
Desis: Efficient Window Aggregation in Decentralized
Networks

Wang Yue
Hasso Plattner Institute
University of Potsdam

Germany
wang.yue@hpi.de

Lawrence Benson
Hasso Plattner Institute
University of Potsdam

Germany
lawrence.benson@hpi.de

Tilmann Rabl
Hasso Plattner Institute
University of Potsdam

Germany
tilmann.rabl@hpi.de

ABSTRACT
Stream processing is widely applied in industry as well as in re-
search to process unbounded data streams. Inmany use cases, spe-
cific data streams are processed by multiple continuous queries.
Current systems group events of an unbounded data stream into
bounded windows to produce results of individual queries in a
timely fashion. For multiple concurrent queries, multiple concur-
rent and usually overlapping windows are generated. To reduce
redundant computations and share partial results, state-of-the-art
solutions divide windows into slices and then share the results
of those slices. However, this is only applicable for queries with
the same aggregation function and window measure, as in the
case of overlaps for sliding windows. For multiple queries on
the same stream with different aggregation functions and win-
dow measures, partial results cannot be shared. Furthermore,
data streams are produced from devices that are distributed in
large decentralized networks. Current systems cannot process
queries on decentralized data streams efficiently. All queries in a
decentralized network are either computed centrally or processed
individually without exploiting partial results across queries.

We present Desis, a stream processing system that can effi-
ciently process multiple stream aggregation queries. We propose
an aggregation engine that can share partial results between
multiple queries with different window types, measures, and
aggregation functions. In decentralized networks, Desis moves
computation to data sources and shares overlapping computation
as early as possible between queries. Desis outperforms existing
solutions by orders of magnitude in throughput when processing
multiple queries and can scale to millions of queries. In a decen-
tralized setup, Desis can save up to 99% of network traffic and
scale performance linearly.

1 INTRODUCTION
We are witnessing an explosion of data generated in many do-
mains, from e-commerce [5, 7] to social media [20, 48] and in-
dustrial process control [29, 50, 61, 63]. The massive amounts of
data are produced in form of large-scale and high-velocity con-
tinuous data streams. Current SPEs such as Apache Flink [14],
Apache Spark Streaming [64], and Apache Storm [57] are de-
veloped to perform efficient data aggregation and can process
millions of events per second [26, 47], which is why they gained
wide adoption in industry and research [28]. These SPEs split
unbounded data streams into bounded windows and then process
each window separately [4]. Processing of interesting streams
often involves many simultaneous queries with the same keys

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

and selection predicates. This produces many concurrent win-
dows. Depending on the characteristics of queries, concurrent
windows are created with different window types, aggregation
functions, and window measures. This results in significant over-
lap of windows within but also across queries. Processing con-
current windows individually leads to redundant computations
and creates unnecessary resource consumption and performance
degradation [12, 52].

To avoid redundant computations, current research systems
utilize window slicing to cut overlapping windows into slices
and compute partial aggregations [9, 23, 24, 32, 33, 38, 39, 56].
They combine the partial results of slices instead of calculating
overlapping windows individually. However, these solutions are
limited to sliding windows and tumbling windows, in which
the window sizes are fixed. But for unfixed-sized windows, e.g.,
session windows and user-defined windows, they cannot split
windows and share overlaps. To overcome this limitation, Traub
et al. [58–60] presented Scotty, which can apply window slicing
to all window types. Scotty is limited to sharing partial results
between windows that have the same aggregation functions. For
example, if there are two windows that calculate sum and average
functions, Scotty processes two windows individually even if the
windows overlap and both use sum aggregation functions.

Current data streams are often distributed on massive amount
of devices [35, 36, 49]. They constitute large-scale and high-
velocity decentralized networks. Current designs for SPEs can
efficiently work with a limited number of data streams in a cen-
tralized network. To process data from decentralized networks,
current SPEs [14, 57, 64] are deployed in data centers and col-
lect distributed data from decentralized data sources. Therefore,
all data produced in decentralized data streams are required to
be collected [1]. This can lead to very high network costs for
large-scale setups.

To reduce network overhead and improve performance, sev-
eral research proposals [10, 43, 44, 66] off-load part of the data
processing that would be performed in data centers to devices
closer to data streams. Instead of sending every event, in these
deployments devices produce and transfer partial results. Data
centers then aggregate partial results to output final results. How-
ever, current solutions cannot efficiently process workloads with
multiple queries in a decentralized deployment. Disco [10] is
designed to process windows in a decentralized fashion and em-
ploys Scotty to process multiple queries on edge devices. It pushes
down all queries to edge devices and creates and processes con-
current windows there. Disco has intermediate nodes that ag-
gregate partial results from edge devices and send aggregated
partial results to its data center. For overlapping windows, Disco
employs Scotty to avoid duplicate calculations and to send partial
results of windows. As it is based on Scotty, Disco can also only
share partial results between windows with the same aggregation
functions. Also, window slicing is applied only on edge devices

and partial results from overlapping windows are transmitted to
and processed by intermediate nodes individually. This redun-
dant computation and transmission decreases performance and
increases the network cost of SPEs.

In this paper, we present Desis, an SPE designed to share com-
putation between concurrent windows with different window
measures, window types, and aggregation functions. Desis can ef-
ficiently process parallel queries with decentralized aggregation
on edge and fog computing environments. The main contribu-
tions of our paper are:

(1) We design and implement Desis, a stream processing sys-
tem that efficiently does multi-query processing in decen-
tralized and centralized networks.

(2) Desis features an aggregation engine that can process win-
dowed queries with the same keys and selection predicates
and share partial results between windows across differ-
ent window types, window aggregation functions, and
window measures.

(3) Desis’ aggregation engine applies decentralized aggrega-
tion to push down window aggregation to all the nodes
and processes concurrent windows in decentralized de-
ployments.

(4) Our extensive experiments in both decentralized and cen-
tralized scenarios show that Desis can improve perfor-
mance by orders of magnitude with respect to throughput
and network overhead.

The rest of the paper is structured as follows. Section 2 in-
troduces the foundation of stream processing that Desis is built
upon. In Section 3, we present an overview of Desis. In Section 4
and Section 5, we present the technical details of our aggregation
engine and decentralized aggregation. We finally evaluate Desis
in Section 6 and discuss related work in Section 7.

2 BACKGROUND
Stream processing engines process queries on long continuous
data streams and output results periodically. Depending on dif-
ferent use-cases, SPEs get a single or multiple data streams as
input and have to process multiple queries simultaneously. In this
section, we present some background in stream processing and
discuss the features of concurrent windows and decentralized
networks.

2.1 Windowing
To process queries within data streams, SPEs utilize windows
to divide infinite continuous data streams into finite data col-
lections. The window type is for SPEs to describe the windows
from continuous streams. In the Dataflow model [3], Akidau et al.
define three window types: tumbling windows, sliding windows,
and session windows. A tumbling window is defined by a length
l and divides the data stream into equally sized windows of this
length. The beginning of the new window is the end of the previ-
ous window. A sliding window is specified by a step size s and a
length l. s determines the direct distance between the beginning
of the new window and the beginning of the previous window, l
the length of the window.When s is equal to l, the sliding window
is a tumbling window. In the case when s is smaller than l, there
are consecutive overlaps between windows. In a session window,
the data stream is divided into an activity period and an inactiv-
ity period. When no events arrive for a time 𝑙𝑔 (gap) after the
last event, the window is ended and enters the inactivity period.
Examples of session windows are browser sessions and ATM

interactions. Besides the three window types described above,
there are also user-defined windows. User-defined windows are
determined by special events that mark the window start and
end.

The window type specifies when to start and end windows,
and the window measure decides how to measure events in a
window. A window can be determined by different measures,
e.g., based on time or count [13]. The definition of a count-based
window is similar to that of a time-based window, i.e., where
the length l in a count-based tumbling window is the number
of events per window. In addition, events from data streams
usually have different keys, e.g., speed, temperature, and humidity
and different queries have different selection predicates, e.g.,
WHERE speed = 80 KM/h and WHERE Temperature > 25. Events
with different keys and different selections have to be added to
individual windows, and those windows need to be processed
separately. We use window keys to mark windows that involve
different keys and selection predicates.

2.2 Aggregation Function
Aggregation functions define how to calculate events in a given
window. Gray et al. classify aggregation functions into three
types distributive, algebraic, and holistic based on their calcula-
tion method [21]. Distributive aggregate functions are able to
first calculate partial results for sub-parts of data and later merge
them to final results. A function F() is distributive, if there exist
a function G(), so that 𝐹 (𝑋0..𝑛) = 𝐺 (𝐹 (𝑋0..𝑖), 𝐹 (𝑋𝑖 ..𝑛)) is true,
e.g., sum, count, andmin. For algebraic aggregate functions, there
are functions G() and H(). The function G() returns an m and
passes it to H() as an argument. We let F() be distributive, and
an algebraic function is 𝐹 (𝑋0..𝑛) = 𝐻 (𝐺 (𝐹 (𝑋0..𝑖), 𝐹 (𝑋𝑖 ..𝑛))). Al-
gebraic aggregate functions can be computed from arguments,
which are from distributive aggregate functions, e.g., avg (as sum
/ count). Holistic aggregate functions cannot be represented by
partial results and require all events to determine the result, e.g.,
median or quantiles. Jesus et al. present terminologies that de-
scribe aggregation function as decomposable, self-decomposable,
and non-decomposable [30]. Self-decomposable functions can
be directly split and work on subsets of data. A decomposable
function consists of self-decomposable functions, it needs more
steps to calculate results than a self-decomposable function. Self-
decomposable functions refer to distributive functions and de-
composable functions refer to algebraic functions. For ease of
understanding, we merge the concept of self-decomposable func-
tion into decomposable. Decomposable functions include count,
sum, max, min, and average. Non-decomposable functions are
the same as holistic functions and cover median and quantile.

