
TPCx-AI - An Industry Standard Benchmark for Artificial
Intelligence and Machine Learning Systems

Christoph Brücke
bankmark
Germany

christoph.bruecke@bankmark.de

Philipp Härtling
bankmark
Germany

philipp.haertling@bankmark.de

Rodrigo D Escobar Palacios
Intel

Hillsboro, Oregon
rodrigo.d.escobar.palacios@intel.com

Hamesh Patel
Intel

Hillsboro, Oregon
hamesh.s.patel@intel.com

Tilmann Rabl
Hasso Plattner Institute, University of

Potsdam, bankmark
Germany

tilmann.rabl@hpi.de

ABSTRACT
Artificial intelligence (AI) and machine learning (ML) techniques
have existed for years, but new hardware trends and advances in
model training and inference have radically improved their perfor-
mance. With an ever increasing amount of algorithms, systems, and
hardware solutions, it is challenging to identify good deployments
even for experts. Researchers and industry experts have observed
this challenge and have created several benchmark suites for AI and
ML applications and systems. While they are helpful in comparing
several aspects of AI applications, none of the existing benchmarks
measures end-to-end performance of ML deployments. Many have
been rigorously developed in collaboration between academia and
industry, but no existing benchmark is standardized.

In this paper, we introduce the TPC Express Benchmark for Arti-
ficial Intelligence (TPCx-AI), the first industry standard benchmark
for end-to-end machine learning deployments. TPCx-AI is the first
AI benchmark that represents the pipelines typically found in com-
mon ML and AI workloads. TPCx-AI provides a full software kit,
which includes data generator, driver, and two full workload imple-
mentations, one based on Python libraries and one based on Apache
Spark. We describe the complete benchmark and show benchmark
results for various scale factors. TPCx-AI’s core contributions are a
novel unified data set covering structured and unstructured data; a
fully scalable data generator that can generate realistic data from
GB up to PB scale; and a diverse and representative workload using
different data types and algorithms, covering a wide range of as-
pects of real MLworkloads such as data integration, data processing,
training, and inference.

PVLDB Reference Format:
Christoph Brücke, Philipp Härtling, Rodrigo D Escobar Palacios, Hamesh
Patel, and Tilmann Rabl. TPCx-AI - An Industry Standard Benchmark for
Artificial Intelligence and Machine Learning Systems . PVLDB, 16(12): 3649
- 3661, 2023.
doi:10.14778/3611540.3611554

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611554

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://www.tpc.org/tpcx-ai/default5.asp.

1 INTRODUCTION
Machine learning (ML) has been shown to be beneficial in industry
and academia. Tasks that were considered very complex to solve
with software systems, such as image or voice recognition, can
be solved with high accuracy with ML-based artificial intelligence
(AI) solutions [34]. While many large companies have shown sur-
prising results in various applications, this is hard to replicate for
companies without well-funded and well-staffed AI departments.
Today, improvements in accuracy and architecture come at costs
that only major players can afford and that are not feasible or even
reproducible for small scale deployments [11].

Contributing to this problem, current AI solutions are highly
diverse and due to the great interest in the field, many new systems
with different strategies and goals are developed. This creates a
need for standardized methods to compare systems and solutions.

In the past, benchmarks have been pivotal for both, performance
improvements in common applications and unification of interfaces
for these applications. Previous database benchmarks by the Trans-
action Processing Performance Council (TPC) are a good example
of this, which is shown by the many publications in database re-
search that use these benchmarks as validation. Although they are
a simplification of real world applications, the benchmarks serve
as a common abstraction for use case scenarios and make systems
and research comparable.

Researchers and practitioners have started several efforts to build
similar benchmarks for AI domains. Most of these focus on the core
ML training aspect, either from a micro-benchmark perspective,
such as DeepBench [22] or evaluating the training of different ML
models, e.g., MLBench [17]. While model training is at the heart
of many AI applications, it does not reflect the various challenges
AI applications face. More holistic approaches also incorporate
serving1 tasks, e.g., MLPerf [18], which allows for the evaluation
of training or serving for a variety of ML models; or preprocessing
and postprocessing stages, such as dcbench [7], which evaluates
specific preprocessing tasks, such as data pruning.

1Serving is also commonly known as Inference in the AI terminology.

https://doi.org/10.14778/3611540.3611554
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611554
https://www.tpc.org/tpcx-ai/default5.asp

Data
preparation

• Explore
• Wrangle
• Clean
• Filter
• Organize

Training
(Modeling)

Feature
engineering

Model
Persistence

• Visualize
• Render
• Explain

Data
acquisition

• Load
• Collect
• Obtain
• Capture

Interpret/
Store

Deployment• Archive
• Warehouse
• Parquet
• CSV

• Build data model:
 - Cluster
 - SVM
 - CNN, RNN
 - Linear Regression

Format/Store

Inference
(Predict)

PreprocessingData load Post process

• Feature select
• Feature

interaction
• Transformations

Model/Predict

• Use previously
built model to
make predictions

Figure 1: End-to-end ML pipeline

In this paper, we go beyond these approaches and introduce the
TPC Express Benchmark for Artificial Intelligence (TPCx-AI), a
benchmark for end-to-end AI systems. TPCx-AI is based on AD-
ABench [29] and has recently been standardized by the TPC [4].
TPCx-AI’s workload comprises 10 use cases, implemented as end-
to-end AI processing pipelines that, unlike other AI benchmarks,
include data ingestion, preprocessing, training, serving, and post-
processing stages. Figure 1 shows the set of tasks involved in a
typical end-to-end AI processing pipeline. TPCx-AI’s use cases are
based on diverse retail scenario tasks with various data types and
ML models, both traditional and deep learning. We use a study
by McKinsey Analytics [1] on potential use cases for AI and ML
techniques in retail and other verticals as an inspiration for the
workloads.

TPCx-AI is released with a full implementation, also known as
the toolkit or simply the kit. This kit contains a synthetic data gener-
ator, based on the Parallel Data Generation Framework (PDGF) [30],
a driver that manages the complete execution of the benchmark,
as well as two reference implementations, one based on Apache
Spark [38] and one based on established Python libraries. Other
implementations can be added as well upon review and approval by
the TPC. Despite being a young standard benchmark, there already
exist 14 official benchmark submissions to the TPC, as of June 2023.

In this paper, we give an overview of TPCx-AI, the first industry
standard benchmark for end-to-end AI and ML systems and make
the following contributions:
• We give a detailed introduction to TPCx-AI. We describe its
workload, data sets, run rules, and metrics.

• We describe the internal benchmark implementation and com-
pare the Spark- and Python-based versions.

• We analyze the benchmark data set and workload both qualita-
tively and experimentally.
The rest of this paper is structured as follows. Next, we discuss

related work. Section 3 gives an overview of the benchmark and
describes the workload, data model, run rules, and metrics. We
analyze the data set in Section 4. Section 5 presents the benchmark
kit and the two workload implementations. In Section 6, we execute
the benchmark and discuss the results of both implementations.
We present future extensions of the benchmark in Section 7 and
conclude with future work in Section 8.

2 RELATEDWORK
In this section, wewill give an overview of relatedwork. For a recent
survey on several machine learning, big data, and high performance
computing benchmarks see also Ihde et al. [15].

Due to the high interest in ML, many benchmarks have been
developed to evaluate ML systems and applications. These can be
categorized in benchmark data sets, micro-benchmarks, benchmark
suites, component benchmarks, and application-level benchmarks.

Benchmark data sets have a long history in ML research. Well
know examples are ImageNet [5] and WordNet [20], as well as
various collections of ML data sets, such as the UCI Machine Learn-
ing Repository2, OpenML [36], and the Penn Machine Learning
Benchmarks [31]. These data sets are typically used to evaluate
the accuracy of ML algorithms and approaches rather than their
performance. While this has helped tremendously to improve ML
algorithms, it does not provide the full picture required in practical
deployments, where a trade-off in accuracy and latency is always
required. Several benchmark proposals are based on these data sets,
e.g., MLBench [17] and MLPerf [18].

An example of a micro-benchmark is DeepBench [21, 22], which
benchmarks basic deep learning operations, such as matrix mul-
tiplication, all-reduce, or convolutions. Another example is SLAB
[35], a benchmark for linear algebra primitives. Like other micro-
benchmarks, DeepBench and SLAB can give deep insights into
performance behaviour of the underlying hardware for typical ML
operations, but the results are hard to interpret for end-to-end
scenarios in real world deployments.

