
Technische Berichte Nr. 136

des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

An Individual-Centered
Approach to Visualize
People’s Opinions
and Demographic
Information

Wanda Baltzer, Theresa Hradilak, Lara Pfennigschmidt,
Luc Maurice Prestin, Moritz Spranger, Simon Stadlinger,
Leo Wendt, Jens Lincke, Patrick Rein, Luke Church,
Robert Hirschfeld

Technische Berichte des Hasso-Plattner-Instituts für
 Digital Engineering an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam | 136

Wanda Baltzer | Theresa Hradilak | Lara Pfennigschmidt | Luc Maurice Prestin |
Moritz Spranger | Simon Stadlinger | Leo Wendt | Jens Lincke | Patrick Rein |

Luke Church | Robert Hirschfeld

An Individual-Centered Approach to Visualize
People’s Opinions and Demographic Information

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2021
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für Digital
Engineering an der Universität Potsdam wird herausgegeben von den Professoren des
Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
https://doi.org/10.25932/publishup-49145
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-491457

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-504-0

mailto:verlag@uni-potsdam.de

Abstract

The noble way to substantiate decisions that affect many people is to ask these people
for their opinions. For governments that run whole countries, this means asking all
citizens for their views to consider their situations and needs.

Organizations such as Africa’s Voices Foundation, who want to facilitate
communication between decision-makers and citizens of a country, have difficulty
mediating between these groups. To enable understanding, statements need to be
summarized and visualized. Accomplishing these goals in a way that does justice
to the citizens’ voices and situations proves challenging. Standard charts do not
help this cause as they fail to create empathy for the people behind their graphical
abstractions. Furthermore, these charts do not create trust in the data they are
representing as there is no way to see or navigate back to the underlying code and
the original data. To fulfill these functions, visualizations would highly benefit
from interactions to explore the displayed data, which standard charts often only
limitedly provide.

To help improve the understanding of people’s voices, we developed and
categorized 80 ideas for new visualizations, new interactions, and better connections
between different charts, which we present in this report. From those ideas, we
implemented 10 prototypes and two systems that integrate different visualizations.
We show that this integration allows consistent appearance and behavior of
visualizations. The visualizations all share the same main concept: representing
each individual with a single dot. To realize this idea, we discuss technologies
that efficiently allow the rendering of a large number of these dots. With these
visualizations, direct interactions with representations of individuals are achievable
by clicking on them or by dragging a selection around them. This direct interaction
is only possible with a bidirectional connection from the visualization to the data it
displays. We discuss different strategies for bidirectional mappings and the trade-
offs involved. Having unified behavior across visualizations enhances exploration.
For our prototypes, that includes grouping, filtering, highlighting, and coloring of
dots. Our prototyping work was enabled by the development environment Lively4.
We explain which parts of Lively4 facilitated our prototyping process. Finally,
we evaluate our approach to domain problems and our developed visualization
concepts.

Our work provides inspiration and a starting point for visualization development
in this domain. Our visualizations can improve communication between citizens and
their government and motivate empathetic decisions. Our approach, combining low-
level entities to create visualizations, provides value to an explorative and empathetic
workflow. We show that the design space for visualizing this kind of data has a lot of

v

potential and that it is possible to combine qualitative and quantitative approaches
to data analysis.

vi

Zusammenfassung

Der nobleWeg, Entscheidungen, die vieleMenschen betreffen, zu begründen, besteht
darin, diese Menschen nach ihrer Meinung zu fragen. Für Regierungen, die ganze
Länder führen, bedeutet dies, alle Bürger nach ihrer Meinung zu fragen, um ihre
Situationen und Bedürfnisse zu berücksichtigen.

Organisationen wie die Africa’s Voices Foundation, die die Kommunikation
zwischen Entscheidungsträgern und Bürgern eines Landes erleichternwollen, haben
Schwierigkeiten, zwischen diesen Gruppen zu vermitteln. Um Verständnis zu
ermöglichen, müssen die Aussagen zusammengefasst und visualisiert werden. Diese
Ziele auf eineWeise zu erreichen, die den Stimmen und Situationen der Bürgerinnen
und Bürger gerecht wird, erweist sich als Herausforderung. Standardgrafiken
helfen dabei nicht weiter, da es ihnen nicht gelingt, Empathie für die Menschen
hinter ihren grafischen Abstraktionen zu schaffen. Darüber hinaus schaffen diese
Diagramme kein Vertrauen in die Daten, die sie darstellen, da es keine Möglichkeit
gibt, den verwendeten Code und die Originaldaten zu sehen oder zu ihnen
zurück zu navigieren. Um diese Funktionen zu erfüllen, würden Visualisierungen
sehr von Interaktionen zur Erkundung der angezeigten Daten profitieren, die
Standardgrafiken oft nur begrenzt bieten.

Umdas Verständnis der Stimmen derMenschen zu verbessern, habenwir 80 Ideen
für neue Visualisierungen, neue Interaktionen und bessere Verbindungen zwischen
verschiedenen Diagrammen entwickelt und kategorisiert, die wir in diesem
Bericht vorstellen. Aus diesen Ideen haben wir 10 Prototypen und zwei Systeme
implementiert, die verschiedene Visualisierungen integrieren. Wir zeigen, dass diese
Integration ein einheitliches Erscheinungsbild und Verhalten der Visualisierungen
ermöglicht. Die Visualisierungen haben alle das gleiche Grundkonzept: Jedes
Individuum wird durch einen einzigen Punkt dargestellt. Um diese Idee zu
verwirklichen, diskutieren wir Technologien, die die effiziente Darstellung einer
großen Anzahl dieser Punkte ermöglichen. Mit diesen Visualisierungen sind direkte
Interaktionen mit Darstellungen von Individuen möglich, indem man auf sie klickt
oder eine Auswahl um sie herumzieht. Diese direkte Interaktion ist nur mit einer
bidirektionalen Verbindung von der Visualisierung zu den angezeigten Daten
möglich. Wir diskutieren verschiedene Strategien für bidirektionale Mappings
und die damit verbundenen Kompromisse. Ein einheitliches Verhalten über
Visualisierungen hinweg verbessert die Exploration. Für unsere Prototypen
umfasst dies Gruppierung, Filterung, Hervorhebung und Einfärbung von Punkten.
Unsere Arbeit an den Prototypen wurde durch die Entwicklungsumgebung
Lively4 ermöglicht. Wir erklären, welche Teile von Lively4 unseren Prototyping-
Prozess erleichtert haben. Schließlich bewerten wir unsere Herangehensweise an
Domänenprobleme und die von uns entwickelten Visualisierungskonzepte.

vii

Unsere Arbeit liefert Inspiration und einen Ausgangspunkt für die Entwicklung
von Visualisierungen in diesem Bereich. Unsere Visualisierungen können die
Kommunikation zwischen Bürgern und ihrer Regierung verbessern und einfühlsame
Entscheidungen motivieren. Unser Ansatz, bei dem wir niedrigstufige Entitäten
zur Erstellung von Visualisierungen kombinieren, bietet einen wertvollen Ansatz
für einen explorativen und einfühlsamen Arbeitsablauf. Wir zeigen, dass der
Designraum für die Visualisierung dieser Art von Daten ein großes Potenzial hat
und dass es möglich ist, qualitative und quantitative Ansätze zur Datenanalyse zu
kombinieren.

viii

Contents

1 Domain and Specific Challenges of Visualizing Demographic Data
and Personal Opinions 1
1.1 Domain . 1
1.2 Project Description, Prerequisites, and Requirement Analysis 12
1.3 Developing Customized Visualizations: State of the Art 17
1.4 Our Approach . 23
1.5 Our Contribution . 24

2 Concepts for Visualizations and Exploration and Categorization of the
Design Space 27
2.1 Introduction . 27
2.2 Exploration of the Design Space and Ideation 28
2.3 Categorization and Analysis . 36
2.4 Concepts . 56
2.5 Conclusion . 63

3 Implementation and Integration Into an Environment of Explorable
Visualization Tools 65
3.1 Introduction . 65
3.2 Individuals as Points . 67
3.3 Interaction Patterns . 69
3.4 Visualizations Tools . 77
3.5 Integration of Tools . 91
3.6 Conclusion . 101

4 Using the Lively4 Platform with Its Active Content Capabilities 103
4.1 Introduction . 103
4.2 Lively4 System Introduction . 104
4.3 Technical Capabilities of Lively4 . 108
4.4 Collaborating in Lively4 . 129
4.5 Conclusion . 138

5 Mapping of Data and UI for Interactive and Explorable Visualizations 139
5.1 Introduction . 139
5.2 Data and Provenance . 140
5.3 Bidirectional Mapping . 145
5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data

and User Interface . 147

ix

Contents

5.5 Our Approach on Bidirectional Mapping 157
5.6 Conclusion . 166

6 Evaluating Visualization Technologies for Individual Data Points in
Lively4 169
6.1 Introduction . 169
6.2 Visualization Environment and Approach 170
6.3 Graphics in the Browser . 173
6.4 Rendering Visualizations with Many Points in Lively4 182
6.5 Benchmarking Web Technologies . 186
6.6 Future Work and Further Optimizations 200
6.7 Conclusion . 201

7 Evaluating Our Approach to Visualize People’s Opinions and
Demographic Data 203
7.1 Introduction . 203
7.2 Foundations . 204
7.3 Walkthroughs . 207
7.4 Value-driven Evaluation . 218
7.5 Discussion . 223
7.6 Conclusion and Outlook . 228

8 Conclusion 231

Appendices

A Appendix Chapter 2 235
A.1 Idea Collection . 235
A.2 Technical Categorization . 274
A.3 Task Categorization . 275
A.4 Interaction Level - Task Categorization 276
A.5 Representation Mode - Task Categorization 277

B Appendix Chapter 5 279

C Appendix Chapter 6 287
C.1 Benchmark protocol . 287
C.2 Benchmark Results . 289
C.3 Tables . 301
C.4 Code . 302

x

1 Introduction to the Domain and
Specific Challenges of Visualizing
Demographic Data and Personal
Opinions

In this chapter, we will illustrate the context of this project in order to provide
background for the subsequent chapters. Our project partner Africa’s Voices
Foundation works on developing communication capabilities between decision-
makers and citizens in African countries. When communicating their results, they
face challenges regarding empathy, exploration of data and generalization of findings,
because they have to use standard charts. For the development of new visualizations
that can be used, we will look at prerequisites and requirements from Africa’s Voices
and potential users. The challenge to provide customizable visualizations to different
user groups has already been tackled by previous research, of which we will present
three examples. Finally, to provide an overview of our approach, we briefly describe
our process and our results, as well as our contribution to Africa’s Voices’ processes.

1.1 Domain

This section aims to introduce the reader to the domain of our project. It will explain
who our project partner was, how they worked, and what challenges they faced.

1.1.1 Africa’s Voices Foundation

Africa’s Voices Foundation1 is a non-governmental organization (NGO) that helps to
develop communication capabilities in African countries such as Kenya and Somalia.
On their website, they state: “By combining media and technology, our tested
methods listen intelligently and amplify diverse, local voices”. The communication
between residents and decision-makers of a country is often difficult enough due
to thousands or millions of different opinions about one topic. But in most cases,
there is no way in which citizens can voice their opinion directly to decision-makers.
Respectively, there is no way in which decision-makers can ask all citizens for their
personal opinion. Africa’s Voices wants to build a bridge between citizens and
decision-makers so they can communicate with each other. The decision-makers

1https://www.africasvoices.org (last accessed: 2020-07-29).

1

https://www.africasvoices.org

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

Figure 1.1: Context of Africa’s Voices’ work

need to know what citizens think and citizens want to be heard and considered by
their government. Africa’s Voices does this by helping both sides:

1. They collect opinions and voices of citizens, giving them an opportunity to
speak their minds without confined answering possibilities and letting them
be heard and understood.

2. They conduct research and interpret the collected voices into findings and
work out policy recommendations based on real opinions of the society. They
want to deliver up to date, actionable, and robust evidence to decision-makers
to let them understand the dynamics, opinions, and fears of the community.

3. They give their findings back to the citizens and give them information about
the views of experts and decision-makers, enabling communication in both
ways. They also curate public spaces in which these discussions are held.

1.1.2 Process of Africa’s Voices

We will now describe parts of Africa’s Voices’ work and their processes displayed in
Figure 1.1.

1.1.2.1 Radio Shows
To reach as many residents as possible, Africa’s Voices relies on many local radio
stations. With their help, they conceptualize radio shows containing questions to
the audience, information about running projects and found insights as well as
interviews with policymakers and service providers. They ask open questions that
encourage citizens to answer with their own opinion in their local language. These
answers can be submitted via text messages. Once a person responds, the purpose

2

1.1 Domain

of the radio show is clarified and their consent for saving and analyzing their data
is sought. They then get follow-up questions asking for their age, gender, location,
and other project or country-specific categories. This way, researchers can later look
for trends in different population subgroups like age groups or regions.

The interviews, as they are made public, are important to enable a second form
of communication and to let decision-makers talk to the community. This way they
can directly respond to citizens’ voices that are most common or most relevant.

In the radio shows, the hosts can also broadcast their own findings as well as
insights from partner organizations back to the participants to inform the citizens.
Additionally, they can announce promises or views stated by policymakers to
increase their accountability.

1.1.2.2 Projects
Multiple radio shows thematically belong to one project, which runs over several
weeks ormonths to investigate specific political or humanitarian subjects. Projects are
carried out with varying partner organizations. The shows are dynamically tailored
for the occasion, so that they are very effective for gettingmany opinions from people.

1.1.2.3 Data Analysis and Visualization
The data analysis approach of Africa’s Voices combines social science, computer
science, and most importantly a human understanding of both languages and
context.

Labeling When Africa’s Voices has collected texts from participants, they start
labeling them. This is done by employees who know many dialects and idiomatic
expressions of different regions in the country. They label themessageswith common
themes that occur in the answers. Depending on the project, these themes can also
fall into different levels, where a tag on the first level is very general, whereas a tag
on the next level makes a first level tag more specific. These sometimes are necessary,
for example tagging a message with “government” does not convey what sentiment
the person has towards the government. Here a next level tag can provide further
explanation, like “satisfied with government” or “no trust in government”.

The themes are obtained through a literature review on the project’s topic. In the
best case, this is done together with a domain expert. Then they do an open coding
exercise, applying the knowledge from the literature review to the received quotes to
understand what they are saying and to check for found themes. This is done with a
handful of employees who have to label a couple of messages. They then cross-check
the results to find out whether the employees have tagged messages the same. If
that was successful, they run that tagging scheme on the complete data set. This
tagging is performed by researchers using tools that make use of machine learning,
for example for clustering data together. For Africa’s Voices, it is important to include
humans in every step of the process, as artificial intelligence can be biased and make
categorical errors which then skew the data. Not including humans would also
decrease the degree to which the researchers understand the data, which is crucial
for this method.

3

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

Documenting This whole process is logged in the metadata for each message so
that translations, changes, and categorizations can be traced back to the original
message. This history of data points is called provenance information, which Africa’s
Voices can use to find out where exactly a specific data point came from and what
processes have been applied to it.

Visualizing After all statements have been labeled, Africa’s Voices starts to develop
visualizations for the data, which takes up many GB. They run a couple of python
scripts to produce an approximately 250 MB CSV file. This file is then put into Excel
to produce visualizations with standard Excel visualizing functions. They also send
that data to their resident statistician, who analyzes the data regarding all common
statistical questions, like covariance analysis of attributes.

Figure 1.2: A variety of visualizations used in the project ‘Somali Views In The
Early Days Of Covid-19: A Rapid Diagnostic’2. It includes bar and donut charts
for displaying the demographic data of individuals (upper left for region, lower

left for internally displaced status, upper right for gender and lower left for
gender by age group) as well as a heat map for showing the local distribution of

participants (center).

To view the local distribution of all participants, they use heat maps (center
visualization in Figure 1.2), where every district gets a color shade according to
the number of people responding and living in that district. For clarification, each
district gets that number as an annotation.

To view demographics like age and gender, they use standard bar charts or donut
charts for analysis (see left and right visualizations in Figure 1.2). From all quotes,

2https://www.africasvoices.org/case-studies/somali-views-in-the-early-days-
of-covid-19-a-rapid-diagnostic/ (last accessed: 2020-07-29).

4

https://www.africasvoices.org/case-studies/somali-views-in-the-early-days-of-covid-19-a-rapid-diagnostic/
https://www.africasvoices.org/case-studies/somali-views-in-the-early-days-of-covid-19-a-rapid-diagnostic/

1.1 Domain

Figure 1.3: An examplary bar chart displaying the amount of different themes
mentioned by males (blue) and females (red).

they extract the most representative ones to use them for further shows, reports, or
workshops with decision-makers.

To view the distribution of themes, they use heat maps for viewing the local
distribution of single themes and multi-dimensional bar charts as seen in Figure 1.3
for other demographic distributions of multiple themes.

Analyzing The researchers then analyze the situations of the citizens, trying
to find any trends or relationships between an individual’s demographics and
their statements. From these insights, Africa’s Voices develops recommendations
for policymakers, including what they need to understand before acting or
communicating. Additionally, they want to find out where people acquire their
information from and who they listen to, so that, in case of informing the public,
they know who they should work together with in order to reach the most critical
groups or as many citizens as possible.

1.1.2.4 Reports
Depending on the length of the project, Africa’s Voices writes one final report or a
number of interim reports for their project partners. Here, they include their findings
as well as supporting visualizations of the data. In their reports, they use example
quotes from participants to support explaining the occurrence of a theme and to
make the visualizations more personal. They need to convey that they are talking

5

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

about people’s opinions and they want to create empathy in readers. Alongside
exemplary quotes, they use bubble charts signalizing the frequency of themes as can
be seen in Figure 1.4 as well as aggregated data and percentages in bar charts and
pie charts.

Figure 1.4: An examplary bubble chart showing the frequency of themes3

1.1.2.5 Workshops
The most important part of Africa’s Voices’ work is presenting the data and their
findings to decision- and policymakers. They want to explain the respondents’
situations as well as their views and backgrounds, so decision-makers can
understand and empathize with the community to have a foundation to base
decisions on: the real opinions of citizens. For that, Africa’s Voices provides
them with their developed visualizations as well as example quotes to support
their statements and recommendations. The recommendations include context
information to keep in mind, situations to consider, and tips on how to develop
programs to help. For these programs, it is important to know how and what to talk
to people about as well as who is most likely to respond, take part, and get the most
out of it.

3https://www.africasvoices.org/wp-content/uploads/2019/10/Africas-Voices-
AAP-Consultation-_-Briefing-Note_FINAL.docx-1.pdf (last accessed: 2020-07-29).

6

https://www.africasvoices.org/wp-content/uploads/2019/10/Africas-Voices-AAP-Consultation-_-Briefing-Note_FINAL.docx-1.pdf
https://www.africasvoices.org/wp-content/uploads/2019/10/Africas-Voices-AAP-Consultation-_-Briefing-Note_FINAL.docx-1.pdf

1.1 Domain

These workshops often consist of presentations alongside slides with the
aforementioned quotes, visualizations, findings, and recommendations. Afterwards,
presenters encourage participants to take part in an open discussion to hear the
side of the decision-makers and to develop solutions together. Africa’s Voices also
conducts more interactive workshops where the labeling is done together with
attendees to get even more specific themes. Afterwards, they run the pipeline and
explore the data together.

1.1.3 Problems

Summing up, Africa’s Voices uses visualizations for understanding the data and
views of the citizens, and for presenting it to decision-makers. Currently, they use
standard and static visualizations that do not help their cause aswell as visualizations
could. Because one cannot interact with them, these visualizations do not support
analyzing the data more deeply or making connections between demographic
information and the received messages easily. Also, with static visualizations, it is
harder to present findings in a logical and comprehensible way to decision-makers.
This is Africa’s Voices’ main problem. Furthermore, they want to introduce new
methods and new ethics in their work, which then lead to new understandings
but also new communication challenges. In the following, we will look at the most
relevant problems in detail.

1.1.3.1 Slow Feedback Cycles Due to Their Current Process
Africa’s Voices’ current process of producing visualizations is very slow. This is
why researchers only want to do it once they have all the data, because doing it
multiple times takes too much time. This prevents visualizing data that changes
over time. Africa’s Voices cannot build real time applications that could show what
messages are received when. Especially for projects that run for several months, this
approach is harmful: only visualizing everything that they have at the end excludes
the possibility of discovering something from interim results. For example, there
could be one opinion prevalent at the beginning of a project and another one at the
end. They already analyze the situation at different times and compare them for
changes, but as the process is slow, results would come too late to intervene.

With a slow process when creating visualizations, there comes the problem of not
having time for other important steps like the preparation of workshops, research,
or writing final reports.

Added to that, the process itself might have issues, which they will find out
too late, if they can only start analysis after having collected all data. Issues could
include radio shows that are not working or topics that are not resonating, as well
as misunderstood questions or simply targeting the wrong audience at the wrong
time.

This process also cannot easily be automated, because every project collects
specifically tailored and differently structured data.

To improve their pre-analysis process, employees of Africa’s Voices rewrote their
pipeline with the provenance tracing to make it more efficient and to make real

7

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

time tracing possible. They now use the python library Matplotlib4 to create static
visualizations from real time data. They also developed an automated analysis export,
which answers the most important statistical questions. For visualizations for reports
and presentations, they still have to go back to CSV files and Excel, as the image
quality of the images from the python library is not good enough.

With this outlook on real-time data analysis and visualization, keeping the history
of the data and the visualizations becomes more important to prove everything is
working correctly. Additionally, real-time analysis could help to find time relevant
trends more quickly.

1.1.3.2 Generalization of Findings Due to Quantitative Data
The standard visualizations such as pie, bar, and bubble charts can display
aggregated data. Aggregating data means counting all data points, calculating the
average value, or showing absolute and relative occurrences of values within the
data set. For data to be aggregated, it needs to be structured, meaning that every data
point includes the same structure of information and the same categories. This way,
data can be measured and thus falls into the definition of quantitative data. That
also means that, among all data points, there exists a finite set of values the data
points adopt, which makes them groupable by their values. So these types of charts
all support the visualization of quantitative data like the demographic information
of all individuals.

With aggregated data, only one value is calculated and displayed per variable for
a group of data points. This could also be applied to the whole data set, reducing
all individuals to a single average or distribution of values. Using these aggregates
during analysis reduces complexity of the data that needs to be understood, but
it is questionable whether this should be done when dealing with a group of
individuals. Every human has their own mind, context, history, and needs, and
too much abstraction from this complexity might be inconsiderate.

Another fact to keep in mind is, that Africa’s Voices is working with a self-selected
group of participants. Only messages from people who have access to radio and
SMS, who can read and write, and who are willing to voice their opinion on a subject
can be received. Researchers might forget that fact if working with standard charts.
Especially pie charts could convey the idea of displaying 100% of the population,
whereas these charts only display the received data originating from a subgroup of
the population. This could lead to invalid generalizations to thewhole population of a
country. Africa’s Voices already uses bubble charts instead of pie charts to circumvent
having that image of displaying all of the population (see again Figure 1.4). Hence,
dealing with these issues of abstractions and generalizations requires visualizations
that remind the researchers of the true nature of their data.

4https://matplotlib.org.

8

https://matplotlib.org

1.1 Domain

1.1.3.3 Viewing Single Individuals and Original Opinions
Standard visualizations can only show demographic information of all individuals
in the data set. They do not support displaying a specific individual with their
demographics, let alone their opinion. Opinions as free text are unstructured: every
message references different topics, has a different grammar, some even are in
different languages. This means, the messages can be categorized as qualitative data.
There are so far no well-known tools which can help with displaying this amount
of qualitative data clearly and effectively. For analyzing the data of 2,000 to 40,000
individuals, researchers need to categorize and even aggregate single opinions at
some point, because they cannot get any findings by reading all quotes and not
sorting and grouping them into common themes. That is the reason why researchers
label and thereby summarize the messages. Through this labeling process, the
messages are structured and can be aggregated according to their themes, so they
can be visualized through standard charts. But, by doing that, the connection from
the label back to the original quote it was applied to is lost, so users cannot view it.
This results in loss of the original data in the visualization and – most importantly –
doing that inhibits curiosity and empathy.

1.1.3.4 Trust in Data
Correctness of Labeling The aforementioned labeling process is necessary to
compute the amounts of qualitative quotes Africa’s Voices receives. However, the
connection between the original quote and the label or tag needs to be maintained to
make data modifications traceable and reversible. For the quotes, this is important
to explain and confirm the correctness of the labeling process as well as to support
creating empathy by reading original statements. Therefore, it is necessary to log
changes and additions to and interpretations of the data to ensure data integrity.

Filtering The history log is also important for other use cases. Sometimes
researchers only want to look at specific parts of the data, so they filter out the
rest. With standard visualizations, researchers often have to provide complete data
sets that they want to visualize, which means that they have to do the filtering
themselves. This may be possible for researchers who can program but much less
possible for researchers needing a graphical user interface (GUI) to do that. Added
to that, in the produced visualization the filters that got applied to the data are
not visible. This is either because it is not supported by the software itself or the
researcher had to filter the data beforehand.

In Africa’s Voices’ former workflows, filters got applied through the filter function
in Excel and the resulting data was copied into a new spreadsheet. However, copying
data opens up a big risk of having inconsistent and unreliable data. If changes are
introduced to one sheet of data, but not the other, the data becomes inconsistent.
Using one datasheet or the other results in different outcomes, making the data
unreliable. As researchers at Africa’s Voices copied data for filtering, this process
required a lot of checks to ensure whether the filter worked correctly. Confirming
the correctness was difficult to do with standard charts that have no connection back

9

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

to the original data. For this reason, there has been a strong trend at Africa’s Voices
to eliminate this kind of practice and to replace it with more reliable tooling.

Aggregates With grouping or aggregating data, the connection from the group or
aggregate back to the data points it wasmade of, is lost in static visualizations. Hence,
if Africa’s Voices wants to create trust in their visualizations and in their data, they
need to make sure that the history of data aggregations are logged and displayed,
so that they are understood by viewers and can be reversed by researchers.

Direct Modifications For data cleaning, researchers sometimes need to modify
data directly by replacing or grouping values together. This is to be used very
cautiously, as faulty scripts introduce new errors in the data and humans may also
make mistakes by doing it by hand. To keep data integrity and to prevent data
scandals, which change data on a large scale, Africa’s Voices logs all modifications
done by researchers and scripts in the metadata of a message.

1.1.3.5 Trust in Software
To develop visualizations, researchers need to use software created by others if
they do not want to program their visualization software themselves. In this case,
they have to trust the software, that it does not modify data while processing and
displaying it. If users were able to trace the visualization back to the code and the
data it uses, that could reduce skepticism and increase trust. Africa’s Voices already
built a solution for their current process, which attaches SHA-sums of the code that
created the data to that corresponding data.

1.1.3.6 Connecting Visualizations
There is no unifying visualization that can explain everything and every angle, so
researchers need a set of visualizations to get answers for specific questions. Usually,
they take an ideal diagram for each use case and combine them by laying them out
next to each other.

Using the Same Data These diagrams, however, are not obviously connected to
each other. Users cannot even directly see, whether they contain the same data, if
the visualizations are not annotated.

UsingDifferent Elements Assumingmultiple visualizations do use the same data,
they still have no visible connection, if they are from different types. Different types
of visualizations usually display different aspects of data, which makes it impossible
to directly connect the data in one chart with the same data in another. For example,
in a bar chart, which displays the amount of people in different regions, and a donut
chart, which displays the amount of people in different genders, you cannot see,
which data points from a specific region in the bar chart make up which parts of a
specific gender group in the donut chart (see again the top left and top right chart
of Figure 1.2). Going even further, with a joint interpretation of quantitative and
qualitative data you cannot see, what quote comes from which age group or which

10

1.1 Domain

gender, or which quotes make up an age group. There are no elements in common
that are linked between the visualizations because each standard chart uses its own
graphical elements for its own purpose.

Using Different Mapping of Elements If multiple visualizations do use the same
elements, such as two bar charts, it is still difficult to connect the data in these two
visualizations. The problem is that the same elements – the bars – are standing for
different aspects. They can represent the amount of people by age or by gender,
so the functions of the bars change to visualize different attributes. A bar stands
for an amount, but the sources may be different. This requires users to remap the
same graphical elements to different meanings, making it more complex to view and
compare.

Using Different Color Schemes Assuming now that multiple visualizations do
use the same elements with the same meaning, they still might have different color
schemes, making it difficult to compare them. This may not be such a big problem for
researchers as they have domain knowledge, practice and have probably developed
the visualizations from the data themselves. But for people without a statistical or
analytical background, this mapping might be too much to keep in mind, so they
cannot follow explanations and arguments well. Thus, it is easier to understand
connections in the data, if different visualizations are explicitly connected. Added
to that, it helps if they look uniform and support the same kind of interactions.

1.1.3.7 Missing Interaction
With static charts, users only have this one view of the data. If there is no interaction
possible, they lose the chance of understanding and finding out more. They would
have to load the whole data into a fitting diagram and build it with every new
question that arises. It is like a box that you can fixedly view from all six sides, but
only by interacting with it, you can look inside and see its inner workings. Interacting
with data could be most helpful for researchers as they then have more tools to view
the data. They could let their interest and intuition guide their exploration, which
would lead to a completely different exploration and analysis process. On the other
hand, interactive diagrams could significantly help people, who get presented the
data, to understand the relationships between multiple charts or views of the data.
For example, it could help if all visualizations could morph into one another through
an animation. This would enable people to comprehend how the data that made
up one chart also makes up the next and how these two views are connected. Also,
when they have spontaneous questions, these could be explored and answered easily
by interacting with the presented visualization itself.

1.1.3.8 Missing Empathy
Most charts concentrate on visualizing their data best for a specific task, for example,
comparing two or more groups with a bar chart. In our case of survey data,
Africa’s Voices also needs to get across that they are displaying real experiences
and characteristics of people and that it is important not to forget that during the

11

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

process of analysis. When dealing with this kind of sensitive data, there are people
who dislike numbers and aggregated data, because they know that there are people
and stories behind the data and it makes them uncomfortable seeing them being
reduced to bars and numbers. But there are also people who like numbers better than
complex data because it simplifies and reduces most questions to a single aspect:
Which side is bigger? What are most people saying? This analysis risks being too
simple, as communities can be complex social structures. Visualizations, especially
in this context, need to create empathy in the people who view them, because they
might base decisions on this data. There are not many visualization tools out there
that help with this kind of political aspiration.

1.1.3.9 Issues With the Mindset
When using standard charts, researchers use a familiar set of tools to develop a
familiar set of graphs, so the mindset of looking at these graphs will stay the same.
Because they are standard, they appear everywhere: on the news, in schools, in bills;
anywhere you have to visualize quantitative data. Using standard visualizations
results in standard questions being asked and a standard mindset towards the data:
statistical, dry, even boring. Clearly, this is not a mindset with which Africa’s Voices
likes the public to view sensitive data about people and their opinions. But also
using completely new visualizations does not help here because people usually do
not want to spend a lot of time to understand a new chart. Using new, intriguing,
and easy to understand charts could help change the mindset of viewers.

The presented understanding of the domain and associated problems resulted
from conversationswith our contact person at Africa’s Voices Foundation.With these
problems in mind, we will now analyze the goal of our project and its requirements
in section 1.2. Also, we will look at state-of-the-art technologies for developing
visualizations in section 1.3.

1.2 Project Description, Prerequisites, and Requirement
Analysis

This section describes the goal of our project, our prerequisites, and the requirements
that resulted from different stakeholders. These stakeholders include our project
partner (Africa’s Voices) and their views, the data they provided, and potential
users of our developed software, as well as the Software Architecture group at
Hasso-Plattner Institute who supervised the project and provided the development
environment Lively4.

1.2.1 Project Goal

Originally, the project has been titled “Exploring Provenance throughProgramming”.
Exploring means to interactively look into something by comparing, connecting and
investigating certain aspects to be able to discover insights. That is, the main goal

12

1.2 Project Description, Prerequisites, and Requirement Analysis

of the project was to enable the investigation of the provenance of data: to find
ways of visualizing that history of data modifications and trace it back to its origin.
The specification included “building a platform to develop new and unforeseen
visualizations” and constructing several examples that could be used by Africa’s
Voices during the course of the project and for future work.

Before we could build a platform, we had to understand what the main problems
were and what could be most useful to our project partner. It turned out that it was
not only exploring the provenance but in general creating visualizations, that used
a more qualitative approach to enable exploration of the quotes of the respondents.
These new visualizations could then help researchers to find new insights in the data,
ask and answer new questions, as well as change the mindset about viewing the data
from doing standard procedures to exploring at will. Researchers would be able to
inquire for what sparks interest and could benefit from further investigation, without
being stopped before reaching the original data. By making these visualizations
intuitive and easy to use, they could also help Africa’s Voices to better communicate
their findings in workshops. Presenters would have more interactive tools at hand
to narrate and explain trends in the data and viewers would understand better and
could empathize with single individuals but also with the whole population. A
visualization system that combinesmany new visualizations into a single application
with the same underlying concepts and interactions would significantly help solve
the main problems of the visualization process of Africa’s Voices. It would therefore
increase trust in the organization and their data while keeping individuals in the
center of processes and visualizations to create empathy.

1.2.2 Prerequisites and Requirements

1.2.2.1 Project Partner’s Views
Originating from their most important problems, our project partner expressed the
demand to focus on keeping all individuals visible and accessible. The individuals
should be the basis for each visualization from which you can then aggregate or
group. To help with creating empathy, they wanted us to create something lively,
something that conveys that there are real people behind the data. In their quest for
data integrity we were expected to provide something that could explore the history
of a data point and also to add our data modification to that history.

1.2.2.2 Provided Context Information
Our contact person at Africa’s Voices provided us with information on the data
collection process of the organization and what they ultimately do with their
visualizations. For our project, he wanted us to be completely free in choosing
directions we should explore, so he gave us no detailed description on what exactly
it is that we should build. Nor did he explain their current visualization process or
what their used visualizations looked like. Hewanted us to create new visualizations
and interactions that would benefit parts of their process, whether it being helping
with research, presenting, or making the data provenance explorable.

13

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

1.2.2.3 Data and Data Scheme
The data Africa’s Voices sent us was in a JSON or CSV format (more in chapter 5).
It contained demographic information about each individual, including their age,
gender, location of residence, whether they were recently displaced in case of
Somalian citizens, and other project relevant attributes. The data also, originally,
contained themessage the individual sent aswell as themain themes that occurred in
that message. Themessages itself were replaced by lines from popular books (“Pride
and Prejudice” and “Alice in Wonderland”) for data security and our emotional
safety, as some quotes might have been emotionally stressful to read. The first
data sets also included the provenance trace of each message, where every script
that ran on the data logged itself and the changes it made. Later on, we only got
the demographic information and the themes, as we only used the provenance
information in our ideas, but not in our prototypes.We got data from several projects:
one project in cooperation with UN OCHA5 about humanitarian needs in Somalia
and about developing a Common Social Accountability Platform and another project
about thoughts and opinions on the Coronavirus in Kenya and Somalia in 2020.

1.2.2.4 Data Handling and Data Visualization
Data Handling The data received also demanded specific handling. We had to
work with high dimensional and very sensitive, personal data. The themes data
was especially important as it was the main focus of analysis while being difficult
to visualize, as one quote could have multiple themes. Also, we had to deal with
incomplete data, where people had omitted information, or data from people who
revoked consent of their data being used.

Data Visualization Wehad to display data from thousands of individuals and also
keep them clearly visible. Our visualizations had to accommodate different project
related attributes and different origins while also enabling comparison between
similar projects in different countries or different projects in the same country. Also,
we needed to exclude attributes, which were used only internally, like IDs, from
analysis.

1.2.2.5 Potential Users
In the problem section, we already described the two types of users that would
be using our project results: researchers who are trying to find new insights and
presenters, who are showing the data to policymakers. Researchers again can be
divided into two categories: the ones with knowledge in programming and IT
development, and those who use but cannot develop such tools. Furthermore, there
could be users exploring the data themselves with guidance from others, but without
a background in data analysis. These users could be policymakers getting a feel
for the data themselves, which would result in even greater empathy or even the
citizenswho took part. These types of users all have different abilities and constraints,

5https://www.unocha.org (last accessed: 2020-07-29).

14

https://www.unocha.org

1.2 Project Description, Prerequisites, and Requirement Analysis

interests, wants, and needs. This resulted in several requirements for our software
we have developed during the project. Wewill now explore the potential user groups
and their respective requirements in detail.

Researchers (End Users) Users who want to conduct quantitative and qualitative
analysis by exploring the data through a graphical user interface.

• Abilities. End users who want to research the data will have a thorough
understanding of data analysis and knowledge of social context. Also, they
might have experience with commonly used software for data analysis and
visualization.

• Constraints. They usually have no knowledge in programming.
• Wants. They might want to filter or select certain data as well as change the

representation of data through changing the visualization type or coloring and
grouping of data points. They might want to save a state of a visualization
so they can come back to it later or send that state to a colleague for further
exploration. For writing reports, they might want to export the visualizations
in a usable file format. For further analysis and exploration, they might want
to add new visualization types or interactions.

• Needs. They will therefore need a graphical user interface, that provides
filtering, selecting, grouping, and coloring of data points. It also has to offer
different visualization types and enable switching between them. It needs
to enable saving states of exploration stages or settings made. For adding
new visualization types, it needs to provide a toolbox to instantiate new
visualizations. This user interface has to be intuitively usable and, ideally,
should be similar to already well-known tools. Interaction with the data or
the visualization should be easily discoverable.

Researchers (Developer Users) Users who want to analyze and explore the data
and who can program.

• Abilities. Researching Developer Users will also have understanding of data
analysis and knowledge of social context. As developers, they know how
to program and might also know several commonly used programming
languages.

• Constraints. They might not know every programming language there is, nor
do they have the time to read and understand the entire codebase.

• Wants.Additionally to researching endusers, theymightwant to adjust existing
visualization types and incorporate new ones. They also might want to add
interactions to single visualizations or the whole system, which can then be
used by end users.

