
Desis: Efficient Window Aggregation in Decentralized
Networks

Wang Yue
Hasso Plattner Institute
University of Potsdam

Germany
wang.yue@hpi.de

Lawrence Benson
Hasso Plattner Institute
University of Potsdam

Germany
lawrence.benson@hpi.de

Tilmann Rabl
Hasso Plattner Institute
University of Potsdam

Germany
tilmann.rabl@hpi.de

ABSTRACT
Stream processing is widely applied in industry as well as in re-
search to process unbounded data streams. Inmany use cases, spe-
cific data streams are processed by multiple continuous queries.
Current systems group events of an unbounded data stream into
bounded windows to produce results of individual queries in a
timely fashion. For multiple concurrent queries, multiple concur-
rent and usually overlapping windows are generated. To reduce
redundant computations and share partial results, state-of-the-art
solutions divide windows into slices and then share the results
of those slices. However, this is only applicable for queries with
the same aggregation function and window measure, as in the
case of overlaps for sliding windows. For multiple queries on
the same stream with different aggregation functions and win-
dow measures, partial results cannot be shared. Furthermore,
data streams are produced from devices that are distributed in
large decentralized networks. Current systems cannot process
queries on decentralized data streams efficiently. All queries in a
decentralized network are either computed centrally or processed
individually without exploiting partial results across queries.

We present Desis, a stream processing system that can effi-
ciently process multiple stream aggregation queries. We propose
an aggregation engine that can share partial results between
multiple queries with different window types, measures, and
aggregation functions. In decentralized networks, Desis moves
computation to data sources and shares overlapping computation
as early as possible between queries. Desis outperforms existing
solutions by orders of magnitude in throughput when processing
multiple queries and can scale to millions of queries. In a decen-
tralized setup, Desis can save up to 99% of network traffic and
scale performance linearly.

1 INTRODUCTION
We are witnessing an explosion of data generated in many do-
mains, from e-commerce [5, 7] to social media [20, 48] and in-
dustrial process control [29, 50, 61, 63]. The massive amounts of
data are produced in form of large-scale and high-velocity con-
tinuous data streams. Current SPEs such as Apache Flink [14],
Apache Spark Streaming [64], and Apache Storm [57] are de-
veloped to perform efficient data aggregation and can process
millions of events per second [26, 47], which is why they gained
wide adoption in industry and research [28]. These SPEs split
unbounded data streams into bounded windows and then process
each window separately [4]. Processing of interesting streams
often involves many simultaneous queries with the same keys

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

and selection predicates. This produces many concurrent win-
dows. Depending on the characteristics of queries, concurrent
windows are created with different window types, aggregation
functions, and window measures. This results in significant over-
lap of windows within but also across queries. Processing con-
current windows individually leads to redundant computations
and creates unnecessary resource consumption and performance
degradation [12, 52].

To avoid redundant computations, current research systems
utilize window slicing to cut overlapping windows into slices
and compute partial aggregations [9, 23, 24, 32, 33, 38, 39, 56].
They combine the partial results of slices instead of calculating
overlapping windows individually. However, these solutions are
limited to sliding windows and tumbling windows, in which
the window sizes are fixed. But for unfixed-sized windows, e.g.,
session windows and user-defined windows, they cannot split
windows and share overlaps. To overcome this limitation, Traub
et al. [58–60] presented Scotty, which can apply window slicing
to all window types. Scotty is limited to sharing partial results
between windows that have the same aggregation functions. For
example, if there are two windows that calculate sum and average
functions, Scotty processes two windows individually even if the
windows overlap and both use sum aggregation functions.

Current data streams are often distributed on massive amount
of devices [35, 36, 49]. They constitute large-scale and high-
velocity decentralized networks. Current designs for SPEs can
efficiently work with a limited number of data streams in a cen-
tralized network. To process data from decentralized networks,
current SPEs [14, 57, 64] are deployed in data centers and col-
lect distributed data from decentralized data sources. Therefore,
all data produced in decentralized data streams are required to
be collected [1]. This can lead to very high network costs for
large-scale setups.

To reduce network overhead and improve performance, sev-
eral research proposals [10, 43, 44, 66] off-load part of the data
processing that would be performed in data centers to devices
closer to data streams. Instead of sending every event, in these
deployments devices produce and transfer partial results. Data
centers then aggregate partial results to output final results. How-
ever, current solutions cannot efficiently process workloads with
multiple queries in a decentralized deployment. Disco [10] is
designed to process windows in a decentralized fashion and em-
ploys Scotty to process multiple queries on edge devices. It pushes
down all queries to edge devices and creates and processes con-
current windows there. Disco has intermediate nodes that ag-
gregate partial results from edge devices and send aggregated
partial results to its data center. For overlapping windows, Disco
employs Scotty to avoid duplicate calculations and to send partial
results of windows. As it is based on Scotty, Disco can also only
share partial results between windows with the same aggregation
functions. Also, window slicing is applied only on edge devices



and partial results from overlapping windows are transmitted to
and processed by intermediate nodes individually. This redun-
dant computation and transmission decreases performance and
increases the network cost of SPEs.