Overlaps:

Qc:
Timeline

Window a1 Window a2 Window a3

Window b1

Window c1

Window b2
Window b3

Qb:

Qa:

t0 t2t1 t3

...

...

...

...

...

t4 t5 t6

Figure 1: Overlap between 𝑄𝑎 , 𝑄𝑏 , and 𝑄𝑐 .

2.3 Window Overlap
When processing multiple queries, systems have to create and
maintain concurrent windows. Once a window ends, all events in

that window are aggregated. In Figure 1, there are three queries,
𝑄𝑎 , 𝑄𝑏 and 𝑄𝑐 , their window types are tumbling, sliding, and
session, respectively. We first create windows according to win-
dow types separately at 𝑡0. We observe that between 𝑡0 and 𝑡1,
there is an overlap between window 𝑎1, 𝑏1 and 𝑐1. From 𝑡2 to 𝑡3,
there is an overlap between window 𝑎1, window 𝑏1, window 𝑏2,
and window 𝑐1. All windows ingest events from the same data
steams and process the same events in overlaps. If we aggregate
those windows individually, overlaps in between will be repeat-
edly calculated, which is a waste of CPU resources. Besides, an
event is dropped only if this event has already been calculated
by all windows it belongs to. The duration of windows differs,
which leads to different time spans that are buffered in memory.
For large windows, events are kept in memory for a long period
and consume a lot of memory until they are dropped. Therefore,
window-slicing techniques are utilized to share window overlaps.

2.4 Window Aggregation in Decentralized
Networks

In decentralized setups, data streams are distributed across dif-
ferent nodes. Current SPEs can execute either centralized or
decentralized aggregation to aggregate data. In centralized aggre-
gation, the topology of the network structure includes a center
and many data streams. We denote the center as the root node,
which serves as the central node of a decentralized network. All
data are collected from data streams and transferred to the root
node. The root node performs all window aggregations.

In decentralized aggregation, the topology is divided into three
types of nodes, which enables systems to distribute the com-
putation across nodes instead of loading all data into one root
node [10]. As shown in Figure 2, there are a root node, inter-
mediate nodes, and local nodes. In general, there are multiple
local nodes and intermediate nodes but only one root node in a
topology. Local nodes can connect to the root node directly or via
intermediate nodes. For complex networks, more intermediate
nodes are interconnected between the local and root nodes, and
there are more hops from a local node to the root node.

To process queries, local nodes create individual windows for
every query to collect data from data streams and then perform
aggregations to output partial results. Afterwards, intermediate
nodes create windows for each query again to aggregate par-
tial results from their child (local or intermediate) nodes and
send new partial results to their parent node (intermediate or
root). Finally, the root node builds windows and performs final
aggregations to output the final results.

3 SYSTEM OVERVIEW
In order to perform aggregations across a large number of queries,
we propose Desis. Desis is able to process multiple queries from
data streams that are distributed in decentralized networks.

3.1 Components of Desis
As shown in Figure 2, Desis has five components: interface, query
analyzer, window manager, aggregation engine, and message
manager. As the key component, we discuss the aggregation
engine in detail in Section 4. The user interface provides APIs
for users to invoke commands and pass queries into Desis. All
queries passed from the interface are collected in the query ana-
lyzer (QA). The QA analyzes queries and emits window attributes
of each query so that the system is able to create windows based

 Interface
Query

Analyzer

Message

Manager

Local Node

Intermediate Node

Root Node

Message

Manager

Message

Manager

Window

Manager

Aggregation Engine

Window

Manager

Aggregation Engine

Window

Manager

Aggregation Engine

Component

Query

Data Flow

Partial Result

Event

Window Attribute

Figure 2: System architecture.

on them. The window attributes include keys, window types, win-
dow measures, and aggregation functions. The window manager
(WM) processes the actual windows. It starts and ends windows
based on their window type and measure, and then executes
windows via the aggregation engine. The message manager is
used to communicate between nodes, as Desis is distributed in
decentralized networks.

3.2 Fault Tolerance
Desis supports basic fault tolerance and can add and remove
queries and nodes during runtime. To add or remove a node,
users have to inform the root node of the IP address and port
of the node. The root node then adds or removes the node from
the Desis cluster and sends the new topology to all other nodes.
Desis has a timeout for every local and intermediate node. When
a node loses connection, Desis will remove this node from the
cluster and inform users. Desis can receive new queries and pass
queries to the query analyzer and every query has a unique ID.
The aggregation engine will receive the window attributes from
the query analyzer and process new queries. To remove a running
query, users have to provide the query ID and waiting time to
remove queries immediately or wait for the last window to end.

4 AGGREGATION ENGINE
In this section, we present the aggregation engine, which enables
sharing computation across multiple queries, windows, and ag-
gregation functions. To process multiple queries, current SPEs,
such as Flink [14], Spark [64], and Storm [57], create multiple
concurrent windows, one for each query. These windows are ex-
ecuted individually, even though the events in the windows are
the same. This causes redundant computation, even if windows
share the same window properties and aggregation functions.
Advanced approaches, like Scotty [60] and Cutty [15] are able to
slice windows and aggregate events that are in slices to output
results. They can share partial results between windows with dif-
ferent window measures and types, including tumbling, sliding,
session, and user-defined windows. But for windows that have
different aggregation functions, they cannot share results.

To allow for sharing across aggregation functions, our aggre-
gation engine ensures that each event is processed only once
for multiple windows that have the same keys and selection
predicates. Instead of creating and executing windows for each
query, the aggregation engine first cuts windows into slices and
converts aggregation functions into operators. The aggregation
engine shares partial results of slices between different windows

with different window types, window measures, and aggregation
functions. As shown in Figure 2, the aggregation engine is used
in Desis to assist the window manager to process windows. In
decentralized setups, an aggregation engine is deployed on each
node to support pushing down windows for local processing.

4.1 Window Slicing
To avoid redundant computation between concurrent windows,
we use window slicing. It reuses partial results of each overlap
instead of processing all windows individually. This technique
not only improves the performance of our system but also reduces
the consumption of computational resources. Before describing
our approach, we define the terms query-group and punctuation.

Query-Group: a query-group is a set of queries that partial
results can be shared between and in which every event is pro-
cessed only once. For multiple queries, current systems create
separate windows to process events. Our aggregation engine puts
queries that can be shared into one query-group and produces
slices instead of windows.

Punctuation: we use the term punctuation to identify when to
create or terminate a window. Each window has two punctua-
tions, a start punctuation (sp) and an end punctuation (ep). The
start punctuation marks the creation of a window and the end
punctuation marks a window end.

Qe:

Qa:

Slice1

...

...

...
Qb:

Qd:

Qc: ...

...

...

Window c2

Window e3

Window a3

Window d2

Window e2

Window b1

Window a1

Window d1

Window e1

......Slice2

Window c1

Window b2
Window b3

Window a2

Figure 3: Windows slicing with multiple window types.

In Figure 3, we show how the aggregation engine processes
multiple queries.𝑄𝑎 has tumbling windows and there are no over-
laps.𝑄𝑏 has slidingwindows and newwindows are created before
old windows end, causing overlaps between windows.𝑄𝑐 and𝑄𝑑

contain non-fixed sized session and user-defined windows. 𝑄𝑒

contains a tumbling count-based window and its windows can
be sliced as tumbling time-based windows. All five queries share
the same aggregation function while having different window
types, and queries are all in one query-group. The aggregation
engine slices concurrent windows into several slices based on
their sp and ep. Regardless of how many concurrent windows are
processed, the aggregation engine creates a slice if there is an sp.
Slices are terminated when the aggregation engine meets an ep
or sp. The aggregation engine then outputs the partial results of
that slices. For tumbling, sliding, and counting windows, punc-
tuations are affected by time and count measures and they have
fixed window sizes. For user-defined and session windows, win-
dow ends are dynamic as they are terminated with user-defined
events or gaps where there are no events.

4.2 Window Merging
To output results of every window, the aggregation engine per-
forms incremental aggregation for every event that arrives in

a slice. Once a window ends, the aggregation engine assembles
all slices based on their original windows. Given a slice, current
solutions are able to reuse computation results only if all win-
dows involved in this slice have the same aggregation functions.
However, for multiple queries with different functions, current
window-slicing solutions still have to compute the partial results
of each slice individually [60]. To deal with that, our aggregation
engine breaks down aggregation functions into operators and
shares those operators between different slices.

Aggregation Function Operator

sum sum
count count
average sum, count
product multiplication

geometric mean multiplication, count
max decomposable sort
min decomposable sort

median non-decomposable sort
quantile non-decomposable sort

Table 1: Relationship between aggregation functions and
operators

4.2.1 Aggregate Operators. Operators are the most basic ag-
gregation functions that a stream aggregation is broken down
into (Section 2). Instead of processing aggregation functions, the
aggregation engine shares operators between slices and executes
operators to provide intermediate results. When a slice is ter-
minated, the intermediate results from different operators are
combined to output partial results of this slice.

We support many operators, e.g., count, sum, multiplication,
square root, decomposable sort, and non-decomposable sort. Given
two overlapping windows that calculate an average and a sum,
the average function can be broken into the sum operator and
count operator. All the windows have to execute the sum op-
erator and the aggregation engine can share this operator. For
each event, the aggregation engine performs only two aggrega-
tions (count and sum) instead of three (count, sum, and sum). For
overlapping windows that have multiplication and geometric av-
erage functions, we can share multiplication operators between
overlapping windows. We define decomposable sort and non-
decomposable sort operators. Decomposable sort executes sort
incrementally and drops computed events. It can be shared be-
tween max and min. Non-decomposable sort keeps all events and
performs a final sort when the slice is ended. Its results can be
shared between max, min, median, and quantile.