• Needs. The software should be written in a commonly used programming
language and provide sufficient documentation to facilitate understanding of
the software. It should provide a consistent API for visualizations that makes
it easy to develop new visualization types and interactions and incorporate
those into the existing system. Also, the code should be quickly and directly
accessible, possibly even from within the system.

15

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

Presenters Users who use the tool to present data, trends, and findings.
• Abilities. Presenters will have good knowledge of social context and, ideally,

understanding of data analysis. They might be familiar with typical
presentation tools such as PowerPoint or Keynote. During a presentation, they
know what kind of interactions the tool offers or at least, what interactions
they want to use.

• Constraints. During a presentation, they might not have a lot of time to interact
with a tool to develop their point. Also, they do notwant to explain the software,
new visualization types, or interactions to viewers.

• Wants. They want to show the data and narrate insights to others. Their
explanation should be backed by visualizations that can be understood by
the audience (viewers). They might want to load a prepared state of data
visualization and exploration. Also, they might want to immediately explore
questions arising from their audience.

• Needs. The tool should have a presentation mode, where distracting settings
or controls can be hidden. It would also be advantageous, if the tool provided
help with creating presentations in the form of slides with animations, scripts,
or videos. As presenters know what the tool can do, its functionality does not
need to be especially discoverable for them.

Viewers/Passive Policymakers Users who do not interact with the tool directly,
but are presented the data with this tool.

• Abilities. Policymakers will be familiar with viewing graphics and charts and
they will have knowledge of the social context.

• Constraints. They might only know standard visualizations and do not want to
spend time understanding new visualizations.

• Wants. They want to understand the data and their visualization, as well as the
presenters’ explanations and their findings.

• Needs. For them, the visualizations have to be visually comprehensible at one
glance. Therefore, the tool should show what happens during exploration so
that they can follow the presenter and do not get confused.

Active Policymakers Users who interact with the tool themselves to confirm or
disconfirm their own hypotheses.

• Abilities. Same abilities as passive policymakers or viewers.
• Constraints. Additional to the constraints of a viewer, an active policymaker

might have no background in data analysis nor a particular understanding of
IT systems.

• Wants. Theymight want to understand and empathize with citizens. Therefore,
theymight want to explore the data for their own interest by filtering, selecting,
coloring, or grouping data like a researcher. They might also want to export
visualizations for future reference.

• Needs. For policymakers who can use the tool themselves like a researcher, it
needs to be self-explaining. It should be responsive, performant, stable, and
error-resistant.

16

1.3 Developing Customized Visualizations: State of the Art

Citizens Users who participated in a project by sending their opinion.
• Abilities. The abilities of citizens vary widely; we can only assume that they

have knowledge of their country and community.
• Constraints. They might have little experience with viewing diagrams and

charts and interacting with these.
• Wants. Citizens might want to find their own message as well as similar

messages or answers that came from their region.
• Needs. For citizens, the software has to satisfy the needs of active policymakers

as well as show locally and semantically similar answers. For the integrity of
the citizen’s data, it should not be changed and for privacy concerns should
not identify them.

1.2.2.6 Lively4
Our project was supervised by the Software Architecture Research Group at Hasso-
Plattner-Institute (HPI). This group has worked on the Lively Kernel,6 a live
environment for documenting, programming and executing written code on the
web. Lively4 has a wiki-like structure, a folder browser, a text editor for Markdown
and JavaScript as well as a view of the execution result of the written files. This was
the platform we were to use for our project (more in chapter 4).

1.3 Developing Customized Visualizations: State of the Art

In this section, we will look at three different software systems/libraries for
developing visualizations. We will explain their use cases, benefits, and drawbacks.
The first is Tableau, a quantitative analysis tool operable through a graphical user
interface. The second is named ggplot2, a package for the R environment providing
separate semantic components to construct visualizationswith. Finallywe take a look
at D3, a JavaScript library enabling data binding to DOM elements andmanipulation
of their properties. These three systems/libraries support different approaches to
data visualization, each with their own ideal use case. We will describe how they
are used, what interactions they support, and how visualizations can be customized.
Concluding this section, we will evaluate howwell they were suitable for our project.

1.3.1 Tableau

The first software we look at is Tableau.7 Tableau is a visualization software with an
interactive user interface to input data and drag and connect different visualizations
to it. Users do not need to know how to program to create visualizations, as Tableau
offers a wide variety of standard visualizations plus annotating text fields that can
be arranged into dashboards.

6https://lively-kernel.org (last accessed: 2020-07-29).
7https://www.tableau.com (last accessed: 2020-07-29).

17

https://lively-kernel.org
https://www.tableau.com

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

1.3.1.1 Usage

Figure 1.5: A Tableau Worksheet8with (A) the data-shelf, (B) the column-shelf and
(C) the row-shelf

Users can import different data files such as Excel files, text, and JSON files. If
these files contain different data tables, Tableau lets the user define relations and
joins between these. Once users have selected their data, they can drag and drop
categories like in Figure 1.5 from the data-shelf (A) in into the rows-shelf (C) or
columns-shelf (B) of a Tableauworksheet. Dragging a category to the rows-shelf then
lets rows of the visualization correspond to values from this category. For example,
in Figure 1.5 the category “Customer Names” was dragged to the rows-shelf (C)
which results in the customer names to appear on the y-axis, whereas SUM(sales)
was dragged to the columns-shelf (B) and are now displayed on the x-axis. Tableau
then chooses a fitting visualization type for the kind of data to display. Users can
change this visualization type, if it does not fit. They can add filter boxes for the data,
where data points can be filtered out by category. Then, worksheets can be integrated
into dashboards to display several views next to each other to enable comparison.
Filter boxes can apply tomultiple worksheets or for related data sources, giving users
the ability to filter data in one chart and applying that filter to the whole dashboard.
Users can also filter by clicking on representations of data points and can multiselect
data by clicking and dragging a selection area.

1.3.1.2 Underlying Technology
Tableau, formerly Polaris [64], is mostly written in C++, but their core is the
declarative language VizQL [36], that formalizes the description of tables, charts,

8https://www.analytics-tuts.com/wp-content/uploads/2015/12/1-3.jpg
(last accessed: 2020-07-29).

18

https://www.analytics-tuts.com/wp-content/uploads/2015/12/1-3.jpg

1.3 Developing Customized Visualizations: State of the Art

graphs, and maps and unifies them into one framework. Operations for retrieving,
mapping, and rendering the data are generated by the VizQL query analyzer. Users
only have to describe what they want to see.

1.3.1.3 Interaction
This underlying language makes it easy for Tableau users to switch from one
visualization type to the next.Main interactions include resizing, tooltips on hovering
over data representations, and filtering through filter boxes or by clicking on a
visual representation in a chart. This, however, concludes interactions for Tableau
worksheets and dashboards, which means, only these interactions are commonly
supported.

1.3.1.4 Customizability
Non-developer users can plug their own visualization together, as long as it stays
within Tableau’s offered range of customizations. This range includes coloring and
size of data representations, changing the axis order, scale, and ticks as well as
rewriting the formula for computed variables like sums and averages.

Developer users can write their own extensions to Tableau, examples can
be seen in Tableau’s extension gallery.9 These are JavaScript web applications
that comply with Tableau’s API for dashboard objects. As they are written
in JavaScript, developers can also use third-party libraries like D3.js to build
their custom visualizations. Supported event listeners are FilterChanged,
MarkSelectionChanged,ParameterChanged andSettingsChanged, 10 which
means that custom interactions are still limited using these events. Extensions can
be published via the extension gallery or to Tableau Server or Tableau Online. These
public extensions can also be downloaded and used by non-developer users.

1.3.2 ggplot2

The second software we will look at is ggplot2.11 This is a package enabling data
visualization for scientific use in the programming language R. It breaks down charts
into reusable, configurable, and combinable modules, such as scales and graphical
layers. These modules can then be plugged together by writing declarative code.

Listing 1.1: R code resulting in a ggplot2 scatterplot

1 library(ggplot2)
2
3 ggplot(mpg, aes(displ, hwy, colour = class)) +
4 geom_point()

9https://extensiongallery.tableau.com/extensions?version=2019.4&per-
page=50 (last accessed: 2020-07-29).

10https://tableau.github.io/extensions-api/docs/trex_events.html (last accessed:
2020-07-29).

11https://ggplot2.tidyverse.org (last accessed: 2020-07-29).

19

https://extensiongallery.tableau.com/extensions?version=2019.4&per-page=50
https://extensiongallery.tableau.com/extensions?version=2019.4&per-page=50
https://tableau.github.io/extensions-api/docs/trex_events.html
https://ggplot2.tidyverse.org

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

Figure 1.6: The resulting ggplot2 scatterplot

1.3.2.1 Usage
As it is a package for R, it can be imported in an R environment. Users then have to
write code to produce a visualization as shown in Listing 1.1 and Figure 1.6. They can
create a coordinate system by using the ggplot() function and passing a data set
and aesthetics to it as can be seen in the listing Listing 1.1 taken from their website.
The aesthetics take attributes for the x- and y-axis as well size, shape, or coloring
variables. Then, users can add layers to visualize the data. A layer displays the visual
representation of the data through mapping it to geometrical objects called “geoms”.
A point geom will result in a scatterplot as seen in Figure 1.6, whereas a bar geom
results in a bar chart. This way, users can change the type of their visualization very
quickly by simply using a different geom. Also, they can add multiple layers to their
visualization and combine different geoms. ggplot2 provides computed variables
for specific geoms. Users can save their plots as PDF files or take advantage of R
Markdown Notebooks, where they can create complete dashboards and send them
to colleagues with the full source code.

1.3.2.2 Underlying Technology
The ggplot2 package implements the layered grammer of graphics [68]. It is written
in R and open source on Github.12 It creates an image of a plot by building, rendering,
and drawing it as a PNG.

12https://github.com/tidyverse/ggplot2 (last accessed: 2020-07-29).

20

https://github.com/tidyverse/ggplot2

1.3 Developing Customized Visualizations: State of the Art

1.3.2.3 Interaction
As the resulting images of plots are PNGs, they are static, meaning there is no
interaction possible. There are filter commands that can be used before the plot
is created. But generally, the data exploration process of ggplot2 consists of writing
code for a plot, running it, viewing the plot and then writing code for a new plot
that may answer the next question. 13 The code can add some limited interaction,
like hovering or zooming, to ggplot2 plots.

1.3.2.4 Customizability
Chart customization can be done within the offered range of aesthetics. Layering
different geoms on top of each other enables building custom chart types. Same as
Tableau, ggplot2 can include extensions,14 like animations and more chart types
written in R by other users that are hosted on GitHub.

1.3.3 D3

D3.js15 is a JavaScript library for creating data-driven documents [10]. It works with
HTML, SVG, and CSS to provide a data binding from data sources such as arrays,
objects, JSON, or CSV files to DOM elements. Developers can select DOM elements
and apply changes to them, add new elements, or remove unnecessary ones. Changes
include one element’s style like height, width, and color, as well as added behavior
through event listeners.

1.3.3.1 Usage
For creating visualizationswithD3, developers can import their data into a JavaScript
file andmap it to SVG shapes. Data attributes can bemapped to styles of these shapes
as desired. To, for example, create a scatterplot, users can add d3-axes with d3-scales
to an SVG to create the coordinate system and then draw the data as circles into
that coordinate system using the scales for positioning. D3 also offers ready to use
diagram types like histograms that only need a data input.

1.3.3.2 Underlying Technology
D3 creates and modifies DOM elements, that is for example, paragraphs for text
and divs or SVGs for shapes. It wraps the W3C DOM API17 for modifying HTML
documents into declarative function calls. D3 itself is an open source project hosted
on GitHub18 and written in JavaScript.

13https://plotly.com (last accessed: 2020-07-29).
14https://exts.ggplot2.tidyverse.org (last accessed: 2020-07-29).
15https://d3js.org (last accessed: 2020-07-29).
16https://www.visualcinnamon.com/2015/07/voronoi.html (last accessed: 2020-07-29).
17https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.

html (last accessed: 2020-07-29).
18https://github.com/d3/d3 (last accessed: 2020-07-29).

21

https://plotly.com
https://exts.ggplot2.tidyverse.org
https://d3js.org
https://www.visualcinnamon.com/2015/07/voronoi.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://github.com/d3/d3

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

Figure 1.7: A D3 bubble chart with tooltip on hover (A)16

1.3.3.3 Interaction
For adding interaction, developers can add event listeners, for example, to the
circles in a scatterplot so that they display detailed information on a hover event
as in Figure 1.7. Or they can add behavior, so that the circles recolor or rearrange
themselves on click. Here, all HTMLDOMEvent Listeners can be used and the event
handler can be manually written.

1.3.3.4 Customizability
With all HTML DOM Event Listeners at hand and self-written event handling
callbacks, D3 is very powerful when it comes to interactive charts. Developers can
add any event listener to any HTML element and define the behavior that should
occur on an event. This means, developers have full control over the interaction,
which makes D3 charts highly customizable. But also the charts themselves can be
created as desired, as D3 does not only offer complete implementations of charts.
It provides developers with basic modules like axes and scales, animations, and
interaction helpers to plug together to create their own chart.

1.3.4 Conclusion

As Tableau is currently used by Africa’s Voices, we could have written some new
visualization types as extensions to Tableau. But Tableau focuses on quantitative data,
which can be aggregated. Therefore, it is a useful tool for doing quantitative analysis
on our data, but not for visualizing the qualitative data we have. Disaggregating

22

1.4 Our Approach

the data in Tableau to display every data point as a dot might result in performance
loss.19

ggplot2 is useful for quickly developing plots with only three lines of code for
a standard scatterplot, as it only needs a data set, a mapping from aesthetics to
variables, and a chosen geom to represent the data. It is, however, a package for
the R environment, which might be a completely new programming language for
some developers. Also, it does not deliver interactive charts on its own, making it
necessary to work with add-on libraries such as Plotly.js. As plots with ggplot2 are
simple to write, the library needs to abstract and provide high-level points of access.
This way, building completely custom charts is hard, as developers can only build
them from these abstract models.

D3.js with its direct connection to HTML and DOM via Javascript is a very good
choice for creating custom visualizations with self-defined behavior. It is also a
natural choice for developing visualizations in Lively4, because both are written
in JavaScript and result in DOM elements on execution. However, the underlying
technology uses SVG elements for drawing data representations, so developers will
likely run into performance issues when visualizing large data sets. In chapter 7 we
will go into more detail on the performance of these technologies.

All these three approaches to visualizing data operate on different levels. Tableau
uses a graphical user interface to create visualizations. ggplot2 provides highly
abstractive concepts that can be put together to create visualizations with a few
lines of code. D3 gives the user full control over the outcome by providing low-level
modules and manipulative access to DOM elements through JavaScript, but with a
reasonable level of abstraction from the rendering and creating of images themselves.
This means, all options are useful, but ideal for different uses. In our case, having as
much control over visualization appearance and behavior proved valuable.

1.4 Our Approach

This section summarizes our approach to the project and the domain problems. A
summary of our results will follow in section 1.5.

Basis The starting point of our project consisted of three basic things: 1) data from
Africa’s Voices in large JSON files, 2) the development environment Lively4, and 3)
a non-specific description of the end results to be developed.

Inspiration With no knowledge of state-of-the-art technologies for visualizing
data, we looked into visualization libraries that could be used. We also looked for
inspiration on the web, in books, in reports, and in research papers.

19https://help.tableau.com/current/pro/desktop/en-us/calculations_
aggregation.htm (last accessed: 2020-07-29).

23

https://help.tableau.com/current/pro/desktop/en-us/calculations_aggregation.htm
https://help.tableau.com/current/pro/desktop/en-us/calculations_aggregation.htm

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

Brainstorming We spent time brainstorming new ideas based on found inspiration
and the received data. For that, we used techniques taken from the Design Thinking
approach (subsection 2.2.1) to understand our problem better and to evaluate what
would really help different users. In chapter 2 we will describe and categorize our
developed ideas.

Implementation After developing a large set of different visualizations, we started
implementing those that seemed most interesting and useful. We first tried out the
main concept in a script in Lively4, then added more features to that attempt to
develop it into an elaborate prototype. To unify the behavior and to connect different
visualizations, we had to design and implement underlying architecture as well as
an API, that could be used commonly to control and interact with all visualizations.
In chapter 3 we will explain our developed prototypes and their usage, as well as
interactions implemented using this API. In chapter 4 we will elaborate on our usage
of the Lively4 environment during the project.

To use the data provided by Africa’s Voices, we stored it on an extra server,
which can be queried by our visualizations. The data format kept changing over
the course of our project, so we implemented a parser that would always return the
data consistently in our desired format. In chapter 5 we will describe the formats of
data we received and the format we developed in more detail, as well as how our
visualizations handled data mapping to visual representations and vice versa.

Because we had to display a large set of points unaggregated, we researched
technologies that could handle the amount of data well and that left room for
interactions and animations. In chapter 6 we are going to describe commonly used
web technologies and compare and evaluate them.

Testing To test our ideas, we presented them to the Technical Lead at Africa’s
Voices, who was also our contact for the project. We presented him developed ideas
and implemented prototypes. As a result, he could confirm that already discovered
findings could be demonstrated again using our visualizations, aswell as finding new
points of interest through the interactivity and explorability was possible. By letting
him try out our prototypes, we could also evaluate whether they were intuitively
usable and comprehensible without further explanation. In chapter 7 we are going
to evaluate our end result further.

1.5 Our Contribution

This section summarizes our contribution to the improvement of the work of Africa’s
Voices with this project. We will shortly describe the concept of our newly developed
visualizations and of the two implemented systems that connect them: the Tab View
and the Tree View system. We will then look at how these new possibilities could
affect Africa’s Voices’ processes and workflows.

24

1.5 Our Contribution

1.5.1 New Visualizations

We provided Africa’s Voices with many ideas and prototypes for new visualizations
and interaction patterns. The idea behind our visualizations is to keep all individuals
visible by representing each individual with a single dot. We have realized that this
model of representing individuals with dots comprehensiblyworks. Also, our design
strategy to unify visualizations by using the same graphical elements is helpful, too.
This way different visualizations are easier to understand and to compare. Each dot
can be interacted with by clicking on it to get detailed information, which creates
trust. Added to that, we provided visualization-specific controls for arranging and
coloring the dots.

Visualizations can be instantiated multiple times to show the same data from
different perspectives. Our visualizations can display all dimensions of a data point
by inspecting it. Most importantly, they could show the original message of the
individual, if it was included in the data, which then could increase empathy.
However, they can take two dimensions to calculate the data point’s position and
a third for it’s color. Users can decide, how they want to map dimensions to visual
attributes to get the view of the data they desire (see section 3.3 for more).

1.5.2 Connections Between Visualizations

Having comparable visualizations with standard interactions is important. To this
end, we realized two systems to connect base visualizations that focus on different
usage scenarios while maintaining consistent appearance and interactions. The
Tab View system (section 3.5.2) consists of tabs showing the same data but with
different visualization types. It keeps a global legend and actions are performed on
all visualizations. The Tree View system (section 3.5.3) enables users to create an
exploration tree in which actions performed at a higher level of the tree are passed
down to its children.

1.5.3 Changed Workflows

The prototypes implemented allow for several changes and improvements in the
workflow of different types of users.

1.5.3.1 Developers
Developers can change everything about our developed prototypes as Lively4 keeps
code and its interpreted result close to each other. Navigation between both views
– code and results – is possible with the push of a button. This allows fast and
direct changes to the code and the visualizations. They can also write their own base
visualizations.

For our two visualization systems, they can write and integrate new base
visualizations easily by implementing the required API. They can also develop their
own visualization system and use our visualizations as a basis.

25

1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions

1.5.3.2 Researchers
Researchers now have more available visualizations for exploring Africa’s Voices’
data. They are provided with new interactions and many exploration possibilities,
which could lead them to new questions and insights.

As our systems make the connections between data in multiple views clearer,
relationships in the data might be easier to spot. Our Tree View system could help
them to structure their exploration process as it makes the exploration history and
decisions visible.

1.5.3.3 Presenters
Presenters benefitmostly from our two visualization systems, as they can use them to
narrate their findings better to an audience of people new to this kind of qualitative
data visualization. The Tab View system could help them to show multiple views
of the same data and the Tree View system for arranging different visualizations to
explain trends and insights.

1.5.4 Summary

We have seen now that in the context of Africa’s Voices, there exist domain-specific
challenges of asking sensitive questions, displaying people’s opinions and getting
across the right impulses. Standard charts proved unhelpful to achieving these
goals. However, we were successful in designing new visualizations that keep the
individuals and their opinions visible. We helped solve some of the main problems
of the visualization process of Africa’s Voices through developing new visualizations
with new interactions and connecting them in two different systems. For that, we
explored the design space for visualizations that can showdata from this domain.We
realized that this space is quite rich and has a lot of potential for further development.
Therefore, the following chapter 2 will describe this space and categorize our ideas
for visualizations and interactions.

26

2 Concepts for Visualizations that Make
Data Explorable and the Exploration
and Categorization of the Design Space

Africa’s Voices receives thousands of text messages of individuals that all have to
be visualized and analyzed. Their main aims are to allow for an exploration of the
data and not to lose the voices of the individuals. Standard charts do not allow users
to look past the aggregated data and are therefore not sufficient for an interactive
exploration of the data. As they can only display statistical information, the opinions
and needs of the individuals are lost. We designed around 80 ideas that allow for an
in-depth exploration of the data and categorized them by a technical dimension and
task dimension. We further extracted several concepts that enable users to explore
the data, develop empathy with the displayed individuals, and that create trust in
the representation form. The main concepts are to display the individuals as points
and to offer different perspectives on the data and comparisons across visualizations.
These concepts provide a fundamental basis for further research and the design and
creation of explorable, individual-centered visualizations.

2.1 Introduction

Africa’s Voices receives thousands of text messages every time they conduct a radio
show. The attribute values of these individuals and theirmessages are then visualized
and analyzed using standard charts, such as bar charts or pie charts. As this kind of
data is highly complex, Africa’s Voices aims at creating visualizations that improve
the finding of insights in this data.

These visualizations have three main requirements. They have to allow users
to explore the data in more detail and need to create empathy for the visualized
individuals. The third requirement is the creation of trust in the truthfulness of the
visualization and the data. First, they have to allow users to explore the data in more
detail. Second, they need to create empathy for the visualized individuals. Third,
they have to create trust in the truthfulness of the visualization and the data.

However, standard charts do not allow for a deep exploration. As they are static,
the opinions and needs of the individuals are lost. Further, users need to rebuild
the visualization every time they want to adapt the data or the representation form.
This process does not allow users to answer questions about the data as they emerge,
which is essential for finding important insights about the data. Standard charts
do not allow users to look past the aggregated data and are therefore not sufficient

27

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

for an interactive exploration of the data. Africa’s Voices works with thousands
of data points. Therefore, just displaying the attribute values of individuals and
corresponding messages in an unstructured way is not an option.

To solve these problems, we designed novel visualizations that focus on the
individual instead of the aggregated data and allow for a deep exploration of the data,
while creating empathy and trust.We extracted concepts from our visualization ideas
that implement these requirements. These concepts provide a fundamental basis for
further research and the creation of explorable, individual-centered visualizations.

We structured our design process using theDesignThinking approach,which aims
at a structured, target-oriented process to find solutions. We present an overview of
theDesign Thinkingmethod, a description of our approach, and a short evaluation in
section 2.2. To decide which ideas and general concepts allow best for the exploration
of data and the creation of empathy and trust, we categorized the ideas regarding two
dimensions. We describe these dimensions in section 2.3 in detail, give an overview
of the categorization, and present the findings we extracted. The developed concepts
are then discussed in section 2.4. Using these concepts and findings, we decided on
the ideas that seemedmost interesting regarding the design of explorable individual-
centered visualizations. A conclusion is presented in section 2.5.

2.2 Exploration of the Design Space and Ideation

Our goal was to develop new and unforeseen visualizations. As applying existing
ideas to the problem domain is, in this case, not enough, creating something new is
a difficult task. To begin searching for ideas, first, the problem has to be specified.
The overall goal of our project was quite clear. We were to implement a platform and
construct examples of interactive, explorable visualizations that would help Africa’s
Voices to find new insights in the data. The problems that led to this goal, however,
were poorly defined.

To understand the problems Africa’s Voices wanted to solve, we did a lot of
research associated with visualizations and Africa’s Voices’ current process. It
became clear that there could be many correct solutions to the problems described
in section 1.1.3. Overwhelmed by a load of information, we had difficulties applying
the broad knowledge base to the problems and selecting the most important insights
to ideate on.

To achieve the best solutions possible in a limited amount of time, we needed a
target-oriented approach. Such a target-oriented approach is Design Thinking.

This section clarifies our approach by giving an overview of the Design Thinking
method, a structured description of the steps we used, and a short evaluation.

2.2.1 Overview Design Thinking

Design Thinking aims at finding human-centered solutions and therefore focuses
on the users from the beginning. An important aspect of Design Thinking is to
contact users early on to consider their needs to develop a solution that has the best

28

2.2 Exploration of the Design Space and Ideation

Figure 2.1: The diverging and converging process in Design Thinking [45]

possible impact. It also prevents from having to base the product’s development
solely on assumptions about what the user needs or wants [45]. Human-centered
design is defined by an ISO standard1 as an approach that focuses on the usability of
the solution. It considers human factors and ergonomics when designing a system.
Goals are, for example, increasing the productivity and quality of the users’ work
and improving the users’ satisfaction. Design Thinking adopts the main principles,
centering their solution finding around the user. But whereas Human-centered
Design aims mainly at the good usability of the system, Design Thinking aims to
develop innovative solutions for complex problems [26] .

The challenge Design Thinking meets, is to cover a broad problem and solution
space while at the same time developing practical solutions [45] . Design Thinking
is therefore based on twomental states: diverging and converging. When diverging, the
goal is to create ideas and generate insights, whereas converging stands for focusing
on or limiting the ideas to individual needs or potential solutions. During the Design
Thinking process, we diverge and converge at least two times, as shown in Figure 2.1.
The first time happens in the problem space, the goal of which is to understand the
problem more clearly, and the second time in the solution space, in which we try to
find a solution for the problem [45] . This development process can be divided into
several steps. For these steps, there are many different structuring possibilities. We
will focus on the microcycle structure taught by the D-School in Potsdam2 to explain
the key concepts of the diverging and converging phase in both the problem space and
the solution space.

The microcycle consists of six steps as shown in Figure 2.2: Understanding,
Observing, Defining the Point of View, Ideating, Prototyping, and Testing [45] .
Understanding and Observing are part of the diverging phase in the problem space.
During these steps, we try to get a better understanding of the problem and the
users. To know what to focus on when to converge again, we define the point of
view. Ideating represents the diverging phase in the solution space. The goal is to

1ISO 13407:1999(en) Human-centered design processes for interactive systems https://www.iso.
org/obp/ui/#iso:std:iso:13407:ed-1:v1:en (last accessed 2020-07-29).

2https://hpi.de/en/school-of-design-thinking/hpi-d-school.html
(last accessed 2020-07-29).

29

https://www.iso.org/obp/ui/#iso:std:iso:13407:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:13407:ed-1:v1:en
https://hpi.de/en/school-of-design-thinking/hpi-d-school.html

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.2: The microcycle in Design Thinking [45]

create as many ideas as possible. During Prototyping and Testing, we converge again
by deciding on the best ideas and realizing them as prototypes. It is an iterative
process, which makes it possible to revisit steps in one iteration when needed [45].
In most Design Thinking projects, the project consists of more than one iteration of
the microcycle. Each of these iterations then has a specific goal, such as identifying
critical functionalities or creating ideas from benchmarking [45]. We now give a
short overview of each step in the microcycle.

2.2.1.1 Understanding
The main focus of this phase is to understand the problem and its context. To
understand the relevant aspects, it is often helpful to answer the six “WH questions”:
who, why, what, when, where, and how. For example, “Who is the target group?”
and “Why does the user think he needs a solution?” [45].

Once the problem is identified, a problem statement can be defined. As good
ideas originate from good questions, Design Thinking assumes that a good problem
statement is fundamental for a successful project. Its purpose is to encourage
ideation in many different directions while focusing on the problem. The statement
is formulated in a neutral form to prevent restriction of the solution space in an early
phase. It can be reformulated based on newly gained knowledge [26]. The gained
knowledge of the problem can be used to create the first persona. A persona is a
fictional person that represents a group of people that share the same interests. The
design team can then engage with this persona and base further brainstorming on
them [63].

2.2.1.2 Observing
This phase is sometimes also described as the “empathizing” phase [22]. The goal is
to understand the users by understanding how and why they do what they do and
understanding their needs, opinions, and beliefs. To empathize with the users, we
can observe them and their behavior in their work or home environment, depending
on the problem we are trying to solve. Another possibility is to engage with them
by having conversations and interviews, or placing oneself in the situation of the
user [22, 26, p. 27]. All findings are then documented. The gained knowledge can
be used to create or revise personas [45].

30

2.2 Exploration of the Design Space and Ideation

2.2.1.3 Defining the Point of View
Based on the findings and insights from the previous phases, this phase aims to
establish a common understanding and knowledge basis [45]. This step is essential
to not only address a single group of people that have been observed in the previous
phase but to design a solution for a wide range of users [45]. First, the information
collected in the previous phases needs to be analyzed, including collecting and
interpreting all information and summarizing it by collecting insights from key
findings. Now the most important insights are collected, and design principles are
extracted from them. The next step is to formulate key statements of a limited number
of topics to focus on during the further process [45].

These statements are also described as the point of view and are explicit statements
of the problem. The point of view focuses on the interpreted insights and the users’
needs. It is based on the understanding of the users and the problem space. In
contrast to the problem statement defined in the Understanding phase, the point of
view should be more specific. Such statements tend to increase the quantity and
quality of solutions in the following ideation [45, 22]

2.2.1.4 Ideating
After converging by defining a point of view in the previous phase, the goal of
the ideation phase is to diverge again by creating as many ideas as possible. This
conversion is mostly done by brainstorming and sketching, but Design Thinking
suggests many techniques that can increase creativity. The ideation phase represents
the transition from understanding the problem to finding solutions [45, 22].

2.2.1.5 Prototyping
A selected amount of ideas is prototyped. The prototypes should be very quick
and cheap to build, especially in the early stages of the project. When the problem
has become more specific, they can also be more refined. A prototype should be
something with which the users can interact, such as a role-playing game or a
storyboard. That way, the users can give feedback in the Testing phase, and the ideas
and prototypes can be improved [22, 45].

2.2.1.6 Testing
In the Testing phase, the users test the prototype. The feedback is then used to iterate
on the idea. If the prototype is discarded, it may be a sign that the problem was not
understood correctly. The Testing phase, therefore, also provides an opportunity to
refine the point of view. Testing also helps to learn more about the users and builds
empathy through the interaction between the users and the design teams [22, 45].

2.2.2 Our Approach

We did not employ a full Design Thinking process, as we could not talk to our
potential users. We used several methods of the Design Thinking approach that
helped us to stimulate creativity and to understand the most important aspects of
the problem we tried to solve. This section describes our approach based on the

31

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

six steps described in section 2.2.1 and explains the methods we used. We further
discuss what insights we gained in each step.

2.2.2.1 Understanding
At the beginning of our project, we explored the problem space, which included
understanding the domain and the goal of the stakeholders, and researching current
trends and similar topics.

The Domain and the Stakeholders The problem domain and the stakeholders’
goal are described in detail in chapter 1 and section 1.2.2. Here we only give a
summary of the requirements presented in section 1.2.2 regarding the design of
the visualizations.

For one, the visualizations are supposed to help researchers to explore the data.
That means, the visualizations have to allow for a more in-depth exploration to make
discovering insights easier. Another requirement is that the visualizations need to
create empathy for the individuals. Therefore, they have to keep the individual in
the center. It is also important that users trust the accuracy of the representation
form and the data.

Research We focused our research on visualization techniques and visualization
design patterns to understand what aspects are important to consider when
designing visualizations. We searched for inspiration on visualization ideas on the
web, literature, and reports of Africa’s Voices.

Other research topics were the development tools and libraries that can create
different types of visualizations. We divided this research into different aspects.
One aspect was to research provenance by experimenting with frameworks such as
D3 and RaphaelJS. We created data tables and visualized the data with the chosen
frameworks. The goal was to let users interact with the tables and visualization to
explore the data’s provenance, for example, by highlighting the corresponding data.
The capabilities of different visualization libraries were another important aspect.
For a description of a choice of libraries, see section 1.3. Later during the project, a
clear focus on the visualization of individuals as points emerged. See chapter 6 for a
description regarding the rendering of large amounts of points using different web
technologies.

2.2.2.2 Observing
As part of the process, we created a persona to achieve a better understanding of the
users’ needs and problems. Our potential users are a combination of the qualitative
and quantitative researchers at Africa’s Voices. For a detailed description of our users,
see section 1.2.2.5. As this kind of user does not yet exist in Africa’s Voices, we did not
have a current user to design for and tried to design for future users. We interviewed
our project partner and structured the information we gathered as a persona named
Tom, shown in Figure 2.3.

Tom’swork has a focus on the qualitative aspect, including labeling and translating
the messages. Therefore Tom has to be able to speak multiple languages such as

32

2.2 Exploration of the Design Space and Ideation

Tom

Characteristics
38 years old
reads visualization blogs
plays tennis
has a wife and two children

qualitative and quantitative researcher
speaks several languages, e.g. Somali
studied at the University of Nairobi and has a master's degree in data science
employee at Africa's Voices Foundation for 3 years
has some coding experience, but primarily works with Excel system
uses Windows 7 on a desktop computer

Higher Goal
create reports and statistics
create recommendations for
policy makers

Pains
labeling messages
understanding the messages
working with Excel

Figure 2.3: The persona named Tom

Somali. The quantitative work includes programming. As Tom is supposed to unite
both aspects, the persona also needs to be able to program at least to some extent.

The created persona gave us a better understanding of what our potential users
looked like, including their needs and expertise. It is essential to keep these insights
in mind when ideating so that the created solutions fit their needs and capabilities.

2.2.2.3 Defining the Point of View
We analyzed the information about Tom to formulate the point of view. This analysis
process included specifying the persona’s true needs, which helped to understand
the most important aspects of the problem. Each point of view represents one true
need. To formulate the point of view, we used the format “For [the user], it would
be life-changing if [a certain goal was achievable] because [of a certain problem]”.
This formulation is based on examples in The Design Thinking Playbook [45].

The following points of view define the needs we analyzed using the insights of
our persona Tom:

• For Tom, it would be life-changing if he could see insights at one glance and if
gaining insights would be as intuitive as using a whiteboard because gaining
insights from Excel is difficult.

• For Tom, it would be life-changing if he could understand the participants’
real problems and causes because formulating recommendations without
understanding the real issue does not make sense.

“Howmight we”-questions are another possibility to formulate the point of view.
They have the form “How might we help [the user, customer] to achieve [a certain
goal]?” [45]. They can further be used as a basis for the ideation and apply the gained
knowledge to the problem. This basis enables a structured target-oriented finding

33

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.4: Fusing two pie charts into a stacked line chart (41)

of solutions and a good starting point for the next diverging phase. Therefore they
are formulated based on the predetermined point of view [45]. Based on our point of
view statements, we formulated the following “How might we”-questions:

• How might we help Tom to see insights at one glance?
• How might we help Tom make the process that led to his recommendations

comprehensible for other people?
• How might we help Tom understand the messages?
• How might we help Tom to make good recommendations?
• How might we help Tom decide which recommendations are good?
• How might we point Tom to the important correlations in the data?
• How might we make gaining insights intuitive?
• How might we help Tom to back up recommendations?
• How might we help Tom compare similar diagrams easily?
• How might we make gaining insights out of Excel easier?
• How might we help Tom use the full potential of Excel?
• How might “Iron Man” find insights in the data?

2.2.2.4 Ideation
Using different brainstorming techniques to stimulate creativity (see The Design
Thinking Playbook [45] for examples), we developed ideas based on one “How might
we”-question at a time. During our brainstorming sessions, wemostly sketched ideas
on whiteboards and post-its. We visualized these ideas directly during the ideation
process and thereby created the first small prototypes.

We concentrated on the topics our project partner seemed most interested in,
which included making the recommendation process comprehensible, comparing
similar diagrams, highlighting correlations in the data, and discovering insights at
one glance.

As encouraged by Design Thinking, we went for quantity, creating around 80
ideas. We give an overview of the ideas in section 2.3 by presenting a categorization
and giving examples. All ideas are shown in Appendix section A.1 with their
enumeration.

For example, brainstorming based on the HMW-question “How might we help
Tom to see insights at one glance?”, we designed several visualization ideas.
Examples are XY-Axis (22) and Venn (39), which are described in detail in section
2.3.3.2 section 2.3.3.4. A first example is shown in Figure 2.4.

34

2.2 Exploration of the Design Space and Ideation

Figure 2.5: Extract of the storyboard for the idea of fusing diagrams (41)

The idea merges two pie charts into a line chart, allowing users to see the
differences between the two years at one glance.

2.2.2.5 Prototyping
Based on what our project partner was most interested in, we selected ideas that
seemed exciting or new. Usually, Design Thinking aims at selecting ideas that best
fit the users’ needs. As we worked with hypothetical users, and our project partner
required us to implement novel solutions, selecting exciting or new visualization
ideas was a valid choice.

As part of this converging step, we refined and documented the ideas using
storyboards. A storyboard is a series of drawings that present the specific steps of an
event. A common way to express this is to tell the story using a comic-strip format.
A storyboard aims to make the key aspects of the prototyped idea comprehensible
at first glance [63]. We used the concept to formulate our ideas in a more detailed
way before implementing them, thereby specifying user interaction. That way, we
could use the storyboard as a template for the implementation. Figure 2.5 displays
an excerpt of the storyboard we created for the idea shown in Figure 2.5.

After the approval of our project partner, we spiked the ideas to test how to
implement the basic features as the next level of the prototype. For a description
regarding the implementation of the prototypes, see chapter 3.

2.2.2.6 Testing
Our project was based onworkwith hypothetical users. As our potential users do not
exist, we tested our prototypes with a representative of Africa’s Voices as a stand-in
for the actual users. The feedback sessions were conducted during regular meetings.
We then improved or discarded the sketches and storyboards based on the feedback
we received.