Benchmark suites are collections of kernels, applications, tools,
or other workload units, designed to represent certain workload
scenarios in application domains. An example of a kernel based
benchmark suite is High Performance Linpack3 (HPL), a collection
of kernels for numerical calculations to measure raw compute per-
formance. Like many benchmark suites, HPL extensions have added
ML workloads (e.g., HPL-AI4) to their portfolio. Another example
is BigDataBench [8], which includes AI workloads in its current

2UCI Machine Learning Repository - https://archive-beta.ics.uci.edu/
3High Performance Linpack - https://www.netlib.org/benchmark/hpl/
4HPL-AI - https://icl.bitbucket.io/hpl-ai

https://archive-beta.ics.uci.edu/
https://www.netlib.org/benchmark/hpl/
https://icl.bitbucket.io/hpl-ai

version5. Some benchmark suites contain end-to-end application
workloads, but are built to measure hardware performance rather
than complete deployments.

Most research on AI has focused on ML training, which is also
true for the majority of ML benchmarks. From a benchmarking
perspective, this can be seen as one component (among several oth-
ers) of the complete ML pipeline. Researchers have identified other
tasks of ML pipelines to be relevant for end-to-end performance of
ML deployments and systems [28, 37], and some benchmarks have
been developed especially for those other tasks. Example of tasks
are data cleaning, such as presented by CleanML [16], a benchmark
for data cleaning and ML; AutoML Benchmark [10], which bench-
marks automated ML. In addition, dcbench [7] is a benchmark that
specifically focuses on ML pipeline stages other than training. Cur-
rently, the benchmark defines three components for data cleaning,
pruning, and slicing.

Closest to TPCx-AI are MLPerf [18] and its predecessor DAWN-
Bench [3], which both include training and serving tasks and pro-
posed novel metrics for time to accuracy and time per serving. Both
metrics are relevant for real world deployments and are included
in the TPCx-AI metric. Unlike TPCx-AI, both benchmarks do not
include data ingestion, preprocessing or postprocessing stages, and
users can choose to evaluate only training or serving, or both. To
the best of our knowledge, TPCx-AI is the only official industry stan-
dard benchmark, which covers end-to-end ML and AI workloads at
an application level.

3 BENCHMARK OVERVIEW
In this section, we give an overview of the benchmark specification,
which includes the workload (use case pipelines and data set), as
well as the run rules and benchmark metrics.

Major design goals for the benchmark were that it is realistic,
representative, and relevant for ML and AI deployments. Section
3.1 gives a brief introduction to TPC benchmarks in general. In
Section 3.2 we describe the TPCx-AI data model. Section 3.3 gives a
detailed description of the ten use cases and their pipelines. Section
3.4 explains run rules and the different measured and unmeasured
tests of the benchmark. Finally, Section 3.5 and 3.6 define TPCx-AI’s
quality and performance metric 𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 .

3.1 TPC Benchmarks
The Transaction Processing Performance Council (TPC) is a con-
sortium with a history of more than 30 years developing successful
benchmarks for data processing. Currently there are 10 active TPC
benchmarks for different areas of data processing and data analysis.
For instance, classical online analytical processing is benchmarked
in TPC-H and TPC-DS [23, 24], data integration systems can be
evaluated using TPC-DI [26], and TPCx-BB is a big data analyt-
ics benchmark [9], which also includes several machine learning
tasks. TPC benchmarks are typically used by member companies
(e.g. original equipment manufacturers or independent software
vendors) to demonstrate and promote the features and capabilities
of their hardware or software systems when processing certain

5BigDataBench Version 5.0 - https://www.benchcouncil.org/BigDataBench/files/
BigDataBench5.0-User-Manual.pdf

types of workloads. Companies that submit benchmark results for
official publication are also known as test sponsors.

Each TPC benchmark belongs to one of two categories: Express
or Enterprise. Both Express and Enterprise benchmarks include a
specification document when released. The specification document
contains information about the benchmark design, run rules, as
well as implementation details, among others. In addition to the
specification document, Express benchmarks include a kit released
by the TPC alongwith the benchmark’s specification document [14].
Enterprise benchmarks, on the other hand, need to be implemented
by the sponsor based on the specification document. The TPC
introduced Express benchmarks in 2013 in an effort to make their
benchmarks easier to adopt.

The following aspects are also integral to TPC benchmarks:

Audit requirement Before TPC benchmark results can be con-
sidered official they need be reviewed by an independent TPC
certified auditor that will inspect the results thoroughly to con-
firm that all benchmark rules were followed and thus obtained
under fair conditions to be compared to previous and future
results.

System Under Test pricing In addition to reporting the perfor-
mance score obtained after running the benchmark, users also
need to report in detail the price of the system under test (SUT)
and its components (software and hardware) used to obtain
their performance score [13]. TPC benchmarks usually consoli-
date the price of the SUT under their price/performance metric
that needs to be included in the results. This feature of TPC
benchmarks allows for consumers to get a clearer perspective
on the total cost of the system required to achieve a certain
performance score. Recently, special clauses have been added
to the pricing specification to permit running TPC benchmarks
in the cloud rather than only in on-site deployments.

3.2 Data Model
The core of the TPCx-AI data model is relational, i.e., there are
multiple tables with relationships to each other. Figure 2 illustrates
the different schema parts and highlights the relationships between
the tables as well as their usage by the individual use cases. The
relational schema represents an analytical database with orders
consisting of line items as common in data warehouses. Addition-
ally, several other relational tables give more insight into customers,
their financial transactions, products, and marketplace prices. Be-
sides the structured data, there are multiple unstructured data sets
in the model. This also includes text, as in product reviews, as well
as, audio files and customer images. Each use case utilizes a subset
of the data model as shown in Figure 2. All tables are generated
scalably using the synthetic data generator PDGF [30], which we
extended to enable image and audio generation.

The complete data set is scaled according to a scale factor (𝑆𝐹).
Users specify the 𝑆𝐹 prior to running the benchmark to indicate
the dataset size in GB for which they want to run the workload.
Scale factors that can be used for official publications range from 1
GB up to several Petabytes in steps of 3 and 10 (i.e., 1, 3, 10, ...). The
relational tables include common SQL data types, as well as text,
and each table has between 2 and 12 columns. The audio files are
WAV files and the images PNG files. Using synthetically generated

https://www.benchcouncil.org/BigDataBench/files/BigDataBench5.0-User-Manual.pdf
https://www.benchcouncil.org/BigDataBench/files/BigDataBench5.0-User-Manual.pdf

Table 1: Use Case Overview

ID use case Type Class Data Algorithm DL

UC01 Customer Segmentation Triaging Clustering Number k-Means
UC02 Call Transcription Convert Unstr. Data Classification Audio Convolutional Neural Network X
UC03 Sales Forecasting Forecasting Regression Number Holt-Winters
UC04 Spam Detection Discover Anomalies Classification Text Naïve Bayes
UC05 Price Prediction Predictive Analytics Regression Text Recurrent Neural Network X
UC06 Hardware Failure Predictive Maintenance Classification Number Support Vector Machines
UC07 Product Rating Hyper-Personalization Recommendation Number Collaborative Filtering
UC08 Classification of Trips Triaging Classification Number Gradient Boosted Trees
UC09 Facial Recognition Hyper-Personalization Classification Image CNN & Logistic Regression X
UC10 Fraud Detection Discover Anomalies Classification Number Logistic Regression

Figure 2: TPCx-AI Data Schema

data also mitigates the risks of running into ethical or privacy
issues, and enables the generation of correct ground truth data.
For example, the audio files are customer conversations, which are
initially generated as text files and then converted to audio using a
text-to-speech conversion tool. The same is true for user images,
which are generated in a deterministic manner based on the user
ID in different conditions using a face generator.

For the training, serving, and scoring tests of the benchmark,
separate data sets are generated. This is done by facilitating the
descriptive nature of a PDGF data generator. For all three data
sets the same data description is used but with a different seed
and scaling factor. Changing the seed will give a different data set
but with the same structure and data distributions. We generate
three separate data sets in order to prevent information leaks and
minimize attack surface for unfair benchmark users. The training
data set is used in the Power Training Test and contains all tables
with all columns and hence all features necessary for training as
well as the labels. The training data set grows proportionally to the
scaling factor. The serving data set is to be used for serving and
consist of all the tables and columns but without the labels. Because
this is different from the training data set, simply memorizing the
training data will not help during serving. The serving data set is
used for the Power Serving Test as well as the Serving Throughput
Test. The last data set is the scoring data set and is conceptually a
combination of the latter two data sets. As a first step a data set
containing only the features but none of the labels is generated and
must be used during the Scoring Test but in the same environment
as the Power Serving Test. Afterwards the labels are generated in
the benchmark driver to calculate the quality metric.

