MMlib: Efficiently Managing Deep Learning Models in a Distributed Environment

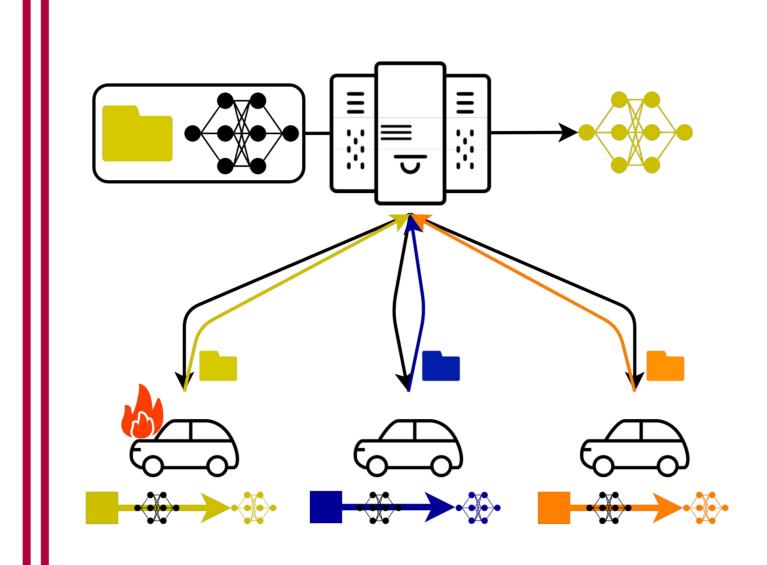
Nils Strassenburg, Ilin Tolovski, Tilmann Rabl

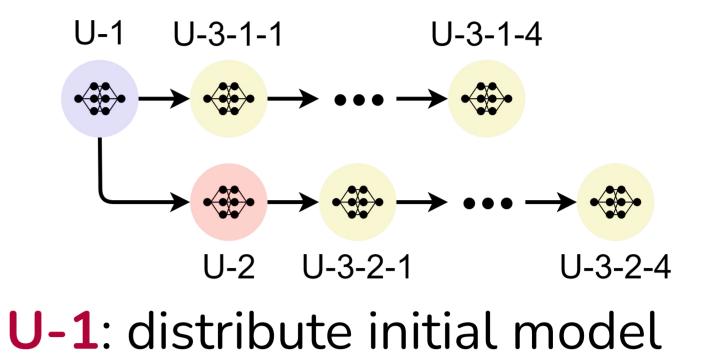
Contribution

» We present three approaches for saving and **recovering** exact representations of DL **models**.

» We evaluate all approaches in distributed environments for different model architectures,

Use Cases



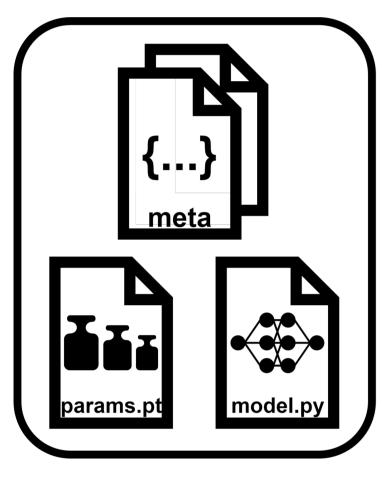


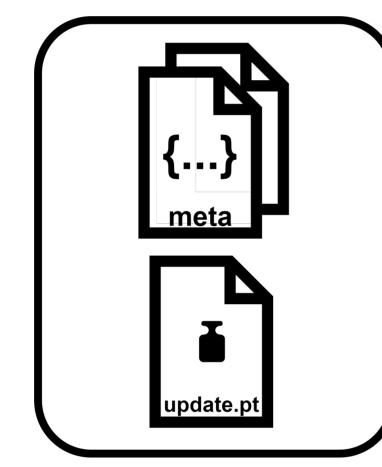
model relations, and datasets to **discuss trade offs**.