In this paper, we present Desis, an SPE designed to share com-
putation between concurrent windows with different window
measures, window types, and aggregation functions. Desis can ef-
ficiently process parallel queries with decentralized aggregation
on edge and fog computing environments. The main contribu-
tions of our paper are:

(1) We design and implement Desis, a stream processing sys-
tem that efficiently does multi-query processing in decen-
tralized and centralized networks.

(2) Desis features an aggregation engine that can process win-
dowed queries with the same keys and selection predicates
and share partial results between windows across differ-
ent window types, window aggregation functions, and
window measures.

(3) Desis’ aggregation engine applies decentralized aggrega-
tion to push down window aggregation to all the nodes
and processes concurrent windows in decentralized de-
ployments.

(4) Our extensive experiments in both decentralized and cen-
tralized scenarios show that Desis can improve perfor-
mance by orders of magnitude with respect to throughput
and network overhead.

The rest of the paper is structured as follows. Section 2 in-
troduces the foundation of stream processing that Desis is built
upon. In Section 3, we present an overview of Desis. In Section 4
and Section 5, we present the technical details of our aggregation
engine and decentralized aggregation. We finally evaluate Desis
in Section 6 and discuss related work in Section 7.

2 BACKGROUND
Stream processing engines process queries on long continuous
data streams and output results periodically. Depending on dif-
ferent use-cases, SPEs get a single or multiple data streams as
input and have to process multiple queries simultaneously. In this
section, we present some background in stream processing and
discuss the features of concurrent windows and decentralized
networks.

2.1 Windowing
To process queries within data streams, SPEs utilize windows
to divide infinite continuous data streams into finite data col-
lections. The window type is for SPEs to describe the windows
from continuous streams. In the Dataflow model [3], Akidau et al.
define three window types: tumbling windows, sliding windows,
and session windows. A tumbling window is defined by a length
l and divides the data stream into equally sized windows of this
length. The beginning of the new window is the end of the previ-
ous window. A sliding window is specified by a step size s and a
length l. s determines the direct distance between the beginning
of the new window and the beginning of the previous window, l
the length of the window.When s is equal to l, the sliding window
is a tumbling window. In the case when s is smaller than l, there
are consecutive overlaps between windows. In a session window,
the data stream is divided into an activity period and an inactiv-
ity period. When no events arrive for a time ;6 (gap) after the
last event, the window is ended and enters the inactivity period.
Examples of session windows are browser sessions and ATM

interactions. Besides the three window types described above,
there are also user-defined windows. User-defined windows are
determined by special events that mark the window start and
end.

The window type specifies when to start and end windows,
and the window measure decides how to measure events in a
window. A window can be determined by different measures,
e.g., based on time or count [13]. The definition of a count-based
window is similar to that of a time-based window, i.e., where
the length l in a count-based tumbling window is the number
of events per window. In addition, events from data streams
usually have different keys, e.g., speed, temperature, and humidity
and different queries have different selection predicates, e.g.,
WHERE speed = 80 KM/h and WHERE Temperature > 25. Events
with different keys and different selections have to be added to
individual windows, and those windows need to be processed
separately. We use window keys to mark windows that involve
different keys and selection predicates.

2.2 Aggregation Function
Aggregation functions define how to calculate events in a given
window. Gray et al. classify aggregation functions into three
types distributive, algebraic, and holistic based on their calcula-
tion method [21]. Distributive aggregate functions are able to
first calculate partial results for sub-parts of data and later merge
them to final results. A function F() is distributive, if there exist
a function G(), so that � „-0��=” = � „� „-0��8 ”� � „-8 ��=”” is true,
e.g., sum, count, and min. For algebraic aggregate functions, there
are functions G() and H(). The function G() returns an m and
passes it to H() as an argument. We let F() be distributive, and
an algebraic function is � „-0��=” = � „� „� „-0��8 ”� � „-8 ��=”””. Al-
gebraic aggregate functions can be computed from arguments,
which are from distributive aggregate functions, e.g., avg (as sum
/ count). Holistic aggregate functions cannot be represented by
partial results and require all events to determine the result, e.g.,
median or quantiles. Jesus et al. present terminologies that de-
scribe aggregation function as decomposable, self-decomposable,
and non-decomposable [30]. Self-decomposable functions can
be directly split and work on subsets of data. A decomposable
function consists of self-decomposable functions, it needs more
steps to calculate results than a self-decomposable function. Self-
decomposable functions refer to distributive functions and de-
composable functions refer to algebraic functions. For ease of
understanding, we merge the concept of self-decomposable func-
tion into decomposable. Decomposable functions include count,
sum, max, min, and average. Non-decomposable functions are
the same as holistic functions and cover median and quantile.

Overlaps:

Qc:
Timeline

Window a1 Window a2 Window a3

Window b1

Window c1

Window b2
Window b3

Qb:

Qa:

t0 t2t1 t3

...

...

...

...

...

t4 t5 t6

Figure 1: Overlap between &0 , &1 , and &2 .