In Table 1, we show the relationship between aggregation func-
tions and operators. Instead of executing separate aggregation
functions for windows, we utilize operators to share intermediate
results between different functions. Also, for complex aggrega-
tion functions, users can define new operators to break down
functions.

4.2.2 Multiple Aggregation Functions. Once a slice is termi-
nated, the aggregation engine has to calculate results by execut-
ing aggregation functions. Regardless of window types, there are
two scenarios: single aggregation function and multiple aggrega-
tion functions. The former scenario is discussed in the previous
solutions [60] and Cutty [15] and here we show the latter sce-
nario in Figure 3. The first two slices (slice1 and slice2) are shared
among five queries. We let the aggregation functions of 𝑄𝑎 and
𝑄𝑏 be max and median. The aggregation functions of 𝑄𝑐 , 𝑄𝑑 ,

and 𝑄𝑒 are sum, count, and average. Our aggregation engine
shares the non-decomposable sort operators between 𝑄𝑎 and 𝑄𝑏 .
Also, sum and count operators are shared between 𝑄𝑐 , 𝑄𝑑 , and
𝑄𝑒 . With operators, we avoid individual computation of each ag-
gregation function and concurrent windows that have different
aggregation functions can share partial results.

4.2.3 Non-Aggregate Operators. To filter out events required
by different queries, Desis provides additional operators. There
are two non-aggregate operators: selection and deduplication.
The selection operator can select events matching given predi-
cates. The deduplication operator drops events that are duplicated.
For queries that have non-overlapping selection predicates, the
aggregation engine puts them into the same query-group, e.g.,
WHERE speed > 80 KM/h and WHERE Speed < 25 KM/h. The
aggregation engine can create multiple non-aggregate operators
for every window.When a slice is created, the aggregation engine
first checks all windows the slice is from and binds operators of
those windows to the slice. All selection operators are processed
separately and they all have individual results. In this case, every
event is still processed only once and the aggregation engine
does not need to maintain the context of many groups, i.e., the
list of slices and aggregation operators. If there are queries that
have the same selection predicates and keys, they will be put
into the same query-group as their results can be shared between
each. When processing queries that have overlapping selection
predicates or keys, queries are put into different query-groups.

Qb:

Qc:

Qa:
Window a2Window a1 Window a3

Window b1

Window b2

Window b3

...

...

...

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 Slice7 Sslice8

Slice1 Slice2 Slice3

Window c1 ...

Slice3 Slice4 Slice5

Slice5 Slice6 Slice7

Slice2 Slice3 Slice4 Slice5 Slice6

Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 Slice7 Slice8

Figure 4: Aggregation engine processing multiple queries.

4.3 End to End Optimization
We now discuss the high-level query processing of our aggrega-
tion engine. In Figure 4, we pass three queries into our system.
𝑄𝑎 has tumbling windows with a max aggregation, 𝑄𝑏 has slid-
ing windows and a quantile function. Query 𝑄𝑐 contains session
windows and a median function. The aggregation engine first
puts the three queries into a query-group and converts their ag-
gregation functions into operators. For queries that have different
keys or selection predicates, they can also be put into the same
query-group if their selections fully overlap or do not overlap.
For each incoming event, our aggregation engine performs in-
cremental aggregations and different selection operators have
their own partial results. Whenever there is a punctuation, the
aggregation engine terminates the current slice and executes
operators instead of aggregation functions. For example, slice2 is
shared between window a1 (𝑄𝑎), window b1 (𝑄𝑏), and window c1
(𝑄𝑐) and has to calculate the max, quantile, and median. To calcu-
late the partial results of slice2, the aggregation engine executes
a non-decomposable sort operator. Afterwards, the aggregation
engine puts the partial results of this slice into a list and creates
the next slice. Each slice is marked to which original windows

it belongs, e.g., slice2 is mapped to window a1, window b1, and
window c1.

Once there is an ep, the aggregation engine has to terminate a
window. The aggregation engine first iterates over the list and
aggregates all partial results that belong to the window corre-
sponding to that ep. For example, we aggregate the partial results
of sclice1, sclice2, and sclice3 to output the results of window a1
and window b1. Also the result of window c1 is assembled from
slice2, slice3, slice4, slice5, and slice6. The results from different
selection operators are processed and produced individually. In
addition, if there are any partial results that do not belong to any
window, the aggregation engine will delete them from the list.

5 DECENTRALIZED AGGREGATION
In this section, we present Desis in a decentralized setup and show
how it executes concurrent queries with decentralized aggrega-
tion. In decentralized networks, data streams arrive at different
nodes. Current stream slicing approaches, like Scotty [60] and
Cutty [15] must collect this data to a single node to aggregate
it. To process data decentrally, Disco [10] moves window ag-
gregation to the local nodes and utilizes Scotty to share partial
results on each node. However, Disco cannot efficiently share
results between unfixed-size and fixed-size windows. When pro-
cessing a large unfixed-size window and many other windows,
the local node needs to keep a huge number of slices for a long
time. Also, the local node has to traverse these slices to calculate
results once the window ends. In addition, Disco only applies
the window-slicing technique in local nodes. Disco has to send
partial results per window to intermediate or center nodes even
though those results are from overlapping windows. Also, the
overlapping windows are processed individually on intermediate
and center nodes without sharing results. Compared to current
solutions [10, 15, 60, 62], Desis performs window slicing on all
nodes. Desis pushes down slices instead of windows to local
nodes and assembles the final results incrementally on the root
node. It is able to share partial results between different concur-
rent windows on all nodes. Also, Desis does not send partial re-
sults per window but per slice, which further reduces the amount
of data that is sent through the network. Furthermore, Desis can
share partial results between windows with different aggrega-
tion functions. In the following, we present how decentralized
aggregation processes different window types for decomposable
and non-decomposable aggregation functions.

5.1 Decomposable Decentralized Aggregation
To reduce the computational load on the root node and the overall
network traffic, Desis performs decentralized aggregations that
moves calculations and window slicing to all nodes. In local and
intermediate nodes, instead of processing concurrent windows
individually, Desis creates slices and aggregate them when they
end. It then sends the partial results to the parent node instead
of raw events. To distinguish between slices on the root, local,
or intermediate nodes, we call them root slices, local slices, and
intermediate slices, respectively.

5.1.1 Fixed-SizedWindows. Decentralized aggregation works
well with concurrent windows that have decomposable functions.
If we process only one tumbling or sliding window, windows
built on different local nodes end at the same time. This is because
windows are time-based and their sizes are fixed. Concurrent
sliding and tumbling windows are also sliced into fixed-sized

slices. All local slices are created and terminated at the same time
even though they are from different local nodes.

On intermediate and root nodes, the system has to collect par-
tial results from child nodes and merge them. However, systems
may face missing or duplicated slices. To overcome this, we use
an auto-incrementing id for each local slice. When a new local
slice is created, its id is the increment of the previous slice id. We
mark every partial result generated from local slices with its slice
id, so intermediate and root nodes can merge partial results by
aggregating results that have the same slice id. The intermediate
and root nodes reuse the slice id of the partial results they cal-
culated as their own ids and their results are marked with ids as
well. The length of an intermediate slice is equal to the number
of child nodes connected to it. Similarly, the length of a root slice
is the same as the number of children the root node has.

5.1.2 Unfixed-Sized Windows. When processing session win-
dows, a window ends when there is a long gap. The data in
each data stream is different, which leads to different gaps at
different points in time. In this case, one local node can produce
more session slices than others, and the system cannot recognize
which session slices belong to the same session window. For
user-defined windows, the window ends depend on user-defined
events and the exact time of that events is unpredictable. One
such use case for a user-defined window would be computing
the maximum speed of cars for each trip. In local nodes, slices
are created to collect speed values for the car and the maximum
speed is calculated once the trip is done. In this case, slice sizes
of local slices are not the same, as slices for trips with different
lengths are not finished at the same time. Also, the final results
need to cover different numbers of partial results from different
nodes. So the slice sizes of both session windows and user-defined
windows are not fixed and different local nodes have different
slice sizes. To deal with session windows, our system lets each
session slice carry the start time and end time of its session gap.
The root node records the latest session gaps for each child node.
When all session gaps from different child nodes cover each other,
the session window ends and all session slices are merged to out-
put the final results. For user-defined windows, we introduce a
watermark that allows the root node to terminate user-defined
windows timely and not be delayed by partial results from long
slices. The watermark also can be used by session windows to
terminate long session windows. Based on the above discussion,
our system can put fixed and unfixed windows into one query-
group and slice them at local nodes. The lengths of intermediate
and root slices are the number of their child nodes. Also, when
session gaps from child nodes cover each other or watermarks
are encountered, intermediate and root slices are terminated as
well. If a window ends, the aggregation engine will merge all
slices from that window to output the final results.

5.1.3 Decentarlized Aggregation with Fixed and Unfixed-Sized
Windows. In Figure 5, we show three example queries and they
are all time-based, 𝑄𝑎 has tumbling windows and executes sum
functions. 𝑄𝑏 and 𝑄𝑎 execute average functions and they have
sliding and user-defined windows.

On the root node, the system puts𝑄𝑎 ,𝑄𝑏 , and𝑄𝑏 into a query-
group and outputs window attributes. All windows produced
from that query-group can be shared, as they consist of the two
operators sum and count. Then, the message manager distributes
the window attributes of this query-group to local and interme-
diate nodes.

Qc

:

Nodes

Final Result

Data Flow

Local Node

Intermediate Node

Root Node

Partial Result

Window a1 ...