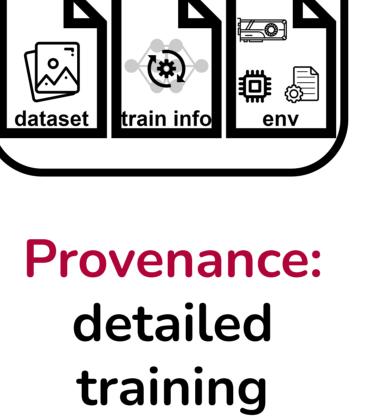
» We bundle all approaches together with a probing tool in a Model Management Library (MMlib).

U-2: update model on server **U-3**: update model locally **U-4**: recover model

Approaches







{...}

meta

Reproducibility

- To reproduce training ...
- » ... use same data, model, and parameters
- » ... make intentional randomness deterministic \rightarrow set seeds
- » ... make floating point computation deterministic \rightarrow use same software and hardware
 - \rightarrow only allow for deterministic implementation

name	fwd_idx	inp	out	grad_inp	grad_out
onv2d	186	same	same	diff	diff
lorm2d	187				diff
Conv2d	188				diff
xPool2d	189				diff
onv2d	190				diff
Norm2d	191				diff
Conv2d	192				diff
ception	193				diff
AvgP2d	194				diff