2.3 Window Overlap
When processing multiple queries, systems have to create and
maintain concurrent windows. Once a window ends, all events in



that window are aggregated. In Figure 1, there are three queries,
&0, &1 and&2, their window types are tumbling, sliding, and
session, respectively. We �rst create windows according to win-
dow types separately atC0. We observe that betweenC0 andC1,
there is an overlap between window01, 11 and21. FromC2 to C3,
there is an overlap between window01, window11, window12,
and window21. All windows ingest events from the same data
steams and process the same events in overlaps. If we aggregate
those windows individually, overlaps in between will be repeat-
edly calculated, which is a waste of CPU resources. Besides, an
event is dropped only if this event has already been calculated
by all windows it belongs to. The duration of windows di�ers,
which leads to di�erent time spans that are bu�ered in memory.
For large windows, events are kept in memory for a long period
and consume a lot of memory until they are dropped. Therefore,
window-slicing techniques are utilized to share window overlaps.

2.4 Window Aggregation in Decentralized
Networks

In decentralized setups, data streams are distributed across dif-
ferent nodes. Current SPEs can execute either centralized or
decentralized aggregation to aggregate data. In centralized aggre-
gation, the topology of the network structure includes a center
and many data streams. We denote the center as the root node,
which serves as the central node of a decentralized network. All
data are collected from data streams and transferred to the root
node. The root node performs all window aggregations.

In decentralized aggregation, the topology is divided into three
types of nodes, which enables systems to distribute the com-
putation across nodes instead of loading all data into one root
node [10]. As shown in Figure 2, there are a root node, inter-
mediate nodes, and local nodes. In general, there are multiple
local nodes and intermediate nodes but only one root node in a
topology. Local nodes can connect to the root node directly or via
intermediate nodes. For complex networks, more intermediate
nodes are interconnected between the local and root nodes, and
there are more hops from a local node to the root node.

To process queries, local nodes create individual windows for
every query to collect data from data streams and then perform
aggregations to output partial results. Afterwards, intermediate
nodes create windows for each query again to aggregate par-
tial results from their child (local or intermediate) nodes and
send new partial results to their parent node (intermediate or
root). Finally, the root node builds windows and performs �nal
aggregations to output the �nal results.

3 SYSTEM OVERVIEW
In order to perform aggregations across a large number of queries,
we propose Desis. Desis is able to process multiple queries from
data streams that are distributed in decentralized networks.

3.1 Components of Desis
As shown in Figure 2, Desis has �ve components: interface, query
analyzer, window manager, aggregation engine, and message
manager. As the key component, we discuss the aggregation
engine in detail in Section 4. The user interface provides APIs
for users to invoke commands and pass queries into Desis. All
queries passed from the interface are collected in the query ana-
lyzer (QA). The QA analyzes queries and emits window attributes
of each query so that the system is able to create windows based

Figure 2: System architecture.

on them. The window attributes include keys, window types, win-
dow measures, and aggregation functions. The window manager
(WM) processes the actual windows. It starts and ends windows
based on their window type and measure, and then executes
windows via the aggregation engine. The message manager is
used to communicate between nodes, as Desis is distributed in
decentralized networks.

3.2 Fault Tolerance
Desis supports basic fault tolerance and can add and remove
queries and nodes during runtime. To add or remove a node,
users have to inform the root node of the IP address and port
of the node. The root node then adds or removes the node from
the Desis cluster and sends the new topology to all other nodes.
Desis has a timeout for every local and intermediate node. When
a node loses connection, Desis will remove this node from the
cluster and inform users. Desis can receive new queries and pass
queries to the query analyzer and every query has a unique ID.
The aggregation engine will receive the window attributes from
the query analyzer and process new queries. To remove a running
query, users have to provide the query ID and waiting time to
remove queries immediately or wait for the last window to end.

4 AGGREGATION ENGINE
In this section, we present theaggregation engine, which enables
sharing computation across multiple queries, windows, and ag-
gregation functions. To process multiple queries, current SPEs,
such as Flink [14], Spark [64], and Storm [57], create multiple
concurrent windows, one for each query. These windows are ex-
ecuted individually, even though the events in the windows are
the same. This causes redundant computation, even if windows
share the same window properties and aggregation functions.
Advanced approaches, like Scotty [60] and Cutty [15] are able to
slice windows and aggregate events that are in slices to output
results. They can share partial results between windows with dif-
ferent window measures and types, including tumbling, sliding,
session, and user-de�ned windows. But for windows that have
di�erent aggregation functions, they cannot share results.

To allow for sharing across aggregation functions, our aggre-
gation engine ensures that each event is processed only once
for multiple windows that have the same keys and selection
predicates. Instead of creating and executing windows for each
query, the aggregation engine �rst cuts windows into slices and
converts aggregation functions into operators. The aggregation
engine shares partial results of slices between di�erent windows



with di�erent window types, window measures, and aggregation
functions. As shown in Figure 2, the aggregation engine is used
in Desis to assist the window manager to process windows. In
decentralized setups, an aggregation engine is deployed on each
node to support pushing down windows for local processing.