2.2.3 Evaluation

For our project, the application of Design Thinking was limited, as we worked with
hypothetical users and only accessed information about these users through a third

35

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

party. However, Design Thinking helped us apply the knowledge we gained in the
Understanding phase of our project and increased our creativity and imaginationwith
its creative methods for need-finding and ideation. The Design Thinking method
helped us to condense our ideas and to concentrate on one important aspect at a
time. As we had direct access to Design Thinking expertise, the Design Thinking
approach was the reasonable choice for our project. The approach proved to be a
helpful tool for the initial understanding of the problem and the finding of novel
solutions.

2.3 Categorization and Analysis

When creating a large number of ideas, it becomes difficult to gain an overview of
their distribution. Getting such an overview is essential to identify directions that
have not been considered yet. It also poses an opportunity to determine ideas that
seem promising. Our goal was to create visualizations that allow the exploration of
data and create empathy and trust. Therefore, it was important for our project to
identify ideas that seemed most promising to achieve these goals.

A helpful tool for getting an overview of created ideas is a taxonomy. A
taxonomy is “a system for naming and organizing things […] into groups that
share similar qualities”.3 There are many existing taxonomies for the categorization
of visualizations. We chose three taxonomies that focus on different aspects of a
visualization, the representation mode, the interaction level, and the tasks.

This section explains the considered dimensions and gives an overview of the
categorization. It further presents the findings identified through the categorization
that help to answer the stated questions.

2.3.1 Technical Taxonomy

We focused the categorization on two dimensions, the technical perspective and the
task perspective. The technical perspective is especially interesting for developers to
identify common or similar components. Understanding the interaction level may
also pose an understanding of the complexity of the idea. The task perspective is
interesting for designers and users. It describes themain purpose of the visualization
idea and can help the designers estimate whether the visualization realizes the users’
goals. We now describe the used taxonomies in more detail.

The technical categorization is inspired by the taxonomy proposed by Chengzhi,
Chenghu, and Tao [57]. They create a matrix using categories of the representation
mode developed by Keim and Kriegel [43] and categories of the interaction level
developed by Lunzer [48]. We use the original categories for both dimensions as

3https://dictionary.cambridge.org/de/worterbuch/englisch/taxonomy
(last accessed 2020-07-29).

36

https://dictionary.cambridge.org/de/worterbuch/englisch/taxonomy

2.3 Categorization and Analysis

they are more detailed than the taxonomy proposed by Qin Chengzhi et al. The
representation mode is subdivided into six categories [42, 43]:

• Pixel-oriented Techniques. One colored pixel represents one data value, and data
values of different attributes are displayed in separate components.

• Geometric Projection Techniques.Visualizations that use geometric transformations
and projections of multidimensional data sets. Examples are scatterplots and
parallel coordinates.

• Icon-based Techniques. Data values are visualized as icons.
• Hierarchy-based Techniques.Highly dimensional spaces are subdivided and then

displayed using a hierarchical partitioning. Examples are treemaps and Venn
diagrams.

• Graph-based Techniques. Layout algorithms and abstraction techniques visualize
large graphs.

• Hybrid Techniques. Hybrid visualizations combine multiple techniques to
enhance the expressiveness of the visualizations. In our categorization, we
will not mark visualizations as a hybrid of other techniques but will sort
them into all corresponding categories. Visualization ideas that have a system-
like character and consist of multiple visualization types are sorted into this
category.

We designed some visualization ideas that do not fit into these categories. A part
of these ideas is based on media techniques such as text or audio. The other ideas are
either standalone interactions that do not have a specific representationmode or ideas
that do not fit into any category. We describe these ideas as media-based techniques,
techniques with no specific representation mode, and other concepts. The interaction level
(Lunzer) is divided into the following five categories [48, 66].

• Fully Manual. The visualization provides no assistance in guiding exploration,
such as when the user has to drag and drop an object manually. Visualizations
that have no interaction also fall into this category.

• Mechanized. The visualization specifies possible directions of interaction.
Examples are making a selection with a slider or coloring the data according
to attribute values.

• Instructable. Users specify what the system is supposed to do, for example, by
using formulas in a spreadsheet.

• Steerable. Users can steer the system to perform in a certain way. An example
is directing an algorithm to perform in a certain way by specifying the
parameters.

• Automatic. The system designs a solution without further human interaction
that achieves goals that the user did not specify, for example, an algorithm that
performs automatically.

Visualizations can have multiple interaction levels. Such ideas are sorted in all
corresponding categories.

37

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

2.3.2 Task Taxonomy

We further categorize the visualization ideas using a task taxonomy. We use the
taxonomy proposed by Shneiderman [60], who describes seven tasks for information
visualizations. The seven tasks, as defined by Shneiderman, are:

• Overview. Gain an overview of the entire collection.
• Zoom. Zoom in on items of interest. We interpreted this as a task that focuses

on a subset of data points while keeping the remaining data points visible.
• Filter. Filter out uninteresting data items.
• Details-on-demand. Select an item or group and get details when needed.
• Relate. View relationships among items.
• History. Keep a history of actions to support undo, replay, and progressive

refinement.
• Extract. Allow extraction of sub-collections and of the query parameters. It

includes saving or exporting a selection to be able to reuse it in some way.
Visualizations may have more than one main purpose. We sort such ideas into all

corresponding categories.

2.3.3 Technical Dimension

During the ideation phase of our project, we designed about 80 ideas. As we
concentrated on going for quantity, some ideas are not as useful or as thought
through as others. Some ideas are quite similar and seem to extend other ideas.
This similarity is based on used brainstorming techniques, where the aim is, for
example, to extend the functionalities of one idea by adding or changing aspects. In
the following, we regard these ideas as their own and not as an extension to another.
We also applied known visualization concepts on our data, for example, line charts
or bar charts. As such ideas still may pose a new perspective on the data, we still
consider them in the categorization.

For the categorization, we ignore that interactions such as filtering and
highlighting could be implemented for all visualizations and that some manual
interactions could easily be exchanged with mechanized ones. This categorization
will only focus on the main purposes the visualization idea tries to convey.

We now describe the different categories and give examples of visualization ideas
that we later implemented or that stick out, for example, because they are the only
ones in their corresponding categories.

For the following description, we use the structure of the categorization matrix,
as displayed in Appendix section A.2, describing each existing combination of
categories.

2.3.3.1 Pixel-oriented
Mechanized There are only two ideas that have a mechanized interaction level and
a pixel-oriented representation mode. One of the ideas (9) is a hybrid with a graph-
structure that gives an overview of the themes in one district. The other one (21)
colors the pixels, representing an individual, according to an attribute, and then

38

2.3 Categorization and Analysis

Figure 2.6: Theme Centers (33). Placing individuals as points around and between
their themes

groups the individuals according to another attribute. That way, researchers can find
insights about how the pattern changes.

2.3.3.2 Geometric Projection
Manual With 25 visualization ideas, this combination of categories has the most
ideas in the technical categorization. This set of ideas can be divided into two further
categories, visualization ideas with and without interaction.
Visualization Ideas Without Interaction. There are fifteen static visualization ideas.

They include a subset of five ideas that deal with the display of missing data (64, 65,
66, 67, 68) and a subset of seven ideas that use known concepts such as parallel lines,
maps, word clouds, and bar charts. (1, 2, 20, 42, 50, 73, 74). Only two visualization
ideas cannot be sorted into these subsets. One of them uses the idea of a magnetic
field mapping one dimension to the two magnetic poles and another dimension to
the vertical axis (30). The other idea displays the connection between the individuals
and their corresponding themes. We now describe this idea in detail.

Theme Centers (33)
Individuals are placed around a theme if they only have one theme and between

themes, if their messages have been coded with multiple themes. For example, the
individuals displayed in the center in Figure 2.6 between themes two, three, and
four sent messages that have been coded with all three themes. The goal of the
visualization idea is to offer an overview of all the individuals regarding their themes
and enable users to relate the accumulations of individuals.

As soon as there are more themes or more combinations of themes, this
visualization becomesmore complex. A variation of the idea, whichwe implemented
in ourMovementprototype,makes the individualsmove between their corresponding
themes. See section 3.4.5 for a description regarding the implementation.

39

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.7: Individual Centered (7). Placing individuals as points around one
individual. Their distance is based on the difference of their attribute values

regarding a certain attribute

Visualization Ideas With Interaction. About half of these visualization ideas deal
with the interaction of code and visualization. The manual interactions are editing
the code, seeing the changes to the visualization immediately (54, 57, 58, 62), and
hovering over code lines to highlight corresponding parts of the visualization (56).
Another idea (48) is one of two visualization ideas that display Africa’s Voices’
process steps. The second one (49) is sorted into the categories geometric projection
and mechanized interaction.

We now describe two ideas that use some kind of interaction in more detail. Both
visualization ideas were inspired by the idea to use the positions of the individuals
displayed as a point to convey information instead of losing one dimension by
displaying them randomly.

Individual Centered (7)
The visualization idea shown in Figure 2.7 is based on the idea of keeping

individuals in the center of the visualization. The core concept is to keep one
individual as a reference point in the center. The other individuals are arranged
around this individual according to their “distance” to the referenced individual
regarding one attribute, such as age or gender. By clicking on another individual,
this individual becomes the new reference point. For example, if the individual in
the center is 20 years old, the first ring around the individual would include all
individuals that are also 20 years old. The second ring would include all that are one
year older or younger, and the third ring would include all that are two years older
or younger, and so on.

The idea allows users to understand the distribution of individuals across different
attributes and to view similarities and differences between individuals.

40

2.3 Categorization and Analysis

Figure 2.8: Forces (31). Attracting individuals as points to their corresponding
values

The concept of this visualization idea changed slightly during the implementation,
but the core concept stayed the same. For a description regarding the implementation
of our Individual Center prototype, see section 3.4.4.

Forces (31)
Each individual has different attribute values. These values are used in this

visualization idea as different dimensions that attract the individuals corresponding
to their values. This idea is shown in Figure 2.8. For example, if an individual is an 18-
year-old woman, who lives in Banadir, and the dimensions used in the visualization
are the age of 18, female gender, and the district Bari as a home district, the individual
would be displayed directly between the first two dimensions.

The idea aims to give an overview of the distribution of individuals regarding
certain dimensions and enables users to discover similarities and differences between
individuals.

We implemented this idea in our Polygon Theme Forces prototype using a different
concept while keeping the idea of the forces. The prototype uses values of attributes
as dimensions and aggregates the themes into bubbles with varying sizes depending
on how often it got mentioned. The theme bubbles are then pulled into a direction of
the dimensions according to howmany individuals have the corresponding attribute
values. For a description regarding the implementation, see section 3.4.7.

Mechanized We thought of fourteen ideas that use a geometric projection
representation mode andmechanized interactions. This subset is the second largest in
the categorization. It includes three more ideas that deal with the interaction of code
and visualization (55, 59, 61). For these, the interaction is on a mechanized level,
which means users do not have to manually edit code lines but can use dropdowns
or checkboxes that support the programming aspect.

41

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.9: Map (3). Placing individuals as points on a map using the geographic
positions of their districts

A big part of this category consists of combinations of different bar charts. They
either focus on highlighting or excluding bars in the other charts (24, 25, 26, 27) or
include a history of filter and selection steps (17).

This category also includes the idea of fusing diagrams into a stacked line
chart (41).

Once again, we describe two ideas in this category in more detail. The first one is
one of two map ideas (3, 4).

Map (3)
The main goal of this visualization idea is to show the distribution of individuals

based on their residence. This idea is illustrated in Figure 2.9. The individuals are
placed on the coordinates of their residence using the geographic position on a map.
All individuals can then be colored according to a selected attribute. That way, for
example, rural and urban areas can be compared.

We implemented this idea in our Map prototype. For a description regarding the
implementation, see section 3.4.1.

XY-Axis (22)
The idea illustrated in Figure 2.10 was inspired by bar charts and scatterplots. It

attempts to add interactions to bar charts by adding the possibility to determine the
axes’ attributes. The visualization idea aims at finding patterns and specific groups
to explore. Therefore, the individuals can be grouped according to the attributes the
users assigned the axes. The individuals are displayed in the areas as aggregated
circles.

42

2.3 Categorization and Analysis

Figure 2.10: XY-Axis (22). Grouping individuals as points into predefined areas.

This concept offers the opportunity to gain an overview of individual groups
according to different attribute values and to relate these groups to each other.

In the implementation of our XY Diagram, we maintain the individuals as points
in the areas grouped by attribute. For a description regarding the implementation
of this prototype, see section 3.4.2).

Steerable This category only consists of one visualization idea, which we now
describe in detail.

Individual Forces (76)
This idea is an algorithm that calculates the position of the individuals as points

based on their similarity to the other individuals. That means that individuals who
are more similar to each other are placed more closely. This placement is shown in
Figure 2.11. The algorithm creates clusters of individuals that then show similarity
patterns. Users can define the attributes the algorithm should base its calculation on
and color the individuals according to a selected attribute.

We tried to implement this idea using two approaches, the t-SNE prototype and
the Individual Forces prototype. For a description of the implementation of both
prototypes, see section 3.4.6.

Automatic This category includes two visualization ideas. One idea is to
automatically display a randommessage when clicking on a bar (35). The other idea
is to display diagrams with a similar ratio to a selected one (29). As users cannot
define the ratio they want to display independently from a diagram, this interaction
is on an automatic level.

2.3.3.3 Icon-based
Manual This category combination is one of the smaller ones regarding the
combination of any representation mode and a manual interaction level. It includes

43

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.11: Individual Forces (76). Attracting individuals as points to each other
depending on their similarity

two ideas. The first idea is a map (2), in which individuals are displayed as shapes
that represent, for example, their gender. All other attribute values are encoded in
characteristics of the shapes, such as color, size, or position on the map. The second
idea displays themes as icons (10). Per drag and drop, users can select one or more
themes. Messages are then connected to these themes, creating a graph structure.

2.3.3.4 Hierarchy-based
Manual Only one idea is sorted into this category. It attempts to convert a sunburst
chart into a bar chart and thereby avoiding the 100% the sunburst chart tries to
convey (16).

Mechanized Two ideas in this categoryworkwith the display of different diagrams
for selected overlaps in Venn diagrams (38, 43). Other ideas are listing messages
for a selected theme (36) and using bubbles to display the number of individuals,
clustering them by theme (40).

We describe the remaining two ideas in this category in more detail.

Venn (39)
The idea aims at visualizing overlaps between different groups of individuals. It

thereby offers an overview of all individuals, while still enabling users to compare
the different individual groups. Users can determine attribute values to group by,
and individuals are displayed inside their corresponding area. For example, in
Figure 2.12, if an individual is a 25-year-old male, he is displayed in the overlap
of the two bubbles “25 years old” and “male”.

We implemented the idea in the Venn Diagram, focusing on grouping by theme.
See section 3.4.3 for a description regarding the implementation.

44

2.3 Categorization and Analysis

Figure 2.12: Venn (39). Individuals as points in a Venn diagram

Group Chaining (75)
The idea was inspired by a visualization [25] that clusters dots of different sizes in

circles.We adapted the concept in ourGroup Chaining idea. The core idea is that users
can select different attributes, and individuals are then clustered in circles according
to the attribute order. This grouping allows for an overview of all individuals
and helps users to relate the individual groups with each other regarding specific
attributes. The idea also includes a history of the chained attributes. For example, as
shown in Figure 2.13, if users select gender, the individuals are clustered in circles
according to their gender. If now age is selected, the corresponding circles are formed
in each of the previously formed circles.

For a description regarding the implementation of our Group Chaining prototype,
which implements this idea, see section 3.3.7.3.

2.3.3.5 Graph-based
Manual This category contains four visualization ideas with interactions as well
as four visualization ideas without interactions:
Visualization Ideas Without Interaction. The visualization ideas that have no

interaction include an idea that uses different dimensions of a graph to convey
information about messages or relationships between them (5). The color, for
example, represents the theme of the message, the position represents the district of
the individual, and an edge between messages displays that the individuals have
the same age. Another idea is a graph structure that connects individuals to their
mentioned themes (32).

Visualization Ideas With Interaction. The ideas with interaction include one that uses
a minimap in the form of a graph structure to display an overview of all sorting
and filtering possibilities in a bar chart (18). Another idea is the use of a mind map
structure (19). By sorting the attributes in the center, the individuals are structured

45

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.13: Group Chaining (75). Chaining groupings of individuals as points
according to selected attributes

as mind maps around the attribute values. The structuring is part of a mechanized
interaction. Therefore, this idea is also sorted into the mechanized category.

Mechanized Two of the five ideas have already beenmentioned in the pixel-oriented
(9) and the icon-based (10) representation modes. The other ideas include a word
cloud of the mentioned themes that displays a graph for a selected theme of the
corresponding messages (11). As this idea uses text, it is also sorted into the media-
based representation mode. Another visualization idea is to morph individuals
according to filter arguments into different groups or shapes (6).

2.3.3.6 Media-based
Manual This category consists of two ideas that use word clouds to display an
overview of the themes (1, 11).

Mechanized We designed two visualization ideas that use sound. The first idea
uses sounds that represent themes (12), such as the sound of rushing water for the
theme water. The second idea plays recorded messages to convey the feeling of a
market place (13). In both cases, the sounds can be filtered so that users can zoom
in, for example, on messages they want to listen to more closely.

Another idea that uses media plays a video of the process that led to a selected
recommendation, including the explored visualizations (53).

2.3.3.7 Hybrid
Manual This category includes two ideas. One idea represents a notebook (47), in
which users can add different diagrams, notes, or statistics to get an overview of the

46

2.3 Categorization and Analysis

Figure 2.14: Panes (45). Windows containing individuals as points. Connections
between windows make the exploration flow visible

data while having a place to note important insights right next to their source. We
explain the other idea in more detail.

Panes (45)
The visualization idea was inspired by the concept of swimlanes that is used, for

example, by BPMN. In BPMN the swimlanes represent participants of a business
model and contain objects that are executed by the corresponding participant.4
In our idea, the swimlanes are windows that each represent a state of the data.
Instead of objects, these windows contain individuals as points that can be grouped,
filtered, and colored. Users can drag and drop individuals to select them and create
new windows that are then connected to the original, as shown in Figure 2.14.
They can also comprehend the history of filter and selection steps by tracing the
connections between the windows. The visualization idea includes a switch between
the representation of the individuals as dots and standard charts, such as bar charts,
that pose a statistical view of the data.

The main goal of this idea is to relate the individuals to each other by comparing
them and zooming in on interesting patterns.

We implemented the idea in two different approaches. The first, our Panes
prototype, tries to implement the original idea. In the second prototype, the Tree View

4https://www.visual-paradigm.com/tutorials/bpmn2.jsp (last accessed 2020-07-29).

47

https://www.visual-paradigm.com/tutorials/bpmn2.jsp

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.15: Tab View (77). Tabs containing one visualization type each. Inspector
to inspect individuals. Control panel to color, filter, and select individuals in the

visualizations

prototype, each window, instead of displaying the individuals randomly, consists
of one visualization type. For a description regarding the implementation of these
prototypes, see section 3.4.9 for the Panes prototype and section 3.5.3 for the Tree
View prototype.

Mechanized As the just described idea (45) includesmechanized interactions such
as filtering or coloring, it is also sorted into this category. This category includes
another idea for a hybrid of visualizations, the Tab View (77).

Tab View (77)
The main goal of this visualization idea is to present different perspectives on the

data using different visualization types. The visualization idea consists of multiple
tabs. Each tab contains one visualization, such as a map or a Venn diagram, as
displayed in Figure 2.15. It further includes an inspector to inspect individuals and
a control panel that allows global coloring, filtering, and selecting individuals in the
visualizations.

The idea allows for an overview of the data by displaying several visualizations.
It further enables users to find correlations between visualizations.

We implemented this idea in the Tab View prototype. See section 3.5.2 for a
description regarding the implementation.

Automatic This category includes the notebook idea (47) that was already
mentioned. The automatic interaction level in this visualization consists of an export
function that automatically creates a report for the researcher, including all diagrams
and notes the user gathered in the notebook.

48

2.3 Categorization and Analysis

Figure 2.16: Individuals on Canvas (46). Individuals as points that can be grouped,
selected, and filtered. Hovering displays information regarding the individual or

a group of individuals.

2.3.3.8 No Specific Representation Mode
Manual This category includes interactions that support different kinds of
actions. Two ideas support filtering by offering either a freehand selection (71)
or functionality that allows dragging and dropping bars in and out of hiding (69).
For a description regarding the implementation of the FreehandSelection, see section
3.3.5. Another idea provides functionality that allows users to drag an axis of their
choice to the position of the x-axis, thereby adding a second dimension to the fixed
y-axis (23). Another interaction idea lets users connect the attributes for a scatterplot
per drag and drop (72).

The two remaining ideas support inspecting individuals. The first idea is to open
an inspector for a selected individual that displays wanted information (78). The
second idea uses the same concept but displays additionally to the information a
sketched image of the individual that is being inspected. For a description regarding
the implementation of the ideas, see section 3.3.1 and section 3.3.2.

2.3.3.9 Other Concepts
Manual This category consists of four visualization ideas that extend each other
andwork with the same concept. Themain idea is to display individuals as points on
a canvas and being able to select, inspect, and group them (46). This idea is shown
in Figure 2.16. The other three ideas in this category add a filtering and coloring
functionality to this concept (80, 14, 15), which assigns them to the mechanized
category as well.

49

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.17: Statement Generator (63). Generating statements using code formulas
and templates

Mechanized Two of the six visualization ideas in this category visualize selected
groups or recommendations with different diagram types (52, 28). Another idea is
to make selected groups of individuals vibrate to convey a feeling of liveliness (70).

Instructable This category consists of the only instructable visualization idea in the
whole categorization. The idea is a statement generator that uses formulas that users
can write to create statements that include statistical information (63). An example
of this concept is shown in Figure 2.17.

Steerable This category includes one of the visualization ideas mentioned in the
manual category (80). The steerable interaction level of this idea is the display of
groups of individuals similar to a selected group or with no similarity at all. The
remaining idea in this category deals with the interaction of code and visualization
(60). It allows users to write what they want to do in natural language. An
algorithm then generates a suggestion displaying the edited code and the changed
visualization.

2.3.4 Task Dimension

In the following, we shortly describe each category of the task dimension and sort
the examples we have presented in the previous section into the corresponding
categories. An overview of all ideas can be found in Appendix section A.3. Regarding
the categoriesOverview andRelate, the detailed descriptions of the ideas offer reasons
for their placement into the categories. For all other categories, explanations can be
found in the following descriptions.

50

2.3 Categorization and Analysis

Overview This category is with 45 visualization ideas, the largest in this
categorization. It includes ideas from all representationmodes that pose an overview
of the data. Of the ideas we have already presented in more detail, the Map (3),
Tab View (77), Group chaining (75), XY-Axis (22), Forces (31), Individual-centered (7),
Venn (39), and Theme Centers (33) are part of this category.

Zoom With five visualization ideas, this category is one of the smaller ones. It
includes the Panes (45) idea. This idea allows selecting a group of individuals to
explore them further while keeping the other individuals visible. To zoom back out,
users can trace the connections back to other states of the data.

Filter This category is with eight ideas also one of the smaller ones. It includes
several interactions that enable filtering, such as the freehand selection (71) or
dragging and dropping bars in and out of hiding (69). Other ideas describe filtering
functionality in different contexts, such as in randomly displayed points on a canvas
(14, 15). None of the more detailed described ideas are part of this category.

Details-on-demand This category includes all ideas that display details on a
selected item. A majority of the visualizations dealing with the interplay of code
and visualization are part of this category (54, 55, 56, 58, 62, 61). It includes the two
inspect actions that display information regarding a selected individual (78, 79).

Relate Relate is the second largest category in this categorization. The majority
of the ideas are based on geometric projection techniques. Another part of this
category uses hierarchy-based and graph-based techniques. This category includes
all visualization ideas that make it possible to comprehend correlations between
visualizations, individuals, or messages. An example is highlighting a selected
individual in all other displayed charts (44). Of the ideas we have already presented
in more detail, the following are part of this category: Tab View (77), Group chaining
(75), XY-Axis (22), Forces (31), Individual-centered (7), Venn (39), Theme Centers (33),
Panes (45), and Individual Forces (76).

History This category is one of the smaller ones in this categorization. It includes
visualization ideas that allowusers to trace their exploration steps in the visualization
(4, 17, 45, 75) or visualize the history of process steps (48, 49, 51). The former include
Panes (45) and Group chaining (75).

Extract Extract is the smallest category with only four visualization ideas. It
includes the freehand selection (71), as this interaction allows users to extract
individuals to further explore or process them in another visualization context.

The category further includes the idea of the notebook (47) and the statement
generator (36), which both support an export functionality of a report or statement.

Of the already described ideas, Panes (45) is part of this category. The idea allows
users to extract individuals into a new window to explore or process them further.

51

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

2.3.5 Findings

We created the categorization to gain an overview of the distribution of the ideas.
Such an overview includes determining dead ends, blind spots, and recurring ideas
to comprehend which directions have not been considered yet and in which there
is an accumulation of ideas. The latter can provide insights for directions that are
already exhausted.

Due to the Design Thinking approach we applied, the developed ideas build upon
users’ needs. With the “How might we”-questions described in section 2.2.2.3, we
steered the ideation to ideas that are purposeful, meaning that they directly try to
solve the users’ problems. Therefore, accumulations hint at ideas that are especially
suited to solve the given problems.

In this section, we present the findings we were able to extract from the
categorization. For this, we also consider the combination of the different taxonomy
dimensions. For example, whether a representation mode displays a certain task
often or whether an interaction level is needed to implement a certain task. For tables
with the ideas regarding the combinations interaction level and tasks, and representation
mode and tasks, see Appendix section A.4 and Appendix section A.5.

As there will always be new visualization ideas that can be added to the
categorization, it has to be noted that this categorization is not complete. Therefore,
the following findings only refer to the visualization ideas we designed and should
only be generalized carefully.

2.3.5.1 Distribution of Ideas
We structure our findings regarding the distribution of the ideas by first giving an
overview of accumulations and blind spots in the technical dimension. Then we do
the same for the task dimension.

2.3.5.2 Technical Dimension
Accumulations The ideas in the technical categorization mainly have a manual or
mechanized interaction level. Further, all interaction ideas that could not be assigned
to a representation mode have a manual interaction level. Mechanized interactions are
distributed almost evenly through all task categories, whereas ideas with a manual
interaction level focus on Overview and Relate tasks. Therefore, all tasks have a clear
focus on more direct interactions.

Blind Spots We focused on designing explorable visualizations. The automatic,
steerable, and instructable categories regarding the interaction level provide more
automated interactions. Users of such visualizations do not have much interaction
freedom. The fact that there are only seven visualization ideas sorted into the
more automated interaction levels implies that explorable visualizations need less
automated and more direct interaction possibilities. Regarding the representation
mode, the visualization ideas accumulate in the geometric projection and graph-based
categories creating a blind spot around the other representation modes. These

52

2.3 Categorization and Analysis

techniques are commonly used representation modes, whereas the other modes
are more specific, making this blind spot somewhat unsurprising.

2.3.5.3 Task Dimension
Accumulations In the task dimension, Overview and Relate are the largest
categories. Many visualization ideas are also part of the Details-on-demand category.
We designed visualizations to offer researchers an explorable way to interact with
their data. The accumulation of ideas in the three task categories implies that
visualizations supporting such tasks are more promising to support researchers in
exploring the data in more detail.
Overview, Zoom, and History only have manual and mechanized interactions. Ideas

in the Filter category focus on mechanized interactions. All other task categories have
either an even distribution between manual and mechanized interaction levels or
have a slight tendency to manual interactions. This distribution implies that filter
functionality allows for complexity, which manual interactions cannot implement.

Blind Spots The underrepresentation of visualization ideas that support Zoom,
Filter, History, and Extract leads to the conclusion that the other categories offer
more directions for the design of visualization ideas and are more important in the
context of our project. However, the visualization ideas in these categories can extend
ideas in other categories by adding more functionality. This extension creates more
possibilities to explore the visualization and its data.

The ideas included in Overview are distributed over all representation modes. In
all other task categories, there are some blind spots regarding the representation
mode. These blind spots imply that some representation modes are better applicable
for certain tasks than others. For example, Zoom includes no geometric projection, pixel-
based, and icon-based techniques, whereas Details-on-demand has a focus on geometric
projection techniques.

Of the more automated interaction levels, namely instructable, steerable, and
automatic, half of the ideas are part of Relate. The other ideas are distributed
over Filter, Details-on-demand, and Extract. As we have only thought of a small
number of ideas that can be sorted into the combination of Relate and the more
automatic interaction levels, this category combination yields another blind spot.
When designing visualizations that present relationships between data points, it
may be interesting to look at the possibilities that more automatic interaction levels
have to offer.

2.3.5.4 Recurring Concepts
There are several recurring concepts among the visualization ideas we designed.
Such recurring concepts hint at themore promising ideas to solve the given problems.

Individuals As Points In about one-fourth of all ideas, we used the concept of
individuals as points (2, 3, 5, 6, 7, 14, 15, 19, 22, 31, 32, 33, 34, 39, 44, 45, 46, 60,
67, 70, 75, 76). This concept prevents losing individual messages and opinions in
aggregated data. The amount of ideas using this concept implies that displaying

53

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.18: Highlighting points across diagrams (44)

Figure 2.19: Highlighting bars across diagrams (25)

individuals as points is an easy concept to design visualizations that focus on the
individual.

Highlighting Correlations We thought of several ideas that support users in
finding correlations across diagrams by highlighting related components (24, 25, 26,
27, 34, 44). An example is illustrated in Figure 2.18.

In this visualization idea (44), users can select one or multiple points in one
diagram, which are then highlighted in the other diagrams. Another idea uses a
similar concept for bar charts.

54

2.3 Categorization and Analysis

Figure 2.20: Graph structure displaying relationships between messages and
individuals (5)

In the idea (25), users can select a bar to highlight the corresponding parts in
the other diagrams, creating stacked bar charts. They can further select different
diagrams as the main view. This process is shown in Figure 2.19.

Distribution On Maps We used maps to present the distribution of individuals
(2,3) or themes (1, 4) over the districts. Displaying such distributions on a map
and not merely grouped by district, makes it easier for users to comprehend the
distribution.

Graph Structures to Show Connections About one-eighth of the ideas use graph
structures to visualize connections or relationships. As the edges of graphs are a
common way of expressing relationships, most of these ideas are part of the Relate
category (5, 8, 9, 10, 32). These relationships can be divided into different categories;
relationships between individuals (5, 6), relationships between messages (5, 8, 9),
relationships between messages and themes (10, 11), and relationships between
individuals and themes (32). Figure 2.20 displays an idea that uses this concept.

The edges of this graph represent whether adjacent messages were sent by
individuals that have the same age. Other attributes of the message or the individual
are represented, for example, by color or the position. The graph can further be
reorganized so that the points represent the individuals instead of the messages. We
believe, however, that graphs are only useful up to a certain amount of individuals.
As the graph becomes more complex, it is more difficult to discover insights.

Filtering and Grouping The concepts of filtering (4, 6, 12, 13, 14, 15, 20, 24, 45, 69,
71) and grouping data (19, 22, 33, 38, 39, 40, 43, 46, 75, 76) are part of eleven and
ten visualizations, respectively. It enables users to explore the data independently
and offers different perspectives on the visualizations and their data.

55

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.21: Highlighting points across diagrams (55)

Coloring We integrated the use of colors in fifteen visualization ideas to encode
attribute values (2, 3, 5, 21, 40, 45, 73, 75, 76, 77) and in eight ideas to enable
highlighting for interactions such as inspecting or selecting individuals (14, 15, 25,
26, 27, 34, 44, 56, 78, 79, 80).

Interplay Code and Visualization Ten visualization ideas deal with the interplay
of code and visualization (54, 55, 56, 57, 58, 59, 60, 61, 62, 63). They offer a different
interaction type for visualizations, allowing even programmers with little experience
to adapt them easily. An example of this kind of interaction offers Figure 2.21.

This idea (55) allows users to view the code next to the corresponding
visualization. Checkboxes let users disable certain lines of code. In this example,
users can disable the code line that colors the bar. The changes are then adapted
directly in the displayed visualization.

The interaction possibilities with the code also offer an opportunity for the work
with legacy code by highlighting visualization components when hovering over the
corresponding code lines.

2.4 Concepts

An essential aspect of our search for solutions was to consider the requirements
of our project partner. These requirements included designing visualizations that
make the data and its provenance explorable, develop empathy for the individuals
displayed in the visualization, and create trust in the presentation form. For a more
detailed description regarding the requirements, see section 1.2.2.

Based on the findings we extracted from the categorization, we discovered
several concepts that underlie our visualization ideas and realize the requirements
mentioned above. It has to be noted that, as the concepts are only based on the ideas
in our categorization, there may be other concepts that support such goals.

56

2.4 Concepts

In this section, we give examples and describe the concepts that implement each
requirement.

2.4.1 Explorability

In the following, we describe the concepts in our visualization ideas that allow for
an exploration of the data. The concepts can be divided into four approaches. The
first approach is the display of individuals as points. The second is the possibility
of users to view the data from different perspectives. Similar to this concept is the
third approach that deals with the comparison of different visualizations. The fourth
approach we used is the ability to trace the steps in the exploration path.

2.4.1.1 Individuals As Points and Inspection
One recurring concept is the representation of individuals as points. It prevents
losing the connection to individuals and their opinions in an aggregated data format.
As each individual is always visible, users can, at any point, inspect them and go
back to the individual messages. Thereby, the data itself and the provenance of the
data can be explored, meaning all values and information the data points consist
of. Whatever interaction users perform on the visualization, the representation of
individuals as points in combination with the inspection enables users to always
reach the original data points. The individuals’ opinions can be explored and related
to other information the visualization conveys about the individuals, for example,
age, gender, or residence.

2.4.1.2 Viewing Different Perspectives
Another concept that enables the exploration of data in visualizations is viewing
the data from different perspectives. The number of perspectives on the data in
one visualization is limited, and different visualizations highlight different aspects.
Considering different views or states of the data therefore offers insights that one
visualization may not be able to convey. Throughout our visualization ideas, four
concepts support the implementation of this concept.

Manipulation of Data One way of altering the perspective on the data is to alter
the data displayed in the visualization. A recurring concept in our visualization ideas
is the filtering of data points. As all irrelevant data points are left out, filtering makes
it easier for users to explore the data in certain directions.

Manipulation of Views Another possibility is to directly manipulate the views,
meaning the arrangement of visualization components such as bars or points. This
manipulation is especially interesting in the context of individuals represented as
points. Concepts that we found in our categorization were grouping individuals
according to attribute values and manipulating the individuals’ positions in the
visualization.

57

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.22: Ideas manipulating the view of data

For the former, examples are Group Chaining (75) and Venn (39). Ideas that
manipulate individuals’ positions are Forces (31) or Individual Forces (76). These
ideas are shown in Figure 2.22.

Manipulating the view of the data can help to understand relationships across the
data points. Depending on, for example, how similar they are, they will stay closer
together, as in Individual Forces, or morph into the same group, as in Group Chaining.

Manipulation of Code The code that creates a visualization offers another
perspective on the visualization. Understanding the code helps to understand the
visualization and its data. Interacting with the code offers opportunities to modify
the visualization that are not as limited as the interactions in the visualization UI.
Therefore, interacting with the code can increase the variety of views a visualization
can display. Further, the interaction with the code enables users to explore the
provenance of the visualization, meaning the different steps that lead to its creation.

DifferentVisualizationTypes inOneApplication Viewing different perspectives
of the data in the context of visualization means to view different visualization
types. One conceptual idea is the Tab View (77). This idea combines different
visualization types in one application. It allows users to quickly switch between
different visualizations, enabling them to gain an overview of different perspectives
on the data. The Tab View further includes global filtering, selecting, and coloring

58

2.4 Concepts

Figure 2.23: Highlighting bars across diagrams (27)

functionalities. Thus, the perspectives on the data are always related to the same
state.

2.4.1.3 Comparison Across Visualizations
Another recurring concept is the comparison across visualizations. This concept is
closely related to viewing different perspectives of the data. But whereas the latter
enables users to gain insights by displaying different visualization types, modifying
the view or the data itself, the comparison of visualizations focuses on displaying
different visualizations next to each other.

Comparing visualizations allows users to discover differences and similarities in
the data. As users do not have to go back and forth between visualization, displaying
visualizations next to each other makes the exploration of such correlations easier.

In our visualization ideas, we use different approaches when displaying multiple
visualizations as part of one. One approach is the display of multiple bar charts.
When selecting a bar in one of them, the corresponding parts of the bars in the other
charts are highlighted, creating stacked bar charts. This highlighting enables users to
easily compare proportions in the charts and find correlations that would otherwise
have not been visible. An example of this concept is displayed in Figure 2.23. By
selecting a bar, the bars in the other bar chart are colored depending on the number
of individuals with the respective attribute value. Thereby, a heatmap is created.

Our categorization includes many ideas that work with displaying different
visualizations for a selected group, message, or recommendation. Displaying
different visualizations helps users to place the selected group or statement
into context. It enables users to compare them to other groups or individuals,
thereby allowing an exploration of similarities and differences. In the context of
recommendations, it further allows the exploration of the underlying insights. The
idea illustrated in Figure 2.24 displays different visualizations for a selected message.

59

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

Figure 2.24: Highlighting points across diagrams (34)

Another approach is the idea Panes (45) shown in Figure 2.14. All windows
in the visualization idea use the same representation of individuals, the point.
This unvarying representation form allows users to map individuals to different
views without having to rethink frequently. Not having to rethink every time a new
visualization view is displayed makes it easier for users to explore correlations. In
our implemented prototype, instead of only displaying the individuals randomly,
each window contains one type of visualization. The use of multiple types of
visualizations in one application enables users, as already mentioned, to explore
similarities and differences more easily.

2.4.1.4 Traceability of Exploration Paths
Filtering can be described as a possibility to zoom in on parts of the data. To take all
ignored data points back into consideration, users have to zoom out again. Therefore,
an important concept is to ensure that the steps in the exploration path are kept
traceable. The concept includes that users can go back to a specific state and keep
exploring from there. This concept is also applicable to selecting, coloring, and
grouping functionalities.

