is written in Python and comprises a set
of interdependent modules for trace analysis. The modules have
been built out to study the pathological scenarios that we have
encountered in developing the serverless query processor Skyrise.

The core modules include functionality to correlate the traces
generated by the distributed query workers. For this, we rely on the
timestamps in the traces. In practice, we have not seen clock skew
between the workers to be an issue. All workers run in geographical
proximity to one another in a single cloud provider region. They
also employ the cloud provider’s clock synchronization service [6].
This results in clock skew in the range of milliseconds, which is
negligible for analyzing query traces spanning seconds to minutes.

To investigate straggler and concurrency issues common for dis-
tributed systems, one module matches the start and end timestamps
of the cloud functions and query operators to generate respective
runtime intervals. Another module intersects these intervals to
compute the degree of concurrency for every point in time during
the query run. These modules can be combined or extended to cover
further scenarios.

Doppler: Understanding Serverless Query Execution BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

2.4 Doppler User Interface
The results of Doppler’s analysis algorithms are presented visually,
e. g., as Matplotlib plots embedded into Jupyter notebooks, as
shown in Fig. 4.

The out-of-the-box set of plots from Doppler already provide a
holistic picture of a behavior a serverless query processing system.

In the notebooks, engineers can further refine these analyzes as
part of their profiling or debugging workflows. They can document
and share the notebooks, and work on them collaboratively, e. g.,
via a Jupyter server.

Figure 4: Doppler’s notebook-based user interface.

3 DEMONSTRATION SCENARIOS
Our demonstrations employ Doppler to diagnose the root causes of
slow and failed queries in Skyrise running TPC-H workloads [17].

Attendees take on the role of a database system engineer using
the Doppler user interface to profile or debug the serverless query
processor step-by-step.

In the following three scenarios, we run TPC-H queries on the
scale factor 1, 000 dataset with an uncompressed size of ˜750 GB.
Skyrise is configured to use at maximum 2, 400 concurrent workers,
each having 2 vCPUs and 2 GB of main memory. Skyrise is further
instrumented to trace the information described in Sect. 2.1.

The scenarios differ in the impediment that we introduce and in
how we configure AWS service quotas and Skyrise. From our expe-
rience developing Skyrise, we consider them highly relevant, since
they occur frequently or are cumbersome to investigate manually.

3.1 Straggling Query Worker
Our first scenario shows how Doppler can be used to detect and
investigate the common case of straggling query workers. Strag-
glers taking much longer to run than other workers may severely
impact overall query performance. Stragglers can occur due to a
variety of reasons, spanning from the underlying hardware and
software stack to unevenly sized data partitions and different data
distributions between partitions.

In this scenario, we induce data skew by assigning few selected
workers many more input partitions than their peer workers. To
identify stragglers, the runtime intervals of the workers can be
visualized in a bar chart as in the top half of Fig. 4. This chart
provides an intuitive overview of the individual worker runtimes,
showing that the slowest workers finish about 10 seconds later than
the majority of workers in the respective query stage.

The database engineer goes on to investigate by drilling down
from the worker runtimes to the runtimes of the operators executed
by workers, as can be seen in the bottom half of Fig. 4. There she
sees that the import operator executed by the straggling worker
takes significantly longer than in the other workers.

Given this investigation, the engineer compares the lists of input
partitions to the workers and concludes that the problem is rooted
in uneven input sizes.

3.2 Fatal Node Failure
In the second scenario, we use Doppler’s dataframe-based tabular
data processing capabilities (e. g., using pandas) to identify and
understand errors in a failed query’s traces. In the serverless setting,
some types of errors are more prevalent, while others are more
difficult to debug in the absence of assertions and debug symbols.
For example, serverless functions are subject to tight limits on
memory capacity and runtime that can be quickly exceeded [5].
Cloud functions may also be aborted halfway and reexecuted on
another physical host at the will of the FaaS platform’s control
plane. In such cases, the function’s process receives a kill signal.

To demonstrate how Doppler can help with fatal errors, we
inject a randomly occurring segmentation fault in Skyrise’s import
operator code. After this segmentation fault caused a query to fail,
the database engineer starts to get an overview by filtering the
failed query’s traces for error log messages. As can be seen in Fig. 5,
the error logs are enriched with the earlier discussed query context.
The engineer notices multiple occurrences of erroneous import
operator executions.

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA Thomas Bodner, Tobias Pietz, Lars Jonas Bollmeier, Daniel Ritter

Figure 5: List of all error log messages.

Figure 6: List of last error log messages from the worker that
ran into the marked error in Fig. 5.

To investigate further, the engineer filters for all the traces from
the worker that failed due to the error marked in Fig. 5. The result is
a list of the last messages logged by this worker (cf. Fig. 6, indicating
the root cause to be a memory access violation. The engineer can
use this information to isolate the error locally.