The data distributions within the data sets are modeled after
real data sets or carefully designed to have certain characteristics.
Some attributes are highly skewed whereas others contain a lot of
noise. A good example for a skewed data set is the failures event
log. This contains log event for different hard drives, one per day,
monitoring the health status of hard drive using S.M.A.R.T. data.
For the training case the failures log also contains a flag indicating
if a hard drive failed. Under real conditions a hard drive rarely
fails and if so it mostly fails catastrophically, which means there
is a single event out of thousands which is a failure. Examples for
noisy data sets are the financial_transactions and product_rating
relations. These contain fraudulent transactions and spam reviews.
But they also contain transactions and reviews that share the same
characteristics as the fraudulent or spammy ones but are in fact
valid transactions and reviews. Adding such noise prevents the
models from characterizing fraud or spam too aggressively.

3.3 Workload
TPCx-AI’s workload consists of ten use cases, each covering a
complete end-to-end ML pipeline as outlined by Polyzotis et al.
[27], dealing with the technical challenges in ML systems [32].
An abstract ML pipeline can be seen in Figure 1. Unlike previous
benchmarks, TPCx-AI’s workloads cover all steps in this pipeline,
although not all steps are covered in all pipelines. The use cases
were inspired by real world use cases and based on an analysis by
McKinseyAnalytics [1]. Theworkload covers traditional techniques
as well as deep learning models. Each use case solves a specific
ML challenge. In the following, we give an overview of the ten use
cases, which are also summarized in Table 1.

UC01 - Customer Segmentation. In the first use case, customers
are segmented based on their shopping behavior. It uses k-means
clustering on the customer, order, lineitem, and order_returns tables
to identify different types of customers. In the preprocessing step,
duplicates and null values are removed, then in the training, the
customers are clustered unsupervised by k-means. The clusters are
used while serving to assign new users to groups.

UC02 - Customer Conversation Transcription. In UC02, transcripts
of user calls are generated using audio to text conversion. This
is done using the Deep Speech recurrent neural network (RNN)
model [12]. In the preprocessing step, the audio data is loaded and
resampled to a common sample rate (16kHz). Then Mel Frequency
Cepstral Coefficients (MFCC) are calculated from the raw audio
and used to train the deep neural network infrastructure. During
serving the same preprocessing steps are applied and the already
trained model is used to generate transcriptions. The transcripts
are then used to compute word error rates comparing to the ground
truth data in the scoring test.

UC03 - Sales Forecasting. The objective in UC03 is to forecast the
weekly sales for each department in each store given a limited
history of sales data for the second to last year in the data set.
The pipeline uses the tables orders, product, lineitem, and store_de-
partment. The use case utilizes an exponential smoothing technique
(Holt-Winters) for time series forecasting. In the acquisition stage,
the tables are loaded and joined, then aggregates for weekly sales
are generated in preprocessing. The training fits the Holt-Winters
model, which is used to forecast sales in the serving stage for up
to one year per department per store. The scoring test checks the
accuracy of the results.

UC04 - Spam Detection. In UC04, product reviews are searched
for spam entries. This use case uses the product_rating text data.
Our specification uses a classical Naïve Bayes model to identify
spam entries. In the acquisition step, reviews are loaded and in the
cleaning step, duplicates are eliminated. The text is transformed to
n-grams and vectors in preprocessing and the model is fit during
training. While serving, new reviews are classified as ham or spam
and the resulting predictions are scored using Matthews correlation
coefficient.

UC05 - Price Prediction. UC05 performs price predictions for in-
dividual retail items using a Recurrent Neural Network on the
marketplace table. The prediction is based on the brand, product
name, and description on an online market place. Initially, dupli-
cates and null values are eliminated and the model is trained on the
data. During serving, item prices are predicted and the predictions
are scored using Root Mean Squared Log Error.

UC06 - Hardware Failure. In UC06 hardware failures of disk drives
are predicted based on Self-Monitoring, Analysis, and Reporting
Technology (SMART) data in the failures log data set. While this
is not a pure retail use-case it is a typical infrastructure task and
relevant in any larger hardware setup. The initial preprocessing
performs duplicate and null value removal. A support vector ma-
chine is trained based on known data and failures. In the serving
stage, impending failures are predicted and scored using the F-score
metric.

UC07 - Product Rating. In UC07, cross-selling is improved by giv-
ing "next-to-buy" recommendations. Based on previously bought
products, we give recommendations for products that the customer
might also be interested in. The recommendation are found in the
product ratings by comparing customers (by their products) and/
or products (by their customers). The ratings are loaded and trans-
formed into a numerical format without duplicates. In the training
step, matrix factorization is used and an alternating least squares
regression between the item and user matrix. Predictions for user
item pairs are served and scored using mean absolute error.

UC08 - Classification of Trips. In a brick and mortar store setup,
it is useful to classify shopping trips into trip types. Examples
of trip types are: a customer may make a small daily dinner trip,
a weekly large grocery trip, a trip to buy gifts for an upcoming
holiday, or a seasonal trip to buy clothes. In data acquisition, the
shopping history is generated by joining the tables order, lineitem,
and product. Items are aggregated and categorical values in the data
are binarized (after data cleaning). We train gradient boosted trees
to predict the trip type in the serving stage based on active shopping
sessions. The scoring computes the classification accuracy.

UC09 - Facial Recognition. In UC09, we train a classifier to recognize
faces. This can be used to identify frequent customers or enable
face identification systems6. The data set contains a set of com-
puter generated face images for a subset of the customers. For each
customer image, we also generate a foreign key to the customer
table as meta data, to enable labeling and scoring. After loading the
data in the acquisition step, the names are encoded and the images
are aligned and resized. During training, a pre-trained embedding
(a convolutional neural network) is fine-tuned for the customer
images and a logistic regression model is trained on the embed-
ding and the names of the customers. The serving step recognizes
customer images and the accuracy is scored.

UC10 - Fraud Detection. In UC10, we cover a fraud detection use
case. For this, there are separate financial transactions in the data
set, which contain transaction time, transaction amount, sender,
receiver, and transaction limits for accounts. Based on a prede-
fined set of fraudulent transactions, a logistic regression model is
trained for classification. The data is disaggregated and distributed
in the tables financial_account and financial_transaction, which
need to be joined and cleaned. The transaction data is normalized
across the full tables before training the model. In the serving stage,
transactions are classified and scored using classification accuracy.

3.4 Benchmark Tests and Run Rules
A complete benchmark run consists of several tests, some of which
are timed and part of the measured result. The following tests are
run in sequential order:

(1) Data Generation
(2) Load Test
(3) Power Training Test
(4) Power Serving Test I
(5) Power Serving Test II
(6) Scoring Test

6Given the ethical implications of facial recognition technologies UC09 will most likely
be adapted to use object images instead of faces in future versions of TPCx-AI.

Data Acquisition
Tr

an
sc

ri
p

ti
on

s

Load
CONVERSATION.CSV

A
u

d
io

 F
ile

s

Load
Audio_[n].wav

Load
Audio_2.wav

Load
Audio_1.wav

Data Transformation

Fe
at

u
re

s resample audio
16 kHz

calculate MFCC
La

b
el

s encode labels as
padded sequences

Serving

P
re

d
ic

ti
on

s

create transcripts for
audio

Training

M
od

el

train Bi-LSTM

Figure 3: Process view for the UC02 Deep Learning pipeline

(7) Serving Throughput Test

During Data Generation all data sets are generated including
training, serving, and scoring data sets. The data generation is not
timed. In the Load Test the data is loaded into the system, which
means the data is moved into the final position, where it will be
used by the system. This could be just a copy operation or an
ingestion into a system including data transformations, format
changes, compression, encoding, etc. The Load Test is timed and the
end-to-end elapse time is part of the final metric. The Power Training
Test runs the training pipelines of the ten use cases sequentially,
including all preprocessing, model training, and postprocessing
tasks. The end-to-end elapse time of each use case is measured. In
the Power Serving Test I and Power Serving Test II tests, the serving
pipeline of all use cases are run sequentially and the elapse time
of each use case is measured. In the Scoring Test, the quality of the
predictions of each use case serving pipeline is measured against
predefined thresholds. This test also embodies part of the model
validation stage that is commonly found in production AI pipelines
to decide whether a recently trained model should be deployed
or discarded [37]. The time of the scoring is not measured as its
purpose is to measure the quality of the models created during
the Power Training Test. In the Serving Throughput Test, concurrent
streams of the ten serving pipelines are defined and run. Each
stream consists of the sequential execution of a permutation of the
serving pipelines of the ten use cases. The end-to-end time of the
execution of all streams is measured.