4.1 Window Slicing
To avoid redundant computation between concurrent windows,
we use window slicing. It reuses partial results of each overlap
instead of processing all windows individually. This technique
not only improves the performance of our system but also reduces
the consumption of computational resources. Before describing
our approach, we de�ne the terms query-group and punctuation.

Query-Group: a query-group is a set of queries that partial
results can be shared between and in which every event is pro-
cessed only once. For multiple queries, current systems create
separate windows to process events. Our aggregation engine puts
queries that can be shared into one query-group and produces
slices instead of windows.

Punctuation: we use the term punctuation to identify when to
create or terminate a window. Each window has two punctua-
tions, a start punctuation (sp) and an end punctuation (ep). The
start punctuation marks the creation of a window and the end
punctuation marks a window end.

Figure 3: Windows slicing with multiple window types.

In Figure 3, we show how the aggregation engine processes
multiple queries.&0 has tumbling windows and there are no over-
laps.&1 has sliding windows and new windows are created before
old windows end, causing overlaps between windows.&2 and&3
contain non-�xed sized session and user-de�ned windows.&4
contains a tumbling count-based window and its windows can
be sliced as tumbling time-based windows. All �ve queries share
the same aggregation function while having di�erent window
types, and queries are all in one query-group. The aggregation
engine slices concurrent windows into several slices based on
their spandep. Regardless of how many concurrent windows are
processed, the aggregation engine creates a slice if there is ansp.
Slices are terminated when the aggregation engine meets anep
or sp. The aggregation engine then outputs the partial results of
that slices. For tumbling, sliding, and counting windows, punc-
tuations are a�ected by time and count measures and they have
�xed window sizes. For user-de�ned and session windows, win-
dow ends are dynamic as they are terminated with user-de�ned
events or gaps where there are no events.

4.2 Window Merging
To output results of every window, the aggregation engine per-
forms incremental aggregation for every event that arrives in

a slice. Once a window ends, the aggregation engine assembles
all slices based on their original windows. Given a slice, current
solutions are able to reuse computation results only if all win-
dows involved in this slice have the same aggregation functions.
However, for multiple queries with di�erent functions, current
window-slicing solutions still have to compute the partial results
of each slice individually [60]. To deal with that, our aggregation
engine breaks down aggregation functions into operators and
shares those operators between di�erent slices.

Aggregation Function Operator

sum sum
count count

average sum, count
product multiplication

geometric mean multiplication, count
max decomposable sort
min decomposable sort

median non-decomposable sort
quantile non-decomposable sort

Table 1: Relationship between aggregation functions and
operators

4.2.1 Aggregate Operators.Operators are the most basic ag-
gregation functions that a stream aggregation is broken down
into (Section 2). Instead of processing aggregation functions, the
aggregation engine shares operators between slices and executes
operators to provide intermediate results. When a slice is ter-
minated, the intermediate results from di�erent operators are
combined to output partial results of this slice.

We support many operators, e.g.,count, sum, multiplication,
square root, decomposable sort, andnon-decomposable sort. Given
two overlapping windows that calculate an average and a sum,
the average function can be broken into the sum operator and
count operator. All the windows have to execute the sum op-
erator and the aggregation engine can share this operator. For
each event, the aggregation engine performs only two aggrega-
tions (count and sum) instead of three (count, sum, and sum). For
overlapping windows that have multiplication and geometric av-
erage functions, we can share multiplication operators between
overlapping windows. We de�ne decomposable sort and non-
decomposable sort operators. Decomposable sort executes sort
incrementally and drops computed events. It can be shared be-
tween max and min. Non-decomposable sort keeps all events and
performs a �nal sort when the slice is ended. Its results can be
shared between max, min, median, and quantile.

In Table 1, we show the relationship between aggregation func-
tions and operators. Instead of executing separate aggregation
functions for windows, we utilize operators to share intermediate
results between di�erent functions. Also, for complex aggrega-
tion functions, users can de�ne new operators to break down
functions.

4.2.2 Multiple Aggregation Functions.Once a slice is termi-
nated, the aggregation engine has to calculate results by execut-
ing aggregation functions. Regardless of window types, there are
two scenarios: single aggregation function and multiple aggrega-
tion functions. The former scenario is discussed in the previous
solutions [60] and Cutty [15] and here we show the latter sce-
nario in Figure 3. The �rst two slices (slice1andslice2) are shared
among �ve queries. We let the aggregation functions of&0 and
&1 be max and median. The aggregation functions of&2, &3 ,



and&4 are sum, count, and average. Our aggregation engine
shares thenon-decomposable sortoperators between&0 and&1.
Also,sumandcountoperators are shared between&2, &3 , and
&4. With operators, we avoid individual computation of each ag-
gregation function and concurrent windows that have di�erent
aggregation functions can share partial results.