...

s1 s3s2

...

Qb:

...

Slice

Window

...

...

Intermediate Slice1

s1

...s1 s1

Root Slice1

Window c1

s1 s1

Window b2

Window a2Qa:

Qc:

...

Intermediate Slice1

s1

s1 s1

Window b1

s1

Qc

:

Window a1 ...

...

s1 s2

...

Qb:

...

Window c1

Window b2

Window a2Qa:

Qc:

Window b1

s1

...

Root Slice2
...

...

...

s2 s2

Figure 5: Decentralized aggregation processing a decom-
posable function.

On a local node, the aggregation engine splits windows into
local slices according to the window attributes that are received
from the root node. Then, the aggregation engine executes incre-
mental aggregations for every event. Otherwise, the aggregation
engine may get stuck since it has to spend a long time iterating
and computing all events in the slice. Once a local slice ends,
the aggregation engine executes its aggregation functions and
transmits partial results to the intermediate nodes. Also, if a local
slice is ended by an end punctuation (ep), the system will mark
this slice with the ep.

On an intermediate node, our system creates an intermediate
slice and collects partial results from its child nodes for this
slice. When the intermediate slice receives all results from local
nodes, it calculates partial results and sends them to the root
node. If partial results from local nodes are marked with a ep, the
intermediate partial result will keep this ep. Similar to local nodes,
we also perform incremental aggregations on intermediate nodes.
For example, in Figure 5, when there are two partial results of
s1, they are collected in the intermediate slice1. The intermediate
node ends the intermediate slice1 and executes the underlying
operators.

On the root node, partial results from its child nodes are gath-
ered and incrementally calculated into a root slice. When a slice
ends, the aggregation engine executes aggregation functions and
saves its result. If intermediate partial results contain an ep, the
aggregation engine has to assemble all partial results belonging
to this window and output the final result. In Figure 5, we ter-
minate the root slice when both partial results of intermediate
slices arrived. The partial result of s2 contains an ep, and the root
node ends the window according to this ep.

5.2 Non-Decomposable Decentralized
Aggregation

For non-decomposable functions, e.g., median and quantile, all
events have to be collected from data streams to the root node.
This is needed because local nodes cannot perform partial aggre-
gations and output partial results. In a centralized aggregation,
all events are sent to the root node individually, which incurs a
high network overhead. To reduce network overhead, current
systems first batch events before transferring them [17]. They
set a unified batch size and create windows on local nodes to
batch events. When the window size is equal to batch size, they
end the window and send it to parent nodes. The window sizes
are fixed and windows act as count-based tumbling windows.
In root nodes, the system has to first check each event to find
the window end and then sort events to give the final results.

Although they can reduce network overhead, they centralize all
computation in the root node.

To process non-decomposable functions efficiently, our system
creates slices on local and intermediate nodes. Once a slice ends,
the local node batches all events in this slice and sends them to its
parent node. The root node collects all slice batches and put them
in its window and performs aggregation. So, for each arriving
batch, the root node behaves the same as process decomposable
functions but without incremental aggregations. We mark the
slice batch if there is a ep. The root node terminates windows only
if the arrived slice batch carries ep. As sorting is necessary for
both median and quantile, the root node has to execute sorting
anyway. In our system, the local and intermediate nodes execute
non-decomposable sort operator for non-decomposable functions
so that the root node process sorted events.

Count-based windows cannot be processed locally, since only
the root node terminates count-based windows. For decentral-
ized aggregation, our system puts windows with decomposable
functions and count-based windows into different query-groups
and processes them separately. However, count-based windows
can be put into the same query-group as windows with non-
decomposable functions because they are all calculated on the
root node. If we use centralized aggregation to process all win-
dows, count-based windows and all other windows can be put
into the same query-group and share partial results.

6 EVALUATION
In this section, we present our experimental design, evaluate the
performance of Desis, and compare it to state of the art.

6.1 Experimental Design
We conduct experiments on a 10-node cluster with 25G Ether-
net. Each node has two 18-Core Intel Xeon Gold 5220S CPUs
and 96 GB main memory. All nodes are running Ubuntu 20.04
and OpenJDK 1.8.0.312 64-bit. In our experiments, we measure
throughput, network overhead, and latency for Desis and relevant
baseline approaches. We report sustainable throughput [31], i.e.,
the throughput a system can process without an ever-increasing
backlog. We only consider sustainable network overhead in our
experiments. We calculate network overhead for all nodes in
the cluster including intermediate nodes. In decentralized net-
works, there are commonly multiple intermediate nodes (’hops’)
between edge devices and the data center. Even though interme-
diate nodes only transfer data and do not process it, we cannot
remove these nodes. We evaluate the event-time latency instead
of process-time latency, which calculates the time from when
the event is created to when the result involving the event is
produced. In this case, we can avoid coordinated omission [55]
that leads to a significant underestimation of latency [18].

6.1.1 Baselines. Besides Desis, we evaluate five baselines, cen-
tral buffer (CeBuffer), Scotty [60], Disco [10], Desis bucket (De-
Bucket) [40, 41], and Desis Sharing Windows (DeSW). All base-
lines are implemented in Java. CeBuffer creates buffers for each
window and collects events to window buffers. When windows
end, it performs window aggregation. CeBuffer does not perform
incremental aggregation and every window has its own buffer.
The Scotty baseline is developed based on the Scotty API, it can
perform incremental aggregation and share partial results be-
tween windows that have the same aggregation functions. Disco
is a decentralized system that uses the Scotty API. We modify the
data input of Disco to use our data generator. Disco can perform

incremental aggregations and perform window slicing on local
nodes. To make a fair comparison and measure the improvement
of Desis, we develop DeBucket and DeSW. DeBucket creates
buckets for every concurrent window and calculates arriving
events incrementally, but all the buckets are processed separately
even though there are overlapping buckets. DeSW is similar to
Scotty, which can process windows that have the same aggrega-
tion functions and window measures. Both DeBucket and DeSW
are developed based on Desis and they have the same architec-
ture that can calculate decentralized aggregations. Compared to
Debucket, DeSW creates buckets for different functions. DeBuffer
and Scotty are centralized systems, and only one node processes
all events. They can be deployed on the same topology as Desis,
but only the root node processes events. Other nodes in networks
collect events from data streams or their child nodes and then
send data to parent nodes directly.

6.1.2 Generators. To simulate a decentralized network envi-
ronment, we generate data by replaying recorded data from a
synthetic dataset and we let the data generators read from differ-
ent positions in the data set to simulate different data streams.
Events in the data stream have four fields, time, key, value, and
event. The data generator gives every event a timestamp. The
event values are from the DEBS 2013 dataset [46]. The field event
represents user-defined events of user-definedwindows. The data
generator is configured with the key distribution, selection pred-
icates, the frequency of user-defined events and window gaps.
Our query generator can provide arbitrary queries with different
keys, window types, aggregation functions, window measures,
and window sizes. The query generator is configured with the
distribution of the window keys, window length, window types,
window measures, and aggregation functions. In a decentralized
setup, we deploy a data generator on each local node and the
query generator on the root node.

6.2 End to End Performance
We first compare Desis, Scotty, Disco, and CeBuffer to study
overall performance. We focus on throughput and latency to
measure each system.

251

0.459
0.341

0.137

CeBuffer Disco Scotty Desis
0

0.2
0.4
0.6

...

250
300

La
te

nc
y

in
 m

s

(a) Latency of a single win-
dow.

1 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
CeBuffer Disco Scotty Desis

Concurrent Windows

Ev
en

ts
/s

ec

(b) Throughput of concurrent
windows.

Figure 6: End to end throughput and latency.

6.2.1 End to End Throughput and Latency. We first measure
latency of a single tumbling window query with an average
aggregation function with 10 distinct keys. We then execute
a set of windows that have equally distributed lengths from 1
to 10 seconds. We gradually increase the number of concurrent
windows from 1 to 1000 andmeasure their throughput.We deploy
all systems on a single node.

Results. In Figure 6a, we show latency of each system. We see
that CeBuffer has the highest latency. When new events arrive,
CeBuffer puts them into a buffer for each window and performs

an aggregation function once the window ends. CeBuffer has to
iterate overall events of a window, every time when the window
is triggered. The other systems perform aggregation functions
incrementally for each event. Disco uses the Scotty API to process
events, but it uses a single thread to execute everything, e.g.,
receiving raw events, processing events, and sending results,
which affects its latency. Scotty is developed as a centralized
system and it does not send partial results through the network.

The results for queries with concurrent windows are shown
in Figure 6b. CeBuffer has a higher throughput than Disco for
a small number of concurrent windows, but its performance
drops sharply when the number of concurrent windows increases.
CeBuffer cannot share partial results between different windows,
it has to process windows individually. The other systems can
share partial results and avoid redundant computations. The
throughput of both Disco and Scotty are stable at around 2million
events/s and 5 million event/s, respectively and change only
slightly. Their performance is the same as in the single window
setup. Desis has the highest throughput at 28 million events/s
even when processing 1000 windows simultaneously. Desis is
able to calculate window ends in advance instead of checking
each arriving event.

Summary. Desis outperforms all baselines and has the lowest
latency. When processing concurrent windows with decompos-
able aggregation functions, its throughput is over 28 million
event/s and 5 times higher than Scotty’s.

1 2 3 4 5 6 7 8
0

40M
80M

120M
160M
200M
240M
CeBuffer Disco Scotty Desis

Local Nodes

Ev
en

ts
/s

ec

(a) Throughput of multiple lo-
cal nodes with average.

1 2 3 4 5 6 7 8
0

2M

4M

6M

8M
CeBuffer Disco Scotty Desis

Local Nodes

Ev
en

ts
/s

ec

(b) Throughput of multiple lo-
cal nodes with median.