A complete run consists of a Validation Run with Scale Factor 1,
followed by the actual Benchmark Runwith the scale factor selected
by the user. The purpose of the Validation Run is to verify the system
under test is in a good state for running the benchmark. The results
of the Validation Run are compared to a predefined result set, which
is part of the benchmark kit. As part of the validation, the result
cardinalities and data set sizes are compared to predefined results
and other sanity checks are performed.

An official TPCx-AI result mandates that modifications to the kit
are done only as allowed by the benchmark specification, and that
all components of the system are commercially available (including
software frameworks and libraries). An exception are TPCx-AI
approved compute libraries. The result of an official benchmark run
is reported to the TPC in a full disclosure report, which additionally
contains all hardware and software as well as all information and
configurations necessary to rerun the benchmark on the SUT.

3.5 Quality Metric
One of the acceptance criteria for a benchmark run is the quality
metric. The quality metric for TPCx-AI is used to measure the qual-
ity of a trained machine learning model with previously unseen
data against a ground truth data set. We call this process SCORING
and it is embedded into to the benchmark driver. New test sponsors
do not need to implement or measure the quality themselves. What
is considered high or low quality is based on the particular use case
and business requirements. Hence each use case has its own prede-
fined quality metric and threshold. See Table 2 for a full reference
of the different metrics, their thresholds, and an indicator showing
if a certain metric should be minimized or maximized. However,
since the quality metric is seen as an acceptance criteria rather than
being part of the performance metric it is enough if the threshold
is met, i.e., deviations are neither penalized nor rewarded. This is
quite similar to the time-to-accuracy metric of MLPerf [18], in the
sense that it acknowledges the fact that perfect accuracy is not
always necessary or achievable. Slight improvements in accuracy
might not warrant the cost from a business standpoint if they entail
significant increases in training time. On the other hand, having
a quality metric threshold also acknowledges the fact that faster
trained AI models may have bad prediction quality, for instance
due to their sensitivity to batch sizes and learning-rate values.

We chose the following metrics for the use cases:

word_error_rate measures how many words are correctly tran-
scribed, the lower the better, zero is a perfect score and one and
above means that every word was transcribed incorrectly.

mean_squared_log_error the Mean Squared Log Error𝑀𝑆𝐿𝐸 is
used mainly for regression problems and measures the error of
the predicted value and the true value but is aware of the order
of magnitude. An𝑀𝑆𝐿𝐸 <= 1.0means that the predicted values
are of the same order as the true values on average, hence lower
is better and zero is the best.

f1_score is a combined metric that takes precision and recall into
consideration, i.e., how many of a certain category are found
vs. how many of the predictions in this category are correct,
higher is better and one would be a perfect categorization.

matthews_corrcoef The Matthews Correlation Coefficient𝑀𝐶𝐶

measures the correlation between the predicted and true values,
a𝑀𝐶𝐶 = 1 would mean a perfect correlation,𝑀𝐶𝐶 = 0 would
be the value of two independent random variables, and𝑀𝐶𝐶 =

−1would mean a perfect anti-correlation, hence higher is better.

median_absolute_error in contrast to the𝑀𝑆𝐿𝐸 the Median Ab-
solute Error𝑀𝐴𝐸 is used in cases where the predicted values
are expected to be at the same order of magnitude and all devia-
tions from the true values are treated the same. Hence the worst
possible value would be the difference of the minimum andmax-
imum value of the expected predictions𝑀𝐴𝐸 = 𝑀𝐼𝑁 −𝑀𝐴𝑋

and the best possible value would be𝑀𝐴𝐸 = 0. The direct na-
ture of this metric makes it easy to interpret, for instance an
𝑀𝐴𝐸 = 3.5 means that the predicted values are off by 3.5 on
average from the true values.

accuracy_score The accuracy score is a metric used for classifica-
tion problems and is probably the most intuitive one. It simply
measures the amount of correct classifications. This means it
is quite easy to use for multi-class problems but it is also quite
vulnerable to unbalanced classes. It ranges from 0 to 1 where 0
is the worst and 1 being a perfect score.
Some metrics, such as the word_error_rate, are use-case depen-

dent and some metrics are data dependant, such as the 𝑀𝐶𝐶 or
𝑀𝑆𝐿𝐸. The𝑀𝐶𝐶 is used for highly skewed data sets where the cat-
egory we are interested in, i.e., the failure case, is under represented.
Using only accuracy will not catch classifiers that only predict the
majority class for instance. The𝑀𝑆𝐿𝐸 is used in use cases where
bigger variances are permitted at higher orders of magnitude. For
instance, in Use Case 5 a price is predicted. A deviation of one dollar
for a real price of $1000 is not as bad as the same deviation for a
real price of $10. One notable exception to the automated scoring
is UC01. Since it is a clustering problem there is no good metric
to score the results that is not prone to outliers. Hence for this
particular use case a more manual approach is used by the auditor
the check if the work was actually done.

Table 2: Quality metric thresholds for each use-case

UC Metric Threshold Min/Max

UC01 N/A - -
UC02 word_error_rate 0.50 ↓
UC03 mean_squared_log_error 5.40 ↓
UC04 f1_score 0.65 ↑
UC05 mean_squared_log_error 0.50 ↓
UC06 matthews_corrcoef 0.19 ↑
UC07 median_absolute_error 1.80 ↓
UC08 accuracy_score 0.65 ↑
UC09 accuracy_score 0.90 ↑
UC10 accuracy_score 0.70 ↑

3.6 Metric
TPCx-AI defines three primary metrics, the performance metric,
𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 ; a price-performance metric, $/𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 ; and
the availability date. All three primary metrics need to be reported
for an official benchmark result. 𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 stands for AI Use
cases-per-minute at scale factor SF, and it is a combination of the
elapse times in seconds of the benchmark runs. It is designed to
prevent performance improvements in only small parts of the bench-
mark to massively impact the overall performance metric. To this
end, geometric means are used to combine the separate run times.
This way, relative improvements in individual parts of the training

or serving pipelines have the same influence on the overall result.
In contrast, an arithmetic mean would be mainly influenced by im-
provements in long running stages. The use of a geometric mean is
in line with previously published TPC benchmarks, such as TPC-DS
and TPCx-BB [9, 23] and also recently published experiments [6].
The important parts of the metric are:
𝑆𝐹 the user defined scale factor, which defines the size of the overall

data set and approximates the data set size in GBs,
𝑁 the number of use cases (i.e., 10 in the current version),
𝑆 the user defined number of concurrent streams to run in the

Serving Throughput Test,
𝑇𝐿𝐷 the loading factor, which is the overall time it takes to ingest

the datasets into the data store used for training and serving,
𝑇𝑃𝑇𝑇 the Power Training Test factor, defined as the geometric mean

of the training times 𝑡𝑡 of all use cases 𝑁

√︂∏︁𝑁
𝑖 𝑡𝑖𝑡 ,

𝑇𝑃𝑆𝑇 the Power Serving Test factor, defined as the geometric mean
of the serving times 𝑡𝑠 of all use cases 𝑁

√︂∏︁𝑁
𝑖 𝑡𝑖𝑠 , here the higher

result of the two runs is taken.
𝑇𝑇𝑇 and the Serving Throughput Test factor, defined as the total time

spent running the throughput test divided by the number of use
cases 𝑁 , and the number of streams in the Serving Throughput
Test 𝑆 . Intuitively this leads to test sponsorsmaximizing the value
of 𝑆 until no gains are observed in the value of 𝑇𝑇𝑇 , indicating
compute resources are saturated.
The resulting performance metric 𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 is defined as:

𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 =
𝑆𝐹 ∗ 𝑁 ∗ 60

4√𝑇𝐿𝐷 ∗𝑇𝑃𝑇𝑇 ∗𝑇𝑃𝑆𝑇 ∗𝑇𝑇𝑇
(1)

Elapsed times are always reported in seconds, hence the constant
value 60 is introduced to match the semantics of the performance
metric. Furthermore, the performance metric is always reported
for the benchmarked scale factor, e.g.,𝐴𝐼𝑈𝐶𝑝𝑚@10 for scale factor
10, and results are not comparable across scaling factors. The price
performance, $/𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 , is defined as the total system price
divided by performance metric. The system price must include all
software and hardware components of the deployment including
operation, maintenance, and administration for one year. The sys-
tem availability date specifies the date, from which on a customer
can buy the deployment as it was used for the benchmark.