4.2.3 Non-Aggregate Operators.To �lter out events required
by di�erent queries, Desis provides additional operators. There
are two non-aggregate operators: selection and deduplication.
The selection operator can select events matching given predi-
cates. The deduplication operator drops events that are duplicated.
For queries that have non-overlapping selection predicates, the
aggregation engine puts them into the same query-group, e.g.,
WHERE speed > 80 KM/handWHERE Speed < 25 KM/h. The
aggregation engine can create multiple non-aggregate operators
for every window. When a slice is created, the aggregation engine
�rst checks all windows the slice is from and binds operators of
those windows to the slice. All selection operators are processed
separately and they all have individual results. In this case, every
event is still processed only once and the aggregation engine
does not need to maintain the context of many groups, i.e., the
list of slices and aggregation operators. If there are queries that
have the same selection predicates and keys, they will be put
into the same query-group as their results can be shared between
each. When processing queries that have overlapping selection
predicates or keys, queries are put into di�erent query-groups.

Figure 4: Aggregation engine processing multiple queries.

4.3 End to End Optimization
We now discuss the high-level query processing of our aggrega-
tion engine. In Figure 4, we pass three queries into our system.
&0 has tumbling windows with a max aggregation,&1 has slid-
ing windows and a quantile function. Query&2 contains session
windows and a median function. The aggregation engine �rst
puts the three queries into a query-group and converts their ag-
gregation functions into operators. For queries that have di�erent
keys or selection predicates, they can also be put into the same
query-group if their selections fully overlap or do not overlap.
For each incoming event, our aggregation engine performs in-
cremental aggregations and di�erent selection operators have
their own partial results. Whenever there is a punctuation, the
aggregation engine terminates the current slice and executes
operators instead of aggregation functions. For example,slice2is
shared between windowa1(&0), windowb1(&1), and windowc1
(&2) and has to calculate the max, quantile, and median. To calcu-
late the partial results ofslice2, the aggregation engine executes
a non-decomposable sortoperator. Afterwards, the aggregation
engine puts the partial results of this slice into a list and creates
the next slice. Each slice is marked to which original windows

it belongs, e.g.,slice2is mapped to windowa1, window b1, and
window c1.

Once there is anep, the aggregation engine has to terminate a
window. The aggregation engine �rst iterates over the list and
aggregates all partial results that belong to the window corre-
sponding to thatep. For example, we aggregate the partial results
of sclice1, sclice2, andsclice3to output the results of windowa1
and windowb1. Also the result of windowc1is assembled from
slice2, slice3, slice4, slice5, andslice6. The results from di�erent
selection operators are processed and produced individually. In
addition, if there are any partial results that do not belong to any
window, the aggregation engine will delete them from the list.

5 DECENTRALIZED AGGREGATION
In this section, we present Desis in a decentralized setup and show
how it executes concurrent queries with decentralized aggrega-
tion. In decentralized networks, data streams arrive at di�erent
nodes. Current stream slicing approaches, like Scotty [60] and
Cutty [15] must collect this data to a single node to aggregate
it. To process data decentrally, Disco [10] moves window ag-
gregation to the local nodes and utilizes Scotty to share partial
results on each node. However, Disco cannot e�ciently share
results between un�xed-size and �xed-size windows. When pro-
cessing a large un�xed-size window and many other windows,
the local node needs to keep a huge number of slices for a long
time. Also, the local node has to traverse these slices to calculate
results once the window ends. In addition, Disco only applies
the window-slicing technique in local nodes. Disco has to send
partial results per window to intermediate or center nodes even
though those results are from overlapping windows. Also, the
overlapping windows are processed individually on intermediate
and center nodes without sharing results. Compared to current
solutions [10, 15, 60, 62], Desis performs window slicing on all
nodes. Desis pushes down slices instead of windows to local
nodes and assembles the �nal results incrementally on the root
node. It is able to share partial results between di�erent concur-
rent windows on all nodes. Also, Desis does not send partial re-
sults per window but per slice, which further reduces the amount
of data that is sent through the network. Furthermore, Desis can
share partial results between windows with di�erent aggrega-
tion functions. In the following, we present how decentralized
aggregation processes di�erent window types for decomposable
and non-decomposable aggregation functions.

5.1 Decomposable Decentralized Aggregation
To reduce the computational load on the root node and the overall
network tra�c, Desis performs decentralized aggregations that
moves calculations and window slicing to all nodes. In local and
intermediate nodes, instead of processing concurrent windows
individually, Desis creates slices and aggregate them when they
end. It then sends the partial results to the parent node instead
of raw events. To distinguish between slices on the root, local,
or intermediate nodes, we call them root slices, local slices, and
intermediate slices, respectively.

5.1.1 Fixed-Sized Windows.Decentralized aggregation works
well with concurrent windows that have decomposable functions.
If we process only one tumbling or sliding window, windows
built on di�erent local nodes end at the same time. This is because
windows are time-based and their sizes are �xed. Concurrent
sliding and tumbling windows are also sliced into �xed-sized



slices. All local slices are created and terminated at the same time
even though they are from di�erent local nodes.