6.01M 6.21M

28.9M

Root Intermediate Local
0

5M
10M
15M
20M
25M
30M

Ev
en

ts
(R
es
ul
ts
)/
se
c

(c) Throughput of average.

7.44M

16.23

7.36M

Root Intermediate Local
0

3M

6M

9M

12M

15M

18M

Ev
en

ts
(R
es
ul
ts
)/
se
c

(d) Throughput of median.

1 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M

Root Intermediate local

Distinct Keys

Ev
en

ts
(R

es
ul

ts
)/

se
c

(e) Throughput of distinct
keys.

1 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M

Root Intermediate local

Concurrent Windows

Ev
en

ts
(R

es
ul

ts
)/

se
c

(f) Throughput of concurrent
windows.

Figure 7: Throughput under different setups.

6.2.2 Scalability. We first study scalability of each system, all
systems initially work on a 3-node cluster: one local node, one
intermediate node, and one root node. We gradually add local
nodes to the topology and measure their throughput. All local

nodes connect to one intermediate node. All systems execute
concurrent tumbling windows with average functions and 10
distinct keys. In the second experiment, we profile the throughput
of Desis on each node with different constraints. We increase
the number of partial results per node to simulate an increasing
number of child nodes.

Results. The results of the scalability experiments with aver-
age and median aggregation functions are shown in Figure 7a
and Figure 7b. Scotty and CeBuffer have constant throughput
with an increasing number of local nodes. They perform all cal-
culations on the root node and all other nodes transfer events
to the root. Desis has a higher throughput than Disco since it is
able to push down and slice windows on local nodes and share
partial results on all nodes. Desis and Disco scale linearly with
the number of local nodes when processing average functions
since both systems perform decentralized aggregation. For the
median function, Desis still outperforms the other systems, but
its throughput slightly decreases with more local nodes. The
performance of the root node determines the overall throughput,
because its root node has to collect and process all events from
child nodes.

In Figure 7c(average), we see that the throughput of the root
node and intermediate node are at 6.01 million events/s and
6.21 million events/s, respectively. They only create windows to
collect partial results from child nodes in the intermediate nodes
and root node. Figure 7d shows the throughput of the root node
for a median aggregation function. All events are sent to root
nodes, so the throughput of the root node also limits the overall
performance of Desis.

In Figure 7e, we use a single query and vary the number of
keys. With more distinct keys the throughput of the local node
starts to drop while the performance of the root and intermediate
nodes is constant. For multiple queries that have different keys,
Desis generate multiple selection operators for every slice. In this
case, every event on the local node has to go throughput many
selection operators, which decreases throughput. While the other
nodes just merge partial results from child nodes. In Figure 7f,
we measure concurrent windows with the same keys, and all
nodes stay at the same throughput even though they process one
thousand windows.

Summary. When processing decomposable functions, decen-
tralized aggregation benefits from adding nodes with respect
to throughput. The performance of decentralized aggregation
increases linearly with the number of nodes. In addition, one
root node or intermediate node can deal with a large amount of
child nodes. For non-decomposable functions, the root node is
the bottleneck of Desis.

6.3 Optimization Performance
In this experiment, we measure the impact of processing differ-
ent concurrent windows. Windows have varying window types,
aggregation functions, and window measures but use the same
keys. We compare throughput between Desis and three baselines,
including CeBuffer, DeBucket, and DeSW. DeBucket cannot share
any partial results between queries. As a result, DeBucket pro-
cesses 1000 query-groups individually if we start 1000 queries.
DeSW can share partial results between windows that have the
same aggregation functions and window measures. The number
of individual query-groups for DeSW depends on the number
of aggregation functions and window measures. For example,

DeSW will create two query groups if there are only two kinds
of functions even though we process thousands of queries. Both
DeSW and DeBucket can calculate aggregations incrementally,
CeBuffer not.

2 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(a) Throughput of concurrent
fixed-sized windows.

2 10 10 2 10 3

10 2

10 3

10 4

10 5
CeBuffer DeBucket DeSW Desis

Concurrent Windows

S
lic

es
 in

 m
in

(b) Number of fixed-sized
slices produced in minute.

2 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(c) Throughput of concurrent
unfixed-sized windows.

2 10 10 2 10 3

10 2

10 3

10 4

10 5
CeBuffer DeBucket DeSW Desis

Concurrent Windows

S
lic

es
 in

 m
in

(d) Number of unfixed-sized
slices produced in minute.

Figure 8: Throughput and number of slices of concurrent
windows.

6.3.1 Multiple Queries with Different Window Types. In this
workload, we study fixed-sized windows and unfixed-sized win-
dows with varying sizes. We aggregate all windows with an av-
erage function but change the window type and window length.
We measure throughput and the number of slices.

Results. We first study concurrent tumbling windows, i.e.,
fixed-sized windows, in Figure 8a. Window lengths are equally
distributed from 1 to 10 seconds. For both Desis and DeSW, the
throughput does not change with an increasing number win-
dows, but DeSW has a lower throughput than Desis. This is due
to the fact that Desis can add all queries to one query-group
and process each event only once. For decentralized aggregation,
Desis can share results between any windows and it does not
check other query-groups. DeSW and other baselines need to
move the events to different query-groups that have different
aggregation functions or window measures. DeSW has to check
if there are other query-groups when new events arrive. In Fig-
ure 8b, we measure the number of slices produced from each
system per minute. Desis and DeSW cut windows into slices, and
every window provides multiple slices. DeBucket and CeBuffer
do not perform window slicing, and each window is covered by
one slice. DeBucket and CeBuffer have less slices initially, and
then the number of slices rapidly increases when more concur-
rent windows are passed in the systems. For Desis and DeSW,
all windows can be fully covered by non-overlapping slices, and
they only produce 61 slices every minute even if there are more
concurrent windows. Instead of processing events in different
concurrent windows repeatedly, Desis and DeSW process ev-
ery event exactly once, which can avoid duplicated calculations
between windows.

We keep the same setup and change half of the windows to
user-defined windows (Figure 8c). We let generators produce 1
user-defined event per second. Compared to the tumbling win-
dows, the window lengths of user-defined windows are small

and not fixed, so the aggregation engine has to cut windows in
more slices than tumbling windows, and the size of each slice is
not predetermined. We see that the performance of all systems
slightly decreases due to processing more slices. In Figure 8d, all
systems produce more slices when processing unfixed-sized win-
dows, and the slice numbers of Desis and DeSW are constantly
at less than 400 per minute.

Summary. Desis and DeSW have higher throughput and fewer
slices when processing a large volume of concurrent windows
that have the same aggregation functions and window measures.
When processing concurrent unfixed-sized, the throughput of
systems decreases slightly because they have to create more
slices.

2 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M
CeBuffer DeBucket DeSW Desis

Concurrent Windows
Ev

en
ts

/s
ec

(a) Concurrent windows with
average and sum.

2 10 10 2 10 3

10 6

10 7

10 8

10 9

CeBuffer DeBucket DeSW Desis

Concurrent Windows

C
al

cu
la

tio
ns

(b) Calculations of average
and sum in million events.

2 10 10 2 10 3
0

2M

4M

6M

8M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(c) Concurrent windows with
different quantiles.

2 10 10 2 10 3

10 6

10 7

10 8

10 9

CeBuffer DeBucket DeSW Desis

Concurrent Windows
C
al

cu
la

tio
ns

(d) Calculations of quantiles
in million events.

2 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(e) Concurrent windows with
average and max.

2 10 10 2 10 3
0

2M

4M

6M

8M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(f) Concurrent windows with
average and quantile.

2 10 10 2 10 3
0

2M

4M

6M

8M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(g) Concurrent windows with
quantile and max.

2 10 10 2 10 3
0

5M
10M
15M
20M
25M
30M
35M
CeBuffer DeBucket DeSW Desis

Concurrent Windows

Ev
en

ts
/s

ec

(h) Concurrent time-based
and count-based windows.

Figure 9: Throughput and number of calculations of con-
current windows with different aggregation functions and
window measures.

6.3.2 Multiple Queries with Different Aggregation Functions
and Window Measures. We keep the setup as in the previous
workload but change the aggregation functions. All time-based
queries perform tumbling windows with 1 second length, count-
based windows have a length of 1 million events. We use queries

that have different aggregation functions, including average, sum,
max, and quantile. For quantile functions, the quantile values are
distributed from 1 to 1000. We first measure the throughput of
each system. We then send 10 million events to the systems and
measure the number of executed calculations.

Results. Figure 9a shows the throughput of concurrent win-
dows with average and sum functions. DeBucket and CeBuffer
have lower throughput, since they have to perform each query
individually. DeSW has to create multiple query-groups against
different aggregation functions because DeSW cannot share par-
tial results between different functions. Desis breaks down aver-
age and sum into two operators, i.e., sum and count (Figure 9b).
So, for each incoming event, two operators are executed once,
while DeSW performs calculations for each event three times.

In Figure 9c, systems process concurrent windows with differ-
ent quantile functions. We aim to simulate situations with multi-
ple different aggregation functions. We see that the throughput
of all baselines drops sharply. Desis can constantly process 7 mil-
lion events/s even with 1000 concurrent windows with different
functions. Except for Desis, all systems have to create query-
group for each query, and events are repeatedly calculated. In
Figure 9d, we observe that Desis adds all queries in one query-
group and executes only one non-decomposable sort operator to
calculate partial results, which dramatically reduces redundant
computations.