3.3 Serverless Function Concurrency Limit
In our third scenario, we migrate from the AWS default region
us-east-1 to us-west-1. In this region, the FaaS platform provider’s
function concurrency limits are lower [4]. The burst concurrency
limit is 500 and the default maximum concurrency is 1, 000 functions.
We run one of TPC-H’s scan-heavy queries (Q1 and Q6) and observe
a query runtime about three times as long as in us-east-1.

Suspecting straggling query workers, the engineer inspects the
worker runtime intervals as in Fig. 4. Not recognizing any particular
outliers, the engineermoves on to look into the operator-level traces
and plots the operator concurrency shown in Fig. 7a.

The engineer sees that each physical operator in query stage 1
is being executed in three distinct waves. Since this is not dictated
by the query plan, the engineer also plots the concurrency of the
compute resources as depicted in Fig. 7b. The concurrency limits
are shown by the horizontal lines. The burst concurrency limit
above which function invocations may get throttled is not an issue.
However, the overall concurrency limit does prevent the query’s
ephemeral cluster from growing to 2, 400 function workers. Thus,
the set of requested workers is being scheduled in three waves.

Given this insights, the engineer can configure AWS Lambda
with a higher concurrency limit. Alternatively, she can instruct
Skyrise to not generate query plans for more than 1, 000 workers.

REFERENCES
[1] Amazon Inc. 2022. Accessing Amazon CloudWatch logs for AWS Lambda. https:

//docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html (vis-
ited 03/2022).

[2] Amazon Inc. 2022. Amazon CloudWatch. https://aws.amazon.com/cloudwatch/
(visited 03/2022).

[3] Amazon Inc. 2022. AWS Lambda. https://aws.amazon.com/lambda/ (visited
03/2022).

(a) Physical query operator instances.

(b) Worker nodes in the ephemeral cluster.

Figure 7: Concurrency over the course of the query run.

[4] Amazon Inc. 2022. Lambda function scaling. https://docs.aws.amazon.com/
lambda/latest/dg/invocation-scaling.html (visited 03/2022).

[5] Amazon Inc. 2022. Lambda quotas. https://docs.aws.amazon.com/lambda/latest/
dg/gettingstarted-limits.html (visited 03/2022).

[6] Amazon Inc. 2022. Set the time for your Linux instance. https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/set-time.html (visited 03/2022).

[7] A. Beischl, T. Kersten, M. Bandle, J. Giceva, and T. Neumann. 2021. Profiling
Dataflow Systems on Multiple Abstraction Levels. In EuroSys. 474–489.

[8] T. Bodner. 2020. Elastic Query Processing on Function as a Service Platforms. In
VLDB 2020 PhD Workshop.

[9] M. C. Borges, S. Werner, and A. Kilic. 2021. FaaSter Troubleshooting - Evaluating
Distributed Tracing Approaches for Serverless Applications. In IC2E. 83–90.

[10] Google Inc. 2022. Cloud Functions. https://cloud.google.com/functions/ (visited
03/2022).

[11] Google Inc. 2022. Writing, Viewing, and Responding to Logs. https://cloud.
google.com/functions/docs/monitoring/logging/ (visited 03/2022).

[12] J. Manner, S. Kolb, and G. Wirtz. 2019. Troubleshooting Serverless Functions: A
Combined Monitoring and Debugging Approach. SICS 34, 2 (2019), 99–104.

[13] Microsoft Corp. 2022. Monitor Azure Functions. https://docs.microsoft.com/en-
us/azure/azure-functions/functions-monitoring (visited 03/2022).

[14] I. Müller, R. Marroquín, and G. Alonso. 2020. Lambada: Interactive Data Analytics
on Cold Data Using Serverless Cloud Infrastructure. In ACM SIGMOD. 115–130.

[15] M. Perron, R. Castro Fernandez, D. DeWitt, and S. Madden. 2020. Starling: A
Scalable Query Engine on Cloud Functions. In ACM SIGMOD. 131–141.

[16] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems
Tracing Infrastructure. In Google Technical Report.

[17] Transaction Processing Performance Council. 2022. TPC-H. https://www.tpc.
org/tpch/ (visited 03/2022).

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://cloud.google.com/functions/
https://cloud.google.com/functions/docs/monitoring/logging/
https://cloud.google.com/functions/docs/monitoring/logging/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 The Doppler Debugging and Performance Profiling Toolkit
	2.1 Putting Query Context into Traces
	2.2 Collecting Traces from Serverless Functions
	2.3 Analyzing Distributed Traces
	2.4 Doppler User Interface

	3 Demonstration Scenarios
	3.1 Straggling Query Worker
	3.2 Fatal Node Failure
	3.3 Serverless Function Concurrency Limit

	References