Besides the three primary metrics, a benchmark sponsor can
also optionally report the energy metric, Watts/AIUCpm@SF. The
energy measurement is centrally specified for all benchmarks in
the TPC-Energy specification [25].

4 DATA SET CHARACTERISTICS
In this section, we give an overview of the data set scaling character-
istics. One of the main contributions of TPCx-AI is its scalable data
set. For ease of use each scale factor corresponds approximately to
the size of the training data set in GB. Although the official data
sizes are limited to scale factors 1, 3, 10, ..., 10,000, the data generator
can produce any other data size in-between.

Figure 4 shows the data size at scale factors 1, 10, 100, and 1000.
It can be seen that the data size is directly proportional to the
scale factor and close to 1𝐺𝐵𝑥𝑆𝐹 . Since the data set is meant to be
realistic, we do not scale all tables linearly but try to make them
scale realistically in relation to the number of users and products. To

1 10 100 1000
Scale Factor

100

101

102

103

S
iz
e
(G

B
)
lo
g

1.15 GB

10.72 GB

107.37 GB

1073.76 GB

Figure 4: Data size for the all data sets per scaling factor

this end, each table has an individual scaling function with respect
to an internal scale factor and a solver is used to approximate the
actual size on disk for the aforementioned internal scale factor and
scale it to the official scale factor.

Figure 5 illustrates the size of the individual data tables at the
same scale factors. Even though the data set as a whole grows
linearly and proportional to the scale factor, the tables grow at
different rates. For instance, the lineitem table accounts for ap-
proximately 50% of the data set at scale factor 𝑆𝐹 = 1 whereas at a
higher scale factor 𝑆𝐹 = 1000 it makes up only 25% of the whole
data set. As can be seen in Figure 5, the number of customer entries
grows linearly, but other tables grow faster, this is most notable
with failures and customer images. Table 3 gives a detailed list of
the individual table size and row counts.

5 BENCHMARK IMPLEMENTATIONS
TPCx-AI is an express benchmark and comes with a full refer-
ence implementation. According to TPC rules, this implementation
supersedes the specification in cases of divergence. This means al-
ternative implementations have to do equivalent work and produce
the same output as the reference implementation. The reference
implementation also increases the ease of use of the benchmark.
For other benchmarks, such as TPC-H or TPC-C, a test sponsor
has to implement a complete driver framework, which then also
has to be certified by an auditor. Unlike previous TPC benchmarks,
TPCx-AI includes two reference implementations, one for single
node setups and one for cluster deployments.

Regardless of the implementation each use-case has two AI pro-
cessing pipelines; one for model training on a training data set, and
one for serving the trained model to make predictions on a serving
data set. Each pipeline includes loading, preprocessing, training
or serving, and postprocessing tasks. Figure 3 illustrates UC02’s
training and serving pipelines at a high level, which performs audio
transcripts as described in Section 3.3. The first stage of the pipeline
is data acquisition, which retrieves the data set from the data store
and makes it available for further processing. In the second stage,
data transformation is executed. The data set is transformed into fea-
tures and potentially labels, if it is possible. The data transformation
stage can include tasks such as, data cleaning, joining, aggregations,
normalization, encoding, projections, or scaling. In the third stage,
the model is trained. The transformed data is used to train one or
several machine learning models. The last stage in the use case is
the serving stage, which uses the model, as well as the transformed
data set and its labels and features to make predictions.

The implemented pipelines are purposely kept simple, with a
minimum number of libraries used. Furthermore, we follow best
practices as outlined by the libraries and frameworks used, rather
than fine tuning the use cases, in order to keep them portable
and easy to maintain, as well as easy to understand as a reference.
Listing 1 shows the structure of such a pipeline implementation.

Listing 1: Simplified Code Structure of a Single-Node Use Case
def l o a d _d a t a (path) : # (1) . . .
def p r e _p r o c e s s (d a t a) : # (2) . . .
def t r a i n (t r a i n i n g _ d a t a , l a b e l s) : # (3) . . .
def s e r v e (model , d a t a) : # (4) . . .
def main () :

raw_data = l o a d_d a t a (i npu t _pa th)
(l a b e l s , d a t a) = p r e _p r o c e s s (raw_data)
i f s t a g e == ' t r a i n i n g ' :

model = t r a i n (data , l a b e l s)
dump (model , work_di r / f i l e _name)

i f s t a g e == ' s e r v i n g ' :
model = l o ad (work_d i r / f i l e _name)
p r e d i c t i o n s = s e r v e (model , d a t a)
p r e d i c t i o n s . t o _ c s v (' p r e d i c t i o n s . c sv ')

The decision for two reference implementations was made based
on the observation that machine learning pipelines come in two
flavors. Many applications only require limited compute resources
and all data can fully fit into main memory of a single compute unit,
in these cases, single node deployments are a good choice and can
often be found in practice. However, there are also pipelines and
data sets, for which a single computational unit is not sufficient
and the computation is distributed among several compute units.
To acknowledge this fact, we include a single node implementation
and a distributed implementation for the benchmark.

Workload and data set are the same for both implementations,
this means, we use the same type of ML models, which are trained
with the same data sets in both implementations. From a bench-
mark point of view, we do not focus on algorithmic improvements,
but rather focus on comparability across frameworks and hard-
ware. The model complexity stays constant across scale factors,
which means higher scale factors mainly test the data throughput
of systems under test. On current hardware and libraries, the single
node implementation is better for small scale factors, while the dis-
tributed implementation is targeted for larger scale factors, which
then are executed in shared-nothing cluster setups. The overall con-
straints for both implementations and any future implementations
are given by the specification7 and the driver harness.

Besides the use case implementations, the kit contains the specifi-
cation and the user guide, as well as configuration files to adapt the
execution to the system under test. Furthermore, the kit includes
the driver, which is based on a set of scripts. The scripts execute the
benchmark, perform measurements, and compute the benchmark
results. The kit also generates a report, which can be used as a basis
for the full disclosure report, required by the TPC for an official
benchmark result. Finally, the kit includes the data generator and
reference data sets for verification. Additional implementations can
be included in the kit to support for instance new machine learning
frameworks, as well as other libraries, execution environments, or
hardware components. These have to be accredited by the TPC
before being used for submission of official results.
7TPCx-AI - https://www.tpc.org/tpcx-ai/default5.asp

https://www.tpc.org/tpcx-ai/default5.asp

Table 3: Table sizes and row counts

Scale Factor 1 10 100 1000
size row_count size row_count size row_count size row_count

Table

conversation_audio 26.4 MB 387 134.0 MB 1,965 804.0 MB 11,787 4.3 GB 62,539
customer_images 8.0 MB 50 207.2 MB 1,287 7.5 GB 46,312 209.8 GB 1,303,712
product_rating 1.8 MB 139,292 9.8 MB 757,454 63.4 MB 4,877,735 358.0 MB 27,534,770
customer 8.5 MB 70,710 43.1 MB 358,817 258.2 MB 2,152,033 1.4 GB 11,418,023
failures 8.4 MB 50,000 215.0 MB 1,287,500 7.7 GB 46,312,500 217.7 GB 1,303,712,500
financial_account 96.9 kB 7,071 491.6 kB 35,881 2.9 MB 215,203 15.6 MB 1,141,802
financial_transactions 487.3 MB 6,247,036 4.5 GB 58,023,250 40.7 GB 522,118,524 283.2 GB 3,630,810,923
lineitem 426.4 MB 20,302,869 4.0 GB 188,575,563 35.6 GB 1,696,885,203 247.8 GB 11,800,135,500
marketplace 12.4 MB 70,710 63.2 MB 358,817 378.8 MB 2,152,033 2.0 GB 11,418,023
order 124.9 MB 3,123,518 1.2 GB 29,011,625 10.4 GB 261,059,262 72.6 GB 1,815,405,461
order_returns 16.2 MB 1,015,143 150.9 MB 9,428,778 1.4 GB 84,844,260 9.4 GB 590,006,775
product 24.0 kB 707 122.0 kB 3,588 731.7 kB 21,520 3.9 MB 114,180
Total 1.1 GB 31,027,497 10.7 GB 287,844,529 107.4 GB 2,620,696,376 1.1 TB 19,193,064,210

1 10 100 1000
Scale Factor

10−2

10−1

100

101

102

103

S
iz

e
(G

B
)

lo
g

conversation audio

customer

customer images

failures

financial account

financial transactions

lineitem

marketplace

order

order returns

product

product rating

Figure 5: Data size for the all data sets per scaling factor

5.1 Single-Node Implementation
The single-node implementation is tailored towards smaller scale
factors were a single data set fits into memory. This setup is typi-
cally found during the development of machine learning pipelines
and for prototyping. We use Python8 as a programming language
and framework because of its widely used data science and machine
learning ecosystem. Similarly, Pandas9 is used for most data manip-
ulation and data transformation. We use DataFrames to transfer the
data between stages. For training the machine learning pipelines,
we use scikit-learn10 and Tensorflow11 and its Keras12 API.