We then measure the throughput of combining different aggre-
gation functions andwindowmeasures. In Figure 9e and Figure 9f,
we calculate two different aggregation functions for each window.
Desis needs to perform more operators (i.e., sum, count, and sort),
which lightly affects throughput. We measure the combination
quantile and max (Figure 9g), its throughput is the same as in
Figure 9c as quantile and max can share the same operator and be
calculated once, while DeSW has to calculate twice. In Figure 9h,
we see that Desis outperforms DeSW when processing windows
that have different window measures. DeSW puts count-based
and time-based windows into separate query-groups and cannot
share partial results between.

Summary. We conclude that Desis can efficiently process mul-
tiple queries that have different aggregation functions, and can
achieve over 100 times better throughput compared to other
systems.

6.3.3 Throughput and Latency of Different Slice Sizes and Win-
dow Sizes. In this experiment, we study the throughput and la-
tency of different slice numbers and slice sizes in a window. In
Figure 10a and Figure 10b, we vary the number of slices in a win-
dow and each slice has 10k events. In Figure 10c and Figure 10d,
we vary the number of events in a slice and produce 1k slices in
a window. For a fixed number of slices and events, we process
count-based windows in this workload. DeBucket and CeBuffer
do not perform window slicing. Their window size will increase
if we increase the slice size and the slice number in the windows.

Results. DeBucket and CeBuffer aggregate all events of a win-
dow without any window slicing. In Figure 10a and Figure 10b,
we see the throughput of CeBuffer is decreasing. This is because
its window size is growing when more slices are included. De-
Bucket can perform incremental aggregation and its throughput
and latency are not affected by the window size. However, when
the number of slices is more than thousand (window size is over
million), we see an upward trend in its throughput. In this setup,
DeBucket creates and terminates fewer windows in a fixed period

1 10 10 2 10 3 10 4 10 5
0

5M
10M
15M
20M
25M
30M
35M

CeBuffer DeBucket DeSW Desis

Slices in Window

Ev
en

ts
/s

ec

(a) Throughput of increasing
number slices per window.

1 10 10 2 10 3 10 4 10 5
1

10 3

10 6

10 9

10 12
CeBuffer DeBucket DeSW Desis

Slices in Window

La
te

nc
y

in
 n

s

(b) Latency of increasing num-
ber slices per window.

1 10 10 2 10 3 10 4 10 5
0

5M
10M
15M
20M
25M
30M
35M

CeBuffer DeBucket DeSW Desis

Events in Slice

Ev
en

ts
/s

ec

(c) Throughput of increasing
number events per slice.

1 10 10 2 10 3 10 4 10 5
1

10 3

10 6

10 9

10 12
CeBuffer DeBucket DeSW Desis

Events in Slice

La
te

nc
y

in
 n

s

(d) Latency of increasing num-
ber events per slice.

Figure 10: Throughput and Latency of Systems under Dif-
ferent setups.

of time, which reduces CPU utilization and memory. Desis and
DeSW have to aggregate all slices at the window end, which
means with higher number of slices the throughput drops and
latency increases. This is because Desis and DeSW have to go
through and aggregate all slices from this window.

In the next experiment, we fix the number of slices per window
and vary the slice size in Figure 10c. The throughput of DeSW
and Desis is negatively affected by small size slices since they
are busy with creating and maintaining a large number of slices
instead of processing events. We present the measured latency
in Figure 10d, all systems except CeBuffer have constant latency
because they perform a constant amount of calculations once
windows end.

Summary. The window slicing technique cannot be beneficial
if we process a large number of slices in a window or if every
slice size is very small. Especially when processing concurrent
windows that have no overlap, the throughput of the system
drops sharply. In this case, Desis will not slice windows and only
performs incremental window aggregation.

6.4 Decentralized Performance
We choose CeBuffer, Scotty, and Disco as baselines to evaluate de-
centralized aggregation and measure each system’s performance
of processing concurrent windows in a decentralized setup. We
first measure the network overhead for concurrent windowwork-
loads and then measure the latency of different nodes in a single
window workload.

6.4.1 Network Overhead. We investigate the network over-
head of all systems in a 3-node cluster. We send 100 million
events to each system and calculate network overheads of local
and intermediate nodes. We then gradually add more concur-
rent windows and distinct keys to measure the overall network
overheads for each system.

Results. We first show the results for one query with an av-
erage function in Figure 11a. Desis and Disco have much lower
network utilization than CeBuffer and Scotty. Centralized sys-
tems have to collect all events in their root node, while Desis
and Disco only send partial results, which saves 99% of network

2.98GB 2.98GB

6.62MB 2.27KB
CeBuffer Scotty Disco Desis

0

1GB

2GB

3GB

4GB
Intermediate Local

B
yt

es
 S

en
t

(a) Network overhead of aver-
age.

2.98GB 2.98GB
3.35GB

2.98GB

CeBuffer Scotty Disco Desis
0

1GB

2GB

3GB

4GB
Intermediate Local

B
yt

es
 S

en
t

(b) Network overhead of me-
dian.

10 10 2 10 3
1B

1KB

1MB

1GB

Disco CeBuffer Scotty Desis

Distinct Keys

B
yt

es
 S

en
t

(c) Network overhead of dis-
tinct keys.

10 10 2 10 3
1B

1KB

1MB

1GB

Disco CeBuffer Scotty Desis

Concurrent Windows

B
yt

es
 S

en
t

(d) Network overhead of con-
current windows.

Figure 11: Network overhead of systems by different nodes.

overhead. In the case of a non-decomposable median function
(Figure 11b) all systems have to transfer the events to the root
node. Desis, Scotty, and CeBuffer all have about 3GB network
overhead, Disco is higher because it uses strings to send events
and messages between nodes, while all other systems send bytes
directly. Compared to non-decomposable functions, decompos-
able functions have fewer partial results and high reduction fac-
tors. In Figure 11c, we measure network overheads with a single
query but increase the number of distinct keys. The network
overhead of Desis and Disco increases linearly with more dis-
tinct window keys involved because partial results from different
keys have to be calculated and transmitted individually. How-
ever, when we process concurrent windows with a single key
the network overhead of Desis is constant (Figure 11d). This is
due to the fact that Desis computes slices instead of queries in
local nodes. Local nodes do not repeatedly send partial results of
overlapping windows that can be shared.

We also observe that, when processing decomposable func-
tions, the network overheads of local nodes and intermediate
nodes in centralized systems (Scotty and CeBuffer) are the same.
The intermediate nodes only transfer data to their upper lay-
ers. The network overhead will linearly increase in a compli-
cated topology with multiple intermediate layers between local
and root nodes. In decentralized systems (Desis and Disco), the
increase in network overhead is negligible with respect to dif-
ferent network topologies because most network overhead of
sending individual events is eliminated by partial results. For
non-decomposable functions events have to be sent to parent
nodes in any case, a complicated topology also leads to more
network overheads in decentralized systems.

Summary. We conclude that decentralized aggregation out-
performs centralized aggregation regarding saving network over-
head when processing decomposable functions, especially in a
complicated network that has multiple intermediate nodes be-
tween locals and the root. The decomposable functions have a
higher reduction factor than non-decomposable functions. Ad-
ditionally, Desis can save network overheads by sharing partial
results between overlapping windows when processing concur-
rent windows.

CeBuffer Scotty Disco Desis

0.2
0.4
0.6
0.8
1.0
...

2.5
Root Intermediate Local

La
te

nc
y

in
 m

s

(a) Latency of average.

CeBuffer Scotty Disco Desis

4
8

12
16
20
...

420
Root Intermediate Local

La
te

nc
y

in
 m

s

(b) Latency of median.

Figure 12: Latency of systems by different nodes.

6.4.2 Latency. We keep the same setup as before and measure
latency for local nodes, intermediate nodes, and root nodes. We
measure latency by recording the time for systems performing
window aggregations. Scotty and CeBuffer only process events on
the root node and their root node latency is their system latency.
All systems process one 1 second sized tumbling window.

Results. In Figure 12a we see that CeBuffer has the highest la-
tency since it cannot perform incremental aggregation. All nodes
in Desis and Disco contributed to the overall latency. Therefore,
the network topology affects the latency of a decentralized sys-
tem. In a topology that has multiple intermediate layers, the
overall latency is increased because of multiple latencies in the
intermediate nodes. In Figure 12b, we show the latency of query
with median aggregation. We can see that the latency in the local
nodes of Desis is much lower than that in intermediate nodes
and the root node. This is because the local nodes transmit event
batches to the intermediate nodes, and all batches are merged
and processed there, which is more expensive than performing
decomposable function aggregations.

Summary. We see that the latency of decentralized aggrega-
tion is affected by the network topology, and it increases linearly
with the number of intermediate layers. In a minimal topology,
Desis outperforms all other baselines when processing decom-
posable aggregations.

6.5 Real-World Performance
In this workload, we measure Desis and the baselines in a realistic
setup. We let data generators read events from the DEBS 2013
dataset [46].

6.5.1 Real-World Data. We study the throughput of Desis,
DeSW, DeBucket, and CeBuffer with real-world data and a large
number of concurrent queries. We let query generators randomly
produce queries with different keys, window types, window mea-
sures, decomposable functions, and window lengths.

Results. In Figure 13a, the throughput of CeBuffer and De-
Bucket decrease rapidly with the number of queries. Compare
to DeSW, Desis has about 4 times better performance. When the
number of queries is beyond 10K, the throughput of Desis and
DeSW also decrease. This is because the root node has to gener-
ate the final results for each query. There all query results need
to be materialized separately. When processing a large number
of queries, the generation of the final results becomes dominant.

Summary. The throughput of Desis is constant even with a
high number of parallel queries but decreases beyond 10K. This
can be mitigated by separating queries to multiple root nodes.

10 10 2 10 3 10 4 10 5 10 6
0

5M
10M
15M
20M
25M
30M

CeBuffer DeBucket DeSW Desis

Concurrent Queries

Ev
en

ts
/s

ec

(a) Throughput on real-world
data.