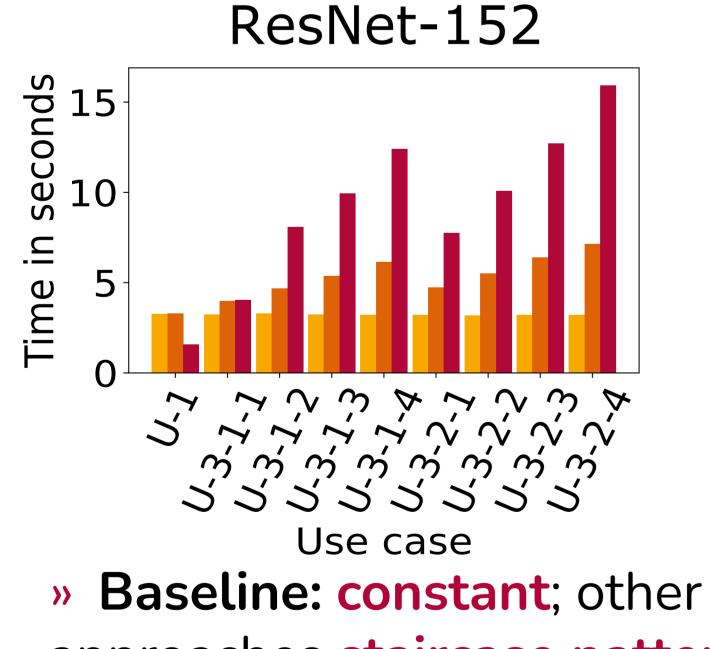
information

a[1]b[1] a[2]b[2] a[3] b[3] **Parallel Method**

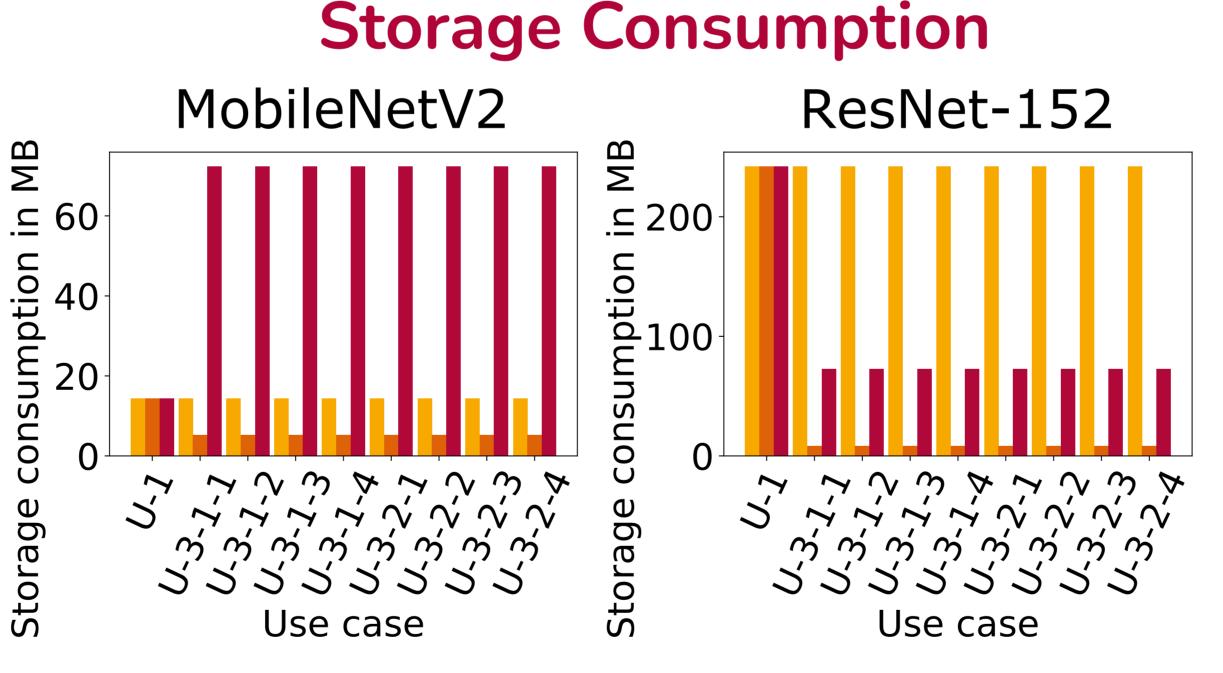
0.7843591354096908 -0.8261223347411677

Performance Evaluation

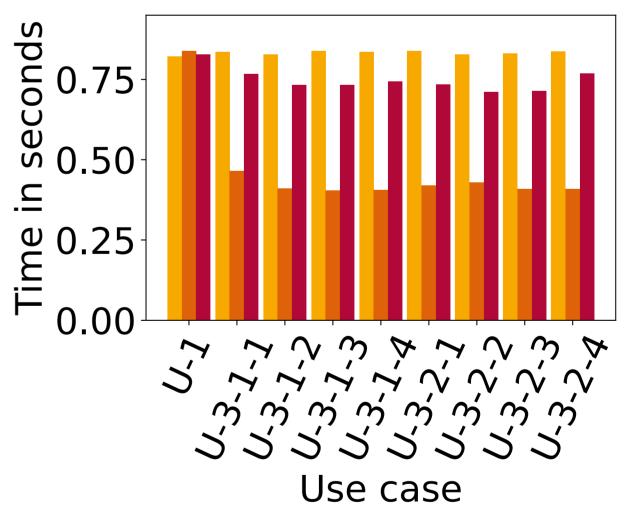
Time-to-Recover



- approaches staircase pattern
- » Update: slowly increasing
 - » **Provenance:** increase



Time-to-Save ResNet-152



- » Storage consumption depends on #parameters
- » Update: up to 95.6% improvement over baseline
- » **Provenance:** up to **70.0%** improvement over baseline
- » time-to-save dependent on amount of data

dependent on training time

» Critical factor: dataset size vs. #parameters

Summary

» Choose **Baseline when optimize for** time-to-recover, otherwise trade in for reduced storage consumption.

» Storage consumption: best approach depends on model relation, number of parameters and dataset size.

» When optimizing for **time-to-save** choose the approach with the **lowest** storage consumption.

Work published as "Efficiently Managing Deep Learning Models in a Distributed Environment" @ EDBT 2022 | 29th March - 1st April, 2022 | Edinburgh, Scotland

Acknowledgements: this work was partially funded by the European Union's Horizon 2020 research and innovation programme (ref. 957407)

Nils Strassenburg Data Engineering Systems Group Hasso Plattner Institute, Potsdam, Germany E-Mail: nils.strassenburg@hpi.de