An advantage of being able to trace the exploration path up to a specific state is that
users can explore the visualization in different directions without having to begin
with a visualization from scratch. It enables a faster way of a broad exploration.

Panes (45) is one of the ideas that implement this concept. Eachwindow represents
one step in the exploration path. Users can easily trace the connections between the
windows and create new windows when they desire. Another example is Group
Chaining (75). This idea creates a chain of groupings and allows users to redo
groupings as desired.

60

2.4 Concepts

Figure 2.25: Map with time slider to redo or undo filter or selection steps (4)

Figure 2.25 shows a third example. This idea (4) displays pie charts for each district
on a map depending on the selected attribute. By clicking on a slice of the pie chart,
this attribute value is filtered out of all districts. A time slider allows users to undo
or redo filter and selection steps as desired.

2.4.2 Empathy

The second requirement we considered while designing the visualization ideas, is
to create empathy. We describe the two concepts we used in our designs that enable
users to develop empathy for the individuals and their opinions and needs.

2.4.2.1 Individuals As Points and Inspection
It is easier to relate to individuals as points than when they are hidden behind
aggregated data representations. Users are always reminded that there are real
individuals behind the data points. This reminder is enforced by the possibility
to inspect each individual. The messages that are displayed when inspecting an
individual give the individual a voice. It further helps users to identify with the
needs of the individuals, thereby creating empathy.

61

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

2.4.2.2 Liveliness
Our categorization includes many ideas that aim at conveying the liveliness of the
individuals. Points already resemble individuals better than bars in a bar chart. For
example, adding a certain behavior to the points helps increase empathy for the
individuals behind them. It acts as a reminder that they are no simple data points,
but humans with complex needs and opinions.

We used three approaches to implement this concept. One approach is the usage
of movement. The ideas include moving the points between their themes (33) or
letting them vibrate when selected (70).

Another approach is the usage of images. The idea is to display a sketched image
of the individual being inspected to help users identify with the individual and
remind them that they are real (79).

The third approach is the usage of sound to present the messages (13). The
messages are read out loud to convey the feeling of a marketplace. As an individual
reads each message, it helps to create empathy with the individuals behind the
messages.

2.4.3 Trust

Another requirement in our visualization ideas was to create trust in the truthfulness
of the data’s representation. The concepts we used to achieve this are the inspection
of individuals or messages, the interplay of code and visualization, and keeping
missing data visible.

2.4.3.1 Inspection
A concept that enables trust in the representation form is the inspection of, for
example, individuals or messages. For example, when comparing individuals
regarding their themes, directly getting the corresponding messages creates
trust in the presentation’s truthfulness. This verification can be important for
all demographic data as well. The inspection of individuals and messages is one
way for users to gain trust in the visualization.

2.4.3.2 Manipulation of Code
Interacting with the visualization using the underlying code helps users to
understand how the visualization is created. Understanding how the data points
are modified before being displayed in the visualization creates trust in the correct
visualization of the data.

2.4.3.3 Keep Missing Data Visible
In data sets, it is common that some values are missing for some data points. It is
important to remind users that insights might not apply to all data points as the data
is incomplete. Doing so, creates trust in the gained insights, as users can comprehend
to which group of individuals insights apply. Thus, missing data should be made
visible.

62

2.5 Conclusion

Figure 2.26: Displaying missing data in scatterplots (65)

We thought of different ideas that support this goal. One of them is displayed
in Figure 2.26. The idea (65) adds an area to a scatterplot in which data points are
displayed that do not have values for one or both attributes of the axes. Thereby, data
points that only miss one value can still be displayed in the diagram.

For a map, a way to display missing data is to sort all individuals with a missing
value for their district into a separate box at the side. That way, just as in the example
shown in Figure 2.26, the individuals can still be considered for filtering, selecting,
and coloring.

2.5 Conclusion

Our goal was to design visualizations that improve the finding of insights in highly
complex data of thousands of individuals.

We designed about 80 ideas that go into various directions to allow for an in-depth
exploration of the data. From those ideas,wewere able to extract several concepts that
help create visualizations that make the data explorable, let users develop empathy,
and create trust in the truthfulness of the representation form. Our main concept
is to display the individuals as points to prevent losing their voices in aggregated
data. In combination with the inspection of individuals and messages, this concept
allows for an interactive exploration of the data. As a visualization only has a limited
number of perspectives on the data, another important concept is to enable users to
relate different visualizations and perspectives.

Our work provides a foundation for further research regarding explorable
visualizations and individual-centered approaches. It further poses a fundamental
basis for the design of visualizations that display highly complex data about
individuals. Therefore, it forms a starting point for Africa’s Voices and, in general,
for people who work with this kind of data, to design and create visualizations that
have more to say than only statistics.

63

2 Concepts for Visualizations and Exploration and Categorization of the Design Space

In the context of our project, the categorization and the extraction of concepts
helped us decide on ideas that allow for an in-depth exploration of the data. These
ideas were then implemented as prototypes in the further course of the project,
offering a first opportunity to explore highly complex data with novel visualizations
that go beyond a proof-of-concept.

64

3 Implementation and Integration Into an
Environment of Explorable
Visualization Tools

Our project aimed to create explorable visualizations centered on individuals that
helpAfrica’s Voices gain insights about their data sets. To provideAfrica’s Voiceswith
a foundation for future implementation of explorable visualizations, we tested the
feasibility of our ideas. Building upon the exploration of our design space described
in section 2.2, we implemented ten visualization tools from which we extracted
six interaction patterns. We further explored two approaches for integrating the
visualization tools and interaction patterns into visualization environments. In this
chapter, we provide an overview of these tools and environments and discuss
essential considerations for implementing and integrating explorable visualization
tools. These considerations can provide guidance for further developers and
designers of explorable individual-centered visualizations.

3.1 Introduction

Our project’s goal was to provide Africa’s Voices with explorable visualizations
focused on individuals. As described in section 2.2.2.4, during our idea generation
phase, we designed around 80 visualization ideas. We then started implementing
and validating our ideas with our project partner.

Our aim was not to create a functioning production application for Africa’s Voices,
but rather to examine if our ideas are feasible and to provide valuable insights and a
basis for further development. In the following sections, we classify and discuss our
prototypes. We additionally highlight interesting findings in implementing them
which might be of use for someone attempting similar work.

We started our project by choosing the individuals as points design concept
described in section 2.4.1.1, as well as interaction patterns commonly used in our
ideas, like the filtering and grouping of points, to validate if they were feasible.
After validating these concepts, we selected promising visualization ideas and began
implementing them.

During our project, we implemented various ideas ranging from interaction
patterns on visualizations to environments that integrate multiple visualizations.

The fundamental idea connecting nearly all of our prototypes was to represent
individuals as points and keep them visible at all times. We were able to show

65

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

that this approach works well with several thousand individuals. Section 3.2
demonstrates and explores this further.

As described in section 2.4.1.2, one of the concepts we identified for making
visualizations explorable is to allow users to manipulate the views of visualizations.
Therefore we strive to allow users as much interaction as possible. We started with
implementing interaction patterns that had arisen multiple times in our ideation
process. Filtering, coloring, and grouping were recurring concepts in our ideas, see
2.3.5.4, their implementation is discussed in section 3.3.4, section 3.3.3, and section
3.3.7. Being able to inspect individuals to access their information at all times was
an important part of the individuals as points concept described in section 2.4.1.1,
therefore we also early on started working on the inspect action as is discussed in
section 3.3.1. During the development of our prototypes, further interaction patterns
with specific goals, for instance, creating empathy with the inspected individuals,
emerged. The resulting patterns are described in section 3.3.2, section 3.3.6, and
section 3.3.5. All developed interaction patterns work well with the individuals as
points design model.

Following our first exploration of working with the individuals as points design
model, we progressed to implement visualization tools. Each visualization tool
provides one perspective, which means a specific view of the data. While the
actual implementation often varies greatly from the original idea, most visualization
tools can be traced back to an idea categorized in section 2.3. Our implemented
visualizations are discussed in section 3.4.

Finally, to work with the concept of different visualization types in one application
as described in section 2.4.1.2, we tested two approaches for integrating the
visualization tools and interaction patterns into visualization environments. Section
3.5 discusses our two approaches, the Tab View prototype 3.5.2 and the Tree View
prototype 3.5.3, compares them and evaluates the required integration levels for
integrating visualization tools.

To structure our tool discussion, we discuss the following points for each presented
interaction pattern, visualization tool and integration approach:

Goal The main goal for each prototype regarding its functionality and use for the
user usually was consistent throughout the iterations and is noted first for each
prototype.

Metaphor After prototyping for some time, we noticed that a sharedmetaphor had
emerged, which facilitated communication and influenced new ideas. Our main goal
for every prototype was to always keep a connection to every single individual. From
the idea of displaying individuals as points, themetaphor of users of the visualization
tools standing in front of a massive crowd of citizens and being able to interact with
them emerged. Parts of that metaphor can already be found in our ideation process,
where we used the experience of going from community to community and talking
with its people as inspiration. Most of our resulting prototypes can be mapped to
a real-world interaction with a crowd, given that they all have time and interest in
following your instructions.

66

3.2 Individuals as Points

Figure 3.1: Individuals displayed as points

Execution During the prototyping process, new ideas emerged, and existing
prototypes changed until their original idea was not necessarily recognizable
anymore. We describe the most advanced state of functionality of each prototype.

Considerations Through implementing our ideas, we gained valuable insights,
which can assist in future implementation processes. For the insights and some
prototypes, starting points for future work are noted.

3.2 Individuals as Points

Most of our prototypes use the individuals as points concept described in section
2.4.1.1. Provided a sufficient size of the visualization, in the developed prototypes
users are able to distinguish and inspect single individuals at all times. This shows
that representing individuals as points is a feasible strategy for visualization tools.

Goal The overall aim our prototypes is to keep a connection to each individual.
We want to avoid aggregating and to allow for more empathy for the individuals
represented in the visualization.

Metaphor Seeing a crowd of many individuals with different backgrounds,
opinions and needs in front of you.

67

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Execution To avoid aggregating we wanted to give each individual its own visual
representation at all times. We chose to represent each individual as a point. All but
three visualization tools described in section 3.4 use this design model.

Three aspects are especially important when implementing visualization tools
using the individuals as points design concept.

Random Placement The placement of each point on the primary canvas and also
in grouped displays is random, with one notable exception in the Map prototype.
Whether we should change the random placement to a structured placement was
a recurring point of debate. The idea behind the random placement is to follow
the metaphor of a crowd of individuals more closely. Without external instructions
people in a crowdwillmingle randomly. Recreating this behavior asmuch as possible
in our visualizations is intended to make the idea of an interaction with a crowd
more plausible.

Using random placement led to a couple of problems. Firstly, sometimes points
overlap each other which defeats the idea of representing each individual equally
and also makes some interactions, for example, the Inspect Action, more difficult.
Secondly, when using tools like coloring, it gets much harder to see the ratios
between different color groups. A special problem arises in the mapwhere a random
placementmight suggestmore precise geolocation information thanwe actually have.
A structured placement implemented, for example, as stacking or alignment on a
grid faces some challenges, too. First of all it loses the metaphor of seeing a mingling
crowd. As stated in visualization literature the comparison of areas is difficult for
humans [14] , therefore structured placement might lead to the wrong impression
to be able to correctly compare groups even if the differences are small. A random
placement only allows for such conclusions when the differences are bigger. In the
end we chose to use random placement unless this gave a wrong impression about
our data as in the Map prototype.

Circle Form Due to the random placement the points representing individuals
can overlap each other. This is especially true when grouping. If the grouping
area is small it gets difficult to see how many individuals are in it. As soon as the
whole grouping area is covered there is no visible difference between 100 or 500
individuals. To improve this, we experimented with the opacity of points. A lower
opacity however made distinguishing points difficult. In the end, we chose to offer a
mode where only the strokes and not the fill of the points are shown. This enables
distinguishing single points as well as getting a better sense of density in a group.

Number of Points One of the main concerns regarding the individuals as points
design concept was how clear visualizations with several thousand points can be.
To gain the exploration benefits described in section, 2.4.1.1 users have to be able to
distinguish each point to interact with it. As the discussion about circle form shows
this is an actual issue of our visualizations. Due to the random placement of the
points they can overlap. As the probability of overlapping sinks when increasing
the available space, we implemented the possibility of scaling visualizations. In

68

3.3 Interaction Patterns

Figure 3.2: Individuals displayed as points with fill versus only strokes

our experience given a fitting scaling, distinguishing and inspecting single points
works well for several thousand individuals and acceptable well for up to 20,000
individuals. Especially since Africa’s Voices works with data sets with well over
20,000 individuals, compare 1.1.3.3, the question of how to make visualizations
based on individuals as points scale to include tens of thousands of individuals, for
instance through implementing advanced zooming mechanisms, remains open for
future work.

3.3 Interaction Patterns

As noted in section 2.4.1.2, one of the key ways for creating explorability in
visualizations is to enable users to interact with them through manipulation of the
displayed data or the created view. Therefore, we focused on allowing as much
interaction as possible. During the development process, the interaction patterns
discussed in this section emerged. For some of them the implementation varies from
prototype to prototype, most were standardized and used to integrate our prototypes
as described in section 3.5. Accordingly, the interaction patterns should not be seen
as a part of each single prototype but rather patterns that can be used to enhance the
interactivity of an individual-centered visualization.

3.3.1 Inspect

Goal Provide quick and simple access to all information about an individual.
Represent the qualitative and quantitative data of each individual together.

Metaphor Interviewing a single person on the phone.

Execution When clicking on a point representing an individual, all information
recorded about it is shown as an explorable JavaScript object. This includes

69

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.3: Inspecting an individual on click

demographic data, like age, gender, district, and thematic data in form of tags
representing the topics of their sent messages. It was intended to also include the
sent messages. Although in theory this should be easy to implement, we were not
able to work with the messages due to their sensitivity. For further details on the
implementation look into chapter 5.

Asmotivated in section 2.4.2, allowing users to inspect individuals aims at creating
empathy. Therefore creating empathy should be a consideration in future work on
the inspect action.

Empathy We assume that JavaScript objects do not facilitate empathy because they
are abstract and require a high-level of imagination to see the individual behind
them. We tried to improve on this with the variation Inspect-Human.

3.3.2 Inspect Variation: Inspect-Human

Goal The same as the inspect action. Additionally facilitate empathywith inspected
individual.

Metaphor Conducting a face-to-face interview with a single person.

Execution When users click on a point representing an individual, the sketch of an
individual appears on screen. The sketch shows a human of the selected individuals
gender and age group. To gain further information about the individual, it can be
inspected in the displayed JavaScript object as in the traditional inspect action.

While the idea has potential for a real world usable implementation two aspects
have to be taken into consideration.

70

3.3 Interaction Patterns

Figure 3.4: Coloring individuals according to gender

Next Steps It should be possible to receive all information about the individual
from interacting with the displayed sketch. A possible way to do that could be
allowing users to ask predefined questions and letting the sketch “answer” through
speech bubbles or speech.

Cultural Issues/Accurate Portrayal A respectful and accurate implementation of
the Inspect Human prototype for production is difficult. It would require hundreds
of sketches, because each age and gender combination would need many different
representations to not give thewrong idea of them all being the same person. Because
these sketches would show people from other cultures, we would need a member of
each culture to draw and correctly represent them.We realized that this effort would
not fit into our scope and did not pursue the idea further.

3.3.3 Color

Goal Show the distribution of one attribute in the whole group.

Metaphor Asking the individuals in the crowd to put on differently colored T-
shirts according to their attributes.

Execution Users can select an attribute for which they want to apply coloring (A).
Then each unique value existing for that attribute is mapped to a color and each
individual is colored accordingly. To ensure sufficient contrast the first colors are
applied from a basis configuration file, but to allow users to use colors that are
significant to them, each color can be customized (B).

As discussed in section 3.3.1 placing points randomly does not harmonize with
the coloring interaction.

71

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.5: Using filter-out logic to remove individuals without expected values
from display in the Filter Chain prototype

Figure 3.6: Using filter-in logic in the Filter Widget prototype to only work with
individuals up to 35 years

Random placement Together with the random placement of points the coloring
often doesn’t accomplish the goal of giving an intuition of the value distribution in
the chosen attributes. Only huge disparities are visible that way.

3.3.4 Filter

Goal Create explorability by allowing to focus on a specific group of individuals.

Metaphor Interviewing a specific population group.

72

3.3 Interaction Patterns

Execution We implemented two types of filter interactions. Both share the main
idea of removing points from the visualization by selecting values from attributes
on which to filter (A). We identified the following dimensions on which filter
interactions can differ:

1. Filter-In vs. Filter-Out: With “filter-in” logic users select the individuals which
should stay in the visualization, with “filter-out” logic users select the
individuals which should leave the visualization.

2. Combination Logic: With “no-combination” logic the filter tool doesn’t allow
chaining multiple filters. With “and-combination” logic the filter tool allows
for filtering for individuals on which all filters apply (intersection). With “or-
combination” logic the filter tool allows for filtering for individuals for which
at least one filter applies (union).

3. Linear vs. Tree Logic: With linear logic every filter chain has to have either
only “and-combination” or only “or-combination” filters. Tree logic allows for
combining subgroups of filters with “and-combination” and “or-combination”
logic.

Our first filter prototype Filter-Chain 3.5 implements “filter-out” and “and-
combination” logic with linear logic. Applied filters are each represented as
rectangles in application order in the filter history on the top of the canvas (B).
Filters can be removed by clicking on their visual representation (C).

Our second filter prototype Filter-Widget 3.6 implements “filter-in”, “and-
combination” and “or-combination” logic together with linear logic. The filters
are represented in application order in a scrollable window (B) and can be removed
by deleting their visual representation (C). The combination logic of the whole filter
chain can be selected and updated by selecting it from a drop down (D).

For implementing filter interaction for visualizations based on the individuals as
points design model two aspects should be taken into consideration.

Filter-In Vs. Filter-Out For our use case we found that ”filter-in” logic is more
intuitive. It allows a ”what you select is what you get” workflow. A way to
support a “what you see is what you get” filtering workflow is provided by our
FreehandSelection described in section 3.3.5.

Tree Logic For our domain, more sophisticated filter chains that combine ”and-
combination” and ”or-combination” filters would be useful. For example, it might be
interesting to only work with female respondents of age groups 14-17 or 18-35. Due
to its complexity, especially for the user interface, and our limited time, we chose to
not implement tree logic.

3.3.5 Filter-variation: Freehand Selection Used as Filter

Goal Create explorability by allowing to create new views for a specific group of
individuals.

Metaphor Interviewing a specific population group.

73

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.7: Using a Freehand Selection to filter selected individuals into the next
created visualization

Execution The Freehand Selection allows the user to draw a line on the canvas, whose
endpoints get connected at the end of the drawing action. The area inside the line
is colored with a random color. With a right click on the selected area (A) the user
can open a new visualization which only contains the individuals inside the selected
area.

Using the Freehand Selection for filtering has a relevant benefit.

Visual Representation The Freehand Selection allows for an intuitive and visually
represented way of filtering individuals in, because it is directly visible which
individuals are going to be filtered into the new visualization. Together with
grouping tools, this creates a powerful filtering tool which maintains a visual trace
of the provenance of used data.

3.3.6 Highlight

Goal Focus on a specific group without losing view on the whole picture. See the
distribution of a specific group in the whole group of individuals.

Metaphor Shining a spotlight on each selected individual in a semi dark room.

Execution Specifying which individuals to highlight works like filtering by
selecting values for certain attributes for which to highlight. During the prototyping
process we developed the following two ways of visually representing the
highlighted points in chronological order:

1. Color each highlighted point in an attention grabbing color. Maintain previous
coloring of not highlighted points.

74

3.3 Interaction Patterns

Figure 3.8: Highlighting the distribution of middle-aged respondents in groups
defined by language and gender

2. Color each not highlighted point grey. Maintain previous color of highlighted
points.

We chose to use the second strategy, because it’s easier to distinguish the selected
points that way. Compared to the first strategy it aligns better with our goal to focus
on a specific group and only keep the other individuals for context, for instance,
about distribution.

3.3.7 Group

Goal Specify groups, visualize their composition, be able to focus on a specific
group and to compare groups with each other.

Metaphor Asking the crowd to split up into groups according to their opinion on
a topic or their demographic data.

Execution We implemented various ways of grouping as an interaction pattern as
well as part of view tools. All share the same foundationwhich is a canvaswith points.
The logical way to display grouping is to rearrange the points on the canvas. The
resulting tools can be categorized by how many attributes can be used for grouping.

3.3.7.1 One Attribute
Map prototype See subsection 3.4.1

3.3.7.2 Two Attributes
XY Diagram See subsection 3.4.2

The following aspect is relevant when applying grouping as in the XY Diagram
prototype.

75

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.9: Chaining grouping for gender and county

Discrete vs. Continuous Data All of our data except age is discrete. Displaying
the groups right next to each other therefore can give the wrong impression of a
continuous scale. To avoid this we placed gaps between groups. That alone often
didn’t help enough for being able to distinguish the different groups, so in some
tools, for example in the XY Diagram prototype, we added shades behind the groups.

3.3.7.3 More Attributes
Group Chaining

Execution As can be seen in Figure 3.9 grouping works over selecting attributes to
group for in the dropdown menu (A). The Group Chaining prototype automatically
splits the existing data into circular groups according to the unique values for the
selected attribute (B). If a previous grouping has been applied, the already existing
groups are split up into subgroups (C) according to the new attribute. The applied
grouping actions are displayed in the grouping history (D) and can be deleted on
click.

The following two aspects are relevant when applying grouping as in the Group
Chaining prototype.

Distinguish Groups Using the Group Chaining prototype quickly creates a lot of
groups. Depending on the grouping attributes you can arrive at 20 groups with only
two grouping actions. It gets difficult to distinguish groups from each other and to
recognize which group is which. Using a color legend (e) for reference did not work,
because with each grouping attribute requiring its own scale, the identification of
each group quickly became unclear again.

76

3.4 Visualizations Tools

Figure 3.10: Hovering over the Mogadishu district while using the Map prototype

Distinguish Individuals On the other hand, this prototype demonstrates how easy
it is to distinguish and trace individuals with only three or four known attributes. As
can be seen in Figure 3.9 after grouping two times many groups only have a handful
or just one individual.

Venn Diagram See section 3.4.3

Individual Center See section 3.4.4

3.4 Visualizations Tools

Based on our ideas which are described and categorized in section 2.3.3 we
implemented ten visualization tools. Visualization tools allow for a particular view
on the data, often focusing on one goal, for example, showing the theme distribution.
Opposed to interaction tools, their functionality is too specific to be integrated into
another prototype. They rather allow for different perspectives on the same group
of people.

3.4.1 Map

Goal Show the distribution of respondents based on geographic position, allow
interactions based on a place and the comparison of distributions, for example,
between rural and urban areas.

Metaphor Asking the crowd to split up into groups according to their districts.

Execution Showing geolocation distribution is one of the common use cases for
visualizing individuals as points. In this case, the data provided only gives higher

77

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.11: Statistical calculations about the distribution of people talking about
good governance in Mogadishu

level position information like county or district. In the prototype every individual
gets placed inside its district. Individuals without district information are placed
inside an “informationmissing” district at the side (A).When hovering over a district
a tool tip provides information about it (B). Zooming and panning allow a closer
look.

Using the individuals as points design model on a map lead to a number of
considerations about rueful representation.

Random Placement As noted in section 3.2, the Map prototype is the exception
to the rule regarding random placement. Here random placement is not helpful
but misleading, because it suggests more precise geolocation information than we
actually have. Therefore we placed the individuals on a raster inside each district.

Density So far every data set has shown a huge disparity in the number of
respondents per district. Often especially smaller districts, like the capital, are
overrepresented and single individuals are not distinguishable in the overview. To
improve this we implemented zooming. This way a heat map on respondents density
emerges as can be seen in 3.10.

Statistical Calculations As shown in Figure 3.11 in earlier stages of the prototype
we included calculations (A) regarding expected numbers of individuals with a
theme tag assuming an uniform distribution sample. Displays like this can help to
immediately validate impressions, like “an uncommonly huge number of people
talk about this topic in this district”, and might be a starting point for integrating
classical statistical tools with our visualization tools.

78

3.4 Visualizations Tools

Figure 3.12: Using the XY Diagram to display groups by gender and age

3.4.2 XY Diagram

Goal Find patterns and specific groups to explore further. Present groups in well
structured formats and enable getting a sense for them.

Metaphor Asking the crowd to split up into groups according to one or two
selected attributes.

Execution The XY Diagram uses a coordinate system in which all individuals are
placed. The values along the x and y axes can be grouped by attributes (A). For that,
each individual gets a new x or y position according to the corridor of its value on the
axis. As an additional attribute ‘amount’ is added. It can only be usedwhen the other
axis has already been grouped by another attribute. It then places the individuals
of a group in a corridor which has n percent of the maximum length, where n is the
ratio of the amount of this group to the amount of the biggest group.

The XY Diagram provides two useful features for an exploration flow.

Bar Chart Giving the ability to group by amount leads to the creation of bar charts
while keeping a connection to each individual. Even in the bar chart form, each
individual can be inspected.

Exploration Workflow In testing our prototypes we noticed that the XY Diagram
works especially well as a basis for using Freehand Selections. With the XY Diagram
multiple groups can be specified, which, using the Freehand Selection workflow, can
then be further compared in other visualizations.

79

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.13: Using the XY Diagram to create a bar chart which maintains a
connection to each individual

Figure 3.14: Using the Venn Diagram prototype to explore connections between two
theme groups

80

3.4 Visualizations Tools

3.4.3 Venn Diagram

Goal Group individuals according to thematic data. While thematic data is
arguably the most valuable data, it is also the most complicated due to its high-
dimensionality. An additional goal of this diagram was to place a special focus
on overlays between different theme groups and handle their high-dimensional
connections.

Metaphor Asking people to form discussion groups according to topics they want
to talk about.

Execution The Venn Diagram allows users to create theme groups (A) with as
many themes as wanted by selecting them from the menu (B). Groups can be
assigned a name (C). Every individual whose message was tagged with at least
one of the themes will be displayed in the created theme group. If a second group is
created, individuals belonging to both groups will be displayed in an extra group
(D), displaying the intersection of both primary groups. Adding a third group adds
every possible combination group for which fitting individuals exist.

To improve the usability of the Venn Diagram two aspects should be considered.

Complexity The Venn Diagram starts to be confusingly complex after grouping
more than two times with many different groups to display, which are all
interconnected and difficult to separate. We tried to improve the arrangement
with an automatic placement algorithm to make the placement more clear from the
beginning on.

Integration of Demographics The ability to get an overview about the
demographic data in the first version of the Venn Diagram was only given by
the coloring action. To provide additional insights we integrated the Statistics Panel
described in section 3.4.8 into the workflow. On click on the center of a theme group
a Statistics Panel about the individuals in the theme group opens up.

3.4.4 Individual Center

Goal Be able to see how an individual fits into the crowd. That is, if there are many
”alike” individuals or if this individual is an outlier. Find similar or very different
individuals compared to one individual.

Metaphor Asking people to position themselves as close or far away as they feel
to a specified person on a demographic or thematic level.

Execution The Individual Center prototype lets users select an individual and one
of two compare methods, thematic or demographic. As can be seen in Figure 3.15
the selected individual gets placed in the middle of the screen (A) and every other

81

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.15: Using the Individual Center prototype with thematic comparison to
compare and explore two individuals with equal theme tags on gender, age

category and household language

Figure 3.16: Using the Individual Center prototype with demographic comparison to
explore two individuals with equal values for gender, household language,

region and age category

82

3.4 Visualizations Tools

individual gets a position on concentric circles around it. Their position symbolizes
the closeness to the selected individual (B).

Thematic: Rings signify how many themes the other individuals have in common
with the selected individual. We only compare by the themes of the selected
individual. Therefore individuals which have all themes of the selected individual
are considered equal to the selected individual, even if they have additional themes.
Demographic: Rings signify in how many demographic attributes the other

individuals differ from the selected individual.
For both modes we use color segments on the ring to display demographic

differences. Each color segment stands for one specific combination of demographic
differences, for example, only age, or gender and district (C). Colors can be mapped
via a color legend (D). Using the two individual inspectors on the side the selected
center individual can be compared to other individuals (E).

For projecting high-dimensional data to 2D concentric rings three aspects need
special consideration.

Usage of Color for Displaying Differing Demographic Attributes Encoding
differing demographic attributes by color proved to be difficult. To display multiple
differing attributes on arcs in a first attempt we tried mixing the colors assigned to
each attribute from the attribute legend (A). In our experience, the resulting colors
were not decodable for users. Therefore we decided to display the attribute colors
next to each other as substripes (C).

High Complexity of Encoded Information Substripes as a way of conveying the
differing demographic attributes, in our experience, are still difficult to work with.
Users have to match up to five substripes with the colors from the legend (D)
displayed at the top of the visualization. To help with explorability we introduced a
tooltip (F) which on hover displays the information about each arc. We maintained
the coloring in stripes to showcase the heterogeneity of the groups.

Correlating Data Some of our attributes were inherently correlated, especially the
geolocation attributes. If two individuals responded with same district as their place
of residence, they will with a high probability also respond with the same region.
This leads to sometimes near to empty or unnecessary many rings and could lead to
wrong impressions about the data. To counteract the effect we gave users the ability
to select the attributes used for comparison, effectively allowing them to create an
own similarity metric.

3.4.5 Movement Prototype

Goal Visualize the opinion of a crowd. Highlight connections and differences
between different stances and allow the exploration of individuals with specific
theme combinations.

83

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.17: Using the Movement prototype with a very high fade factor

Figure 3.18: Using the Movement prototype with a low fade factor

84

3.4 Visualizations Tools

Metaphor Letting the crowd arrange itself on its own. People who know each other
or share interests will move close to each other.

Execution As can be seen in Figure 3.17 each theme is represented by a bubble (A).
Individuals are represented as points and can move between bubbles (B), when they
have multiple themes, or stay inside them, if they only have this theme (C). Themes
can be arranged on the screen through dragging and can be activated and taken into
account for the movement of the individuals or deactivated and taken out of the
visualization (A) (D). In this case individuals will not move to them even if they
have the theme belonging to the bubble. If individuals possess more than two of the
activated themes they move circularly between the corresponding theme bubbles.

For future implementation work on the Movement idea three aspects should be
taken into consideration.

Clarity The main issue of this prototype is the missing clarity of the visualization.
This results from the following factors:

Movement: If all themes are activated at the same time there is too muchmovement
on the screen to distinguish interesting patterns. We improved on this by allowing
users to activate and inactivate the theme bubbles via double click or dragging the
themes into the active/inactive zones.

Paths of individuals: Without visual help it is difficult to trace and keep in mind the
path taken by individuals. Therefore we let the individuals paint on the screen while
they were moving, effectively creating paths.
Adjustability: In later iterations we made it possible to adjust the velocity of the

moving individuals and the fade factor of the paths they draw. This enables the
user to pick and select certain individuals or just see their created paths. In this case
our diagram basically becomes a sankey diagram in which you can move around
the nodes as you wish. For this to work completely a more sophisticated movement
calculation would be needed.

Liveliness The Movement prototype implements the concept liveliness described
in section 2.4.2.2, which aims to help keep the image of the points representing
individuals in mind.

Wrong Impressions There are multiple representation issues in the movement
prototype:
A. Individuals with many themes are underrepresented. Individuals move circularly

between their themes. If two themes are connected by an individual which in total
has three themes, and two other themes are connected by an individual that only has
these two themes, the connection between the second themes will be shown thrice
as often as the connection between the first themes. It is important to keep in mind
that the Movement prototype faithfully displays every individual and thus can lead
to wrong impressions about the total number of connections between themes.
B. Amount of individuals within one bubble As described in 3.2 due to overlapping

points it can be difficult to see how many individuals are in an area. This applies for

85

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

seeing the amount of individuals in a bubble, too. To improve this we implemented
optional modes where the size of each bubble changes according to the amount of
individuals in it or the total amount of individuals with this theme.

3.4.6 Individual Forces/t-SNE

Goal Use the first screen to conveymeaningful information as opposed to the status
quo random placement. Allow for orientation and easier exploration by arranging
similar individuals close to each other. Be able to inspect clusters. Be able to create
own similarity metric.

Metaphor In a crowd, in a simplified version, similar people attract each other.
Peer and shared interest groups would stand closer to each other.

Execution The problem in placing individuals close to individuals they are similar
with is the high-dimensionality of our data. For each individual we routinely can
havemore than 20 data points. Projecting this to a 2D space proved to be difficult. The
Individual Center prototype solves this issue by using a very narrowed and predefined
compare method (number of differing attributes) which also results in predefined
places for each individual. To still maintain the open canvas/open field view as
intended with 2.1 Individuals in Points we tried out two approaches Individual Forces
and t-SNE.

3.4.6.1 Individual Forces
Execution The Individual Forces prototype uses a simulation in which each
individual attracts similar individuals and repels not similar individuals. The
simulation stops when the individual forces have found equilibrium and leaves the
individuals arranged on the screen. We used the library d3-forces.

Projecting our high-dimensional data to a 2D space using a forces approach faced
a critical challenge.

No conclusive picture The way that we used individual forces too many forces
were counteracting each other which stopped cluster building from happening and
lead to an inconclusive arrangement as can be seen in Figure 3.19. As nothing valuable
could be read from it, we decided to drop this approach.

3.4.6.2 t-SNE
Execution t-SNE (t-distributed stochastic neighbor embedding) is a machine
learning algorithm used for the visualization of high dimensional data. It embeds
high-dimensional data into a low-dimensional space of two or three dimensions [49].

Like the Individual Forces approach, using t-SNE for projecting our high-
dimensional data to a 2D space faced a critical challenge.

Performance Running the t-SNE algorithm with thousands of individuals which
each have up to 20 belonging data points is computationally expensive. Our

86

3.4 Visualizations Tools

Figure 3.19: Using the Individual Forces prototype. Forces are calculated according
to the theme categories each individual belongs in (question, answer, escalate,

and missing). Points are colored according to their theme category.

Figure 3.20: Using the t-SNE algorithm based on demographic data. Points are
colored according to county.

87

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

prototypes did not reach results in an acceptable time. Loading times ranged from
1 min to 3 mins. Critical for the performance of t-SNE is the calculation of a n
x n probability distribution matrix with n as the number of entities to compare.
The matrix assigns each pair a probability with highly similar pairs having a high
probability and dissimilar pairs having a low probability. Calculating the matrix
client-side in the browser takes too long for an applicationwith direct user interaction.
Our next approach was to calculate the matrices server-side. The idea was to
precalculate and cache matrices of often used similarity metrics. Additionally we
wanted to cache a similarity matrix for each attribute, so that we could calculate
custom similarity matrices by matrix addition and dividing by the amount of used
attributes. This approach did not speed up the loading time as much as we wanted.
The matrices become quite large and the time for requesting and transferring the
matrix data nearly took as long as calculating it client-side.

Both our approaches failed to deliver the result we wanted.

3.4.7 Polygon Theme Forces

![3-PolygonThemeForces](../../figures/topic3/Screenshots/2.3.7-PolygonThemeForces-
Screenshot-2020-07-27-at-19.44.28.png “Using the Polygon Theme Forces prototype to
inspect a theme that hasmostly beenmentioned bymale respondents or respondents
who did not tell their gender.”)

Goal See at one glance which themes get mentioned more by which demographic
groups.

Execution Each theme is represented as a bubble (A) with varying size depending
on how often it got mentioned. The unique values of the selected demographic
attribute (B) are arranged as labels around the theme bubbles spanning up a field
(C). On the field the theme bubbles find their position by being pulled to each
demographic group with strength according to how many individuals from that
group have chosen the theme. The labels representing each demographic group
can be dragged to form different areas in which the theme bubbles align. Users
can choose between using absolute or normalized amounts of people choosing the
themes for calculating the forces (D).

For future development of the Polygon Theme Forces prototype three aspects should
be considered.

Normalization In the first iteration our prototype used the total amount of
individuals from each demographic group to compare and calculate forces for each
theme. But not every demographic group has the same amount of individuals, which
makes this way of comparing unfair and misleading. A better way of comparing is
using the ratio of individuals from each demographic group that have chosen the
theme.

88

3.4 Visualizations Tools

Figure 3.21: Using the Statistics Panel prototype for displaying predefined statistics
for a selected group of individuals

Clarity With more than 6 or 7 demographic groups, for example when using
geolocation data, it gets difficult to gain insights from the visualization.

Next Steps Next steps would be to make the data used for the inner bubbles and
the outer labels interchangeable and selectable. This would, for example, allow to
have themes plotted on the ring outside and the individuals aggregated according
to languages inside.

3.4.8 Statistics Panel

Goal Combining our qualitative approach with standard statistical approaches.
Generate connection point to other visualization systems.

Execution Allow for generating classic diagrams at every point in exploration.
From a specified group, for example by using the Freehand Selection described in
section 3.3.5, our tools allow to generate predefined diagrams. Currently the age,
gender, language, county and constituency distribution of the individuals in the
selected group are plotted in a bar chart.

For future work integrating standard statistical approaches into our prototypes
one aspect is of special importance.

Customizability While the workflow itself fits well into our prototypes the
usability is still limited due to missing customizability. The next step for the Statistics
Panel prototype would be to allow for user customized diagrams.

89

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.22: Using the Panes prototype to explore the data using grouping,
colouring and filtering

3.4.9 Panes

Goal Make the exploration flow visible. Allow users to easily go back to earlier
steps and diverge on a different path.

Execution As shown in Figure 3.22 in the Panes prototype each pane (A) consists
of an XY Diagram (B) and an action panel (C), which allows users to filter, group
or color according to available attributes from the used data set. Users can add
subsequent panes (D), which get automatically placed in the row below the parent
pane, effectively creating a tree form. Actions applied in a pane get applied to all
its children panes. Per pane only one action can be applied. Applying a new action
overwrites the previous action.

We took two important considerations from the Panes prototype which supported
the development of the Tree View visualization environment prototype described in
section 3.5.3.