On intermediate and root nodes, the system has to collect par-
tial results from child nodes and merge them. However, systems
may face missing or duplicated slices. To overcome this, we use
an auto-incrementing id for each local slice. When a new local
slice is created, its id is the increment of the previous slice id. We
mark every partial result generated from local slices with its slice
id, so intermediate and root nodes can merge partial results by
aggregating results that have the same slice id. The intermediate
and root nodes reuse the slice id of the partial results they cal-
culated as their own ids and their results are marked with ids as
well. The length of an intermediate slice is equal to the number
of child nodes connected to it. Similarly, the length of a root slice
is the same as the number of children the root node has.

5.1.2 Unfixed-Sized Windows.When processing session win-
dows, a window ends when there is a long gap. The data in
each data stream is di�erent, which leads to di�erent gaps at
di�erent points in time. In this case, one local node can produce
more session slices than others, and the system cannot recognize
which session slices belong to the same session window. For
user-de�ned windows, the window ends depend on user-de�ned
events and the exact time of that events is unpredictable. One
such use case for a user-de�ned window would be computing
the maximum speed of cars for each trip. In local nodes, slices
are created to collect speed values for the car and the maximum
speed is calculated once the trip is done. In this case, slice sizes
of local slices are not the same, as slices for trips with di�erent
lengths are not �nished at the same time. Also, the �nal results
need to cover di�erent numbers of partial results from di�erent
nodes. So the slice sizes of both session windows and user-de�ned
windows are not �xed and di�erent local nodes have di�erent
slice sizes. To deal with session windows, our system lets each
session slice carry the start time and end time of its session gap.
The root node records the latest session gaps for each child node.
When all session gaps from di�erent child nodes cover each other,
the session window ends and all session slices are merged to out-
put the �nal results. For user-de�ned windows, we introduce a
watermark that allows the root node to terminate user-de�ned
windows timely and not be delayed by partial results from long
slices. The watermark also can be used by session windows to
terminate long session windows. Based on the above discussion,
our system can put �xed and un�xed windows into one query-
group and slice them at local nodes. The lengths of intermediate
and root slices are the number of their child nodes. Also, when
session gaps from child nodes cover each other or watermarks
are encountered, intermediate and root slices are terminated as
well. If a window ends, the aggregation engine will merge all
slices from that window to output the �nal results.

5.1.3 Decentarlized Aggregation with Fixed and Unfixed-Sized
Windows.In Figure 5, we show three example queries and they
are all time-based,&0 has tumbling windows and executes sum
functions.&1 and&0 execute average functions and they have
sliding and user-de�ned windows.

On the root node, the system puts&0,&1, and&1 into a query-
group and outputs window attributes. All windows produced
from that query-group can be shared, as they consist of the two
operatorssumandcount. Then, the message manager distributes
the window attributes of this query-group to local and interme-
diate nodes.

Figure 5: Decentralized aggregation processing a decom-
posable function.

On a local node, the aggregation engine splits windows into
local slices according to the window attributes that are received
from the root node. Then, the aggregation engine executes incre-
mental aggregations for every event. Otherwise, the aggregation
engine may get stuck since it has to spend a long time iterating
and computing all events in the slice. Once a local slice ends,
the aggregation engine executes its aggregation functions and
transmits partial results to the intermediate nodes. Also, if a local
slice is ended by an end punctuation (ep), the system will mark
this slice with theep.

On an intermediate node, our system creates an intermediate
slice and collects partial results from its child nodes for this
slice. When the intermediate slice receives all results from local
nodes, it calculates partial results and sends them to the root
node. If partial results from local nodes are marked with aep, the
intermediate partial result will keep thisep. Similar to local nodes,
we also perform incremental aggregations on intermediate nodes.
For example, in Figure 5, when there are two partial results of
s1, they are collected in theintermediate slice1. The intermediate
node ends theintermediate slice1and executes the underlying
operators.

On the root node, partial results from its child nodes are gath-
ered and incrementally calculated into a root slice. When a slice
ends, the aggregation engine executes aggregation functions and
saves its result. If intermediate partial results contain anep, the
aggregation engine has to assemble all partial results belonging
to this window and output the �nal result. In Figure 5, we ter-
minate the root slice when both partial results of intermediate
slices arrived. The partial result ofs2contains anep, and the root
node ends the window according to thisep.

5.2 Non-Decomposable Decentralized
Aggregation

For non-decomposable functions, e.g., median and quantile, all
events have to be collected from data streams to the root node.
This is needed because local nodes cannot perform partial aggre-
gations and output partial results. In a centralized aggregation,
all events are sent to the root node individually, which incurs a
high network overhead. To reduce network overhead, current
systems �rst batch events before transferring them [17]. They
set a uni�ed batch size and create windows on local nodes to
batch events. When the window size is equal to batch size, they
end the window and send it to parent nodes. The window sizes
are �xed and windows act as count-based tumbling windows.
In root nodes, the system has to �rst check each event to �nd
the window end and then sort events to give the �nal results.



Although they can reduce network overhead, they centralize all
computation in the root node.