Each use-case is implemented as a single command line appli-
cation, which can be controlled by providing various command
line arguments that specify the training or serving pipeline, the
input paths, the working directory, the output directory, and hyper
parameters that are allowed to be changed by the benchmark user.

The Python-based pipelines all follow a similar structure and
due to the single node setup the execution does not require complex

8Python - https://www.python.org/
9pandas - https://pandas.pydata.org/
10scikit-learn - https://scikit-learn.org
11Tensorflow - https://www.tensorflow.org/
12Keras - https://keras.io/

setup and tear down procedures. A single pipeline, as outlined in
Listing 1, has the following steps:
(1) Load the data from one or more CSV files and merge them into

a single pandas DataFrame,
(2) transform the DataFrame into a feature matrix and a labels

vector (numpy arrays or DataFrames depending on the use-
case),

(3) train the machine learning algorithm on the features and labels,
(4) serve the model and create prediction for features extracted

from previously unseen data and write a csv file to disk.

5.2 Distributed Implementation
For the distributed implementation, we use Apache Spark13 [38] as
the data processing engine and its DataFrame API for data manip-
ulation and data transformation. Apache Spark features a machine
learning library14 with distributed implementation for many popu-
lar machine learning algorithms [19]. We use it for many pipelines
in our implementation. The deep learning models are similar to
the single-node implementation and we also use the Keras API of

13Apache Spark - https://spark.apache.org/
14Apache Spark MLlib - https://spark.apache.org/docs/latest/ml-guide.html

https://www.python.org/
https://pandas.pydata.org/
https://scikit-learn.org
https://www.tensorflow.org/
https://keras.io/
https://spark.apache.org/
https://spark.apache.org/docs/latest/ml-guide.html

1 2 3 4 5 6 7 8 9 10
Use Case

101

102

103

R
u

nt
im

e
(s

)

SERVING

SERVING THROUGHPUT

TRAINING

Figure 6: Runtimes of each use case in each test for the single-node implementation at 𝑆𝐹 = 1

Tensorflow for the distributed implementation. To train the models
a data parallel approach is used, i.e., the same model is trained
on different partitions of the training data set and the gradients
are gathered after each step. This approach in particular is called
allgather/allreduce and implemented by Horovod [33].

The code structure is similar to the single-node implementa-
tion. However, the computational model is completely different.
While the execution for the single-node implementation is pro-
cedural and imperative the distributed implementation is much
more declarative. We use the DataFrame-API of Apache Spark to
create an execution graph, which is then optimized and executed
by the Spark runtime. The DataFrames used in the context of the
distributed implementation are different from the single-node ver-
sion. Using DataFrames enables working with data sets that do not
fit into memory and can be stored in a distributed file system.

The structure of the Spark pipelines is similar to the Python-
based pipelines and has the same steps of loading, data transfor-
mation, model training, and serving. Unlike the Python-based exe-
cution, the Spark engine can use lazy execution within a job and
does not have to materialize all intermediate steps, such as data
transformations before model training.

6 EXPERIMENTS
In the following section, we present performance numbers for the
single node Python-based implementation and a distributed exe-
cution using the Apache Spark implementation. While we present
numbers for multiple scale factors, the results across scale factors
are not comparable according to TPC rules. We perform the experi-
ments without any special optimizations and the systems are not
specifically designed for these workloads.

For all experiments, we use the same hardware setup. Our cluster
has 11 nodes, each has 2 Intel® Xeon® CPUs E5-2699 V4 (with 22
cores, 2 threads each), 500 GB RAM, and 1.5 TB disk. For the Python
experiments, we use a single node. For the Spark experiments, one
node is configured as primary and ten servers as workers.

6.1 Single Node - Python-based
We test Scale Factors 1, 5, 10, and 15 using the Python-based kit. For
the Serving Throughput Test we use 2 streams. We were not able to
run larger scale factors in Python, because of memory constraints
of our testing setup and limitations in the libraries 15 that have
been used. The performance metrics of the runs can be seen in

15see https://github.com/pandas-dev/pandas/pull/45084 for an issue that affected uc08
and has since been fixed

Table 5. Officially, the numbers are not comparable across scale
factors, which also makes sense, since not all tables scale linearly.
However, as can be seen in the table, the partial metrics across
different scale factors grow with the scale factor, but not linearly.
All of the individual metrics are less than a factor of 10 larger in SF
10 than in SF 1. This results in a improved primary performance
metric for SF 10 compared to SF 1. This is due to the structure of the
metric, which incorporates the scaling factor in the final measure.
Just looking at the performance metric one could conclude that
with the hardware and software being used for these experiments
that the single-node implementation performs best at scaling factor
𝑆𝐹 = 5 or in other words on a 5GB data set.

Looking at the quality metrics (see Table 4) it can be observed
that each benchmark run at each scaling factor was valid since the
thresholds were met for all use cases. Furthermore, it can seen that
some use cases improve at higher scaling factors, some stay more
or less constant and others even worsen slightly. Even though the
first case is to be desired in some cases, it might be that the model
was actually overfitting at low scaling factors and is becoming more
generalized with more training data.

In Figure 6 the individual run times for each use case in the
Python-based execution with scale factor 1 on our server is shown.
In the plot the average run time for each use case is displayed for
the Serving Throughput Test. It can be seen that the serving time
is similar for the Power Serving Test and the Serving Throughput
Test. However, in the metric, we get a better value, showing that
multiple streams enable more parallelism on the server. The training
is always much more costly than the serving stages. Additionally,
we can see that the run times of the use case differ in more than
two orders of magnitude, which is to be expected in real workloads.

6.2 Multi Node - Apache Spark-based
For our multi node experiments, we use an 11 node setup (1 main
node and 10 worker nodes). We execute Scale Factors 1, 10, 100,
200, 300, and 400 on our cluster and use two streams in the Serving
Throughput Test. The performance metrics of the runs can be seen
in Table 5. Interestingly, the performance numbers for smaller scale
factors in the Spark-based experiments setup are slower than in the
Python-based runs. This is due to the higher startup times of Spark.
Additionally, we can see that the run times for Scale Factor 10 are
similar to the run times of Scale Factor 1, which also shows that
small scale factors are not properly utilizing the cluster. For Scale
Factor 100, some of the stages seem to be performing more work
and are taking considerably more time than in the smaller scale

https://github.com/pandas-dev/pandas/pull/45084

Table 4: Quality metric for single- and multi-node experiments

Single-Node (Python) Multi-Node (Apache Spark)
Use Case Metric SF=1 SF=5 SF=10 SF=15 SF=1 SF=10 SF=100 SF=200 SF=300 SF=400

UC01 N/A - - - - - - - - - -
UC02 WER 0.31 0.35 0.29 0.18 0.88 0.93 0.32 0.26 0.22 0.23
UC03 MSLE 4.60 3.34 3.62 3.30 5.73 3.70 3.87 4.25 4.36 4.48
UC04 F1 0.70 0.70 0.70 0.70 0.69 0.70 0.69 0.70 0.70 0.70
UC05 MSLE 0.01 0.04 0.02 0.02 0.30 0.21 0.04 0.03 0.02 0.02
UC06 MCC 0.46 0.53 0.54 0.54 0.23 0.23 0.20 0.23 0.22 0.21
UC07 MAE 0.89 0.98 1.02 1.01 1.71 1.62 1.31 1.44 1.43 1.47
UC08 Acc 0.71 0.73 0.74 0.74 0.72 0.73 0.76 0.75 0.77 0.72
UC09 Acc 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
UC10 Acc 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

Table 5: Performance metric for single-node and multi-node experiments

Single-Node (Python) Multi-Node (Apache Spark)
SF=1 SF=5 SF=10 SF=15 SF=1 SF=10 SF=100 SF=200 SF=300 SF=400

𝑇𝐿𝐷 2.38 4.99 15.19 14.63 94.19 138.12 797.76 1729.97 2735.43 5993.25
𝑇𝑃𝑇𝑇 91.18 352.61 905.16 1432.03 130.02 153.21 328.58 441.98 588.84 761.54
𝑇𝑃𝑆𝑇 9.92 23.11 52.39 65.33 58.59 64.07 77.70 91.27 96.30 105.02
𝑇𝑇𝑇 14.26 38.04 97.62 165.86 35.70 41.66 58.19 84.34 102.42 124.46
𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 45.28 85.10 65.51 73.31 8.43 69.20 323.37 433.22 506.99 485.61

Table 6: Performance metrics of two official TPCx-AI results

Python SF=10 Spark SF=1000

𝑇𝐿𝐷 4.53 4,405.47
𝑇𝑃𝑇𝑇 314.80 981.90
𝑇𝑃𝑆𝑇 26.89 128.21
𝑇𝑇𝑇 4.69 110.67
𝐴𝐼𝑈𝐶𝑝𝑚@𝑆𝐹 291.35 1,205.43

factors. Overall, the Spark cluster can execute larger scale factors
and get better performance numbers for these scale factors.