Further Potential Visualizing the exploration flow and enabling users to easily
create new exploration paths at any point in it, creates a new experience of
exploration. While with only one view on the data the use is limited, the Panes
prototype inspired our later developed Tree View visualization environment.

Placement The underlying placement algorithm uses nested flex CSS rows and
column. The resulting placement is structured and looks organized. On the other
hand, it does take the freedom of arranging the panes according to the personal
exploration flow from the users. Therefore in the Tree View prototype placement of
panes was transferred to the users by making panes draggable.

90

3.5 Integration of Tools

3.5 Integration of Tools

In this sectionwe describe and evaluate our approach to integrating the visualization
tools described in the previous section.

During our ideation process we found that enabling users to view different
perspectives of the data and compare visualizations are two essential concepts for
making data explorable. See section 2.4.1.2 and section 2.4.1.3.

To enable creating different views on the same data and comparing them, without
forcing users to manually recreate the state from one visualization tool in another
visualization tool, we decided to integrate our tools.

Tool integration is a known problem in software engineering research [4]. To
analyze the level of integration between programming tools several classification
schemes have been proposed [18, 17, 67].

We argue that, because of the structural similarity between programming tools and
our visualization tools, these classification schemes are also applicable for analyzing
our integration process.

Programming tools can be defined as “any system that assists the programmer
with some aspect of programming”[58]. Classical examples include editors, linters,
debuggers, and compilers, all of which fulfill a specific task on the same artifact
the source code. Comparatively, our visualization tools assist the user with one
aspect of exploring the data, namely, providing one specific view. Like programming
tools, our visualization tools work on the same artifact, in this case, the data for the
visualizations.

In conclusion, we think it fair to argue that integrating our visualization tools can
be evaluated with instruments provided by programming tool integration research.

To reason about tool integration, three things are needed [3]: “a set of categories
that divide an integration effort into parts that can be discussed in isolation”, “a way
to measure the degree of integration”, and “a notion of what optimal integration is”.

As a literature survey on tool integration [4] analyses the classification scheme
provided by Wasserman in 1990 [67] is widely accepted. As its provided integration
dimensions work well to reason about our process, we chose to use this classification
scheme.

Wasserman [67] defines five types of tool integrationwhich can serve as categories
for discussion about tool integration. For three of them he defines a scale of used
mechanisms to measure the strength of the integration:

1. Platform integration classifies the interoperability of tools.
2. Presentation integration classifies the level of agreement of tools on a user

interface standard. The possible integration levels from weak to strong are:
Standard window system, Standard windows manager, Standard toolkit,
Standard “look and feel”.

3. Data integration classifies the level of data sharing. The possible integration
levels from weak to strong are: Message, Shared Files, Database, Objectbase.

4. Control integration classifies the level of structure used for inter-tool
notification of events. The possible integration levels from weak to strong
are: Explicit message, Daemon, Trigger, Message server.

91

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

5. Process integration classifies the integration of tools into a well-defined
software engineering process.

Functioning platform integration is a necessary criterion for tool integration. In
our case, it is fulfilled because all tools share Lively4 as their platform. As we
had no opportunity to work with Africa’s Voices to integrate our tools into their
process, we will only use the remaining three categories presentation, data and
control integration for analyzing our integration approaches.

For optimal integration, according to Wasserman, integrated tools should agree
on an appropriate level of integration on all dimensions [67]. As Wasserman gives
no definition for an appropriate level, we chose to define appropriateness as the
ease of integrating tools. An approach to tool integration is appropriate if the
implementation efforts needed for the integration structure and the implementation
efforts needed to adapt the visualization tools together are low. Appropriateness
additionally can be influenced by external requirements, for instance, regarding
consistent user interfaces.

3.5.1 Initial Integration Level of Visualization Tools

Environments can be defined as integrated collections of tools [53]. The visualization
tools in section section 3.4 already possess a certain level of integration. All our
prototypes were developed in Lively4 and therefore are integrated on the platform
integration level. They all use the same data and data format, as described in
subsection 5.2.5. Although the implementation varied from prototype to prototype,
they often implemented the same interaction patterns section 3.3. Additionally, most
prototypes share the individuals as points design model. While we started from
already similar prototypes, the initial integration level did not suffice to reach our
goal of an easier and faster exploration flow. Therefore we developed dedicated
integration approaches.

Both integration approaches use our visualization tools implemented as web
components. As Lively4 is built with web components itself and facilitates the
developmentwith them, this let us benefit fromour platform integration. The process
is described in section 4.3.2.2.

3.5.2 Tab View

Goal Give users a simple way to switch between views of data during the
exploration flow.

Execution As shown annotated in Figure 3.23 in the center of the Tab View
prototype is the currently selected view (A). Out of the visualizations described
in section 3.4 the Map, XY Diagram and Venn Diagram are integrated into the Tab
View prototype. On the left of the visualization, the panel for local controls allows for
customized interaction with each visualization (B). The core feature of the Tab View
prototype is the ability to switch between the integrated views by just one click on a
tab (C). When switching views, the state of the visualization, in particular applied

92

3.5 Integration of Tools

Figure 3.23: Using the XY Diagram in the Tab View prototype with coloring
according to age

Figure 3.24: Using the Map prototype in the Tab View prototype with coloring
according to age

93

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.25: Using the Venn Diagram in the Tab View prototype with coloring
according to age

filters and coloring, stays the same. This enables a seamless exploration flow. Global
actions like filtering can be applied in the Global Control Panel (D), automatically
updating the Color Legend (E) on the bottom side of the visualization. At all times in
the exploration, users can inspect individuals. The currently inspected individual is
displayed in the Individual Inspector (F) and also persistent through tab switching.
This enables the user to trace individuals through different views. The Tab View
prototype works with multiple data sets that can be switched on the top side of the
visualization (G).

We have two considerations regarding the functionality of the Tab View prototype.

Global and Local Actions During the integration process, we had to decide which
interactions should be standardized and integrated. The resulting global actions are:
inspect, color, filter, and highlight. All of them use an information dimension for
displaying their information that the visualization tools do not necessarily need to
function. The group action, on the other hand, uses position as its dimension. As
can be seen in subsection 3.3.7 many visualization tools have their own variation
of grouping, many depending on position to convey their central information. To
ensure consistent behavior, we decided to not integrate the group action.

Persistence To further support the exploration process, being able to save
exploration states would be helpful. As reloading currently leads to discarding
previous progress this remains a point for future work. As described in section
4.3.3.2 Lively4 provides mechanisms for persisting the state of web components.

94

3.5 Integration of Tools

3.5.2.1 Technical Implementation
TheTabView prototype uses the observer pattern to inform all integrated components
about changes to the representation of its shared data.

As described in subsection 5.2.5 all visualization tools work with the same
individual-centered data format. At the initialization of the Tab View prototype, all
integrated visualization tools get initialized with the same data. Afterward, they
hold and manage their data separately.

The only way for users to change the data, in this case meaning changing the
appearance of the points, is through a predefined set of interactions, namely, the
inspect, filter, highlight, color, and group actions. As discussed above, only inspect,
filter, highlight, and color actions are applied globally. While inspect actions from
the users are registered and handled at visualization tool level, filter, select, and color
actions get applied through the Global Control Panel. In both cases, the notification
on the change works over action objects encapsulating the applied change that get
send to the Individuals Visualization Widget. The Individuals Visualization Widget
then notifies all its registered listeners about the applied action. To register as a
listener at the Individuals Visualization Widget components need to implement
the applyAction interface. They can then decide themselves if and how they
implement each action.

This approach enables straightforward extensibility for further interactions and
gives the visualizations sovereignty about their internal procedures. Through saving
the applied action objects, a history is created which allows undoing an action, for
example, discarding a filter. To synchronize the data representation and used data
structure, all components use the shared ColorStore and DataProcessor objects,
which provide default colors for the visualized points and a bucketing structure for
some data attributes. No requirements regarding component structure are made.
To make building a component easier, a template used by all currently integrated
visualization tools exists.

3.5.2.2 Integration
We use the categories and measures for the integration of tools presented in section
3.5. Since we adapted all our tools in the same way for integrating them, they can all
be categorized together.

Data Integration The initializationwith the samedata object and the shared objects
used for standardization implies a strong data integration with an Objectbase in
the beginning. After the initialization, data integration is handled via messages
informing the other components about applied actions, and can thus be categorized
as weak.

Control Integration The Individuals Visualization Widget essentially serves as a
message server indicating strong control integration.

95

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

Figure 3.26: Basic components of the Tree View prototype

Figure 3.27: Creating a new visualization pane in the Tree View prototype

Presentation Integration Through shared components like the Global Control
Widget, shared colors from the ColorStore object and the provided templates
a Standard “look and feel” is reached, indicating a strong presentation integration.

As all our tools by integration design agree on the same integration levels on all
dimensions, this fulfills the criterion of agreement in Wassermans notion of optimal
tool integration. The question of appropriate integration levels is discussed in 3.5.4.

96

3.5 Integration of Tools

Figure 3.28: Using the Freehand Selection for selecting individuals to display in the
newly created pane

3.5.3 Tree View

Goal Visualize the exploration flow. Allow users to easily go back to earlier steps
and diverge on a different path. Make comparing different demographic groups or
different data sets easy. Be able to see all views at one glance.

Execution As shown annotated in Figure 3.26, the centerpiece of the Tree View
prototype is the pane (A). Each pane holds one visual component, for example, a
visualization (B), a data source (C), or an individual inspector (D). When a pane
holding a visualization is in focus, the user can interactwith the visualization through
the automatically expanded global and local controls known from the Tab View
prototype (E). As can be seen in Figure 3.27, panes can be connected to other panes,
spanning up a tree. New visualization panes can be created by a right-click on a
pane (1) and choosing which visualization the new pane should display (2). The
new child pane is created with the same state as the parent pane (3).
A second option for creating new panes is offered by the Freehand Selection (F), which
allows users to visually select a group of points and create a new pane from them.
When a pane receives an action, it sends it to its visualization, and all its children
panes. Tomaintain a consistent view, inspect actions are sent to the whole tree a pane
belongs to. As inspected individuals get highlighted, this additionally allows the
user to see an individual in multiple contexts with little effort. Panes can be dragged
and resized to allow users to construct a visual representation of their exploration
flow. The data sources used as the basis of each tree are also held by a pane. Panes
get their data through the connection to a data source. Using two data sources with
different data sets thus allows the user to create exploration flows directly comparing
two data sets.

97

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

For future work on the Tree View prototype three aspects should be taken into
consideration.

Reconnecting Allowing users to detach and reconnect panes to other panes by
hand, would allow an easy way of connecting two exploration paths. Different states
of panes are not always combinable. We propose to combine all chainable state parts,
for example, filter, and overwrite all singular state parts, for example, color, with the
state of the parent pane.

Cloning As of now, users can clone single panes. To easily recreate exploration
flows, for example, for usage with another data source, being able to clone user-
defined subgroups of panes would be helpful.

Required Space Due to the many elements that need to fit on the screen
simultaneously, a large screen size is needed to use the Tree View prototype. While
scrolling and draggable elements already improve the experience, a zooming tool
that could be applied to user-defined subgroups of elements might increase the
usability even more.

3.5.3.1 Technical Implementation
The Tree View prototype uses the composite pattern to implement an element
structure that handles the integration. The connected elements are called panes and
function as adaptors to integrate different components into the integration structure.
The world is responsible for pane creation and the visualization of the connection
between panes. For this, we use the library jsPlumb. A pane adapts precisely one
component. The pane holds a statemade up out of applied actions and ist responsible
for change propagation and state management. It gets initialized with the data and
state from the parent pane, receives and propagates all applied actions to each child
pane. We use the lively-window component class as the base for our panes, which
comes with drag and resize support. Components that are adapted through the
pane just have to offer a resizing method. Using the adaptor pattern, in the Tree
View prototype, different components can be integrated with little effort, which has
happened so far for the inspector and data source components. We continued to use
action objects for communicating applied change to the representation of the data.
As an additional feature, visualizations can use the FreehandDrawer to allow users
to use the Freehand Selection workflow with them.

3.5.3.2 Integration
We use the categories and measures for the integration of tools presented in
section 3.5. Since we first defined our mechanisms for integrating and then adapted
the tools accordingly, they can all be categorized together.

Data Integration The initialization with data from the parent pane and the
following updates of state via direct messages from the parent pane indicate a weak
data integration.

98

3.5 Integration of Tools

Control Integration Since the change propagation works via explicit messages
from the parent to the child pane, each pane only ever can notify its children,
indicating a weak control integration.

Presentation Integration The provided visual elements from the pane, and the
integrated Global Control Panel serve as a Standard Toolkit, indicating a strong
presentation integration. If the high presentation integration level of a Standard
“look and feel” is reached depends on the integrated components.

As all our tools by integration design agree on the same integration levels on all
dimensions, this fulfills the criterion of agreement in Wassermans notion of optimal
tool integration. The question of appropriate integration levels is discussed in 3.5.4.

3.5.4 Discussion

In this section, we compare and discuss the two described integration approaches.
As Wasserman gives no definition for an appropriate level, we chose to evaluate

appropriateness based on the ease of integrating decided by implementation effort
needed for the integration structure and implementation effort needed to adapt
the visualization tools. Appropriateness additionally can be influenced by external
requirements, for instance, regarding consistent user interfaces.

3.5.4.1 Extensibility
The Africa’s Voices Foundation operates in multiple new contexts each year and
wants to shorten the feedback cycle from radio show to insights generation, compare
1.1.3.1. For this reason it’s important for them to be able to create new visualizations
quickly and integrate them into their workflow. The two presented integration
approaches, Tab View and Tree View, both enable integration of new visualizations
with acceptable effort. For successful integration a visualization tool needs to
implement the applyAction interface, and if applying, be able to send actions
itself. For the panes prototype the visualization needs to offer a resizing method.
Integrating the FreehandDrawer is not required, but recommended. On the other
hand, integrated tools don’t need to provide a custom interaction user interface, for
instance, for applying actions or viewing inspected individuals, which lessens time
needed for creating new visualizations. A benefit of the Tree View prototype is that
integrating other components than visualizations, for instance an inspector window,
works well by design and doesn’t require changes to the whole prototype.

3.5.4.2 Presentation Integration
Both presented approaches have a strong presentation integration. Providing a
consistent user interface makes software easier to learn and use [67], which in
our case could also help Africa’s Voices to speed up their insights generation,
compare section 1.1.3.1. Therefore a strong presentation integration is appropriate
for our visualization environments. With the commonly used templates, interaction
widgets and classes the development of a Standard Toolkit has started. To advance

99

3 Implementation and Integration Into an Environment of Explorable Visualization Tools

presentation integration this development should be continued, as well as user
interface guidelines established.

3.5.4.3 Control Integration
Due to the amount of inter-tool notification needed whenever users change the
data representation in one of the integrated tools, a preference for strong control
integration might be assumed.

The Tab View and Tree View prototypes, however, differ strongly on their control
integration levels. While the Tab View prototype implements strong control
integration through a message server, the Tree View prototype uses weak control
integration via direct messages. This difference is caused by their different inherent
structures, which are reflected in their names. Communicating changes to every
tab works well in the Tab View and propagating changes only to descendants works
well in the Tree View prototype. Both methods work well regarding the effort needed
for implementing the control integration structure, as well es effort needed for
adapting tools, with the greatest effort for both methods being implementing the
applyAction interface. The Tree View structure does have limitations, however. It
makes the assumption that every component will only ever need to receive relevant
information from its parent. This assumption does not hold. For instance, displaying
an inspected individual in the whole pane tree, can require notifications from child
panes to parent panes. Switching the control integration of the Tree View prototype to
a message server would require either the message server or each listener to always
check the existing parent-child relationships to determine if this message is relevant
to the listener. As this would effectually also require maintaining a tree structure,
the applied solution makes use of the already existing tree structure and uses the
top pane of each tree as a reference point. Each pane has a reference on the top pane
in the tree it belongs to; tree-wide actions can thus be applied by sending the action
to the top pane.

While we think that both control integration levels are appropriate given the
wanted control integration behavior, the direct messages integration mechanism
of the Tree View prototype has already shown extendability issues and might prove
more difficult to extend in the future.

3.5.4.4 Data Integration
Both integration approaches use a weak data integration. The used mechanism
messages is the weakest on our used scale: Message, Shared Files, Database,
Objectbase [67].

During the implementation of the environments, we actually discussed using
a shared data object. If all visualizations tool could use a shared data object the
implementation of our data integration, as well as our control integration would
become easier. However, as we already noted in section 3.5.2, not all actions can
be applied globally. Especially the grouping action which changes the position
value of each individual does not make sense to be applied to other visualizations,
because position is usually the main dimension each visualization works in. Using
a shared data object would require visualizations to keep a second data object with

100

3.6 Conclusion

all individuals at least for their position value and ensure consistency between them.
The action messages method we decided to use bases on the observation that in
our domain the data can only be changed by predefined user interaction. Sending
applied action notifications to the other components, allows each component to
decide themselves if they want to display an applied action. As for the creation of a
history the applied actions would need to be tracked either way, this does not create
much overhead.

This leads to our conclusion that regarding data integration for visualization tools,
Messages are an appropriate integration level on Wassermans scale.

3.6 Conclusion

Our goal was to transform our visualization ideas into working prototypes, showing
that the ideas can be realized. Additionally, we wanted to provide a foundation for
future implementations of the ideas.

We implemented ten visualization tools and extracted six interaction patterns from
these implementations which work well with the individuals as points design model.
Wewere able to show that displaying each individual as a point can serve as a design
method for several viable visualizations. It is possible to implement visualizations
with several thousand individuals represented as points in a way that, at all times,
enables users to interact with a single individual. We discussed the limitations
and benefits of using a random placement for the points and provided interaction
concepts well suited for visualization tools using the individuals as points design
model. We discussed our current exploration status on the various visualization
tools we implemented and provide starting points for further exploration. We
argue that integrating tools is relevant for achieving a high-level of explorability
and that instruments developed in the research of programming tools can be
applied to measure the integration of visualization tools. Using these instruments,
we evaluated our approaches to visualization tool integration and propose ideas
on which integration levels the integration of the presented visualization tools
should proceed. In the context of our project, the implementation process provided
insights regarding feasibility, challenges, and well-functioning approaches for the
further visualization tool development of Africa’s Voices. In the course of the
implementation process, multiple topics regarding our chosen platform Lively4, the
required Data-UI Mapping for interacting with individuals displayed as points, and
the technical requirements for enabling responsive visualizations emerged, which
will be discussed in the following chapters.

101

4 Using the Lively4 Platform with Its
Active Content Capabilities to Conduct
a Research-oriented Software Project

Working with a problem statement that is as vague as “designing interactive and
explorable visualizations that do not lose the individual” is challenging. The domain-
specific design space is enormous, the web browser prescribes the fundamental
technologies, but the technologies to build visualizations on top of it come in a
staggering variety. During the research work, we used the Lively4 system as our
primary tool. Lively4 is a self-supporting collaborative development environment
in the web browser which allows for conducting all of the following steps at a
single place. First, we had to come up with novel interaction ideas. We documented
and quickly prototyped those ideas with extended markdown capabilities in the
Lively4 wiki. We then had to pure the most promising ones in advanced integrated
prototypes using the web component standard. We shared the prototypes for testing
purposes with our project partner via Lively4 for them to be tangible. All of this was
done collaboratively in the Lively4 system in the web browser.

4.1 Introduction

The design of and research on novel visualizations that emphasize the individual
and interaction patterns that make exploring large amounts of data possible comes
with several challenges on different levels for the tools to use for this. First of all,
there is a vast and unexplored space of possible ideas and solutions that are all to be
discovered, tested, and evaluated according to technological feasibility and domain-
specific fit. Because the design space is broad, prototyping has to be conducted
rapidly to discover and focus on the most promising solutions quickly. Secondly, a
variety of different technologies can do the task, but come with disadvantages and
advantages, which have to be uncovered and evaluated. All of the findings have to be
documented comprehensively and expressively, as our project lays the foundation
for future research work. Thirdly, from a process point of view, there has to be proper
tooling for productive collaboration because we were seven people working together
on this research task.

Tomeet all those challenges, we chose the collaborative development environment
Lively4. Lively4 is an environment that can be accessed through the web browser.
It is built with HTML, CSS, and JavaScript and supports web standards such as
web components. Active wiki documents and extended markdown capabilities to

103

4 Using the Lively4 Platform with Its Active Content Capabilities

prototype ideas as well as tooling to support the conception and implementation of
advanced and modular prototypes made it effortless for us to switch from ideation
to implementation without leaving the environment. A development style of direct
feedback that is inherent to the Lively4 system allows for fast prototyping. In addition
to that, Lively4 offers proper support for real-time collaboration and building a
knowledge base as a team.

This chapter introduces the core concepts of the Lively4 development environment
(section 4.2) and how we used them to conduct our project. We explain how
markdown integration allows for active wiki content and prototyping with web
technologies (subsection 4.3.1). After that, we introduce the web component
technology, how it is integrated into Lively4, and how we used it to create advanced
integrated prototypes (subsection 4.3.2). We describe how the tools of the Lively4
system allow for working in a direct and responsive way (subsection 4.4.1)
to examine ideas and develop prototypes with a short feedback loop. We
describe the real-time collaboration process and its support in the Lively4 system
(subsection 4.4.2), as well as cover ways Lively4 uses versioning both locally and
remotely to enable building and working in a robust environment (subsection 4.4.3).

4.2 Lively4 System Introduction

In this section, we introduce the Lively4 environment. We explain the core concepts
and ideas behind Lively4, examine the structure of client-server communication, and
show the Lively4 client application and the Lively4 browser, which was the essential
tool for the course of the project.

4.2.1 Lively4 Core Concepts

Lively4 [47] is a collaborative self-supporting development environment in the web
browser [46]. We will break down this explanation in the following.

A development environment is used to create software. It offers some tooling that
enables and helps a developer to edit source code. Such tools are editors, debuggers,
andmanymore. Themain tool to edit source code in the Lively4 system is introduced
in section 4.2.3.1. Self-supportive development environments are environments that
can evolve at runtime. This means the tools to create the software are written and
run in the same environment as the software that is created. For example, developers
can edit the source code of the source code editor in the source code editor. What
happens when a user does that is defined by the system-specific implementation.
Self supportiveness has the advantage for developers to adapt their environment,
and quickly change system behavior to their needs without leaving it. One major
drawback of such a system is that programmers can introduce breaking changes
to the core components, which leaves the system useless for fixing the error. The
collaboration aspect enables many developers to work asynchronously in and on the
environment. We elaborate this in section 4.4. A wiki-like experience is established,
where users can author content that everybody else can see [44]. Changes to the

104

4.2 Lively4 System Introduction

Client

Sync Tool

Lively4 Browser

...

Server

lively-core

Lively4

file tree operations

lively4

lively-bp2019

BP2019RH1

lively4-auth

Browser File System

voices

lively-core

BP2019RH1

(A)

(B) git operations

(C)

GitHub

authentication

REST requests

Figure 4.1: Overview of Lively4 client application and Lively4 server architecture

systemmade by users affect all other users of the system [46]. Theweb browser refers
to the fact that the whole application is executed on the client-side in the browser
with minimal needs for a server. The details on that follow in subsection 4.2.2.

Lively4 is a rewrite of the Lively-Kernel [38] that keeps the main concepts. Lively-
Kernel was a research project at Sun Microsystems Labs whose initial goal was to
bring live programming concepts as they are applied, for example, in Smalltalk to the
web [38].Wewill explain some of the essential concepts now. The first one is runtime
programming [46]. With runtime programming, developers can alter the source
code of an object or script, and all instances that exist in runtime instantly execute
the new behavior. It enables short feedback loops, as developers can see the effect of
a change right away. The second and third essential concepts are explorability and
directness [50].With them, developers are capable of inspectingHTML elements and
the corresponding objects at runtime. They can examine the parent-child structure of
an application visible on the screen, and even alter the state and behavior of this very
instance directly [46]. Lively4 extends the live experience and ideas from Smalltalk
with native support for rich media content such as images, PDF files, or videos [38].

4.2.2 Server-client Structure

The Lively4 client application can be started by loading the start script of one of the
Lively4 core systems, which is located at the URL that can be seen in Figure 4.2.
This URL can be divided into two parts. The first one specifies the Lively4 server of
the application (A). The second one specifies the Lively4 core system, from which
the application boots, and the .html file, which contains the boot script (B). In

105

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.2: URL of Lively4 client application

this example, the Lively4 core system is lively-bp2019. The Lively4 server is a
public instance of a Lively4 server.

The Lively4 browser, which we explain in section 4.2.3.1, in a Lively4 client
application, can access the file tree that is served by the Lively4 server instance.
It communicates file tree operations via REST fetch calls to the server while using
custom methods and headers to communicate the intent of the operation Figure 4.1
(A). An example such a custom call is documented in the Lively4 wiki.1 Through
such requests, folders, and files can be created, edited, or deleted directly fromwithin
the Lively4 client application. There are no access or operation restrictions on who
can edit, create files on, or read files from the server in the first place.

The public lively4 server instance serves several top-level folders. The Lively4-
bp2019 folder contains a Lively4 core system. This folder contains all source files
for all the tools and components needed in the front-end to run the Lively4 client
application. It is a separate checkout of the lively-core core system repository
on GitHub, like Lively4-core, or Lively4-jens. Here we can see the self-
supporting aspect of Lively4. The sources of the core system that booted in the
client browser in Figure 4.2 can be examined and edited within the booted Lively4
system. Another folder is BP2019RH1. This folder holds no core system but serves as
the wiki folder of our project. We placed all the documentation and prototyping files
in this folder. It is also versioned on GitHub. The folder lively-server contains
the server’s sources, which makes the file tree operations on the core system or the
wiki folders possible.

A sync tool is accessible in the Lively4 client application, to operate the various
repositories on the server Figure 4.1(B). To do that, users have to authenticate with
an authorized GitHub account. The authentication can be done with the sync tool
and a lively-auth server (C). How to operate the sync tool is explained in detail
in section 4.4.3.2.

For reasons that we explain in section 4.4.1.3, we had a second private instance of
a Lively4 server called voices running next to the public one.

1https://lively-kernel.org/lively4/lively4-jens/doc/architecture/filelist.
md (last accessed 2020-07-30).

106

https://lively-kernel.org/lively4/lively4-jens/doc/architecture/filelist.md
https://lively-kernel.org/lively4/lively4-jens/doc/architecture/filelist.md

4.2 Lively4 System Introduction

Figure 4.3: Lively4 world loaded within the browser with a Lively4 browser, a
workspace, github sync tool, and another Lively4 tool launched

4.2.3 Workflows and the Lively4 Browser in the Lively4 Client
Application

When a session is loaded, users are presented with a Lively4 world (Figure 4.3).
A Lively4 world is a desktop-like workspace, where tools can be launched into
windows. Those windows can be resized, minimized, and rearranged. This way,
users can customize the development environment to their needs and likings. The
state of a Lively4 world, for example, tools that are currently used, position and size
of the windows that hold the tools, is stored in the local storage on the client machine.
Every time users make changes to the state of the lively-world, this state is persisted
in the local storage of the client machine. This way, it is ensured that when users
leave a Lively4 world by closing the browser tab and return, the state of the Lively4
world from the previous session is restored, and all windows are at the desired place.
With tools launched in windows, developers can explore or evolve the Lively4 core
system, or collaborate with other developers on writing new applications within
Lively4 and author the Lively4 wiki. We now introduce the Lively4 browser, which
is an essential tool for doing that.

4.2.3.1 Lively4 Browser
The Lively4 browser is implemented in the web component lively-container. A
launched browser can be see in Figure 4.4. Its UI mainly consists of four parts. The
first is the navigation bar at the top (A). Here we can enter the URL of a specific file
that resides on the server-side. The browser then fetches the file and displays it in
the second part of the UI: the actual content container (B). The content container
can display several types of files like images, PDF documents, draw.io figures, or
simple text files, such as .html or .md files. The queried file’s content can be viewed

107

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.4: Lively4 browser with index.md loaded in *edit* mode (background);
Lively4 browser with index.md loaded in *view* mode (foreground)

either in the edit mode (background) or in the view mode (foreground). Consider
browsing a markdown file as the Lively4 browser has loaded in the Figure. If the
browser is in edit mode, the raw source text of the markdown can be accessed in the
editor and edited with the help of basic text editor functionality. If the browser is in
viewmode, the content of the markdown file gets rendered. The Lively4 browser can
be switched from edit to view mode by a button in the third main UI area (C), the
actions panel next to the navigation bar. Depending on the browser’s mode, different
actions for a file or the directory, in which the file resides, can be applied. The fourth
main UI area is the file tree viewer next to the file content container (D). In this file
tree viewer, we can browse and explore the Lively4 systems and wiki folders and
files by hand. Basic file system operations like creating, renaming, or deleting can be
accessed with a right-click and applied to files or folders (E).

The Lively4 browser is the primary tool for advancing and exploring the wiki.
Using the Lively4 browser, users can navigate to any Lively4 server file without
leaving the client machine browser page. In Figure 4.5, we can see the lively-bp2019
core system booted (A), while two Lively4 browser instances access different files
in the Lively4 wiki (B, C).

A typical workflow of how to create and evolve the Lively4 wiki and core system
with the Lively4 browser is described in section 4.4.1.2.

4.3 Technical Capabilities of Lively4

As our project did not have a clear problem statement, our work first consisted of
exploring the design space of visualization. The outcome of this step is described

108

4.3 Technical Capabilities of Lively4

Figure 4.5: Lively4 client application loaded with two Lively4 browser windows
launched. Browser windows both access different files from the Lively4 server.

in section 2.2. We then shifted towards experimenting with different visualization
ideas and prototypes that we conceptualized during the design phase. Our third step
was to implement more advanced prototypes of the visualization ideas our project
partner liked the most. Those are reviewed in section 3.4. We wanted to make them
reusable for multiple contexts without us needing to implement them twice or more.

We documented which libraries and technologies worked best for us during all
these phases, how the implemented visualizations work, or - more towards the end
of the project - how our wiki is structured. The requirements of this process were
met with two technologies in Lively4. The first of which is the Lively4 wiki, in which
we mainly worked with markdown files. The second is the Lively4 web component
implementation, which lets us quickly built modular and reusable prototypes.

We describe both of these technologies in the following section, where we go into
detail on how they work on a technological level as well as give examples of how we
used them.

4.3.1 Markdown Files in the Lively4 Wiki

In this section, we focus on markdown, its underlying technology, and how Lively4
supports markdown.

4.3.1.1 The Markdown Technology
Markdown is, first of all, a syntax specification for formatting plain text [35]. It is
furthermore parsers that input markdown formatted plain text and output HTML
conform content, based on the syntax rules of the markdown specification. The
browser can then render this HTML output.

Markdown offers two features that helped us write more expressive and
comprehensive documentation. Firstly, markdown can also include any HTML
tags that are written in the plain markdown source in the output HTML tree. This

109

4 Using the Lively4 Platform with Its Active Content Capabilities

way, the expressiveness of markdown is extended to the expressiveness of HTML.
For example, it allowed us to add HTML <button> or <canvas> elements into
the documentation to make the wiki interactive. An example of such an interaction
can be seen in section 4.3.1.5. Secondly, with extended markdown syntax, code
snippets can be included in the text with three backticks before and after the code
snippet. The code is then rendered as a visually separated block in a mono-type
font (Figure 4.8 (A)). Some markdown parsers allow for syntax highlighting within
the code block when the code snippet is tagged with the respective language. These
features allow us to showcase code snippets.

4.3.1.2 Lively4 Markdown Implementation
Lively4 uses the markdown-it2 parser implementation, that converts CommonMark3

Markdown to the respective HTML representation. CommonMark Markdown is a
definition of markdown, that aims to standardize the partly ambiguous syntax of the
original markdown. Lively4 adds the markdown-it-attrs4 plugin to the markdown-it
parser, which allows for specifying classes or attributes to any markdown element.
This feature can be seen in the listing that generates the markdown in Figure 4.8,
where the class chartExampleLiveData is added to the code block (line 3). Those
classes or attributes are attached to the rendered HTML elements as classes or
attributes.

Lively4 not only enables regular CommonMark markdown file parsing but
enriches the markdown functionality with several additional capabilities that allow
for a more active wiki experience. Those, as well as the markdown parsing itself,
are implemented in a dedicated markdown component5 in the Lively4 core system.
Some of the additional functionalities that helped us and demonstrate the active
content capabilities of Lively4 are now introduced by example.

4.3.1.3 Documenting Our Architecture
The following markdown snippet is an extract from our documentation of the Tab
View prototype (section 3.5.2).

1 ## Indiviuals Visiualization
2 ### Basic Structure
3 #### UI
4 ![UI structure](component-view.png)
5
6 The application is build with Lively4 components. The components

are stuck together through the components templates.
7
8 #### Backend
9 ![Basic Class Diagram](2020-04-07-class-diagram.drawio)

2https://github.com/markdown-it/markdown-it (last accessed 2020-07-24).
3https://commonmark.org/ (last accessed 2020-07-24).
4https://github.com/arve0/markdown-it-attrs (last accessed 2020-07-24).
5https://lively-kernel.org/Lively4/Lively4-bp2019/src/components/widgets/
lively-markdown.js (last accessed 2020-07-24).

110

https://github.com/markdown-it/markdown-it
https://commonmark.org/
https://github.com/arve0/markdown-it-attrs
https://lively-kernel.org/Lively4/Lively4-bp2019/src/components/widgets/lively-markdown.js
https://lively-kernel.org/Lively4/Lively4-bp2019/src/components/widgets/lively-markdown.js

4.3 Technical Capabilities of Lively4

Figure 4.6: Rendered markdown with opened edit iFrame for the draw.io figure

10
11 The applications front-end view can approximately be mirrored in

the back-end structure of the classes, since every component has
its template, that represents its front-end as well as its

implementation class, that contains business logic in the back-
end.

The document uses standardmarkdown syntax for structuring its content. There is
an overview image embedded aswell as a draw.io figure. For simplicity, we exclude
the overview image from the renderedmarkdown (Figure 4.6). The draw.io sketch
of the architecture hierarchy is displayed as a regular figure. If we want to extend or
alter the architecture sketch, we can open a Lively4 iFrame draw.io edit window
(2) right from the documentation page (1). This way, extending and keeping the
wiki up to date is direct and quick.

4.3.1.4 Including Code Evaluation
Consider the following markdown snippet, that resides in a small in our wiki.

1 ## Drop-down render text
2
3 Gender: <select id=”x_axis_grouping_select”></select>
4 <button id=”x_axis_grouping_button”>Group</button>
5
6 <script>
7 let districtNames = [”a”, ”b”, ”c”]
8 var select = lively.query(this, ”#x_axis_grouping_select”);
9 for (let district of districtNames) {

10 select.options[select.options.length] = new Option(district);

111

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.7: Rendered markdown with executed scripts and native HTML elements
embedded

11 }
12
13 lively.query(this, ”#x_axis_grouping_button”).addEventListener(”

click”, () => {
14 console.log(select.options[select.selectedIndex].value)
15 })
16
17 </script>

The rendered result can be seen on the left side in Figure 4.7). The HTML elements
from the markdown source code get rendered as well. Lively4 allows us to include
the script tag and its JavaScript content in the markdown source code. The JavaScript
source code inside the HTML script tags gets evaluated. We can tell because the
dropdown is filled (1), and when clicking on the grouping-button, a message in the
developer console gets displayed containing the current selection (2).

We can see another Lively4 feature in the JavaScript code. Line 13 contains a static
query() function call on the Lively4 class. The Lively4 class gets imported from
./src/client/lively.js during the boot process of the Lively4 application on
the client-side. It then is available in the global document scope and, thus, inside the
script of the listing. The Lively4 class implements a variety of static helper functions
that developers can use anywhere in the Lively4 client application. In particular, it
implements a query function. This query function takes the context of the current
script as well as a CSS selector. It then queries the DOM nodes that the given
selector identifies from the level of the script tag. We can use lively.query()
for convenience because it is capable of finding elements that are hidden inside
the shadow DOM of a web component as well (subsection 4.3.2. Calling the
getElementById() on the document object would not find elements inside a
shadow DOM.

4.3.1.5 Making an Evaluation Interactive
The following markdown code snippet is an excerpt of our evaluation6 of the
visualization library chart.js. It shows the markdown code of a demo usage example.
Its output can be seen in Figure 4.8)

6https://lively-kernel.org/Lively4/BP2019RH1/doc/research/libraries/
chartJS.md (last accessed 2020-07-26).

112

https://lively-kernel.org/Lively4/BP2019RH1/doc/research/libraries/chartJS.md
https://lively-kernel.org/Lively4/BP2019RH1/doc/research/libraries/chartJS.md

4.3 Technical Capabilities of Lively4

1 ## Examples
2 ### Plot live data update
3 ```JavaScript {.chartExampleLiveData}
4 import Chart from ”https://cdnjs.cloudflare.com/ajax/libs/Chart.js

/2.8.0/Chart.bundle.js”;
5
6 var ctx = this.parentElement.querySelector('#liveUpdateData').

getContext('2d');
7 var chart = new Chart(ctx, {
8 type: 'line',
9 data: {

10 labels: [0,1,2,3,4,5,6,7,8,9],
11 datasets: [{
12 label: ”Random Data”,
13 backgroundColor: 'rgb(255, 255, 255, 00)',
14 borderColor: 'rgb(255, 99, 132)',
15 data: [0,1,2,3,4,5,6,7,8,9]
16 }]
17 },
18 options: {}
19 });
20
21
22 function randomizeDataOnChart(){
23 ...
24 }
25
26 function generateRandomData(){
27 ...
28 }
29
30 function updateChartWithNewData(chart, newData){
31 ...
32 }
33
34 let button = lively.query(this, '#randomizeButton');
35 button.addEventListener(”click”, randomizeDataOnChart);
36 ```
37
38 <script>
39 import boundEval from ”src/client/bound−eval.js”;
40 var source = lively.query(this, ”.chartExampleLiveData”).

textContent
41 boundEval(source, this).then(r => r.value)
42 </script>
43 <canvas id=”liveUpdateData”></canvas>
44 <button id=”randomizeButton”>Randomizee meee</button>

This snippet contains several markdown and Lively4 features that we explain step
by step in the following:

113

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.8: Rendered markdown with codeblock and chart on canvas

114

4.3 Technical Capabilities of Lively4

Imports in Script Tags
1 import boundEval from ”src/client/bound−eval.js”;

The first line of the JavaScript inside the script HTML tag, uses an import
statement, where the bound-eval core module of Lively4 is imported as a
dependency. The import statement and its corresponding export statement were
first introduced in the ES6 JavaScript language specification.7 They allow for creating
modular applications by importing JavaScript classes, functions, or constants into
different files and contexts. Lively4 enables the scripts in markdown files to use
advanced syntaxes, such as import statements, active expressions, or async-await
constructions. In this example, an async function is exported in bound-eval.js.
The function is now available with the boundEval() function call.