To process non-decomposable functions e�ciently, our system
creates slices on local and intermediate nodes. Once a slice ends,
the local node batches all events in this slice and sends them to its
parent node. The root node collects all slice batches and put them
in its window and performs aggregation. So, for each arriving
batch, the root node behaves the same as process decomposable
functions but without incremental aggregations. We mark the
slice batch if there is aep. The root node terminates windows only
if the arrived slice batch carriesep. As sorting is necessary for
both median and quantile, the root node has to execute sorting
anyway. In our system, the local and intermediate nodes execute
non-decomposable sort operator for non-decomposable functions
so that the root node process sorted events.

Count-based windows cannot be processed locally, since only
the root node terminates count-based windows. For decentral-
ized aggregation, our system puts windows with decomposable
functions and count-based windows into di�erent query-groups
and processes them separately. However, count-based windows
can be put into the same query-group as windows with non-
decomposable functions because they are all calculated on the
root node. If we use centralized aggregation to process all win-
dows, count-based windows and all other windows can be put
into the same query-group and share partial results.

6 EVALUATION
In this section, we present our experimental design, evaluate the
performance of Desis, and compare it to state of the art.

6.1 Experimental Design
We conduct experiments on a 10-node cluster with 25G Ether-
net. Each node has two 18-Core Intel Xeon Gold 5220S CPUs
and 96 GB main memory. All nodes are running Ubuntu 20.04
and OpenJDK 1.8.0.312 64-bit. In our experiments, we measure
throughput, network overhead, and latency for Desis and relevant
baseline approaches. We report sustainable throughput [31], i.e.,
the throughput a system can process without an ever-increasing
backlog. We only consider sustainable network overhead in our
experiments. We calculate network overhead for all nodes in
the cluster including intermediate nodes. In decentralized net-
works, there are commonly multiple intermediate nodes ('hops')
between edge devices and the data center. Even though interme-
diate nodes only transfer data and do not process it, we cannot
remove these nodes. We evaluate the event-time latency instead
of process-time latency, which calculates the time from when
the event is created to when the result involving the event is
produced. In this case, we can avoid coordinated omission [55]
that leads to a signi�cant underestimation of latency [18].

6.1.1 Baselines.Besides Desis, we evaluate �ve baselines, cen-
tral bu�er (CeBu�er), Scotty [60], Disco [10], Desis bucket (De-
Bucket) [40, 41], and Desis Sharing Windows (DeSW). All base-
lines are implemented in Java. CeBu�er creates bu�ers for each
window and collects events to window bu�ers. When windows
end, it performs window aggregation. CeBu�er does not perform
incremental aggregation and every window has its own bu�er.
The Scotty baseline is developed based on the Scotty API, it can
perform incremental aggregation and share partial results be-
tween windows that have the same aggregation functions. Disco
is a decentralized system that uses the Scotty API. We modify the
data input of Disco to use our data generator. Disco can perform

incremental aggregations and perform window slicing on local
nodes. To make a fair comparison and measure the improvement
of Desis, we develop DeBucket and DeSW. DeBucket creates
buckets for every concurrent window and calculates arriving
events incrementally, but all the buckets are processed separately
even though there are overlapping buckets. DeSW is similar to
Scotty, which can process windows that have the same aggrega-
tion functions and window measures. Both DeBucket and DeSW
are developed based on Desis and they have the same architec-
ture that can calculate decentralized aggregations. Compared to
Debucket, DeSW creates buckets for di�erent functions. DeBu�er
and Scotty are centralized systems, and only one node processes
all events. They can be deployed on the same topology as Desis,
but only the root node processes events. Other nodes in networks
collect events from data streams or their child nodes and then
send data to parent nodes directly.

6.1.2 Generators.To simulate a decentralized network envi-
ronment, we generate data by replaying recorded data from a
synthetic dataset and we let the data generators read from di�er-
ent positions in the data set to simulate di�erent data streams.
Events in the data stream have four �elds,time, key, value, and
event. The data generator gives every event a timestamp. The
event values are from the DEBS 2013 dataset [46]. The �eld event
represents user-de�ned events of user-de�ned windows. The data
generator is con�gured with the key distribution, selection pred-
icates, the frequency of user-de�ned events and window gaps.
Our query generator can provide arbitrary queries with di�erent
keys, window types, aggregation functions, window measures,
and window sizes. The query generator is con�gured with the
distribution of the window keys, window length, window types,
window measures, and aggregation functions. In a decentralized
setup, we deploy a data generator on each local node and the
query generator on the root node.

6.2 End to End Performance
We �rst compare Desis, Scotty, Disco, and CeBu�er to study
overall performance. We focus on throughput and latency to
measure each system.

(a) Latency of a single win-
dow.

(b) Throughput of concurrent
windows.

Figure 6: End to end throughput and latency.

6.2.1 End to End Throughput and Latency.We �rst measure
latency of a single tumbling window query with an average
aggregation function with 10 distinct keys. We then execute
a set of windows that have equally distributed lengths from 1
to 10 seconds. We gradually increase the number of concurrent
windows from 1 to 1000 and measure their throughput. We deploy
all systems on a single node.