1 2 3 4 5
0

4M
8M

16M

24M

32M
CeBuffer Disco Scotty Desis

Local Nodes

Ev
en

ts
/s

ec
(b) Throughput on Raspberry
Pi Cluster.

99.4MB 99.2MB

32.8KB 0.32KB
CeBuffer Scotty Disco Desis

0

40MB

80MB

120MB
Intermediate Local

B
yt

es
 S

en
t

(c) Network overhead on
Raspberry Pi Cluster.

251

0.471
0.341

0.175

CeBuffer Disco Scotty Desis
0

0.2
0.4
0.6

...

250
300

La
te

nc
y

in
 m

s

(d) Latency on Raspberry Pi
Cluster.

Figure 13: Performance on real-world setup.

6.5.2 Performance on Raspberry Pi Cluster. We evaluate the
performance of Desis, Disco, Scotty, and CeBuffer in a Raspberry
Pi cluster with 1G Ethernet. Every Raspberry PI has one 4-Core
Cortex-A72, 8 GB memory, and Debian 11 64-bit system. To
distinguish with Raspberry Pi, we denote our node as Intel node.
We use one Intel node as the root and two Raspberry Pis as
intermediate and local nodes. Every system processes concurrent
tumbling windows with average functions and 10 distinct keys.
We first measure network overhead produced every second and
latency of each system. We then gradually increase the number
of Raspberry Pi nodes to measure throughput.

Results. In Figure 13c and 13d, we see that Scotty and DeBuffer
transfer 99 MB per second, i.e., about 3.2 million events/s, which
is also the maximum bandwidth of the Raspberry Pi cluster. Com-
pare to Figure 6a, Disco and Desis have roughly the same latency
when processing events on a Raspberry Pi node. In Figure 13b,
Desis has 6.4 million events/s throughput and it scales linearly
with the number of Raspberry Pi nodes. However, the through-
put of Scotty stays at 3.2 million events/s even if we add more
Raspberry Pis. Scotty’s throughput is less than that on Intel node
cluster because its performance is limited by network bandwidth.

Summary. Desis has low latency and high throughput and
outperforms the baselines when processing concurrent windows
on a Raspberry Pi cluster representing a distributed setup. The
performance of the centralized aggregation is affected by low
network bandwidth since fewer events can be sent to the root.

7 RELATEDWORK
Stream processing engines. Recent work on scale-up systems,

such as Saber [37], Streambox [45], BriskStream [68], Trill [16],
StreamInsight [34], Grizzl [22]. They efficiently take advantage
of modern hardware that can process events with high through-
put, low latency, and exactly-once semantics. Further examples
of scale-out systems are Flink [6, 14], Spark [64], Storm [57],
Kafka Streams [51], Apache Beam [8] ,and MillWheel [2]. These
approaches utilize a distributed processing model that executes
computations on a cluster. All those systems are developed for the
single query workload and non-decentralized networks. When

processing multiple queries with different window types, aggre-
gation functions, and window measures, they have to buffer all
events and process each query individually. To process multiple
queries in decentralized networks, they collect all data to their
cluster and process queries there. However, our Desis can split
concurrent windows into slices and push down these slices to
nodes close to data streams and share partial results between
different windows. So we can reduce redundant calculations and
network overheads and move computation load from the center
to all nodes in a decentralized network.

WindowAggregation. Currentwork onwindow aggregation [11,
19, 54, 67] focuses on different optimization of incremental ag-
gregation. For multiple queries that have different window types
and aggregation functions, those solutions have to process multi-
ple queries individually. Pairs [38], Panes [39], LightSaber [56],
and D-Stream [65] can share partial results between windows,
but window types are limited to tumbling and sliding windows.
Cutty [15] and Scotty [58–60] support arbitrary user-defined win-
dows. However, they do not have techniques to optimize queries
with different aggregation functions. Compared to previously
mentioned solutions, Desis can share partial results between
arbitrary windows regardless of window types, aggregation func-
tions, and window measures.

Decentralized Aggregation. Madden et al. [44] introduce a tree-
structured method that can perform partial aggregation, but it
only supports tumbling windows and decomposable functions.
Cougar [62], LEACH [25] and Directed Diffusion [27] are all
based on tree-structured, and make efforts to create an efficient
topology, but they all focus on tumbling windows. PEGASIS [42]
presents a chain-structured approach, which is more expensive
than tree-structured compared to network overhead. Daiki et
al. [53] provide an approximate distributed aggregation algorithm
that is only for simple decomposable functions. Disco [10] has the
same structure as Desis, and can process complicated windows,
but does not work well with multiple queries. In our work, Desis
supports arbitrary windows and aggregation functions, and can
efficiently process concurrent queries in decentralized networks.

8 CONCLUSION
In this paper, we present Desis, a stream processing system that
can process multiple queries efficiently. For concurrent windows
that have different window types, aggregation functions, and
window measures, Desis split windows into slices and share
partial results between them. Also, Desis supports decentralized
aggregation that utilizes adaptive optimizations to deal with
multiple queries in a decentralized network. In our evaluation, we
make a fair comparison between Desis and state-of-art solutions
and show a noticeable improvement in both throughput and
network overheads. Furthermore, we explore the characteristics
of different queries and figure out which one is beneficial for our
system. The results reveal that Desis can consistently outperform
baselines with scaling to a large number of queries.

ACKNOWLEDGMENTS
This work was partially funded by the German Ministry for
Education and Research (ref. 01IS18025A and ref. 01IS18037A),
the German Research Foundation (ref. 414984028), the European
Union’s Horizon 2020 research and innovation programme (ref.
957407), and the HPI research school on Data Science and Engi-
neering.

REFERENCES
[1] Zainab Salih Ageed, Subhi RM Zeebaree, Mohammed Mohammed Sadeeq,

Shakir Fattah Kak, ZryanNajat Rashid, Azar Abid Salih, andWafaaMAbdullah.
2021. A survey of data mining implementation in smart city applications.
Qubahan Academic Journal 1, 2 (2021), 91–99.

[2] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.
2013. Millwheel: Fault-tolerant stream processing at internet scale. Proceedings
of the VLDB Endowment 6, 11 (2013), 1033–1044.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, SamMcVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The dataflowmodel: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. (2015).

[4] Tyler Akidau, Slava Chernyak, and Reuven Lax. 2018. Streaming systems: the
what, where, when, and how of large-scale data processing. " O’Reilly Media,
Inc.".

[5] Shahriar Akter and Samuel Fosso Wamba. 2016. Big data analytics in E-
commerce: a systematic review and agenda for future research. Electronic
Markets 26, 2 (2016), 173–194.

[6] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph
Freytag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, et al. 2014. The stratosphere platform for big data analytics. The VLDB
Journal 23, 6 (2014), 939–964.

[7] Alibaba. 2020. Four Billion Records per Second! Alibaba. Retrieved Dec 2, 2020
from https://www.alibabacloud.com/blog/

[8] Apache Apex. 2018. Enterprise-grade unified stream and batch processing
engine.

[9] Cagri Balkesen and Nesime Tatbul. 2011. Scalable data partitioning techniques
for parallel sliding window processing over data streams. In International
workshop on data management for sensor networks (DMSN).

[10] Lawrence Benson, Philipp M Grulich, Steffen Zeuch, Volker Markl, and
Tilmann Rabl. 2020. Disco: Efficient Distributed Window Aggregation.. In
EDBT, Vol. 20. 423–426.

[11] Pramod Bhatotia, Umut A Acar, Flavio P Junqueira, and Rodrigo Rodrigues.
2014. Slider: Incremental sliding window analytics. In Proceedings of the 15th
international middleware conference. 61–72.

[12] Brice Bingman. 2018. Poor performance with sliding time windows. Flink Jira
Issues (issues. apache. org/jira/browse/FLINK-6990) (2018).

[13] Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J Miller,
and Nesime Tatbul. 2010. SECRET: a model for analysis of the execution
semantics of stream processing systems. Proceedings of the VLDB Endowment
3, 1-2 (2010), 232–243.

[14] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36, 4 (2015).

[15] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker
Markl. 2016. Cutty: Aggregate sharing for user-defined windows. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge
Management. 1201–1210.

[16] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine,
Danyel Fisher, John C Platt, James F Terwilliger, and John Wernsing. 2014.
Trill: A high-performance incremental query processor for diverse analytics.
Proceedings of the VLDB Endowment 8, 4 (2014), 401–412.

[17] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive
stream processing using dynamic batch sizing. In Proceedings of the ACM
Symposium on Cloud Computing. 1–13.

[18] Steffen Friedrich, Wolfram Wingerath, and Norbert Ritter. 2017. Coordinated
omission in nosql database benchmarking. Datenbanksysteme für Business,
Technologie und Web (BTW 2017)-Workshopband (2017).

[19] Thanaa M Ghanem, Moustafa A Hammad, Mohamed F Mokbel, Walid G
Aref, and Ahmed K Elmagarmid. 2006. Incremental evaluation of sliding-
window queries over data streams. IEEE Transactions on Knowledge and Data
Engineering 19, 1 (2006), 57–72.

[20] Norjihan Abdul Ghani, Suraya Hamid, Ibrahim Abaker Targio Hashem, and
Ejaz Ahmed. 2019. Social media big data analytics: A survey. Computers in
Human Behavior 101 (2019), 417–428.

[21] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and sub-
totals. Data mining and knowledge discovery 1, 1 (1997), 29–53.

[22] Philipp M Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von
Bleichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly:
Efficient stream processing through adaptive query compilation. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data.
2487–2503.