Evaluation of JavaScript Code Snippets
1 boundEval(source, this).then(r => r.value)

The JavaScript code snippet from line 4 to line 36 is rendered as a separate code
block with syntax highlighting as defined in the markdown syntax specification
Figure 4.8) (A). It is also evaluated through the JavaScript code within the script
tags (line 39 to line 42). The Lively4 core module, bound-eval, makes this possible.
It gets the raw source code extracted from the rendered code block via CSS selector
annotation and lively.query(), as well as the context in which the raw source
code should be executed. The boundEval() implementation allows for an execution
of JavaScript that includes module imports, something the JavaScript in-build
function eval() can not. The execution of advanced JavaScript code is necessary
because we want to import the chart.js library from a Content Delivery Network8 at
the top of the evaluated code.

Advantages of the Lively4 Markdown Features
The listed features, combined with the markdown and Lively4 capabilities

mentioned above, make documentation more expressive and interactive.
Readers of the documentation get provided with a code demo of how to import,

initialize, and configure a chart with chart.js and how this chart is displayed in the
browser. They can see the outcome of this code directly underneath it in the form
of the actual chart on the canvas element (Figure 4.8)(B). They do not have to
look at a screenshot whose content might not even fit the code on top of it. From
the perspective of developers, this has another advantage. The code presented in
the wiki also results in the chart presented in the canvas element at the end of the
markdown snippet. This single source of truth prevents the possible slow divergence
of two code versions and preserves the documentation’s integrity.

7https://exploringjs.com/es6/ch_modules.html#sec_basics-of-es6-modules
(last accessed 2020-07-26).

8https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
(last accessed 2020-07-26).

115

https://exploringjs.com/es6/ch_modules.html#sec_basics-of-es6-modules
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/

4 Using the Lively4 Platform with Its Active Content Capabilities

The documentation also has an interactive notion in the form of a button (C).
The button gets its behavior from the code snippet that is evaluated, so readers can
understandwhat gets triggeredwith the button because it is visible in the code block.
Readers become users of the documentation. They can then experience the outcome
of the button press live in the rendered chart. In this example, the chart data gets
randomized, and the line in the chart re-drawn.

This way, we can give a direct sense of how animations look and feel not only for
chart.js, but for all visualization libraries we tested.

4.3.1.6 Client Side Wiki
Due to the client-side wiki architecture of Lively4, which is explained in detail in
section 4.4.1.2, for all the examplesmentioned above, users could alter themarkdown
source code instantly by switching the browser to edit mode. If they want to see how
another configuration affects the chart’s look, or how the chart performs with other
data, they can use the Lively4 browsers editmode and alter the code in themarkdown
sources. After finishing the editing process and saving the file, the changes can be
seen rendered right away in the same Lively4 browser window.

4.3.2 Web Components in Lively4

Now we are going to elaborate on the technologies that make up web components.
We explain how the web components standard is implemented and supported in
Lively4 and how we used this implementation to create more complex prototypes
for Africas Voices.

4.3.2.1 The Web Component Technology
The goal of web components is to giveweb developers the ability to write custom and
complex UI elements and define their behavior as modular, isolated, and re-usable.
The web components technology consists mainly of three web standards,9 which are
used together. Those are custom HTML elements, shadow DOM, and templating
and slotting. In the following, we explain each of them.

Custom HTML Elements
The web standard allows for defining custom HTML elements10 with custom

behavior that can then be used repeatedly throughout the website. A custom element
must be registered in the window’s custom element registry with the following
function call:

1 window.customElements.define('custom−element', CustomElement);

9https://developer.mozilla.org/en-US/docs/Web/Web_Components (last accessed 2020-
07-22).

10https://developers.google.com/web/fundamentals/web-components/
customelements (last accessed 2020-07-22).

116

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/customelements

4.3 Technical Capabilities of Lively4

This method needs two arguments. The first one being a DOMString, which
represents the tag name of the custom element. With this name, the element can
be embedded in the DOM later. The second argument is the JavaScript class, which
defines the behavior of the object. The class object is written using the standard
ES201511 class syntax. A basic CustomElement JavaScript class could look like the
following.

1 class CustomElement extends HTMLElement {
2 constructor() {
3
4 super();
5 //additional custom functionality here
6 var text = this.getAttribute('elem−text');
7 this.innerHTML = text;
8 }
9 }

The CustomElement class object has to inherit from the predefined
HTMLElement12 interface object. This inheritance gives the CustomElement all
necessary standard HTML element functionality like, for example, a style attribute.
Within the constructor, the constructor of the inherited class has to be called. Custom
behavior can also be defined here. In this example case, the element can query
the attribute elem-text. An instance of CustomElement is the HTML <custom-
element> element. The attribute of the element can be accessed by calling the
standard JavaScript getAttribute function on the instance object itself. The value
of the inner HTML can be defined by setting the innerHTML property of the
JavaScript object. The usage of the custom element could look like the following:

1 <custom-element elem-text=”this is an important message”></custom-
element>

Shadow DOM
To give the HTML <custom-element> element not only custom behavior but

also the ability to customize the DOM structure and style of the element in an
encapsulatedway, the shadowDOM13 technology can be used. ShadowDOM allows
a hidden DOM to be attached to an element.

Figure 4.9 (Based on Mozilla Developer Network)14) shows how the shadow
DOM is separated from the actual document tree (left) and how it gets integrated
for rendering in the browser (right). A shadow DOM tree starts with a shadow root
attached to the shadow host in the actual DOM tree of the document.

11http://www.ecma-international.org/ecma-262/6.0/#sec-class-definitions
(last accessed 2020-07-23).

12https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
(last accessed 2020-07-22).

13https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_
DOM (last accessed 2020-07-23).

14https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_
DOM (last accessed 2020-07-23).

117

http://www.ecma-international.org/ecma-262/6.0/#sec-class-definitions
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM

4 Using the Lively4 Platform with Its Active Content Capabilities

DOM

Shadow DOM

shadow
host

shadow
root

shadow
host

DOM for rendering

Shadow DOM

Figure 4.9: Shadow DOM in relation to the document DOM

A shadow DOM with its root can be attached to every HTML element. Especially
the CustomElement can be enriched with this functionality. For this, the shadow
root has to be attached to the element in the constructor of CustomElement. The
HTML <custom-element> element acts as the shadow host for the shadow DOM.
The shadow DOM tree can be built up with the standard JavaScript API for DOM
manipulation (line 7 to line 9). An example can be seen in the following listing.

1 class CustomElement extends HTMLElement {
2 constructor() {
3 super();
4 //build up shadow DOM
5 let shadowRoot = this.attachShadow({mode: 'open'});
6 var paragraph = document.createElement('p');
7 paragraph.innerHTML = ”this is some super reusable HTML”
8 shadowRoot.appendChild(paragraph);
9 // etc.

10 }
11 }

Themode of the shadow root (line 6) defines whether the element’s shadowDOM
is accessible with JavaScript that runs in the context of the surrounding document.
Shadow DOM functionality allows for encapsulating a custom markup structure
with custom functionality behind the reference of a customHTML element. However,
the approach of building complex DOM trees that make use of classes, ids, or styles
just with JavaScript can quickly clutter the code of the class that defines the custom
element. That is the problem where the third web standard comes into play.

118

4.3 Technical Capabilities of Lively4

Templating and Slotting
When the HTML <template> element is used in the DOM, it and its content

are not rendered but can still be referenced with JavaScript.15 The following listing
shows an example of a template.

1 <template id='custom-template'>
2 <style>
3 p {
4 color: red;
5 }
6 </style>
7 <p>
8 This is some super reusable HTML
9 </p>

10 </template>

Since an HTML <template> element can be referenced, it can be queried in the
constructor of the CustomElement, its content extracted and attached to the shadow
root. This way, the DOM structure does not have to be built with JavaScript. Another
benefit of this is that the shadow DOM can have its own encapsulated styling, which
is embedded in the way regular styling is in the regular DOM tree (line 3 to line 5).

1 class CustomElement extends HTMLElement {
2 constructor() {
3
4 super();
5 //attach shadow DOM from template
6 let template = document.getElementById('custom−template');
7 let shadowRoot = this.attachShadow({mode: 'open'});
8 shadowRoot.appendChild(template.content.cloneNode(true));
9 }

10 }

An important point here is that a deep clone16 of the DOM tree, which resides
inside the template, has to be attached to the shadow root of the <custom-element>
since the content instance inside the HTML <template> element is not rendered
(line 8).

Right now, only one configuration of this reusable DOM subtree can be used. If
the custom styling, which this element has, should be reused at another place in the
document, which needs different text to be rendered inside the paragraph, this is not
possible. The text is hardcoded inside the web component’s template. The solution
to this is the HTML <slot> element. Those elements function like a placeholder,
which can be filled from the outside. The following listing presents an example that
extends the template from above.

15https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_
templates_and_slots (last accessed 2020-07-23).

16https://developer.mozilla.org/en-US/docs/Web/API/Node/cloneNode
(last accessed 2020-07-23).

119

https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_templates_and_slots
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_templates_and_slots
https://developer.mozilla.org/en-US/docs/Web/API/Node/cloneNode

4 Using the Lively4 Platform with Its Active Content Capabilities

1 <template id='custom-template'>
2 <style>
3 p {
4 color: red;
5 }
6 </style>
7 <p>
8 <slot name=”first−slot”>
9 This is some reusable, replaceable text

10 </slot>
11 </p>
12 </template>

To fill the slot, some HTML inside the <custom-element> can be included in
the regular document tree. The slot attribute has to be specified with the name
of the slot in the template of the custom element to link the new HTML to the slot.
The following listing shows how HTML code can replace the placeholder from the
outside.

1 <custom-element>
2 This is some replacing text
3 </custom-element>

Those three technologies allow for buildingweb components that are encapsulated
in their function and form. They can remain configurable from the outside and are
reusable throughout the document. We now look at how Lively4 integrates the web
component technology.

4.3.2.2 Web Components in Lively4
Web components are the very basic building blocks of Lively4. Lively4 not only
supports web components but also enhances the experience when creating and
working with them. The features Lively4 built around web components are
implemented in the component-loader17 module of the Lively4 core system. We
explain some of those features in the following paragraphs.

Creating a Web Component in Lively4
When we want to create a web component, Lively4 helps by abstracting all the

manual steps that come with using the web component standard. These steps are:
registering the component as a custom element, creating the shadow root, and
appending the shadow DOM, which would have to be cloned from a template to the
shadow root.

We only have to specify one .html file and one .js file. Those files have to have
the same name, which is going to define the DOM string. With the DOM string, the
component can be used in HTML code later on. The JavaScript file has to export
the class that implements the behavior of the new web component. A Lively4 web

17https://lively-kernel.org/Lively4/Lively4-bp2019/src/client/morphic/
component-loader.js (last accessed 2020-07-23).

120

https://lively-kernel.org/Lively4/Lively4-bp2019/src/client/morphic/component-loader.js
https://lively-kernel.org/Lively4/Lively4-bp2019/src/client/morphic/component-loader.js

4.3 Technical Capabilities of Lively4

component differs from the standard because it has to implement an initialize()
function that functions as the constructor of the component. TheHTML <template>
element inside the HTML file has to have the new web component’s DOM string as
the value of its id attribute.

The component-loadermodule then takes care of registering the newly created
web component. The component-loader needs to be providedwith theDOMstring of
the web component, to register it. It then queries an internally kept list of folders for
two files that are named the same as the web component. This list of folders, which
are mainly subfolders of the currently used Lively4 core system, can be extended
temporarily. We used this feature to keep the source code of our web components
inside our wiki folder, and only added this folder to the component-loaders
search list when we needed the web components. The component-loader then
extracts the class from the JavaScript file. It extracts the template from the HTML
file and, with both of those objects, registers the web component using the standard
JavaScript API that was mentioned in section 4.3.2.1.

Using Web Components in Lively4
The process of registering a web component is mostly not triggered manually.

Instead, it is executed when the web component is needed. To understand when
web components are registered, we have to look at how they get instantiated.
There are two ways web components are instantiated in Lively4. The first one is
programmatically. With the static create() function of the global lively class,
we can dynamically create an instance of a web component in any JavaScript snippet
and append it via the standard JavaScript API to existing DOM elements. That
allows users to create web components even in the code of other web components.
The create() function uses the component-loader internally. The second way
of instantiating a web component is by explicit using the HTML tag of the web
component in an HTML markup. The tag can be inside a markdown file, as
markdown supports native HTML, or in the template of another web component.
The later allows for deeply nested, reusable structures.

The Lively4 UI is built with web components, which can be seen in Figure 4.10.
Every Lively4 browser is an instance of the lively-container component (B), which
itself is composed of several other web components, such as the navbar on the left
(C) and the markdown container on the right (D). The container itself and every
other tool that can be launched in a Lively4 world, are launched inside an instance
of the Lively4-window component (A).

4.3.2.3 Building Visualization Prototypes with Web Components
We now show how we used web components to polish ideas we had during the
ideation phase and build advanced prototypes. The focus of those was to combine
different visualization ideas we had tested with markdown scripting and to make
them reusable.

121

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.10: Lively4 browser web component architecture visible in the DOM

Venn Widget Nesting
Consider the following part of a template of the component bp2019-venn-

widget.18 This component was initially created for the Tab View prototype. The
prototype gets explained in detail in section 3.5.2. The component was designed
to encapsulate the Venn diagram. More information on the Venn diagram and its
concepts can be read in section 3.4.3.

1 <template id=”bp2019−venn−widget” >
2 <style>
3 ...
4 </style>
5 <div id=”venn−widget−root−container” class=”canvas−widget−root−

container fluid−container”>
6 <div class=”flex−row height−100”>
7 <div id=”venn−widget−control−widget−container”>
8 <bp2019-venn-control-widget id=”venn−widget−control−widget”

>
9 </bp2019-venn-control-widget>

10 </div>
11 <div id=”venn−widget−canvas−container” class=”canvas−widget−

canvas−container”>
12 <canvas id=”venn−widget−canvas” width=”1000” height=”600”><

/canvas>
13 ...
14 </div>
15 </div>
16 </div>
17 </template>

18https://lively-kernel.org/Lively4/BP2019RH1/components/bp2019-venn-
widget.html (last accessed 2020-07-15).

122

https://lively-kernel.org/Lively4/BP2019RH1/components/bp2019-venn-widget.html
https://lively-kernel.org/Lively4/BP2019RH1/components/bp2019-venn-widget.html

4.3 Technical Capabilities of Lively4

The component essentially consists of the canvas on which the dots are drawn
(line 12)Figure 4.11(B) and the bp2019-venn-control-widget component (line
8). This component encapsulates the look and functionality of interactive control
panels to alter the visualization (A).

Part of the class’s implementation that defines the bp2019-venn-widget
component can be seen in the following listing. This class holds references to
both the canvas and the bp2019-venn-control-widget instance (line 7, line 10).
These references allow for calling functions directly on those objects. In this example,
the data that is going to be visualized is propagated to the control widget (line 17).

1 import VennDiagram from ”../src/internal/individuals−as−points/venn
/venn−diagram.js”

2
3 export default class VennWidget extends Morph {
4 async initialize() {
5 this.listeners = []
6 this.name = ”venn−widget”
7 this.controlWidget = this.get(”#venn−widget−control−widget”)
8 this.controlWidget.addListener(this)
9 ...

10 this.canvas = this.get('#venn−widget−canvas')
11 this.vennDiagram = new VennDiagram(this, this.canvas...)
12 ...
13 }
14
15 async setData(individuals) {
16 this.individuals = individuals
17 this.controlWidget.initializeAfterDataFetch(this.individuals)
18 }
19
20 _addThemeGroup(addedAction){
21 this.vennDiagram.addThemeGroup(
22 addedAction.uuid,
23 addedAction.name,
24 addedAction.themes,
25 addedAction.color)
26 }
27 }

Imports can be used to modularize applications further and take full advantage
of the JavaScript module system. In this case, the VennWidget class only takes
care of the visual representation and wrapping of all the elements of the Venn
Diagram prototype, while all the domain-specific logic is implemented in a
separate VennDiagram class. The VennWidget therefore holds an instance of
a VennDiagram (line 11) to which it propagates the canvas on which the data needs
to be drawn and actions, which come from the control-widget object (line 20 to line
26). Actions are explained in detail in section 3.3.

123

4 Using the Lively4 Platform with Its Active Content Capabilities

Individual Visualization Slotting
The VennWidget is part of the Tab View prototype. The rough structure of this

prototype is defined in the bp2019-individual-visualization19 component.
This component acts as the root element of the Tab View prototype. The following
code listing presents parts of its HTML template. The instantiated prototype can be
seen in Figure 4.11.

1 <template id=”bp2019−individual−visualization” >
2 ...
3 <div id=”individual−visualization−root−container” class=”

container−fluid”>
4 ...
5 <div id=”canvas−inspector−row” class=”row”>
6 <div id=”canvas−tab−view−container” class=”col−10”>
7 <bp2019-tab-widget id=”canvas−tab−widget”>
8 <div id=”tab−buttons” slot=”tab−buttons” class=”p−1”>
9 <div data-content-id=”bp2019−map” class=”tab”>Map</div>

10 <div data-content-id=”bp2019−y−axis” class=”tab”>XY
Axis</div>

11 <div data-content-id=”bp2019−venn−diagram” class=”tab”>
Venn</div>

12 </div>
13 <div id=”tab−contents” slot=”tab−contents” class=”p−1”>
14 <bp2019-map-widget id=”bp2019−map”></bp2019-map-widget>
15 <bp2019-y-axis-widget id=”bp2019−y−axis”></bp2019-y-

axis-widget>
16 <bp2019-venn-widget id=”bp2019−venn−diagram”></bp2019-

venn-widget>
17 </div>
18 </bp2019-tab-widget>
19 </div>
20 ...
21 </div>
22 ...
23 </div>
24 </template>

The template uses the bp2019-tab-widget, which is another web component
we created (line 7). This component encapsulates the styling and behavior of a tab
view and contains no domain-specific logic. In the first slot (line 8 to line 12), tabs
can be registered Figure 4.11(C). In the second slot (line 13 to line 17) the content,
that should be visible, when the corresponding tab is clicked, is inserted. We used
the tab view here to create a tab for each visualization prototype (line 14 to line 16).
Especially the bp2019-venn-widget component gets instantiated here. The tab
view component was also used to structure different control panel views throughout

19https://lively-kernel.org/Lively4/BP2019RH1/components/bp2019-individual-
visualization.js (last accessed 2020-07-15).

124

https://lively-kernel.org/Lively4/BP2019RH1/components/bp2019-individual-visualization.js
https://lively-kernel.org/Lively4/BP2019RH1/components/bp2019-individual-visualization.js

4.3 Technical Capabilities of Lively4

Figure 4.11: UI of the Tab View prototype divided according to the web component
structure

the control widgets of every visualization, that was part of the Tab View prototype
(D).

Reusing the Visualization Components
Our project partner wanted to see the visualizations, which we built as web

components, next to each other, and wanted to be able to create many visualizations
of the same type with different controls applied. For this reason, we built the Tree
View prototype as a new way of combining visualizations. More on the concept of
this prototype can be read in section 3.5.3. It was no web component on its own but
was implemented as a script in a markdown file.20 It yielded a completely different
architecture but had to use the same visualizations as the Tab View prototype at its
core. We were able to use the same visualizations without copy-pasting or rewriting
the code by instantiating the web components we used for the all in one prototype.
The components had to be programmatically created because users should be able
to generate new instances of the visualizations in the exploration process. The
programmatic creation of web components can be seen in the following listing. Lines
1 to 10 shows the code of themenu users is presentedwith. The UI of themenu can be
seen in Figure 4.12. When clicked (1), the menu items ultimately trigger the creation
of the visualization component (2), which gets wrapped in a prototype specific pane

20https://lively-kernel.org/Lively4/BP2019RH1/prototypes/panes/connection-
spike.md (last accessed 2020-07-16).

125

https://lively-kernel.org/Lively4/BP2019RH1/prototypes/panes/connection-spike.md
https://lively-kernel.org/Lively4/BP2019RH1/prototypes/panes/connection-spike.md

4 Using the Lively4 Platform with Its Active Content Capabilities

component (lines 12 to 33). In a global control menu, the tab view component is
used again (A).

1 async function openChildTypeMenu(parentPane, evt, selection = false
, dataSource = false) {

2 ...
3 const menuItems = [
4 ['New Map', () => createNewChildPane(parentPane, 'bp2019−map−

widget', evt)],
5 ['New XY Diagram', () => createNewChildPane(parentPane, 'bp2019

−y−axis−widget', evt)],
6 ['New Statistic', () => createNewChildPane(parentPane, 'bp2019−

statistic−widget', evt)],
7 ['New Venn Diagram', () => createNewChildPane(parentPane, '

bp2019−venn−widget', evt)]
8]
9 ...

10 }
11
12 async function createNewChildPane(parentPane, childComponentName,

evt) {
13 ...
14 let childVisualization = await createNewVisualization(
15 childComponentName,
16 ...
17)
18
19 let childPane = await createNewPane(
20 childVisualization,
21 childComponentName,
22 childPosition,
23 ...
24)
25 ...
26 return childPane
27 }
28
29 async function createNewVisualization(componentName, ...) {
30 let visualization = await lively.create(componentName)
31 ...
32 return visualization
33 }

4.3.3 Markdown Vs. Web Components in Lively4

We are now going to distinguish the two technologies from a usage perspective
and point out differences in their life cycle. Markdown and web components are
heavily entwined in Lively4. Every markdown source that is accessed via the Lively4

126

4.3 Technical Capabilities of Lively4

Figure 4.12: Workflow for dynamically creating new web component instances in
the UI of the Tree View prototype

browser is rendered in a lively-markdown21 component Figure 4.10 (4). Such
components lay the foundation on which the Lively4 wiki with its markdown files
can be explored without leaving the client’s browser window. However, it is also
possible to instantiate web components in a markdown source since it allows for
using native HTML elements and scripting. The embedding can be seen in the Tree
View prototype, where all panes are based on a lively-window instance, which is
placed in the DOM of the rendered markdown (Figure 4.12).

4.3.3.1 Usage
Markdown and scripting in markdown files are for bringing documentation to life,
or prototyping ideas and testing things out. That is what the enhancements in
Lively4 regardingmarkdown aremeant for. Lively4 offers the freedom to usemodern
JavaScript syntax like async functions towrite expressive scripts. Much of the process
of editing a wiki directly and responsively is taken care of and automated (section
4.4.1.2). The user can browse a markdown file. The file is received by the client
application and gets rendered with no additional steps that transform or preprocess
it in a form altering way. If users want to change something, for example, alter script
behavior, they can edit the document in edit mode and sees the result of the change
right after saving the file and switching the browser back to view mode. The change

21https://lively-kernel.org/Lively4/Lively4-bp2019/src/components/widgets/
lively-markdown.js (last accessed 2020-07-16).

127

https://lively-kernel.org/Lively4/Lively4-bp2019/src/components/widgets/lively-markdown.js
https://lively-kernel.org/Lively4/Lively4-bp2019/src/components/widgets/lively-markdown.js

4 Using the Lively4 Platform with Its Active Content Capabilities

that was introduced to the source file gets automatically persisted on the server.
The markdown implementation in Lively4 has an inherent drawback. When writing
more and more JavaScript code to integrate more features in the ideas that reside
in the markdown file or having to build up substantial HTML structures, the code
quickly gets cluttered, which yields bad maintainability.

As the problem space gets more complex than simple interaction pattern and
solution strategies narrow down, so we do not have to prototype different ways
but need one complex solution, web components play out their strengths. A web
componentDOMelement is represented in a JavaScript object, which is an instance of
a well-defined class implementation. This class usually resides in a single JavaScript
module. In this module, imports can be used to modularize the code further and
divide it into responsibilities for different functions. Within the shadow DOM
template, other web components can be used to modularize form and function.
More engineering thoughts can go into actual application software architectures,
and problems can be abstracted into reusable solutions. These advantages comewith
several disadvantages. To make sure such encapsulated elements work in the context
of the HTML and JavaScript standards, they have to be registered as explained above
(section 4.3.2.1). The source code of a web component is split into two code files that
are processed by the client browser during the registering to something that we can
use as a component in HTML code. This step yields an additional indirection from
the source code to the result makes it harder to navigate from the end representation
of a rendered web component template and its behavior to the source code. The
rendered instances can neither be altered as easily by users as the markdown source
nor can the instant feedback behavior be experienced. The web component becomes
a polished and sealed experience where only the encoded behavior is allowed.

The transition from markdown to web components is a natural progression.
Concepts emerge and can be poured into an application. Scripts of a markdown file
can be decluttered by extracting functionality into standalone JavaScript modules.22
As a next step, HTML structures can be refactored into templates and combined
with functionality to form reusable web components. Our project went through this
process, as already described in the introduction of this chapter (section 4.1).

4.3.3.2 Life Cycle
The other level on which the two technologies can be differentiated in Lively4 is the
context. Markdown files make up large parts of the Lively4 wiki. More generally
speaking, the Lively4 wiki consists of files that are stored on the server, get requested
by the Lively4 client application, and displayed in the front-end. When these files are
altered, their content gets written back to the server file system and is re-rendered in
the front-end. Lively4 web components, although defined through files, are created
only in the Lively4 client application. They are registered in the first place for the
usage in the client browser that currently needs them to be rendered. Nothing that
defines an instance of a web component gets stored on the Lively4 server. Lively4

22https://exploringjs.com/es6/ch_modules.html#sec_basics-of-es6-modules
(last accessed 2020-07-23).

128

https://exploringjs.com/es6/ch_modules.html#sec_basics-of-es6-modules

4.4 Collaborating in Lively4

Figure 4.13: The Tree View prototype markdown view before and after reloading the
Lively4 browser

provides mechanisms, where the configuration of instances of web components can
be persisted in the local storage of the client’s browser. That is why the state of a
Lively4world, for example, the position and size of thewindows, can be restored and
bootstrapped back up once the client browser reloads the page. The web components
state is lost after a reload of the client browser, when not using the tools Lively4 offers
to persist its configuration of it locally. This state loss also holds when reloading the
Lively4 browser on a resource that contained web components, which can be seen
in the following scenario.

The context differences can be showcased on the Tree View prototype application.
The inner workings and concepts behind this prototype can be read in section
3.5.3.Figure 4.13 (1) shows the Tree View prototype’s markdown in view mode after a
user opened some visualizations and connected them.

The visualizations and their wrapping panes have been authored in the viewmode
of the Lively4 browser. That means the components that make up those visualization
panes are added dynamically to the rendered DOM of the parsed markdown file
temporarily. They are not persisted in the source code of the markdown file or any
other configuration file. What is expressed in the source code of the markdown file
is the creation of the pink data source window on file load. As a result, only that
window is rendered after the file is reloaded (2). The application state that was
configured previously is lost.

4.4 Collaborating in Lively4

To this point, we only discussed how a single user in a single Lively4 session could
utilize the technologies Lively4 integrates. In this section, we look at how the wiki of
Lively4 functions and how users can share changes on the Lively4 wiki with other
collaborators. Since we where a team of seven people working synchronously in the

129

4 Using the Lively4 Platform with Its Active Content Capabilities

Lively4 wiki, we also cover how real-time collaboration is supported. In the end, we
take a look at versioning locally and via GitHub.

4.4.1 The Lively4 Wiki Workflow

We explain what principles lay behind a wiki in general, and how Lively4 integrates
those to a wiki-like experience.

4.4.1.1 Wiki Principles
In his pursuit to create a culture of ideation and knowledge-sharing in his company,
Ward Cunningham defined what attributes a system -the world’s first wiki-, that
supports this process should have [20]. We name a few here and show how Lively4
implements them: The wiki experience should be an open and organic process. The system
should not stop at presenting polished, sealed, and finished content, but allow
manipulation by anyone who wishes to do that. Lively4 supports this by allowing
anyone to edit a file in the Lively4 browser without any authorization. Everyone
that knows the URL of the public Lively4 server and a Lively4 core system23 can
start to contribute. There are reasonable exceptions to this rule in Lively4, which are
described in section 4.4.1.3. It should be easy to use. The rules and syntax to create text
should work for non-programmers as well. The markdown syntax used in Lively4
was designed to support this goal. Also, it should be incremental and linked. That means
pages in the wiki can cite and link to other pages. This way, the wiki can be explored,
and connections between knowledge or ideas are drawn. Lively4 emphasizes the use
of markdown links to achieve that.

4.4.1.2 Working in the Client Side Wiki
To understand how the client-side wiki experience is realized, consider the process
in Figure 4.14 (A). Users, who have loaded a Lively4 session, want to edit the
index.md24 file in the tab-view documentation. With the Lively4 browser, they
can navigate to the file by either clicking through the folder structure or inserting
the files URL in the search bar. The Lively4 browser then fetches the file from the
server and renders its contents (1). After switching to edit mode, the source code
of the markdown file is now accessible in a text editor in the same Lively4 browser
window as the rendered markdown before. Another Lively4 browser window can
now be opened in view mode with the same index.md file by clicking on the Icon
(Figure 4.15 (1)) next to the search bar. After making the desired changes to the file
using the first Lively4 browserwindow, users can save the file (Figure 4.15 (2.1)). The
saving causes the Lively4 browser to send a PUT request with the new file content to
the server (Figure 4.14 (3.1)). Each Lively4 browser that currently displays the same

23https://lively-kernel.org/Lively4/Lively4-core/start.html?load=https:
//lively-kernel.org/Lively4/Lively4-core/doc/index.md (last accessed 2020-
07-30).

24https://lively-kernel.org/Lively4/BP2019RH1/all-in-one-product/index.md
(last accessed 2020-07-29).

130

https://lively-kernel.org/Lively4/Lively4-core/start.html?load=https://lively-kernel.org/Lively4/Lively4-core/doc/index.md
https://lively-kernel.org/Lively4/Lively4-core/start.html?load=https://lively-kernel.org/Lively4/Lively4-core/doc/index.md
https://lively-kernel.org/Lively4/BP2019RH1/all-in-one-product/index.md

4.4 Collaborating in Lively4

Lively4

ServerEditor1
(1) FETCH index.md

Editor2
(3) FETCH index.md

(2.1) PUT index.md*

(2.2) signal that content
changed for URL

(A) Single User Wiki Experience

Figure 4.14: Lively4 wiki workflow in one Lively4 session

URL then gets notified that the content for this URL has been changed since the last
load (2.2). This notification causes especially the second Lively4 browser window
with the same file in view mode to fetch the file again and replace the old content
(Figure 4.14 (3), Figure 4.15 (2.2)). This workflow has two main benefits. The first
is that users get direct feedback, how the changes affect the rendered result. They
do not have to switch to another client machine browser tab or navigate to another
URL. The result of the change is rendered and present right after the change was
made on the client-side. The second benefit is that potential version conflicts are not
possible by design when opening two Lively4 browser windows with the same file
loaded. Due to the automatic re-fetch of the second one, when the first one makes
changes, users can not edit an old version of the content of the file when switching
to the second Lively4 browser window.

During the whole process, no credentials had to be used to authorize the users for
any action.

4.4.1.3 Working with Personal Data in a Wiki
To get to work with Africas Voices, we had to make sure to place the highly sensitive
personal data that resulted from thework of Africas Voices (subsection 5.2.4) behind
an access restrictionmechanism, so that only authorized people could access it. Since
Lively4 supports a very open and collaborative approach to access files, we had to
take extra measures to meet the requirement of Africas Voices. We set up another
Lively4 server next to the existing, open Lively4 server, which already serves the
wiki and the Lively4 core system. The new server is called voices. The data of
Africas Voices resides on this server. Because the server is a Lively4 server, we are

131

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.15: Automatic reloading of Lively4 browser windows that show the same
URL

132

4.4 Collaborating in Lively4

Figure 4.16: Forbidden query for a file on the private voices server from within a
session started from the public Lively4 server

able to access it with a Lively4 browser from within the Lively4 client application
Figure 4.16 (A), whose session was started from the Lively4 server (B).

The voices server has access restrictions implemented. To authenticate, we have to
log in to GitHub via the GitHub sync tool, which is explained in section 4.4.3.2. Only
if the GitHub account is a member of the authorized group, the access is granted.
That is realized with a GitHub token, which is part of every request to the voices
server.

To access the data in the open wiki space of the Lively4-server, we
implemented a parser module. This parser module can be imported from the
voices server. The API of the parser allows for standardized data requests. The
following listing shows a typical usage of the parser module.

1 import { AVFParser } from ”https://lively−kernel.org/voices/parsing
−data/avf−parser.js”

2 //...
3 async _fetchKenyaData() {
4 let data = await AVFParser.loadInferredCovidData()
5 return data
6 }

Within the loadInferrecCovidData() function, the parser requests a secured
URL of the voices server. The voices server checks for a valid authorization token
and forwards the request to a separate node.js server, which responses with the
respective chunk of JSON data fromAfricas Voices. In this scenario, the voices server
acts like a reverse proxy25 and takes care of blocking unauthorized requests. This
way, it is ensured that only GitHub authenticated users can access data in the open
wiki space of the Lively4-server.

4.4.2 Working Collaboratively in Realtime

A wiki lives and only thrives when many individuals commit to using the tool or see
the need to have a collaborative space where ideas can be written down, connections
can be made, and knowledge can be shared. Lively4 offers two ways to collaborate:
Working on the same checkout of a repository or working on different checkouts.

25https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/
(last accessed 2020-07-29).

133

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/

4 Using the Lively4 Platform with Its Active Content Capabilities

Editor

Lively4

BP2019RH1

Server

lively4-core

lively4-jens

...

GitHub

BP2019RH1

liveyl4-core

edit

edit

edit

checkout

checkout

checkout

(A)

Editor

Lively4

Editor

Lively4

Editor

Lively4

(B)

Figure 4.17: The Lively4 one checkout and multiple checkout collaboration

4.4.2.1 Different Modes of Collaboration
Working on one checkout (Figure 4.17)(A) is described in the following. One
checkout of a repository resides on the server. The users all work on the same file
base. When a user edits a file, content gets saved on the server, and the change
committed into the local repository on the server. As soon as another user loads the
file with the Lively4 browser, the new content gets served. This approach comes
with disadvantages and advantages. The advantage is that all changes can be seen
immediately, and the feeling of real-time collaboration is fostered. The disadvantage
results from the fact that Lively4 is a self-supporting system. The core functionality
of the system itself can be edited as easy as a file in the wiki. This way, breaking
changes at the core system that users introduce propagate to other users with a
reload of the Lively4 client application. The disadvantage is mitigated by working
with multiple checkouts (B): Multiple checkouts of one repository reside locally on
the Lively4 server. Examples are the different checkouts of the Lively4 core system in
the folders Lively4-core, or Lively4-jens. Users can work on crucial parts of
the system on one checkout, without having the changes propagated to other users,
who work on and whose Lively4 client application uses another checkout. Only after
manually pushing changes to the remote origin, are they accessible to other users.

4.4.2.2 Changing a File Simultaneously
In our wiki project folder BP2019RH1, we worked on one checkout. As a team of
seven people working at the same office space, we had, on average, three to five
Lively4 sessions running simultaneously. That increased the chance that two or
more users where editing the same file at the same time. As this could result in
one user overwriting changes of another, Lively4 implements a conflict resolution

134

4.4 Collaborating in Lively4

Lively4

ServerEditor1
(1) FETCH index.md

Editor2
(4) FETCH index.md

(3.1) PUT index.md*

(3.2) signal that content
changed for URL

User (A)

Lively4

Editor1 (2) FETCH index.md

(5) PUT
conflicting
index.md*

(7) PUT resolved
index.md*

(6) resolve conflict in
client

User (B)

Figure 4.18: Conflicting collaboration of two Lively4 users at realtime

mechanism. Consider the process of Figure 4.18 (A) with a second Lively4 session
loaded by another user (B). The second user loads the same index.md file (2) after
the first user. The first user saves an edited version (3). Then the second user tries to
save another edited version with other changes (5). The server recognizes possibly
conflicting versions of the file due to commit hashes and responds to the Lively4
client application of the second user with a changelog of both users. The client
application of the second user then automatically merges the changes according to
the [diff match patch26 algorithm by character and issues another PUT request, to
persist the merged content of the file (7).

4.4.3 Version Control in Lively4

The work of testing and prototyping, adapting, and re-adapting code and the
corresponding documentation in a self-supporting system profits from a proper
version control system and support of this system in the tooling. In the following,
we talk about the Lively4 way of versioning.

4.4.3.1 Versioning a Wiki
Versioning of files is heavily integrated and automated in Lively4 on the server-side
and the side of the Lively4 client application. To understand versioning, we first
have to look at the structure of the file system on the Lively4 server. Not the entire
root directory of the Lively4 server is a single repository. Instead, the root directory
is divided into several folders, for example, Lively4-core, Lively4bp-2019, or

26https://github.com/google/diff-match-patch (last accessed 2020-07-30).

135

https://github.com/google/diff-match-patch

4 Using the Lively4 Platform with Its Active Content Capabilities

Figure 4.19: Comparing versions of ‘index.md‘ in the Lively4 client application

BP2019RH1, where each folder has instantiated a separate local git repository. Some
of the repositories are checkouts from a remote repository on GitHub, for example,
our projects wiki folder BP2019RH127 or the Lively4-core28 system folder.

Whenever a user edits a file and saves the changes via a PUT request to the server,
the Lively4 server commits the changes automatically. An auto-commit is created and
committed to the folder’s repository, which subtree contains the affected file. In the
example of Figure 4.14, an auto-commit is generated in the BP2019RH1 repository.