Results.In Figure 6a, we show latency of each system. We see
that CeBu�er has the highest latency. When new events arrive,
CeBu�er puts them into a bu�er for each window and performs



an aggregation function once the window ends. CeBu�er has to
iterate overall events of a window, every time when the window
is triggered. The other systems perform aggregation functions
incrementally for each event. Disco uses the Scotty API to process
events, but it uses a single thread to execute everything, e.g.,
receiving raw events, processing events, and sending results,
which a�ects its latency. Scotty is developed as a centralized
system and it does not send partial results through the network.

The results for queries with concurrent windows are shown
in Figure 6b. CeBu�er has a higher throughput than Disco for
a small number of concurrent windows, but its performance
drops sharply when the number of concurrent windows increases.
CeBu�er cannot share partial results between di�erent windows,
it has to process windows individually. The other systems can
share partial results and avoid redundant computations. The
throughput of both Disco and Scotty are stable at around 2 million
events/s and 5 million event/s, respectively and change only
slightly. Their performance is the same as in the single window
setup. Desis has the highest throughput at 28 million events/s
even when processing 1000 windows simultaneously. Desis is
able to calculate window ends in advance instead of checking
each arriving event.

Summary.Desis outperforms all baselines and has the lowest
latency. When processing concurrent windows with decompos-
able aggregation functions, its throughput is over 28 million
event/s and 5 times higher than Scotty's.

(a) Throughput of multiple lo-
cal nodes with average.

(b) Throughput of multiple lo-
cal nodes with median.

(c) Throughput of average. (d) Throughput of median.

(e) Throughput of distinct
keys.

(f) Throughput of concurrent
windows.

Figure 7: Throughput under di�erent setups.

6.2.2 Scalability.We �rst study scalability of each system, all
systems initially work on a 3-node cluster: one local node, one
intermediate node, and one root node. We gradually add local
nodes to the topology and measure their throughput. All local

nodes connect to one intermediate node. All systems execute
concurrent tumbling windows with average functions and 10
distinct keys. In the second experiment, we pro�le the throughput
of Desis on each node with di�erent constraints. We increase
the number of partial results per node to simulate an increasing
number of child nodes.

Results.The results of the scalability experiments with aver-
age and median aggregation functions are shown in Figure 7a
and Figure 7b. Scotty and CeBu�er have constant throughput
with an increasing number of local nodes. They perform all cal-
culations on the root node and all other nodes transfer events
to the root. Desis has a higher throughput than Disco since it is
able to push down and slice windows on local nodes and share
partial results on all nodes. Desis and Disco scale linearly with
the number of local nodes when processing average functions
since both systems perform decentralized aggregation. For the
median function, Desis still outperforms the other systems, but
its throughput slightly decreases with more local nodes. The
performance of the root node determines the overall throughput,
because its root node has to collect and process all events from
child nodes.

In Figure 7c(average), we see that the throughput of the root
node and intermediate node are at 6.01 million events/s and
6.21 million events/s, respectively. They only create windows to
collect partial results from child nodes in the intermediate nodes
and root node. Figure 7d shows the throughput of the root node
for a median aggregation function. All events are sent to root
nodes, so the throughput of the root node also limits the overall
performance of Desis.

In Figure 7e, we use a single query and vary the number of
keys. With more distinct keys the throughput of the local node
starts to drop while the performance of the root and intermediate
nodes is constant. For multiple queries that have di�erent keys,
Desis generate multiple selection operators for every slice. In this
case, every event on the local node has to go throughput many
selection operators, which decreases throughput. While the other
nodes just merge partial results from child nodes. In Figure 7f,
we measure concurrent windows with the same keys, and all
nodes stay at the same throughput even though they process one
thousand windows.

Summary.When processing decomposable functions, decen-
tralized aggregation bene�ts from adding nodes with respect
to throughput. The performance of decentralized aggregation
increases linearly with the number of nodes. In addition, one
root node or intermediate node can deal with a large amount of
child nodes. For non-decomposable functions, the root node is
the bottleneck of Desis.

6.3 Optimization Performance
In this experiment, we measure the impact of processing di�er-
ent concurrent windows. Windows have varying window types,
aggregation functions, and window measures but use the same
keys. We compare throughput between Desis and three baselines,
including CeBu�er, DeBucket, and DeSW. DeBucket cannot share
any partial results between queries. As a result, DeBucket pro-
cesses 1000 query-groups individually if we start 1000 queries.
DeSW can share partial results between windows that have the
same aggregation functions and window measures. The number
of individual query-groups for DeSW depends on the number
of aggregation functions and window measures. For example,




	Abstract
	1 Introduction
	2 Background
	2.1 Windowing
	2.2 Aggregation Function
	2.3 Window Overlap
	2.4 Window Aggregation in Decentralized Networks

	3 System Overview
	3.1 Components of Desis
	3.2 Fault Tolerance

	4 Aggregation Engine
	4.1 Window Slicing
	4.2 Window Merging
	4.3 End to End Optimization

	5 Decentralized Aggregation
	5.1 Decomposable Decentralized Aggregation
	5.2 Non-Decomposable Decentralized Aggregation

	6 Evaluation
	6.1 Experimental Design
	6.2 End to End Performance
	6.3 Optimization Performance
	6.4 Decentralized Performance
	6.5 Real-World Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