[23] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, and Alexandros
Labrinidis. 2011. Optimized processing of multiple aggregate continuous
queries. In Proceedings of the 20th ACM international conference on Information
and knowledge management. 1515–1524.

[24] Shenoda Guirguis, Mohamed A Sharaf, Panos K Chrysanthis, and Alexandros
Labrinidis. 2012. Three-level processing of multiple aggregate continuous
queries. In 2012 IEEE 28th International Conference on Data Engineering. IEEE,

929–940.
[25] Wendi B Heinzelman, Anantha P Chandrakasan, and Hari Balakrishnan. 2002.

An application-specific protocol architecture for wireless microsensor net-
works. IEEE Transactions on wireless communications 1, 4 (2002), 660–670.

[26] Ayae Ichinose, Atsuko Takefusa, Hidemoto Nakada, and Masato Oguchi. 2017.
A study of a video analysis framework using Kafka and spark streaming. In
2017 IEEE International Conference on Big Data (Big Data). IEEE, 2396–2401.

[27] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heide-
mann, and Fabio Silva. 2003. Directed diffusion for wireless sensor networking.
IEEE/ACM transactions on networking 11, 1 (2003), 2–16.

[28] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana Zulk-
ernine, and Shahzad Khan. 2019. A survey of distributed data stream process-
ing frameworks. IEEE Access 7 (2019), 154300–154316.

[29] Mohd Javaid, Abid Haleem, Ravi Pratap Singh, and Rajiv Suman. 2021. Signif-
icant applications of big data in Industry 4.0. Journal of Industrial Integration
and Management 6, 04 (2021), 429–447.

[30] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. 2014. A survey of
distributed data aggregation algorithms. IEEE Communications Surveys &
Tutorials 17, 1 (2014), 381–404.

[31] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data
processing systems. In 2018 IEEE 34th International Conference on Data Engi-
neering (ICDE). IEEE, 1507–1518.

[32] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: ad-hoc stream
joins at scale. Proceedings of the VLDB Endowment 13, 4 (2019), 435–448.

[33] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. Astream: Ad-hoc
shared stream processing. In Proceedings of the 2019 International Conference
on Management of Data. 607–622.

[34] Seyed Jalal Kazemitabar, Ugur Demiryurek, Mohamed Ali, Afsin Akdogan,
and Cyrus Shahabi. 2010. Geospatial stream query processing using Microsoft
SQL Server StreamInsight. Proceedings of the VLDB Endowment 3, 1-2 (2010),
1537–1540.

[35] Sean Dieter Tebje Kelly, Nagender Kumar Suryadevara, and Subhas Chandra
Mukhopadhyay. 2013. Towards the implementation of IoT for environmental
condition monitoring in homes. IEEE sensors journal 13, 10 (2013), 3846–3853.

[36] Jyoti Mante Khurpade, Devakanta Rao, and Parth D Sanghavi. 2018. A Survey
on IOT and 5G Network. In 2018 International conference on smart city and
emerging technology (ICSCET). IEEE, 1–3.

[37] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. 2016. Saber: Window-based hybrid
stream processing for heterogeneous architectures. In Proceedings of the 2016
International Conference on Management of Data. 555–569.

[38] Sailesh Krishnamurthy, Chung Wu, and Michael Franklin. 2006. On-the-fly
sharing for streamed aggregation. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data. 623–634.

[39] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker.
2005. No pane, no gain: efficient evaluation of sliding-window aggregates
over data streams. Acm Sigmod Record 34, 1 (2005), 39–44.

[40] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker.
2005. Semantics and evaluation techniques for window aggregates in data
streams. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. 311–322.

[41] Jin Li, Kristin Tufte, David Maier, and Vassilis Papadimos. 2008. AdaptWID:
An adaptive, memory-efficient window aggregation implementation. IEEE
Internet Computing 12, 6 (2008), 22–29.

[42] Stephanie Lindsey, Cauligi Raghavendra, and Krishna M Sivalingam. 2002.
Data gathering algorithms in sensor networks using energy metrics. IEEE
Transactions on parallel and distributed systems 13, 9 (2002), 924–935.

[43] Guojin Liu, Rui Tan, Ruogu Zhou, Guoliang Xing, Wen-Zhan Song, and
Jonathan M Lees. 2013. Volcanic earthquake timing using wireless sensor net-
works. In 2013 ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN). IEEE, 91–102.

[44] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.
2002. {TAG}: A Tiny {AGgregation} Service for {Ad-Hoc} Sensor Networks.
In 5th Symposium on Operating Systems Design and Implementation (OSDI 02).

[45] HongyuMiao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S
McKinley, and Felix Xiaozhu Lin. 2017. {StreamBox}: Modern Stream Pro-
cessing on a Multicore Machine. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17). 617–629.

[46] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. 2013. The DEBS
2013 grand challenge. In Proceedings of the 7th ACM international conference
on Distributed event-based systems. 289–294.

[47] Snehal Nagmote and Pallavi Phadnis. 2019. Massive scale data processing at
netflix using flink. In Flink Forward Conference.

[48] Pekka Pääkkönen. 2016. Feasibility analysis of AsterixDB and Spark streaming
with Cassandra for stream-based processing. Journal of Big Data 3, 1 (2016),
1–25.

[49] Srinivasa Prasanna and Srinivasa Rao. 2012. An overview of wireless sensor
networks applications and security. International Journal of Soft Computing
and Engineering (IJSCE) 2, 2 (2012), 2231–2307.

[50] Radhya Sahal, John G Breslin, and Muhammad Intizar Ali. 2020. Big data
and stream processing platforms for Industry 4.0 requirements mapping for a
predictive maintenance use case. Journal of manufacturing systems 54 (2020),
138–151.

https://www.alibabacloud.com/blog/

[51] Matthias J Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph
Freytag. 2018. Streams and tables: Two sides of the same coin. In Proceedings
of the International Workshop on Real-Time Business Intelligence and Analytics.
1–10.

[52] Leo Syinchwun. 2016. Lightweight event time window. Flink Jira Issues (issues.
apache. org/jira/browse/FLINK-5387) (2016).

[53] Daiki Takao, Kento Sugiura, and Yoshiharu Ishikawa. 2021. Approximate
Fault-Tolerant Data Stream Aggregation for Edge Computing. In International
Conference on Big Data Analytics. Springer, 233–244.

[54] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015.
General incremental sliding-window aggregation. Proceedings of the VLDB
Endowment 8, 7 (2015), 702–713.

[55] Gil Tene. 2016. How NOT to Measure Latency. IHS. Retrieved Mar 26, 2016
from https://www.infoq.com/presentations/latency-response-time/

[56] Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk.
2020. LightSaber: Efficient window aggregation on multi-core processors. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2505–2521.

[57] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 147–156.

[58] Jonas Traub, Philipp Marian Grulich, Alejandro Rodriguez Cuellar, Sebastian
Breß, Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2018. Scotty:
Efficient window aggregation for out-of-order stream processing. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 1300–1303.

[59] Jonas Traub, Philipp M Grulich, Alejandro Rodríguez Cuéllar, Sebastian Breß,
Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2019. Efficient Win-
dow Aggregation with General Stream Slicing.. In EDBT, Vol. 19. 97–108.

[60] Jonas Traub, Philipp Marian Grulich, Alejandro Rodríguez Cuéllar, Sebastian
Breß, Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2021. Scotty:

General and Efficient Open-source Window Aggregation for Stream Process-
ing Systems. ACM Transactions on Database Systems (TODS) 46, 1 (2021),
1–46.

[61] Ioan Ungurean, Nicoleta-Cristina Gaitan, and Vasile Gheorghita Gaitan. 2014.
An IoT architecture for things from industrial environment. In 2014 10th
International Conference on Communications (COMM). IEEE, 1–4.

[62] Yong Yao and Johannes Gehrke. 2002. The cougar approach to in-network
query processing in sensor networks. ACM Sigmod record 31, 3 (2002), 9–18.

[63] Shen Yin and Okyay Kaynak. 2015. Big data for modern industry: challenges
and trends [point of view]. Proc. IEEE 103, 2 (2015), 143–146.

[64] Matei Zaharia, Tathagata Das, Haoyuan Li, TimothyHunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

[65] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. 2012.
Discretized Streams: An Efficient and {Fault-Tolerant} Model for Stream
Processing on Large Clusters. In 4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 12).

[66] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-
ilidis, Dimitrios Giouroukis, Philipp M Grulich, Sebastian Breß, Jonas Traub,
and Volker Markl. 2019. The NebulaStream Platform: Data and application
management for the internet of things. arXiv preprint arXiv:1910.07867 (2019).

[67] Chao Zhang, Reza Akbarinia, and Farouk Toumani. 2021. Efficient Incremental
Computation of Aggregations over SlidingWindows. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2136–2144.

[68] Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bingsheng He. 2019.
Briskstream: Scaling data stream processing on shared-memory multicore ar-
chitectures. In Proceedings of the 2019 International Conference on Management
of Data. 705–722.

https://www.infoq.com/presentations/latency-response-time/

	Abstract
	1 Introduction
	2 Background
	2.1 Windowing
	2.2 Aggregation Function
	2.3 Window Overlap
	2.4 Window Aggregation in Decentralized Networks

	3 System Overview
	3.1 Components of Desis
	3.2 Fault Tolerance

	4 Aggregation Engine
	4.1 Window Slicing
	4.2 Window Merging
	4.3 End to End Optimization

	5 Decentralized Aggregation
	5.1 Decomposable Decentralized Aggregation
	5.2 Non-Decomposable Decentralized Aggregation

	6 Evaluation
	6.1 Experimental Design
	6.2 End to End Performance
	6.3 Optimization Performance
	6.4 Decentralized Performance
	6.5 Real-World Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