Similar to the performance metric the quality metric also per-
forms worse at low scale factors than for the single-node imple-
mentation but improves at the high and very high scale factors for
some use cases. An interesting observation is that for UC02 and
UC03 the default parameters will not produce a valid benchmark
run due to the quality metrics exceeding the thresholds, the values
highlighted in red in Table 4. The reason is, especially for UC02,
that the data is partitioned, a model is trained on each partition,
and all partition models are then merged. When the partitions are
too small then these partition-based models are not able to perform
well. This can be changed by reducing the parallelism.

In Figure 7 the individual test run times of each use case for Scale
Factor 10 are shown. Again, we report the average run time for the
Serving Throughput Test. Overall, the performance characteristics
are similar to the Python experiment in Figure 6. An outlier is UC06,
which is the slowest use case in Spark, while it is fast in Python.
However, the failures table grows faster than the scaling factor,
meaning in the larger scale factor disproportionately more work
needs to be done for UC06.

6.3 Official TPCx-AI Results
As of June 2023, 17 results have been published on the TPC web-
site16. To give a comparison of our experiments to real benchmark
results, we briefly discuss the first two results here.

The first result 17 was submitted by the Telecommunications
Technology Association (TTA) 18 in April 2022. It is an SF 1000 run
(1 TB) with with 10 streams executed on Apache Spark. The system
under test consists of 3 servers with each 2x Intel® Xeon® Platinum
8380 CPU and 2,048GBmemory. In total the system has 6 processors
with 240 cores and 480 threads, and 6,144GB memory. The total
disk space is 136TB. The primary metrics of the system are:
Performance 1,205.43 AIUCpm@1000
Price/Performance ₩378,912.09 KRW/AIUCpm@1000 ($290 US-

D/AIUCpm@1000)
Availability date April 18, 2022
Total System Cost ₩456,752,000 KRW ($350,000 USD)

The second result 19 was submitted by Nettrix Information In-
dustry 20 in May 2022. It is an SF 10 run with 100 streams using
the Python-based implementation. The system under test is a one-
server system consisting of 2x Intel® Xeon® Gold 6346 CPU (2
processors with 32 cores and 64 threads) with 512GB memory and
a total disk space of 12TB.
Performance 291.35 AIUCpm@10
Price/Performance $84.26 USD/AIUCpm@10
Availability date May 31, 2022
Total System Cost $24,548 USD

16TPCx-AI result webpage - https://www.tpc.org/tpcx-ai/results5.asp
17ID 12204211: TPCx-AI Result Highlights TTA KR580S2 - https://www.tpc.org/5401
18https://www.tta.or.kr/
19ID 12206151: TPCx-AI Result Highlights Nettrix R620 G40 - https://www.tpc.org/5402
20https://www.nettrix.com.cn

https://www.tpc.org/tpcx-ai/results5.asp
https://www.tpc.org/5401
https://www.tta.or.kr/
https://www.tpc.org/5402
https://www.nettrix.com.cn

1 2 3 4 5 6 7 8 9 10
Use Case

101

102

103

104

105

R
u

nt
im

e
(s

)

SERVING

SERVING THROUGHPUT

TRAINING

Figure 7: Run times of each use case in each test for the distributed implementation at 𝑆𝐹 = 10

Table 7: Future use cases

ID use case Class Data Algorithm DL

UC11 Sentiment Analysis Classification Text Random Forest
UC12 Translate Product Descriptions Machine Translation Text Transformer X
UC13 Sentiment Analysis (DL) Classification Text Recurrent Neural Network X
UC14 Credit-Scoring for Merchants Classification Number Multilayer Perceptron X
UC15 Predict Retail Location Regression Number Decision Tree
UC16 Click-Through-Rate Prediction Recommendation Mixed DLRM X

The detailed result metrics of both benchmark runs are presented
in Table 6. All details are available on the TPC website. Since then
there have been additional results published by Dell Technologies,
Hewlett Packard Enterprise, and Transwarp Technology in different
scale factors, ranging from 3 to 3000.

7 FUTURE USE CASES
In addition to the ten published use cases, we created a set of six new
use cases to be added to the workload in future versions. The list
of new use cases is shown in Table 7. This set of use cases focuses
more on deep learning based models. These use cases add new
tables and attributes to the data set and will, therefore, change the
data set scaling behavior. The use cases are not available publicly
yet. In the following sections, we give a brief introduction to each
new use case.

UC11/UC13 - Sentiment Analysis ML/DL In these use cases the
sentiment of a product review is predicted either by using tradi-
tional ML or DL techniques, i.e., random forest model or a Recurrent
Neural Network. In the preprocessing stage, the data is loaded and
the classifier is trained using star ratings as labels.

UC12 - Product Description Translation In UC12, product descrip-
tions are translated from English to German. A transformer model
is used to translate the sentences in product descriptions, after it
has been trained on example sentences in both languages.

UC14 - Credit Scoring UC14 predicts credit ratings for merchants
based on existing loans using a multi-layer perceptron model. The
preprocessing stage joins multiple tables and including new tables
for merchants. The values are normalized and missing values im-
puted. In the serving stage, ratings for merchants applying for loans
are predicted.

UC15 - Predict Retail Location In UC15, locations for new stores
are predicted based on customer demographics. In the training
stage, a decision tree is trained, which is then used to perform
regression for new store locations.

UC16 - Click-Through-Rate Prediction UC16 predicts click conver-
sion to purchases using a deep learning recommendation model.
Click logs are used and converted in a click log model. In the serving
stage, click sessions are classified by their conversion probability.

8 CONCLUSION AND FUTUREWORK
In this paper, we present TPCx-AI, the Transaction Processing Per-
formance Council’s new industry standard benchmark for artificial
intelligence andmachine learning systems. TPCx-AI ismodeled on a
retail scenario and comprises ten realistic use cases —covering both
deep learning and traditional machine learning algorithms —each of
which is implemented as an end-to-end AI processing pipeline. The
pipelines consist of data ingestion, preprocessing, training, serving,
and postprocessing as well as model update. Since TPCx-AI is a
TPC Express benchmark, it comes with a fully implemented kit,
which is ready to run on common ML/AI hardware. Besides a single
node Python-based implementation, it also features a distributed
Apache Spark-based implementation. TPCx-AI has already received
several independent officially audited result submissions after being
officially standardized in September 2021, underlining the interest
in industry for the benchmark.

In future work, we want to separate preprocessing and post-
processing from the training and serving stages into independent
stages and, furthermore, enable a more fine grained optimization
of pipelines as well as adding continuously evolving pipelines [37].
Additionally, we hope to include the new use cases and more system
implementations in future versions of the benchmark. A further ex-
tension can target other challenges found in productionAI pipelines,
such as model maintenance or update [2].

ACKNOWLEDGMENTS
This work was partially funded by the German Research Foundation (ref.
414984028), and the European Union’s Horizon 2020 research and innovation
programme (ref. 957407).

REFERENCES
[1] McKinsey Analytics. 2016. The age of analytics: competing in a data-driven world.

Technical Report. McKinsey Global Institute.
[2] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria

Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin
Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale
Machine Learning Platform. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Halifax, NS, Canada) (KDD
’17). Association for Computing Machinery, New York, NY, USA, 1387–1395.
https://doi.org/10.1145/3097983.3098021

[3] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian
Zhang, Peter Bailis, Kunle Olukotun, Christopher Ré, and Matei Zaharia. 2018.
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance
Benchmark. CoRR abs/1806.01427 (2018).

[4] Transaction Processing Performance Council. 2022. TPCx-AI. https://tpc.org/
tpcx-ai/default5.asp

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255.

[6] Christopher Elford, Dippy Aggarwal, and Shreyas Shekhar. 2021. Revisiting Issues
in Benchmark Metric Selection. In Performance Evaluation and Benchmarking,
Raghunath Nambiar and Meikel Poess (Eds.). Springer International Publishing,
Cham, 35–47.