The tight versioning of files has several advantages. The first one is that if users
introduce breaking changes to the core system, it can be rolled back to the commit
before the change happens. As the commits happen on a per change basis, the
breaking change can be eliminated very fine-grained. The second advantage is that
the history of changes can be looked up by everybody else. This public lookup
increases accountability for the content one is publishing in the wiki. In addition
to just viewing the history of a file, Lively4 offers the client-side manipulation of
the current version with content from prior versions if some older content needs to
be reintroduced to the file. This versioning feature can be seen in Figure 4.19. By
clicking on the version icon in the “actions row”(1), the history of changes to the file,
expressed through auto-commits representing single editing steps of users, can be
viewed. The author of the auto-commit is listed next to the timestamp. The editor
switches to a diffing view after selecting a version in the list (2) (3). Users then can
either load the selected version to completely replace the current one (4a), or select
specific changes from the older version to replace parts of the current version (4b).

27https://github.com/hpi-swa-lab/BP2019RH1 (last accessed 2020-07-21).
28https://github.com/LivelyKernel/Lively4-core (last accessed 2020-07-22).

136

https://github.com/hpi-swa-lab/BP2019RH1
https://github.com/LivelyKernel/Lively4-core

4.4 Collaborating in Lively4

Figure 4.20: GitHub sync tool before, while and after syncing the BP2019RH1
repository with the remote origin

4.4.3.2 Syncing to GitHub
Our project partner needed to be provided with a stable version of the prototypes
while simultaneously extending the prototypes’ functionality. As the work on the
prototypes could introduce breaking changes, we set up another checkout of the
BP2019RH1 on the Lively4 server. This checkout would only get synced with the
origin when the prototypes were in a stable state.

For the sync process to work, the local development repository of the folder
BP2019RH1 eventually needs to be pushed to the remote origin on GitHub. As the
server holds the git repository, this operation needs to be conducted on the server.
The GitHub Sync tool of the Lively4 client application offers a GUI for git operations
on the server. It can be seen in Figure 4.20. The prerequisite for pushing to the
remote origin is to be authenticated with authorized GitHub credentials. Within
the sync tool, users can select the Lively4 server and the corresponding repository
folder that we want to push (1). All operations that the sync tool offers are then
executed on this folder’s local repository on the server. The changelog in the selected
repository can be inspected by clicking the status button (1A). As every folder is
a separate repository, users can see different changelogs appearing in the git status,
when selecting different repositories (1B). The commit history on the local repository
can become cluttered with auto-commits from each file change. To keep the history
of commits on the repository clean, users can squash all auto-commits into a single
commit with a proper commit message from the sync tools GUI (2). With the sync
button, the local repository on the server can be synced with the remote origin on
GitHub.

137

4 Using the Lively4 Platform with Its Active Content Capabilities

4.5 Conclusion

During our project, we accomplished a variety of tasks. We collected ideas of novel
visualizations at the beginning while in parallel examine and evaluate technologies
to visualize data in the web browser. We then evaluated the ideas and concepts
we came up with against technical feasibility and domain-specific fit. Therefore,
we implemented many spikes. We had to present the prototypes and ideas to our
project partner in a tangible way as interaction patterns needed to be tested live.
As the last step, we had to engineer advanced prototypes that integrated many
visualizations and interaction patterns into a single user experience. The Lively4
development environment made it possible to switch between those steps seamlessly.
Lively4 is built around state-of-the-art web technologies. It has features that support
rapid prototyping, collaboration in real-time, and advanced application engineering.
Additionally, it comes with the possibility to build research-oriented, expressive
documentation to structure a growing and fluctuant knowledge base as a team. It is
advantageous for a design project to have all those capabilities combined in a single
environment, and be able to switch between different stages of the project without
changing the tooling.

138

5 Mapping of Data and UI for Interactive
and Explorable Visualizations

Our goal was to develop visualizations that focus on the individual and not on
aggregated data, avoiding losing track of the people’s opinions, needs, and fears.
Furthermore, the data and their provenance should be made explorable through the
visualizations. We define explorability as the ability to interactively investigate data
by comparing, connecting, and investigating their graphical representation.

In order to allow data to be explored starting from the visualization, there must be
a relationship between the visualization elements and the data from which they are
created that works in both directions. Such bidirectional mapping, however, is not
trivial to achieve due to the loss of information that often occurs during the analysis
of data due to aggregations.

In this chapter we discuss the meaning of provenance, explain the measures we
took to ensure that only we can access the personal data, and evaluate the data
formats in which we received the data. We explain the concept of bidirectional
mapping and discuss the loss of information as a problem in its implementation. We
evaluate three strategies for implementing bidirectional mapping of data and UI and
explain how we used bidirectional mapping in our prototypes as well as how we
dealt with information loss.

5.1 Introduction

Our goal was to develop visualizations that focus on the individual and not on
aggregated data, avoiding losing track of the people’s opinions, needs, and fears.
Furthermore, the data and their provenance should be made explorable through the
visualizations. We define explorability as the ability to interactively investigate data
by comparing, connecting, and investigating their graphical representation.

The term “provenance” is heavily overloaded, which raises the question of what
kind of provenance we need to work with. Moreover, opinions, needs, and fears in
combination with the demographic data of individuals are personal data and must
be stored and handled with appropriate care. In terms of visualization, the question
is how provenance data should be handled, meaning to what point the origin of the
data should be traceable. In order to allow data to be explored from the visualization,
there must be a relationship between the visualization elements and the data from
which they are created that works in both directions. Such bidirectional mapping,
however, is not trivial to achieve due to the loss of information that is deliberately
taken in data science.

139

5 Mapping of Data and UI for Interactive and Explorable Visualizations

To solve the problem of loss of information and to make data explorable through
visualizations, we investigated the bidirectional mapping of data and UI. We defined
what provenance in the context of our project means, secured the starting point of the
mapping, the data, on a dedicated server, evaluated strategies to achieve bidirectional
mapping, and implemented the most promising ones into our prototypes.

In section 5.2 we provide some background by discussing what provenance is,
explaining the measures we took to ensure that only we can access the data, and
evaluating the data formats in which Africa’s Voices provided us with the data. In
section 5.3 we explain the concept of bidirectional mapping and discuss the loss
of information as a problem in its implementation. In section 5.4 we explain three
strategies to achieve bidirectional mapping and evaluate which strategy is suitable
for which application. In section 5.5 we explain the use of bidirectional mapping in
our main prototypes and evaluate how we dealt with the problems of bidirectional
mapping. A conclusion is presented in section 5.6.

5.2 Data and Provenance

This section is about data provenance and Africa’s Voices Foundation’s data used in
this project. First, we define the term provenance in the context of our project. Then,
we state how we were provided with data and show our measurements to keep the
non-disclosure agreement we signed. After that, we present Africa’s Voices’ data
formats to discuss how we dealt with changing data formats for our own individual-
centered data format.

5.2.1 Data Provenance

Data provenance is a heavily overloaded term. In the context of web databases, it
is used to describe the tracing of the origings of data and its movement between
databases [13]. Also the term data linage often means something similar. In the
context of data warehousing, data lineage is described as tracing warehouse data
items back to its original source [19]. Some work focuses on workflow provenance.
In the context of curated databases, workflow provenance can be seen as tracing the
users actions involved in constructing a curated database [12].

In our work, we used a more general definition of data provenance. According to
Ikeda, “provenance, in its most general form describes where data came from, how
it was derived, and how it was updated over time.” [37]

At the beginning of our project, our task was to investigate how data and its
provenance could be made explorable through visualizations. We received data
that goes back to individual SMS from participants (section 5.2.4.1). But in the
visualizations that we developed, we did not need this information, because they
revolve around using the demographic data and themes. Therefore, we only needed
the information as collected in our individual-centered data format (section 5.2.5).

As a result, in our context, provenance does not mean how the data was derived
and updated. In our visualizations, the use of provenance is limited to the origin of

140

5.2 Data and Provenance

the data. It is still open whether the additional provenance data is useful for further
visualizations.

5.2.2 Provision of the Data

Africa’s Voices Foundation conducts radio shows where citizens can answer with
an open text via SMS. These messages are then labeled with common themes that
occur in the answers. The themes, raw messages, and demographic information that
Africa’s Voices collects via follow-up messages are then usually run through python
scripts that produce CSV files that are used to generate the visualizations (See section
1.1.2.3: Visualizing).

We got three different data sets, whose compositionswe state in section 5.2.4.What
all data formats had in common is that they never contained the original messages
that listeners of the radio shows answered to Africa’s Voices. In the first data set, the
messages were obfuscated by replacing them with quotes of literature. In the second
data set, the messages were replaced with internal IDs. The third data set did not
include any original messages, neither translated messages nor replacements. This
meant the only way for us to do a qualitative analysis of the data set was by using
the themes.

5.2.3 Non-disclosure Agreement

Everybody who works with Africa’s Voices’ data has to sign a non-disclosure
agreement and the data must be kept private. To ensure that, we created a dedicated
server for the data. The server accepts requests for the data sets and sends the data in
our standardized format, which is explained in section 5.2.5. To ensure that only we
can access the data, we used the authentication in lively via GitHub as explained in
section 4.4.1.3. So when someone who is not part of our GitHub team tries to make
a request, it gets denied.

5.2.4 Africa’s Voices Foundation’s Data Formats

Africa’s Voices provided us with four data sets, coming from three different radio
shows. Due to an internal restructuring of the infrastructure at Africa’s Voices, these
four data sets had four different formats. We describe these formats now to explain
in 5.2.5 how we dealt with the changing data formats.

5.2.4.1 Traced Data Objects
The first data set is a JSONL document. Different to normal JSON documents, JSONL
files can be parsed line by line, since every line of the file contains a complete JSON
object.1 Each JSON-line in the data set is an array, corresponding to the path of an
individual’s data through Africa’s Voices’ Pipeline as stated in section 1.1.2.3. Each

1Ian Ward: http://jsonlines.org/ (last accessed 2020-07-30).

141

http://jsonlines.org/

5 Mapping of Data and UI for Interactive and Explorable Visualizations

element of the array, as shown in, consists of a data object, a SHAhash, metadata, and
a NestedTracedData object. An example for such a data object is shown in Listing 5.1.
The data object contains the last state of the respective datum. Themetadata indicates
which script last touched the datum and which analyst used the script and when.
The NestedTracedData object is used if the same date is touched several times. The
previous step is then stored in the NestedTracedData.

Listing 5.1: An example of a traced data object

1 [{
2 Data: {NC: ”1”},
3 Metadata: {
4 Source: ”analysis.py:205:generate”,
5 Timestamp: ”2019−09−25”,
6 User: ”john@doe.org”
7 },
8 NestedTracedData: {
9 folded_with: [{

10 Data: {NC : ”MERGED”}
11 }]
12 },
13 SHA: ”abcdefg”
14 },
15 // [...]
16]

5.2.4.2 Conversation Objects
We call the second data set the conversation objects. This was an array of JSON-objects,
with each object containing one individual that Africa’s Voices had a conversation
with about the topic on the radio show. An example for such a conversation object
is shown in Listing 5.2. The conversation itself is represented by the “messages”
array. Each object in that array represents one message with the direction, whether
it came from Africa’s Voices or the listeners, the date and tags, which stand for the
demographic data or the themes from the previous data set.

Listing 5.2: An example of an individual in the first conversation object format

1 {
2 demographicsInfo: {},
3 messages: [{
4 datetime: ”2020−03−23”,
5 tags: [”tag−0”, ”tag−1”],
6 direction: ”MessageDirection.in”
7 },
8 {
9 ”datetime”: ”2020−03−23”,

10 ”tags”: [”tag−2”]
11 }
12 // [...]

142

5.2 Data and Provenance

13],
14 notes: ””,
15 tags: [”tag−0”, ”tag−1”, ”tag−2”],
16 unread: false,
17 deidentified_phone_number: ”12345”,
18 __id: ”12345”,
19 __reference_path: ”conversations/12345”,
20 __subcollections: []
21 }

However, we could not use that data set, because the mapping from the tags to
the real demographic data and themes was missing. These information are crucial
for our visualizations. Africa’s Voices sent us the third data set, where the tags are
replaced by the information they represent. The example object from above would
then look like in Listing 5.3

Listing 5.3: An example of an individual in the second conversation object format

1 {
2 id: ”12345”,
3 start_date: ”2020−03−23”,
4 end_date: ”2020−03−23”,
5 tags: [
6 ”other”,
7 ”male”,
8 ”opinion_on_govt_policy”,
9]

10 }

5.2.4.3 CSV Table
The fourth data set was a CSV table. In this table, each row represents an individual
and each demographic attribute and theme is represented by a column. An example
for such a table is shown in Table 5.1. For the demographics, the value for that
individual and attribute is stored. For the themes, it is storedwhether that individual
answered with a message that got tagged with that theme (1) or not (0).

uid age gender district language idp status theme 1 theme 2 ...
0 35 male a missing yes 0 0 ...
1 44 female b swa no 0 1 ...
2 45 missing b en missing 1 1 ...
...

Table 5.1: An example CSV table

143

5 Mapping of Data and UI for Interactive and Explorable Visualizations

5.2.4.4 Evaluation of Africa’s Voices’ Data Formats
In Table 5.2 four values per data set are shown: The size of the data set file, the size
of the zipped data set file, the size of the data set file, when all formating characters,
like braces, whitespaces et cetera, are deleted and the number of individuals the data
set contains. From this, two observations can be made.

Dataset Size Zip Size Stripped Size Number of Individuals
1 1.2 GB 162 MB 962 MB 7902
2 15 MB 1.3 MB 8.5 MB 2732
3 972 KB 162 KB 481 KB 2732
4 2.2 MB 317 KB 1.6 MB 9867

Table 5.2: Statistics of the Datasets

The first observation is that for each of the data formats, the formatting itself makes
up a fair amount of the file size. In the case of the data sets we use, from 20% to 50%.

The second observation is the redundancy in the data. Building a ZIP archive
uses the DEFLATE compression by default.2 This algorithm reduces redundancy
by writing a String only the first time it appears and replacing it with a pointer
when it appears again [23]. Compressing the data as a ZIP file therefore resolves
the redundancies in a file. The redundant data makes up between 83% and 91%
of the data set. With a JSON this is not surprising, since it is an unstructured data
format and so the keys are storedwith the values and therefore redundant.Moreover,
redundancy in the first data set is conditioned by the nature of the data set. Saving
all steps of the Africa’s Voices pipeline is redundancy by definition.

5.2.5 Our Individual-centered Data Format

In order to develop visualizations, a stable data format is necessary because this way
the visualization does not have to be modified with every new data format so that
it can also handle the new format. Therefore, we have converted all data sets that
Africa’s Voices sent us into our own stable format. The conversion happens when
booting the server. The server loads the data sets in our format into its cache so that
they do not have to be recreated with every request unless explicitly requested.

A data set in our individual-centered data format is an array of JSON objects. Each
of these JSON objects represents an individual with demographic information and
themes. Such an individual looks like Listing 5.4.

2https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.5.TXT (last accessed
2020-07-30).

144

https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.5.TXT

5.3 Bidirectional Mapping

Listing 5.4: An example object of an individual in our individual-centered data
format

1 {
2 id: ”abcdefg”,
3 themes: {
4 L1: [”question”],
5 L2: [”missing”],
6 L3: [”how_to_treat”, ”symptoms”]
7 },
8 languages: [”(EN)”],
9 age: ”35”,

10 gender: ”female”,
11 constituency: ”missing”,
12 county: ”nairobi”,
13 consent_withdrawn: ”false”,
14 recently_displaced: ”false”
15 }

Another aspect that came through forming the data into our own format is the
compression of the data set. We were able to reduce the size of the first data set,
which had the Traced Data Format, from 1.1 GB to 2.8 MB, because we did not
use the provenance data, meaning when which script touched which datum, for our
visualizations, and therefore did not have to integrate it into the Individual-Centered
data format.

The second data set was in the Conversation Objects format. The 10.5 MB raw data
was reduced to 972 KB when converted to our format because the assignment of
individual messages to their tags was not important for our format.

The third data set was in CSV format. Here the data set was increased from 2.2
MB to 4.9 MB. This is mainly due to the conversion from CSV to JSON because the
attribute is not only stored once in the top column as in CSV but in each individual
object corresponding to a row in the CSV. This inflates the data set without adding
any data.

In later sections, we describe the bidirectional mapping of data and UI elements. It
is our individual-centered data format that we mean as the origin of the UI elements
and thus the mapping back to data is the mapping back to the data in our individual-
centered data format.

5.3 Bidirectional Mapping

In this section, we explain the term bidirectional mapping. First of all, we definewhat
mapping and bidirectional mapping is. Next, we state the most common problems
with bidirectional mapping. At last, we motivate the usage of bidirectional mapping
in our software project.

145

5 Mapping of Data and UI for Interactive and Explorable Visualizations

one-to-one:
individual <-> id

one-to-many:
individual <-> age

many-to-many:
individual <-> theme

0

1

30

31

32

33

34

35

...

anxiety

hope

hygene

...

...

...

...

2

3

4

5

...

Figure 5.1: An example of mapping as bipartite graphs with the restrictions of the
appropriate relation type

5.3.1 Definition of Mapping

Mapping is a term that describes the relationship of elements of a set A to elements
of a set B. Bidirectional mapping additionally has a relation of elements of set B back
to elements of set A. These relations can be classified into four categories: one-to-one,
one-to-many, many-to-one and many-to-many. As many-to-one and one-to-many are
the same relations only reversed, we focus on the former in future considerations.

Every mapping can be described as an undirected, bipartite graph. The type of
relation determines further restrictions on that graph as shown in Figure 5.1. In one-
to-one relations, every vertex has a maximum of one edge. In many-to-one relations,
every vertex of set A has a maximum of one edge and every vertex of set B can have
multiple edges. Many-to-many relations do not have further restrictions. These are
general bipartite graphs.

5.3.2 Common Problems with Bidirectional Mapping

The main problem with bidirectional mapping is missing data. This is either caused
by data that is non-existent in the first place or it comes from applying data science.
In that field, data is often aggregated to gain insights. For example, calculating an
average or counting data points to create a bar chart are aggregations. The problem
that comes with that is the loss of information. In aggregations, the data is actively
reduces to a more condensed form. The downside of this is that it becomes hard to
figure out which data went into the aggregated value. But that is what is necessary
to know in order to map the output back into the input.

146

5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data and User Interface

5.3.3 What We Need Bidirectional Mapping For

When visualizations are created, the underlying data gets mapped to graphical
elements. Our task was not to build visualizations, but visualizations that allow
to explore the data. The exploration of the data is achieved by interacting with the
visualizations. In order to do so, the graphical elements of the visualizations need
to be mapped back to the data they were build from. Together, these two mappings,
from data to the visualizations and back, are a bidirectional mapping.

5.4 Evaluation of Existing Strategies for Bidirectional
Mapping of Data and User Interface

In this section, first, we will give an example scenario as a use case for bidirectional
mapping. We will then state three strategies that can be used to implement a
bidirectional mapping of data and user interface. The three strategies are:

1. Tracing each action in a graph structure
2. Render images with unique colors
3. Match click position with object positions
One more strategy worth mentioning is a functional approach. Therefore one uses

the concept of functions and inverse functions. With the name lenses, this has already
been done, solving the update-view-problem where code gets mapped to the user
interface it produces in a bidirectional way [27]. In theory, it should not be that
different whether you map code or data to the user interface. But as we did not try
it, we will not discuss that strategy.

For each of the strategies will we state the idea and evaluate their presets and
limitations. Then we will show, how the strategy can be used to implement the
example scenario.

5.4.1 Scenario

To make the evaluation of mapping strategies more descriptive, we will give an
example of how the strategy can be used. To do that, we will apply the strategy to
the following scenario.

The basis for the scenario is the data set. This is similar to the individual-centered
data set from section 5.2.5. However, fewer attributes are required for this scenario,
so that an individual only has the following attributes:

1 {
2 id: ”0123456789”,
3 age: 35,
4 county: ”nairobi”,
5 constituency: ”missing”,
6 gender: ”female”
7 }

147

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.2: An example bar chart of the age distribution in the age buckets [<10,
10-14, 15-17, 18-35, 36-54, over 55, missing]

First, a bar chart showing the age distribution, clustered in the age buckets
[<10, 10-14, 15-17, 18-35, 36-54, over 55, missing] is generated.
Depending on the data set such a bar chart could look like in Figure 5.2.

Then two individuals are selected: One from the group 18-35 and one from the
group 36-54 to compare two sample individuals of different age groups. These
individuals are recognizable so that they could be selected in other visualizations.

5.4.2 Tracing Graph

Each operation on data resembles a mapping from source data to result data. The
idea is to identify the operationsmapping type from section 5.3 and view them as the
corresponding graph as shown in Figure 5.1. These graphs can then be concatenated
to one graph that resembles all operations that were done with the data. An example
of that is shown in Figure 5.3.

Operation (A) is the mapping of individuals to the themes. Due to the nature
of the themes, this is a many-to-many mapping. Operation (B) is the mapping of
the themes into theme groups and therefore a many-to-one mapping. Operation
(C) is the mapping of the theme groups to the number of its themes mentioned by
individuals, a one-to-one mapping. Operation (D) is just the collection of all the
numbers resulting from Operation (C). The concatenation then results in the graph
on the right side.

5.4.2.1 Evaluation
The Tracing Graph Strategy is about recording all operations that were performed
on the base data. This makes the strategy very powerful. Not just two endpoints can
be mapped bidirectionally, but also all intermediate steps. Therefore this strategy
allows to trace every state the data has undergone.

148

5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data and User Interface

Figure 5.3: An example of building a tracing graph. The upper half displays the
operations’ single mappings. The lower half displays the concatenated mapping

graph.

However, storing all intermediate steps is also the major disadvantage of this
strategy, because it consumes a lot of memory. This makes it unsuitable for low-
memory environments.

In the context of visualizations this strategy is also applicable, because mapping to
graphical elements is only another operation on the data. For example, the number
of elements could be extracted from arrays of base elements, which in turn would
be used to generate an array of pixels. Each pixel has a color and a position on the
screen. This information can then be used to render an image. In reverse mapping,
the color or position can be used to identify the desired pixel array (see sections 5.4.3
and 5.4.4). The pixel array can then be traced back to the base elements.

Systems like HTML and JavaScript encapsulate the last steps from the number of
elements to pixels and thus make it possible to handle the graphic elements in the
object space of the programming environment. This makes it easier for programmers
to build the mapping from and to graphical elements. HTML data attributes3 allow
data to be stored in graphical objects. Similarly, the data fromwhich the element was
generated can be stored there, so that the mapping fits well into the tracing graph
strategy. At the same time, the encapsulation of the path from graphic objects to
pixels also means that it cannot be adjusted manually. In the context of our work,
however, we did not need this and therefore did not pursue this direction.

3https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_
attributes (last accessed 2020-07-30).

149

https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.4: Resulting bar chart (A) displayed with the diagram structure (B) and
the stored data per bar (C)

5.4.2.2 Application to the Scenario
The scenario as described in section 5.4.1 is to build a bar chart of the age distribution
in age buckets of a data set of individuals. After that, two individuals from different
bars are selected to compare them.

The code for this can be found in the appendix as Listing B.6. The first operation
is to group the data by age buckets. After that, we use d3 to build a bar chart with
one bar per age group. The resulting bar chart is shown in Figure 5.4 (A).

The bars d3 generates are HTML elements. These elements are then used to
store the data in the corresponding bars (C). The data objects themselves store the
individuals due to the grouping. The chart element stores all its bars (B). Therefore,
the bar chart resembles a tree structure, that can be traced back to the individuals it
is made of. This is what we use in the click handler. When a bar is clicked, the stored
groups is sent to an Individual Inspector, in which an individual can be selected.
When the second bar is clicked, the same happens with the corresponding group.
By placing the Individual Inspectors next to each other, the two individuals from
different age groups can be compared.

5.4.3 Double Rendering

One technique to achieve bidirectional mapping of data and UI elements is double
rendering. The double rendering process, shown in Figure 5.5, is divided into two
phases: the preparation phase (steps 1-5) and the execution phase (steps 6-9).

150

5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data and User Interface

Figure 5.5: The double rendering process

In the preparation phase, the data is first prepared by assigning two colors to each
data element. A unique color that is different from all other data elements and a color
that is intended to be seen by users (step 1). A lookup map is then created, in which
a reference to the data object behind each unique color is stored (step 2). Now the
graphical representations of the data elements are rendered with the unique color
(step 3). This image is then stored in the main memory (step 4). As the last step of
the preparation phase, the graphical representations are rendered with the colors
intended for users (step 5).

The execution phase starts as soon as users click on the canvas (step 6). Here
the mouse position is queried to find the unique color in the saved image (step
7). If the color at the click-coordinate does not correspond to the background, the
system searches for the corresponding entry in the lookup map (step 8). Finally, the
reference in the lookup map to the actual data element is followed (step 9).

5.4.3.1 Prerequisites
Double rendering is not a general-purpose strategy for bidirectional mapping.
Mapping always means to map elements of two sets of elements to each other. To use
the double rendering strategy, one set of these elements must consist of graphical
elements. Otherwise, there is nothing to render and thus nothing to render twice.
The second prerequisite is the need for rendering. Systems like HTML, except the
canvas element, take rendering off programmers to allow faster development of user
interfaces. This means programmers cannot render graphical elements themselves

151

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.6: Two graphical elements overlapping: Once with 50% opacity (left), once
with 100% opacity (right)

and thus cannot use double rendering. So a system that allows custom rendering of
graphics is a prerequisite of this strategy.

5.4.3.2 Limitations
The double rendering strategy is limited by the used color space. For example, the
HTML CanvasRenderingContext2D4 uses the RGBA color space with values from
0 to 255 for each color channel. Using different opacities would result in mixing
colors when graphical elements overlap as shown on the left side of Figure 5.6. This
is why only the channels red, green, and blue are usable. This limits the number of
recognizable elements. In the context of our project, this is sufficient, but in other
contexts, this could be a factor that makes this strategy unusable as it limits the total
amount of renderable unique objects.

Another limitation of this strategy is the size of the canvas. If the combined area of
the graphical elements to be drawn is larger than the canvas, at least two graphical
elements must overlap. But since a pixel can only have one color and, as mentioned
above, must be drawn with full opacity, where two graphical elements overlap, only
one is drawn as shown on the right side of Figure 5.6. As a result, if a click is made
in the intersection of the overlapping graphical elements, only one of the graphical
elements can be recognized. If there are many graphical elements, this can lead to
the fact that some graphical elements are completely covered by others and therefore
cannot be traced back to the corresponding data element.

5.4.3.3 Evaluation
The slow part of this process is rendering. The lookup of whose data element’s
graphical representation was clicked (Figure 5.5, steps 6-9), is, when using the
right data structures, independent of how many data objects are used. It happens
in memory, so no I/O is needed, and therefore can be seen as a constant time
operation. The rendering however can not. The more data elements are drawn, the
longer this process takes when doing this on a CPU. This correlation is also reflected

4https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
(last accessed 2020-07-30).

152

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data and User Interface

in our benchmarks in section 6.5.3. When doing the rendering on a GPU, this is
massively parallelized, but it takes I/O to transfer the data to the GPU, which in turn
is dependent on how many objects must be transferred. This means, in any case, the
rendering is the expensive part of this technique, and doing it twice is even more
expensive. Therefore we have to optimize, how often an image gets rendered twice.

There are two possible times when double rendering can be performed. The first
is whenever the shown picture changes, for example, because the data elements
have been regrouped. This means that the saved image with unique colors is always
up to date. Secondly, only when the canvas is clicked, so that the image with the
custom colors is only built when it is really needed. Both variants have advantages
and disadvantages.

The advantage of rendering the image twice whenever it changes is that the image
with the unique colors is always up to date. Thismeans that as long as the image does
not change, any number of clicks can be made without the need for costly double
rendering.

The advantage of rendering the image twice with the click is that this is only done
when it is really needed so that when the image changes without interaction, the
expensive double rendering does not have to be done.

In terms of performance, a combination of the two approaches is best. For this
purpose, a flag is used to indicate whether the stored image with the unique colors is
still up to date. This way the image only has to be rendered twice if a click is executed
and the saved image is not up to date. This combines the advantages of being up to
date for clicks on the same images, as well as only rendering twice when the image
is clicked.

5.4.3.4 Application to the Scenario
The scenario as described in section 5.4.1 is to build a bar chart of the age distribution
in age buckets of a data set of individuals. After that, two individuals from different
bars are selected to compare them.

Since the code is too large to be shown here, only the rough sequence of the
preparation phase and the click handling are shown. The rest of the code can be seen
in the appendix distributed over the files Listing B.2 and Listing B.3.

The preparation phase is shown in Listing 5.5. After preparing the canvas, the
data is loaded. As the true mapping is between the age buckets and bars, the data
needs to be grouped. Here, the two colors from step 1 in Figure 5.5 are assigned to
the groups too. Line 11 corresponds to step 2 in the process. Then step 3, rendering
with the unique colors (line 14) and step 4, saving the image are performed. The
last step of the preparation phase is the rendering with the colors intended for users
(step 5, line 18).

Listing 5.5: The preparation phase of the double rendering process

1 (async () => {
2 //canvas preparation
3 let diagram = lively.query(this, ”#diagram”)
4 context = diagram.getContext('2d')

153

5 Mapping of Data and UI for Interactive and Explorable Visualizations

5 canvasDimensions = {width: 300, height: 300}
6
7 //data preparation
8 let data = await AVFParser.loadCovidData()
9 removeUnneededData(data)

10 groups = createColoredAgeGroups(data)
11 colorMapping = createColorMapping(groups)
12
13 //drawing with identifying colors and store the image
14 drawBars(context, canvasDimensions, groups, ”uniqueColor”)
15 identifyingImageData = context.getImageData(0, 0,

canvasDimensions.width, canvasDimensions.height)
16
17 //drawing with colors meant for users
18 drawBars(context, canvasDimensions, groups, ”color”)
19
20 //waiting for a click
21 diagram.addEventListener(”click”, event => {
22 lively.openInspector(getClickedGroup(event))
23 })
24 })()

Now we have to wait for the click event. The corresponding event listener was
added to the canvas in lines 21-23. Once the canvas has been clicked, the unique
color at the click position is extracted from the saved image (step 7, lines 2-6 in
Listing 5.6). Then the clicked group is traced back via the savedmap (steps 8, 9, lines
7, 8 in Listing 5.6).

Listing 5.6: The execution phase of the double rendering process

1 function getClickedGroup(event) {
2 let colorString = getColorStringFromImageData(
3 identifyingImageData,
4 event.layerX,
5 event.layerY
6)
7 let groupKey = colorMapping[colorString]
8 let group = groups[groupKey]
9

10 return group
11 }

Now the original group is found and can be loaded into an Individual Inspector.
Here, the selection of an individual from group 18-35 as required by the scenario
is possible. As soon as the bar with the individuals from the age group 36-54 is
clicked, an Individual Inspector from the corresponding age group opens and a
second individual can be selected. The two Individual Inspectors can then be placed
next to each other to compare the individuals.

154

5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data and User Interface

Figure 5.7: The position matching process

5.4.4 Position Matching

One technique to achieve bidirectional mapping of data and UI elements is position
matching. The process shown in Figure 5.7 has four steps.

At first, the image is rendered (step 1). When users click on the image (step 2),
the mouse coordinate is requested (step 3). Now for each data element, it is checked
whether the click occurred within the coordinates of the graphical representation
(step 4). In the case of circles as the representation, for example, the Euclidean
distance between the click and the center of the circle can be calculated. If it is smaller
than the radius of the circle, the click took place within the graphical representation
and the corresponding data element is found.

5.4.4.1 Prerequisites
Position matching is not a general-purpose strategy for bidirectional mapping. One
prerequisite of this strategy is, that one of the sets of elements to be mapped must be
graphical elements. Otherwise, nothing can be rendered and no click coordinate can
be determined which is needed for the position matching. The other prerequisite is
the data structure. To use this strategy, the data objects must store the coordinates
and bounds of the graphical representation.

5.4.4.2 Evaluation
Since it must be checked for each data element whether the click took place within
the boundaries of the graphical representation, the runtime of this strategy is linearly
dependent on the number of data elements and therefore scales poorly.

An advantage of this strategy is the independence from the rendered image.
Since the position and size of the graphical representation is stored in each data
element, all objects can be identified even if the click occurred at a position where
the representations of several graphical elements overlap.

155

5 Mapping of Data and UI for Interactive and Explorable Visualizations

5.4.4.3 Application to the Scenario
The scenario as described in section 5.4.1 is to build a bar chart of the age distribution
in age buckets of a data set of individuals. After that, two individuals from different
bars are selected to compare them.

Since the code is too large to be shown here, only the rough sequence of the
preparation phase and the click handling are shown. The rest of the code can be seen
in the appendix distributed over the files Listing B.4 and Listing B.5

The preparation phase is shown in Listing 5.7. After preparing the canvas, the data
is loaded. As the true mapping is between the age buckets and bars, the data needs
to be grouped. Here, the position and bounds of the bars are stored in the groups
too.

Listing 5.7: The preparation phase of the position matching process

1 (async () => {
2 //canvas preparation
3 let diagram = lively.query(this, ”#diagram”)
4 context = diagram.getContext('2d')
5 canvasDimensions = {width: 300, height: 300}
6
7 //data preparation
8 let data = await AVFParser.loadCovidData()
9 removeUnneededData(data)

10 groups = createPositionedAgeGroups(data, canvasDimensions)
11
12 //rendering the image
13 drawBars(context, canvasDimensions, groups)
14
15 //waiting for a click
16 diagram.addEventListener(”click”, event => {
17 lively.openInspector(getClickedGroup(event))
18 })
19 })()

When users click the canvas, for every group is checked, whether the click
happened within the stored bounds (step 4, lines 6-10 in Listing 5.8).

Listing 5.8: The execution phase of the position matching process

1 function getClickedGroup(event) {
2 let groupArray = Object.keys(groups).map(key => groups[key])
3 let position = {x: event.layerX, y: event.layerY}
4
5 let results = []
6 groupArray.forEach(group => {
7 if (positionMatchesGroup(position, group)) {
8 results.push(group)
9 }

10 })
11

156

5.5 Our Approach on Bidirectional Mapping

12 return results
13 }

Now the original group is found and can be loaded into an Individual Inspecor.
Here, the selection of an individual from group 18-35 as required by the scenario
is possible. As soon as the bar with the individuals from the age group 36-54 is
clicked, an Individual Inspector from the corresponding age group opens and a
second individual can be selected. The two Individual Inspectors can then be placed
next to each other to compare the individuals.

5.4.5 Evaluation

Each of the presented strategies has its own advantages and disadvantages. This
raises the question of when which of the strategies should be used.

The advantage of the tracing graph is its powerfulness. In contrast to position-
matching and double-rendering, not only two endpoints of an operation are mapped
together. Since every intermediate step is written down, every partial operation can
be traced later on. Double-rendering and position matching are special cases that
only work for mapping from and to graphical elements. So if a transformation of the
data should be carried out that has nothing to do with graphics, but should still be
comprehensible, of the presented strategies only the tracing graph is functional.

For graphical elements, on the other hand, it is necessary to weigh up between
position matching and double rendering. Position matching is generally easier to
implement, since it requires only a small preparation phase, namely the calculation
of the positions and bounds of the graphical elements. For this purpose, the entire
data set must be processed for each interaction. The longer preparation phase of
double-rendering, on the other hand, leads to a faster lookup when interacting with
the visualization. It also depends on the arrangement of the graphical elements. If
these overlap, but all overlapping elements are still visible, double-rendering cannot
be used.

For us, a combination of both approaches worked best. The operations on the
data level, aggregating, grouping et cetera were logged in JavaScript objects. In the
visualizations that use HTML as graphical elements, we logged even further by
attaching the data to their graphical representations and holding a reference to the
graphical Elements. Whenever we could not use HTML elements, but had to use a
pixel based graphic, we used either the position matching or the double rendering
method to do the last steps of the mapping.

5.5 Our Approach on Bidirectional Mapping

Our main visualizations are the XY Diagram, the Map prototype, the Venn Diagram,
and the Statistics Panel. In this section, we state how we used bidirectional mapping
in these visualizations to achieve explorability of the data. For each of these
visualizations, we show how we draw the elements on their canvas and how to get

157

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.8: The XY Diagram separated in its four parts

back to the data when the user interacts with them in a certain way. Furthermore, we
evaluate our approaches and discuss how we dealt with the problem of aggregated
data.

5.5.1 XY Diagram

This visualization consists of four parts as shown in Figure 5.8. There are three SVG
elements that we use for the axes, the grouping shades, and the freehand selection
polygon (secion 3.3.5) respectively. The dots representing individuals are drawn on
the fourth part, a canvas. This structure came from two design choices. The first
was the separation into four parts. As a consequence of this decision, we had to make
the second one, which is for which part to use which HTML element: a div, an SVG,
or a canvas.

The first decision, the separation of the visualization into four parts, was made to
have a separation of concerns. One element should only be used for one purpose.
This makes it easier to track bugs, as a bug in the grouping shades cannot come from
drawing the freehand selection for example.

The second decision of HTML elements means weighing speed, ease of usage,
and flexibility against each other. To draw the grouping shades and scales the speed
of SVG and div are sufficient, as these are few, large graphical objects. Therefore
we do not use a canvas as that would require rendering them by hand. The final
decision was to choose an SVG because drawing polygons, as we need it for the
freehand selection, is easier in a vector graphic than on divs. To draw the individuals,
we decided to use a canvas element. Our biggest data set has approximately
10,000 individuals and we wanted one graphical representation per individual.
Appending one HTML element per individual resulted in a lack of performance.

158

5.5 Our Approach on Bidirectional Mapping

Our benchmarks, whose results can be found in section 6.5.3, showed, canvases
are the right choice to render many elements. Although that meant that we could
not use HTML child relationships to identify the individuals when we interact with
the visualization. For that, we had to come up with something new.