[7] Sabri Eyuboglu, Bojan Karlaš, Christopher Ré, Ce Zhang, and James Zou. 2022.
Dcbench: A Benchmark for Data-Centric AI Systems. In Proceedings of the Sixth
Workshop on Data Management for End-To-End Machine Learning. Association
for Computing Machinery, New York, NY, USA, Article 9, 4 pages.

[8] Wanling Gao, Jianfeng Zhan, Lei Wang, Chunjie Luo, Daoyi Zheng, Xu Wen, Rui
Ren, Chen Zheng, Xiwen He, Hainan Ye, et al. 2018. Bigdatabench: A scalable and
unified big data and ai benchmark suite. arXiv preprint arXiv:1802.08254 (2018).

[9] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: Towards an Industry Stan-
dard Benchmark for Big Data Analytics. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA) (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 1197–1208.
https://doi.org/10.1145/2463676.2463712

[10] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl,
and Joaquin Vanschoren. 2019. An Open Source AutoML Benchmark. CoRR
abs/1907.00909 (2019). http://arxiv.org/abs/1907.00909

[11] B. Haibe-Kains, G.A. Adam, A. Hosny, et al. 2020. Transparency and reproducibil-
ity in artificial intelligence. Nature 586, E14-E16 (2020).

[12] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. 2014. Deep Speech: Scaling up end-to-end speech recognition.
CoRR abs/1412.5567 (2014).

[13] Karl Huppler. 2011. Price and the TPC. In Performance Evaluation, Measurement
and Characterization of Complex Systems, Raghunath Nambiar and Meikel Poess
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 73–84.

[14] Karl Huppler and Douglas Johnson. 2014. TPC Express – A New Path for TPC
Benchmarks. In Performance Characterization and Benchmarking, David Hutchi-
son, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,Madhu
Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum,
Raghunath Nambiar, and Meikel Poess (Eds.). Vol. 8391. Springer International
Publishing, Cham, 48–60. https://doi.org/10.1007/978-3-319-04936-6_4 Series
Title: Lecture Notes in Computer Science.

[15] Nina Ihde, Paula Marten, Ahmed Eleliemy, Gabrielle Poerwawinata, Pedro Silva,
Ilin Tolovski, Florina M. Ciorba, and Tilmann Rabl. 2021. A Survey of Big Data,
High Performance Computing, and Machine Learning Benchmarks. In Perfor-
mance Evaluation and Benchmarking: 13th TPC Technology Conference, TPCTC
2021, Copenhagen, Denmark, August 20, 2021, Revised Selected Papers (Copenhagen,
Denmark). Springer-Verlag, Berlin, Heidelberg, 98–118.

[16] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2019. CleanML:
A Benchmark for Joint Data Cleaning and Machine Learning [Experiments and
Analysis]. CoRR abs/1904.09483 (2019). http://arxiv.org/abs/1904.09483

[17] Yu Liu, Hantian Zhang, Luyuan Zeng,WentaoWu, and Ce Zhang. 2018. MLBench:
Benchmarking Machine Learning Services Against Human Experts. PVLDB 11,
10 (2018), 1220–1232.

[18] PeterMattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos,
David Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, Gu-Yeon Wei, and Carole-Jean Wu. 2020. MLPerf: An Industry
Standard Benchmark Suite for Machine Learning Performance. IEEE Micro 40, 2
(2020), 8–16. https://doi.org/10.1109/MM.2020.2974843

[19] Xiangrui Meng, Joseph Bradley, Burak Yavuz, et al. 2016. Mllib: Machine learning
in apache spark. The Journal of Machine Learning Research 17, 1 (2016), 1235–
1241.

[20] George A. Miller. 1995. WordNet: A Lexical Database for English. 38, 11 (1995),
39–41.

[21] Sharan Narang. [n.d.]. DeepBench. https://svail.github.io/DeepBench/. Accessed:
2021-07-03.

[22] Sharan Narang and Greg Diamos. [n.d.]. An update to DeepBench with a focus
on deep learning inference. https://svail.github.io/DeepBench-update/. Accessed:
2021-07-03.

[23] Raghunath Othayoth andMeikel Poess. 2006. Themaking of tpc-ds. In Proceedings
of the International Conference on Very Large Data Bases, Vol. 32. 1049.

[24] Meikel Poess and Chris Floyd. 2000. New TPC benchmarks for decision support
and web commerce. ACM Sigmod Record 29, 4 (2000), 64–71.

[25] Meikel Poess, Raghunath Othayoth Nambiar, Kushagra Vaid, John M Stephens Jr,
Karl Huppler, and Evan Haines. 2010. Energy benchmarks: a detailed analysis. In
Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking. 131–140.

[26] Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen, and Brian Caufield. 2014. TPC-
DI: The First Industry Benchmark for Data Integration. PVLDB 7, 13 (2014),
1367–1378.

[27] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich.
2017. Data management challenges in production machine learning. In SIGMOD.
1723–1726.

[28] Alexandra Posoldova. 2020. Machine Learning Pipelines: From Research to
Production. IEEE Potentials 39, 6 (2020), 38–42. https://doi.org/10.1109/MPOT.
2020.3016280

[29] Tilmann Rabl, Christoph Brücke, Philipp Härtling, Stella Stars, Rodrigo Esco-
bar Palacios, Hamesh Patel, Satyam Srivastava, Christoph Boden, Jens Meiners,
and Sebastian Schelter. 2020. ADABench - Towards an Industry Standard Bench-
mark for Advanced Analytics. In Performance Evaluation and Benchmarking
for the Era of Cloud(s), Raghunath Nambiar and Meikel Poess (Eds.). Springer
International Publishing, Cham, 47–63.

[30] Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch. 2011.
A Data Generator for Cloud-Scale Benchmarking. In Performance Evaluation,
Measurement and Characterization of Complex Systems, Raghunath Nambiar and
Meikel Poess (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41–56.

[31] Joseph D Romano, Trang T Le, William La Cava, John T Gregg, Daniel J Gold-
berg, Praneel Chakraborty, Natasha L Ray, Daniel Himmelstein, Weixuan Fu,
and Jason H Moore. 2021. PMLB v1.0: an open source dataset collection for
benchmarking machine learning methods. arXiv preprint arXiv:2012.00058v2
(2021).

[32] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA,
USA, 2503–2511.

[33] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018).

[34] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. 2017. Re-
visiting Unreasonable Effectiveness of Data in Deep Learning Era. In ICCV.

[35] Anthony Thomas and Arun Kumar. 2018. A Comparative Evaluation of Systems
for Scalable Linear Algebra-Based Analytics. Proc. VLDB Endow. 11, 13 (sep 2018),
2168–2182.

[36] Joaquin Vanschoren, Jan van Rijn, Bernd Bischl, and Luís Torgo. 2013. OpenML:
Networked science in machine learning. ACM SIGKDD Explorations Newsletter
15 (12 2013), 49–60. https://doi.org/10.1145/2641190.2641198

[37] Doris Xin, Hui Miao, Aditya Parameswaran, and Neoklis Polyzotis. 2021. Produc-
tion Machine Learning Pipelines: Empirical Analysis and Optimization Opportu-
nities. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New
York, NY, USA, 2639–2652. https://doi.org/10.1145/3448016.3457566

[38] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets.. In HotCloud. 10–10.

https://doi.org/10.1145/3097983.3098021
https://tpc.org/tpcx-ai/default5.asp
https://tpc.org/tpcx-ai/default5.asp
https://doi.org/10.1145/2463676.2463712
http://arxiv.org/abs/1907.00909
https://doi.org/10.1007/978-3-319-04936-6_4
http://arxiv.org/abs/1904.09483
https://doi.org/10.1109/MM.2020.2974843
https://svail.github.io/DeepBench/
https://svail.github.io/DeepBench-update/
https://doi.org/10.1109/MPOT.2020.3016280
https://doi.org/10.1109/MPOT.2020.3016280
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/3448016.3457566

	Abstract
	1 Introduction
	2 Related Work
	3 Benchmark Overview
	3.1 TPC Benchmarks
	3.2 Data Model
	3.3 Workload
	3.4 Benchmark Tests and Run Rules
	3.5 Quality Metric
	3.6 Metric

	4 Data Set Characteristics
	5 Benchmark Implementations
	5.1 Single-Node Implementation
	5.2 Distributed Implementation

	6 Experiments
	6.1 Single Node - Python-based
	6.2 Multi Node - Apache Spark-based
	6.3 Official TPCx-AI Results

	7 Future Use Cases
	8 Conclusion and Future Work
	References