5.5.1.1 Click Interaction
We wanted our visualizations to allow users to further inspect an individual when
they click on its graphical representation. By using HTML elements as a graphic
representation for individuals, that would have been easy. We could have used
HTML5 data attributes5 to store each individual to their dot. This way, we could
use a click event listener on the dot to read the stored individual and inspect it.
Unfortunately, this was not possible due to the aforementioned performance issues.
The canvas element, thatwe had to use, does not keep track ofwhat domain element
is drawn on it, it only handles pixels. This means that the click event does not go to
a graphical representation of an individual but to the canvas.

To deal with this problem we used the double rendering strategy as explained
in section 5.4.3. This means rendering the canvas first with one unique color per
individual, saving the image data of the canvas, and then drawing the canvas
again in the way users are supposed to see it. When users now click the canvas, the
click position can be used to get the color at that position. With that color, the one
individual that has that color can be determined. This waywe ensured a bidirectional
mapping from pixels to data points.

The individual is then put into an InspectAction which is used as a common
interface for all our visualizations to handle a click on an individual. This is especially
valuable in the Tree View prototype, as wewant the inspections to be consistent across
all connected visualizations. Therefore the visualization in which the click event
happened notifies its pane about the inspected individual via an event, which in
turn notifies the whole tree.

5.5.1.2 Free-Hand Selection Interaction
For the Tree View prototype, we wanted our visualizations to allow a lasso select.
The selected individuals could then be used for new visualizations. This would
allow users to look into a specific group of people. To support this, we built the
FreehandDrawer, a tool that draws a polygon on mouse drags onto the canvas.
When a right-click is made on a drawn selection, the FreehandDrawer tells the
visualization, where the selection polygon is. We then use the npm library point-
in-polygon6 to check for each individual whether its current position is in the
polygon or not. The current position is the center of the dot that represents the
individual. So if a dot is within the selection it is probable that the center of the
dot is inside the selection too. We might lose a few points or get some more, but
all in all, that is an acceptable deviation for the use case of getting an overview of

5https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_
attributes (last accessed 2020-07-30).

6https://www.npmjs.com/package/point-in-polygon (last accessed 2020-07-30).

159

https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes
https://www.npmjs.com/package/point-in-polygon

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.9: Screenshots of the three main canvases of a map

a certain subgroup of individuals. This way, with a different technique than before,
we ensured bidirectional mapping from an area of pixels to data points.

5.5.2 Map Prototype

This visualization consists of four parts. Three of them are shown in Figure 5.9. The
part not displayed is the SVG for the selection polygon. It works the same way as
described in section 5.5.1.

The goal of this visualization is to show the distribution of individuals based
on geographic position. Furthermore, it allows interactions based on a geographic
location and the comparison of distributions, for example between rural and urban
areas. Therefore two different parts have to be identifiable: the individuals and the
geographic structure of the country. To identify these, we use the double rendering
strategy as described in section 5.4.3. The separation into three canvases results from
that decision. The first canvas is meant to be seen by users (A). The second one (B)
provides the uniquely colored individuals and the third (C) provides the uniquely
colored regions.

5.5.2.1 Click Interaction
We wanted our visualizations to allow users to further inspect an individual when
they click on its graphical representation. This visualization uses a canvas element
as its drawing canvas for the same reasons as the XY Diagram (section 5.5.1.1) and
thus results in the problem that a canvas only handles pixels too. To deal with this
problem, we use the double rendering strategy. The difference between the Map
prototype and theXYDiagram is, that theXYDiagram generates the uniquely colored
individuals when the canvas is clicked and the Map prototype when the displayed
image changes. The Map prototype changes the layout of the individuals only when
the individuals are filtered. Therefore the same uniquely colored individual canvas
can be used for every click until the new layout is made. This reduces the number of
times the unique image has to be rendered and thus saves time.

160

5.5 Our Approach on Bidirectional Mapping

Figure 5.10: Screenshot of the Venn prototype with two theme groups

5.5.2.2 Hovering Interaction
We wanted the map to display information on the geographical region when
users hover over it. During the initialization of the visualization, a mapping from
geographical region to individuals that came from that region is generated. This way,
only the district needs to be found from its graphical representation, when users
hover over it. For this, we use the double rendering strategy again. For the unique
colored region, a separate canvas is used. This way the hovering works even when a
click is made or when users hover over individuals.

5.5.2.3 Free-Hand Selection Interaction
In this visualization, we allow a lasso select, too. It is implemented like in the XY
Diagram (section 5.5.1.2).

5.5.3 Venn Diagram

Theweb component of this visualization consists of three parts. The first is the canvas
onwhich the visualization is drawn. The second is a canvas for drawing the freehand
selection that allows users to select individuals. It is stated later, why this is separate
and not on one canvas, as in theXYDiagram or theMap. The third part is the freehand
selection SVG which is used to draw the selection polygon on when users finish the
drawing of the selection.

As stated in section 3.4.3, this visualization is designed to group individuals
according to their themes. The visualization focuses on the overlapping of different
themes and theme groups. To implement this concept, the visualization consists of
four elements (Figure 5.10). Dots represent the individuals (A). The theme groups
are represented by the so-called grouping hulls (B). These are drawn around all
individuals who have at least one of the themes of the respective theme group.
If individuals have more than one theme, they belong to more than one theme
group and are therefore grouped separately. To have a distinction in the sense of

161

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.11: Converting a Venn diagram to a graph

the intersection in a Venn diagram, each individual is assigned to a force center (C).
Each force center represents a unique combination of theme groups. As shown in
Figure 5.10, two theme groups result in four force centers. One for each of the theme
groups, one for the intersection of the theme groups, and one for the individuals
who do not belong to any of the theme groups. To see the combination of theme
groups, each force center has a force center annotation (D).

As the name force center suggests, this visualization uses a force simulation to
assign individuals to theme groups or force centers. Originally, this was built as a
simulation from the notion that d3-forces,7 can do this, so we don’t have to do the
layout of the individuals ourselves.

5.5.3.1 Layout of the Force Centers
In the first version of this prototype, the force centers were randomly placed on the
canvas and it was the responsibility of the users to arrange them to be convenient.
To improve usability, we implemented a default layout so that users could get useful
information right away. To achieve this, we regarded the Venn diagram as a graph
(Figure 5.11).

For every force center, a vertex of the corresponding graph is created (1). The force
centers that share a theme group are connected via an edge (2). We then used the
resulting graph (3) to layout the force centers. The simulation results in a layout
for the whole diagram and not only the force centers, because the individuals are
drawn to their corresponding force center and the group hulls are drawn around
the individuals. Well-known algorithms for deterministic, planar graph layout are
Eades [24], Davidson & Harel [21], and Fruchterman & Reingold [28]. Although these
algorithms producewell-designed graphs, we ultimately decided against using them.
The reason for this is that we were already familiar with forces simulations. It was
easier to transfer this knowledge to the layout than to familiarize ourselves with a
new algorithm.

Three forces are used for the simulation. A center force8 that tries to move all force
centers in the middle of the canvas, a link force,9 that tries to keep all edges at a
specified length, and a negative many-bodies force10 that tries to repel force centers

7https://github.com/d3/d3-force (last accessed: 2020-07-30).
8https://github.com/d3/d3-force#centering (last accessed 2020-07-30).
9https://github.com/d3/d3-force#links (last accessed 2020-07-30).

10https://github.com/d3/d3-force#many-body (last accessed 2020-07-30).

162

https://github.com/d3/d3-force
https://github.com/d3/d3-force#centering
https://github.com/d3/d3-force#links
https://github.com/d3/d3-force#many-body

5.5 Our Approach on Bidirectional Mapping

from another. With the interplay of these three forces, a good approximation to an
evenly distributed graph is achieved.

5.5.3.2 Click Interaction
The Venn Diagram uses a canvas element as its drawing canvas for the same reasons
as the XY Diagram (section 5.5.1.1) and thus results in the problem that a canvas can
only handle pixels. Therefore click events do not go to the graphical representation
of an individual, but to the canvas. To deal with this problem, we used the position
matching strategy as explained in section 5.4.4.

This means getting the position of a click and then checking for every data
element, in our case the individuals if the click happened within the bounds of the
individual’s graphical representation. As the individuals are represented by dots,
we can check whether the Euclidean distance of the click position is smaller than
the radius of the circle. If that is true, we found the individual, that resulted in the
graphical representation and can thus map the individual’s representation back to
the individual.

5.5.3.3 Double Click Interaction
The force center annotations can be visually distracting. So we use a double click on
the graphical representation of the corresponding force center to toggle whether the
annotation is displayed or not. Because the canvas only handles pixels, we need a
bidirectional mapping from the canvas to the force centers. Again, we use position
matching for this. Only this time, the checking whether the position is in the bounds
does not happen on the individuals, but on the force centers. This way we achieved
a bidirectional mapping of the force centers to their graphical representations. When
a force center is found, it tells its annotation to toggle its visibility.

5.5.3.4 Drag Interaction
For manual rearranging of the force centers and thus the Venn diagram itself, we
use the d3 dragging API.11 This API-call needs the draggable subject. Here again,
we use the position matching strategy to find the force center at the mouse position,
when dragging is started.

5.5.3.5 Free-Hand Selection Interaction
In the Venn Diagram, we allow a lasso select. It is implemented like in the XYDiagram
(section 5.5.1.2). The only difference is that the FreeHandDrawer uses its own
canvas to draw the selectionwhile it is made by users instead of the default canvas for
the individuals. This is due to the simulation, the visualization uses. The simulation
clears the canvas with every tick, to draw the next step. If the current selection was
drawn on the same canvas, it would be cleared too and not be visible to the users.

11https://github.com/d3/d3-drag (last accessed 2020-07-30).

163

https://github.com/d3/d3-drag

5 Mapping of Data and UI for Interactive and Explorable Visualizations

Figure 5.12: A screenshot of one bar chart of a statistics panel

5.5.4 Statistics Panel

The idea behind the Statistics Panel is to allow users to see the demographic
composition of a data set at one glance. Therefore it consists of one bar chart per
demographic attribute where the x-axis displays the values that the attribute can
have and the y-axis the amount of individuals. The Statistics Panel web component
is a wrapper to allow us to apply actions like filtering the same way as in the
other visualizations and to have multiple bar charts in one visualization. For ease
of handling, we chose not to draw the bar charts by hand but to use the library
chart.js. We will explain why in section 5.5.4.3. When it comes to interactions,
chart.js12 only supports hovering and clicking13.

5.5.4.1 Hover Interaction
When users hover over a bar chart.js per default generates a tooltip which shows
the size of the bar, in our context the amount of individuals that make up the bar.
Because this is useful to get a quick overview, we had to use the click interaction to
allow users to further explore the demographic groups.

5.5.4.2 Click interaction
The click interaction in this prototype differs from the click interaction in the other
prototypes. Here it is not an individual that gets clicked, but a bar and therefore,
semantically, a group of individuals. There would have been two ways to integrate
the click action in our system. The first is to extend the InspectAction so it
can inspect more than one individual. The second is to use the freehand selection
mechanism. For an explanation of this interaction pattern, see section 3.3.5. Because

12https://www.npmjs.com/package/chartjs (accessed 2020-07-30).
13https://www.chartjs.org/docs/latest/general/interactions/events.html

(accessed 2020-07-30).

164

https://www.npmjs.com/package/chartjs
https://www.chartjs.org/docs/latest/general/interactions/events.html

5.5 Our Approach on Bidirectional Mapping

Figure 5.13: Screenshot of a not connected child visualization of a statistics panel

an inspection limits users to explore a data set by only showing it in an Individual
Inspector and highlighting individuals, we chose to use the freehand selection
mechanism. This way enabled users to easily create new visualizations from a
demographic group and view that group in other contexts although only in the
Tree View prototype as explained in section 3.5.3. So when a bar is left-clicked, we
notify the visualizations pane via an event that a freehand selectionwas right-clicked.
This triggers the creation of new visualizations from the individuals sent in the event.
The combination of chart.js and the freehand selection leads to three problems.

The first is, that usually the creation of visualizations from a freehand selection is
triggered with a click of the right mouse button. Chart.js does not support that,
so we had to use the left mouse button click. This inconsistency makes it harder for
first time users to find out that this is even possible.

The second problem is, that in the Tree View prototype we use jsplumb14 to draw
connections between the freehand selection and the visualizationmade from it. To do
that, the connection endpoints have to beHTMLDOMelements. Char.js draws the
bars and hold references to them, without mounting them into the DOM. Therefore,
the bar cannot be an endpoint for a connection as shown in Figure 5.13. The XY
Diagram was created from the 18-25 bar in the statistics panel.

The third problem is that we have to send the selection individuals in the event.
Chart.js does not support saving custom data to bars. This means we cannot store
the individuals that make up a bar in the bar element in order to extract them easily
when the bar is clicked. Because of that, we had to write a wrapper class around
chart.js, which holds the grouped data. The next issue is to find out which group
is needed.We found out that the bars store their label in the variable _model.label.
Because the labels match with the values the group has for the attribute we group
the individuals by, we can use that to find the right group. This means we have a
mapping from bars to individuals and thus a bidirectional mapping of individuals
and bars.

5.5.4.3 Choice of Visualization Library
The click interaction came with three problems mentioned before, that we would
not have, using d3 instead of chart.js as a library to create the bar charts. d3
supports listening on right clicks, can generate HTML DOM objects as bars, and

14https://www.npmjs.com/package/jsplumb (last accessed 2020-07-30).

165

https://www.npmjs.com/package/jsplumb

5 Mapping of Data and UI for Interactive and Explorable Visualizations

allows appending custom data to bars. So why would we choose chart.js? The
only reason is the programming speed. Chart.js is less complex than d3 and
therefore has an easier to use declarative style than d3. This is crucial because when
we added the statistics panel, we did not have much time left for the project. The
focus of the project was not on standard visualizations but on new ones, which
keep the individual in focus. Therefore we did not want to spend more time than
necessary on bar charts to allow us to improve our prototypes of novel visualizations.
So in a different context, d3 would have worked better, but given the circumstances,
chart.jswas the better choice.

5.5.5 Evaluation of Our Approach on Bidirectional Mapping

The main problem that makes bidirectional mapping difficult is the loss of
information (section 5.3.3). That loss can have multiple origins. The origins
we dealt with are too little information in the data set and aggregation. In the
previous sections, we stated how we achieved bidirectional mapping in our main
visualizations. Throughout their implementation, we dealt with information loss.
To solve this problem, we used several approaches.

Firstly, we traced the graphical representations back to elements in our individual-
centered data format, instead of the source data that Africa’s Voices sent us as stated
in section 5.2.5. This way we avoided the problem of non-existent data from the start.

Secondly, we avoided the problem of aggregation by never really aggregating. An
example of this is the XY Diagram. If the number of individuals is selected as the
grouping of an axis, as shown in Figure 5.14, the individuals are arranged so that it
looks like a bar chart to users. The individuals, the point to which we want to map
back to, are still displayed and are therefore traceable. When we could not avoid
aggregating the data, for example in the Statistics Panel, the visualization stored the
data. By saving the grouping, the attribute, and the values of a group, the mapping
can then be reverted.

In summary, the following strategies for dealing with information loss have
proven to be successful: On the one hand, choosing a reasonable data structure as a
starting point for bidirectional mapping and, on the other hand, never completely
aggregating the data, but always keeping at least a reference to the original data.

5.6 Conclusion

Our goal was to develop visualizations that allow for interactive exploration of the
underlying data.

We evaluated three strategies for implementing bidirectional mapping. Based on
these strategies, we were able to backtrack the data from which the visualizations
were built, enabling the exploration of the data. The main idea of implementing
bidirectional mapping was, in addition to the used strategies, to avoid aggregations
wherever possible to work around the problem of information loss. Where

166

5.6 Conclusion

Figure 5.14: A screenshot of the XY Diagram, with the gender on the x-axis and
amount on the y-axis

aggregation is unavoidable, we still had access to our raw data allowing us to
draw inferences.

Our work shows ways to implement bidirectional mapping. However, we have
evaluated only a part of the possible methods. Therefore, our work allows to gain a
basic understanding of the difficulties of bidirectional mapping in order to evaluate
or develop further methods to determine the origin of data in future work.

In the context of our project, the bidirectional mapping of data and UI allowed
us to develop interactive visualizations that allow the exploration of the underlying
data. Explorability enables users to develop empathy and creates confidence in the
correct representation of data through visualization.

167

6 Evaluating Visualization Technologies
to Display, Animate and Explore
Individual Data Points of High
Dimensional Data Sets in Lively4

The visualizations we have created are a graphical representation of individual-
related data, focusing on explorability and ensuring that individuals are always
visible. Rendering Interactive visualizations with up to 100,000 points on client-side
in a web browser is a demanding and complicated task. This thesis’s content is
the benchmarking and evaluation of different web technologies to develop, render,
animate, and interact with visualizations with several thousand points on the web.
We determined different web technologies, foundmetrics to evaluate them, and used
the browser and JavaScript capabilities to measure and evaluate those technologies’
performance. We could show that the performance of a technology correlates with
its memory consumption and how the visualization environment influences the
performance of the rendering technologies.

6.1 Introduction

The visualizations we have created are a graphical representation of individual-
related data, focusing on explorability and ensuring that individuals are always
visible. To make this possible, we have assigned the data points of our data set,
i.e., the individuals, their own graphical element. We have chosen a graphical
primitive; the point. We implemented the prototypes for these visualizations in the
web browser. While modern web browsers allow for diverse interactions, displaying
complex graphics using client-side rendering is still a challenging and resource-
intensive task. In our visualizations, up to 100,000 points must be rendered and
animated. Furthermore, the users must be able to interact with the points, click on
them, regroup them, or color them according to specific attributes. There are several
technologies available for rendering our visualizations, including SVG elements,
the HTML <canvas> element, or native HTML <div> and elements. This
chapter aims to work out the advantages and disadvantages of these technologies,
classify them using computer graphics categories, and to benchmark different
metrics. To compare the technologies in a meaningful way and to understand how
they work, it is essential to understand basic rendering processes in the browser.
This will be the content of the first part of this chapter. Furthermore, we will explain

169

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

the difference between Immediate mode and Retained mode, the two dominant
paradigms in computer graphics, and how to best measure and quantitatively
evaluate rendering processes in the first part. In the second part of this chapter,
we explicitly deal with our visualizations in Lively4. We will work out the technical
visualization requirements and introduce the web technologies we use to represent
many points in detail. Additionally, we will categorize the technologies into the
Immediate or Retained mode and discuss advantages and disadvantages. Content
of the third part of the thesis is the benchmarking of these web technologies. We will
first discuss benchmark techniques in general in the browser. Then we will explain
the benchmarks we have carried out, present hypotheses, present the benchmark
results, and discuss them. In the last part of the thesis, we will discuss the remaining
problems of our visualizations, present further optimizations, and give an outlook
for possible future work on our visualizations.

6.2 Visualization Environment and Approach

This section contains a description of the visualization and development
environment. Besides, we will briefly outline the elements of which our
visualizations consist and what requirements the visualizations have.

6.2.1 Browser and Lively4

We developed all our visualizations in Lively4. Lively4 is a live programming
environment in a web browser based on HTML, CSS, and JavaScript[38]. So in
principle, we could use all technologies for graphical presentation that are used in
conventional browser applications. The resulting visualizations are rendered on the
client-side. This means that parts of the data manipulation and the actual rendering
of the visualizations take place in the browser. Client-side rendering is necessary
because our visualizations should be interactive and not just rendered as static
images, as described in section 1.2.2. The users must be able to adapt and change
the visualization dynamically and see the result of their interaction immediately.
In Lively4, we have written markdown documents that support HTML, CSS, and
JavaScript; see section 4.3.1.2 for further information.

6.2.2 Visualization Approach

The challenge and purpose of our visualizations are to present personal data
graphically and to always keep the focus on the individual. To achieve this, we
decided to assign a graphic element to the individual so that each individual
remains tangible and visible within the visualization (section 1.1.3.3). As described
in subsection 3.2, in our visualizations, this graphic element is the point. The data
provided to us covers between 1,000 and 100,000 individuals. This means that we
have to render and animate between 1,000 and 100,000 points. Also, as explained in

170

6.2 Visualization Environment and Approach

section 3.3, users must be able to interact with these points, arrange them according
to specific parameters, and change their color. To better understand the graphical
primitive of the dot from a technical point of view, let us briefly describe what the
entities of a point are that we need to control completely:

• Radius (pixel),
• Scope (pixel),
• Surface (opacity),
• Border (pixel),
• Surface color (color),
• Border color (color),
• Position (pixel),
• Motion direction and speed (pixel per ms).
Further components of our visualizations, as further described in section 3.4, are

scales, geographic maps, annotations, labels, and background colors to indicate
groupings. Our visualizations go far beyond the presentation of static web content
and thus use the resources of a browser enormously. In the following chapters, we
will explain the technology stack that enables us to implement such visualizations
in the web browser.

6.2.3 Visualization Requirements

In the following, we will go through the requirements for our visualizations and
derive the technical implications. The list of requirements is not complete and is
specifically directed to the domain of rendering technologies. Also, the requirements
define the view and perspective with which we look at and compare the different
rendering technologies. Besides explaining each of them, we will derive measurable
metrics.

6.2.3.1 Fast Prototyping
Our goal was to quickly evaluate different visualization ideas. At the beginning of the
project, our project partner stated the following goal: “Try to create a visualization a
day.” To develop visualizations quickly, the following must be given.

• The complexity of the code required to display them should be as low as
possible. This allows to derive the code complexity for the creation of the
visualizations as a metric to evaluate web technologies for rendering many
points.

• Also, the available documentation should be as comprehensive as possible,
and the technology should be accessible (community support, stack overflow
entries).

None of us is an expert in the field of computer graphics, and the focus was
mainly on the development of visualization concepts besides the development of
applications for displaying those visualizations. For this reason, accessibility and
complexity of the technologies play an essential role.

171

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

6.2.3.2 User Experience
We have implemented different visualizations, which are different views of the
data, i.e., they highlight different aspects of the data. To draw conclusions from
the data, users must be able to switch quickly between visualizations or display
them simultaneously. To make this process as convenient as possible, the following
must be considered:

• Rendering time, the time needed to display the visualization on the user’s
screen, should be as short as possible. This allows us to derive the “time to
render” as a metric. We define the time to render as the time that passes
between a render statement from the client and the actual rendering on the
user’s screen, so for example, the time that passes between a JavaScript call
to manipulate a web page and the actual appearance of these changes on the
user’s screen.

In our case, the render time can also be understood as the visualization
application’s response time. The limit for having the user feel that the system
is reacting instantaneously is about 0.1 seconds [52].

6.2.3.3 Explorability through Responsiveness
In addition, the data set should be explorable as stated in subsection 1.1.3.7.
Explorable means that the users have to be able to interact with our visualizations
instead of just consuming a simple graphic image. Part of this interaction are
animations in which points are grouped, moved, and colored. Individual points can
also leave color traces or repel each other in some of our visualizations. In order to
make the animations as comfortable as possible for the user, they must run smoothly.
Therefore the following must be considered:

• According to the RAIL model,1 which was introduced by Chrome developers
at Google to evaluate the performance of their applications in a user-centered
way, animations with 60 frames per second are pleasant to watch. To render an
animation at 60fps requires that the time needed for rendering the content is
16.67ms maximum. Conventional video films run at 24fps and are perceived
as pleasant. Nevertheless, as a general rule, the higher the frame rate the more
enjoyable animation is perceived by the user. The frame rate of animations
depends on two circumstances. First, how long it takes to render the animation
graphics, and second, the refresh rate of the display of the device on which
the animation is running. An average display has a refresh rate of 60Hz, which
means that a frame rate of more than 60fps is technically not possible on such
a display. The frames per second and the time to render are very close together.
The greater the time to render, the lower the fps and vice versa, which is the
result of both metrics’ definitions. Therefore, we will only record the time to
render in the benchmarks later on and will not list the fps as a single metric.

1https://web.dev/rail/ (last accessed 2020-07-29).

172

https://web.dev/rail/

6.3 Graphics in the Browser

6.2.3.4 Bidirectional Mapping
As explained in section 5.3.3, to interact with the visualizations in a meaningful way,
it must be possible to infer the corresponding data point from a graphical element
of the visualization. For example, it must be possible to display an annotation with
more detailed information about an individual when users click on a point. As
explained in section 5.5, there are many different possibilities and approaches to
implement bidirectionality in the browser using JavaScript andHTML.We have tried
out different concepts in different visualizations. Often the used implementation
of bidirectionality depends on the used visualization technology. To make many
interaction patterns possible, the following must be given:

• Code complexity and side effects when introducing interaction patterns must
be manageable. Also, from the point of view that prototypes can be created
and adapted quickly. Code complexity is also suitable as a metric here.

Bidirectional mapping makes it possible, that our visualizations are not just static
images, but that we can explore the underlying data set through interaction with the
visualization.

6.2.3.5 Novelty
Our project partner demanded that we produce novel visualizations that put the
individual in focus. So we could not use prefabricated solutions but had to go
in different directions, try out different visualization ideas, and evaluate different
interaction patterns. To achieve this, the following circumstances must be given:

• There must be an appropriate degree of freedom in the implementation of
different ideas. The technologies used must allow us to render any graphic
element as freely as possible and interact with it. At the same time, the
technology or library used must offer enough abstraction so that prototypes
can be implemented and tested quickly. This is not a property that can be
benchmarked, but only an assessment of the technology and libraries’ APIs.

The technology requirements range between complexity and accessibility, freedom,
and performance. In section subsection 6.5.4 we will again discuss the requirements
and classify the technologies we use.

6.3 Graphics in the Browser

When rendering many thousands points in the browser, performance of the
underlying technology plays an enormous role (see section 6.5). As seen in
subsection 6.2.3, to provide a smooth user experience, it must be ensured that the
visualizations are rendered quickly and without errors on desktop devices in the
browser. A good understanding of the browser structure and the rendering processes
is required to optimize this process.

173

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.1: Basic browser architecture

6.3.1 Browser Architecture

The architecture of different browsers differs inmany respects. Figure 6.1 is, therefore,
only to be understood as a reference architecture. The components described there
can be found in every browser and showhere exemplarily,which components interact
in which way [34]. The user interface is the component with which the users interact
to retrieve graphical web content. The browser engine acts as a bridge between the
user interface and the rendering engine. Based on the input of the users, it makes
requests to the rendering engine. The rendering engine is the heart of every browser.
It is responsible for parsing HTML-, CSS-, XML-content, and rendering it onto the
user’s screen. There are currently three popular desktop browsers2 and therefore
three major rendering engines, Gecko,3 which is used by Firefox, Webkit4 which
is used by Safari, and Blink5 which is used by Chrome.6 More about the render
engine and related processes in section subsection 6.3.2. The Networking component

2https://gs.statcounter.com/browser-market-share/desktop/worldwide/
#monthly-202006-202006-bar (last accessed 2020-07-25).

3https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
(last accessed 2020-07-25).

4https://webkit.org/ (last accessed 2020-07-25).
5https://www.chromium.org/blink (last accessed 2020-07-25).
6https://arstechnica.com/information-technology/2013/04/google-going-its-
own-way-forking-webkit-rendering-engine/ (last accessed 2020-07-23).

174

https://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-202006-202006-bar
https://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-202006-202006-bar
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://webkit.org/
https://www.chromium.org/blink
https://arstechnica.com/information-technology/2013/04/google-going-its-own-way-forking-webkit-rendering-engine/
https://arstechnica.com/information-technology/2013/04/google-going-its-own-way-forking-webkit-rendering-engine/

6.3 Graphics in the Browser

is responsible for fetching files over the Internet and the correct use of various
communication protocols of the internet. The JavaScript Interpreter is responsible
for parsing and executing JavaScript code. The vast majority of browsers have their
own JavaScript interpreters. Chrome uses V8;7 Firefox uses SpiderMonkey8 (the
historic first JavaScript interpreter), and Safari uses Nitro.9 Because every browser
uses different JavaScript interpreters, different browsers support different JavaScript
features. Furthermore, the implementation differs considerably, e.g., Mozilla Firefox
implements Array.sort() as a merge sort,10 but Chrome as a timsort.11 This also leads
to different performance and execution times of the browsers. We will only consider
the Chrome Browser in this work. The UI back-end is used to display classic widgets
such as select boxes, input boxes, or checkboxes. For this reason, these widgets
are often displayed differently in different browsers. Another critical feature of the
browser is data persistence. The persistence layer is responsible for the persistence of
data, which helps the browser store data (like cookies, local storage, session storage,
IndexedDB, WebSQL, and FileSystem) locally [6, 29].

6.3.2 Render Process in the Browser

The implementation of web content rendering differs for browsers. Nevertheless, the
general process is the same for all popular web browsers (Safari, Chrome, Firefox)
and often referred to as CRP,12 the critical rendering path.

Figure 6.2 describes the rendering process of Webkit. In the following part, we
refer only to the abstract intermediate steps. Since there are no significant differences
between the render engines at this level of abstraction, we will not differentiate
between Webkit and Gecko. Optimizing each of these steps is critical to achieving
optimal rendering performance13 14.

We create web content using HTML and CSS files. The rendering engine gets
these documents from the network layer of the browser. When parsing the HTML,
the engine converts the HTML tags into DOM nodes.15 The DOM is both a data
structure with which the browser describes HTML documents and an interface for
the developer who can interact with the DOM using JavaScript, i.e., dynamically

7https://v8.dev/ (last accessed 2020-07-25).
8https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

(last accessed 2020-07-25).
9https://developer.apple.com/documentation/javascriptcore

(last accessed 2020-07-25).
10https://dxr.mozilla.org/seamonkey/source/js/src/jsarray.c

(last accessed 2020-07-27).
11https://v8.dev/blog/array-sort (last accessed 2020-07-27).
12https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_

rendering_path (last accessed 2020-07-25).
13https://developers.google.com/web/fundamentals/performance/critical-

rendering-path (last accessed 2020-07-19).
14https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_

rendering_path (last accessed 2020-07-19).
15https://dom.spec.whatwg.org/ (last accessed 2020-07-19).

175

https://v8.dev/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.apple.com/documentation/javascriptcore
https://dxr.mozilla.org/seamonkey/source/js/src/jsarray.c
https://v8.dev/blog/array-sort
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developers.google.com/web/fundamentals/performance/critical-rendering-path
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://developer.mozilla.org/en-US/docs/Web/Performance/Critical_rendering_path
https://dom.spec.whatwg.org/

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.2: WebKit rendering process

add or remove nodes, manipulate the display of the nodes and add event listeners
to nodes. The same happens with the CSS information of a website. These are also
parsed and the CSSOM, the CSS Object Model,16 is created.

Then the DOM and CSSOM are combined to form another tree structure, the
Render-tree. This data structure contains all nodes necessary to render the website.
In the Render-tree, the style information of the nodes in the CSSOM is added to
the nodes in the DOM. The Render-tree contains only objects that are actually
rendered on the user’s screen. The objects in the Render-tree represent rectangles
with geometric information such as height, width, and position. Therefore, the
relationship between the DOM and the Render-tree is not 1-to-1, for example, nodes
with the CSS style attribute display: none or the HTML <head> element are not
included in the Render-tree. Furthermore, many nodes of the DOM are very complex
and are represented within the Render-tree with multiple objects.

After Render-tree construction comes the phase of layouting. In this phase, the
exact size and position of the nodes to be rendered are calculated from the Render-
tree, taking the viewport into account. The Render-tree is completely traversed, and
all nodes are aligned accordingly. During layouting, all relative distances (e.g., CSS
style attributes like width: 80%, margin: 5%) are translated into absolute pixel
values. HTML uses an intuitive flow-based layout model by default. This means that
elements are arranged in the order in which they appear: from left to right, from top
to bottom. A node’s position in the Render-tree is specified by the upper left corner
of a node. It is laid out according to a coordinate system, where (0,0) is the upper left
corner of the viewport. Layouting is a recursive process, meaning that each object
of the Render-tree implements a layout() function, which calls the same method on
all child objects. The output of the layout process is a “box model,” which precisely
captures the exact position and size of each element within the viewport [32].

16https://www.w3.org/TR/cssom-1/ (last accessed 2020-07-17).

176

https://www.w3.org/TR/cssom-1/

6.3 Graphics in the Browser

At the end of the rendering process comes the phase of painting. In this phase, the
Box Model created from the Render Tree is rendered as pixels on the screen.

The time needed to construct, layout, and paint the render tree depends on the size
of the documents, the styles applied (CSS attributes), and the device it is running on:
the larger the document, the more work the browser has to do; the more complicated
the styles, the more time is needed for rendering (e.g., a solid color is time-efficient
to render, while a drop shadow is much more complex to calculate and render, and
therefore takes more time [61]) [69, 32, 30].

Now the question arises, especially from a performance perspective, what happens
when the DOM or CSSOM is modified. At this point, we distinguish between local
and global layouting.

In the best case, DOM updates only require local layouting. This is the case if only
single nodes and their children are affected by changes. The browser gives the nodes
flags in the DOM. These flags indicate whether a node is “dirty” or “clean”, i.e.,
whether it needs to be relayouted. Local layouting can also be done asynchronously
by the render engine, which works single-threaded. Asynchronous layouting means
that the relayout operation can be pushed in a queue, and be executed in the idle
time of the browser without blocking the client application.

Global relayouting, on the other hand, is done, for example, on a window resize
or change of global CSS styles. Global relayouting is synchronous, i.e., the JavaScript
execution of the client is blocked. To make web content as performant as possible, we
have to avoid global relayouting because it is not as time-efficient as local relayouting
and blocks the client application [30].

Similar to layouting, painting is divided into local and global repainting.
We will see in section subsection 6.5.3 how different technologies influence and

use the browser’s layout and rendering behavior in different ways.

6.3.3 Immediate Mode Vs. Retained Mode

In the field of computer graphics, a distinction is usually made between two graphics
modes, the Retained mode and the Immediate mode. Both are considered API
designs or software patterns. We will assign the web technologies we use to display
graphic content to the respective modes in the later course of our work and quantify
their differences when benchmarking.

In Retained mode, as can be seen in Figure 6.3, the actual rendering is not directly
caused by the client. Instead, an abstract internal model is built and updatedwith the
user’s instructions, which only exists within a system (the graphics library). Such an
abstract model, called scene model is a collection of objects that contain information
about their graphical representation. In our case, such a scene model is the DOM.
The system then takes care of how this abstract model is actually rendered. In our
case, this system is the browser. It manages the DOM, the CSSOM, is responsible for
creating a Render-tree and takes care of the layouting and the actual painting.

In the case of the Immediate mode, as can be seen in Figure 6.3, the client is
responsible for the rendering. The instructions for describing rendering primitives
are inserted frame by frame directly from the client into a command list and then

177

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.3: Immediate mode and Retained mode

executed by the rendering engine. So there is no abstract scene model, which is
managed by an intermediate system and is updated declaratively. However, the
client is solely responsible for managing the scene model.

Retained mode APIs can be easier to use because the API handles more work
for the client, such as initialization, state management, and the scene model’s
cleanup. On the other hand, they are often less flexible because the API specifies
its own scene model. Also, an API in Retained mode may have higher memory
requirements because it must provide a universal scene model. With an Immediate
mode API, targeted optimizations can be implemented, and rendering is faster and
more performant than rendering in Retained mode. However, since the client has to
manage the scene model on its own and write the rendering statements itself when
using Immediate mode APIs, this type of rendering is associated with much greater
complexity [5, 59].

We will talk about both modes in the section subsection 6.4.2 and classify the web
technologies accordingly.

6.3.4 Measuring Rendering in the Browser

In order to evaluate web technologies, we need to be able to collect and quantitatively
evaluate metrics about them. To measure the metrics, we have different possibilities
at our disposal, which are explained in this chapter.

Basically, it is challenging to measure rendering processes in the browser
accurately. This is because processes such as layouting and painting are entirely
the responsibility of the browser’s render engine. As we will see in this section, the
browser does not offer an extensive APIwithwhich these processes can be controlled
or information about these processes can be obtained. At this point, we differentiate
between trying to measure performance metrics within the actual application, i.e.,

178

6.3 Graphics in the Browser

using JavaScript, which is executed on the client-side. Or, whether we try to look at
the application from the outside, i.e., consider the application as a black box, and
use the browser’s graphical performance tools to collect metrics.

6.3.4.1 External
If we measure performance metrics from the outside, i.e., we view the application as
a black box, we measure without adding any additional code. This means that the
internal application flows and processes do not have to be known; only the execution
within a web interface and metrics which can be obtained by that are crucial. The
analysis of the execution from outside is mostly done via the browser’s developer
tools. Every popular browser offers extensive functions precisely for this purpose.
Only Chrome was relevant in the course of our project, both for the development
of the visualizations and the execution within the live programming environment
Lively4. For this reason, we will only discuss Chrome’s developer tools in this
chapter. With these tools, we can measure a whole range of metrics and analyze
entire interaction sequences with a web application. The Chrome Developer Tools
offer some exciting features to measure rendering processes in the browser, among
others17:

• GPU usage measurement,
• Measure FPS,
• Show Call Stack,
• Analysis of the DOM,
• Show Repainting Regions,
• Heap snapshots,
• Performance timeline recordings.

In the Figure 6.4, we can see an example of a performance timeline recording over
about 14 seconds.We can see that the ChromeDeveloper Tools providemanymetrics.
In (A) we see a diagram that summarizes the key metrics measured. At a glance,
we see the frame rate, the heap usage, and a color-coding for the CPU usage. In this
case, yellow stands for “Scripting” and purple for “Rendering”. In (B), we see all the
JavaScript-functions executed in the recorded period and their corresponding call
stack. In (C), we see a detailed view of the heap usage. Furthermore, in (D) we see
a summary for the measured period. It shows how much time was spent on which
tasks. In Figure 6.4, we see that of the approx. Fourteen seconds recorded, approx.
Nine seconds were spent on “Scripting”, and approx. Three seconds on “Rendering”.

Another method of external measurement is screen casting. Sometimes the
Chrome DevTools are inaccurate because the browser is an application with many
influencing factors. To measure frames per second in animations, it is common to
record additional screen casts and examine the resulting video with a video motion
analysis tool. This technique will not be used further in this work [11].

17https://developers.google.com/web/tools/chrome-devtools
(last accessed 2020-07-16).

179

https://developers.google.com/web/tools/chrome-devtools

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.4: Google Chrome DevTools overview

6.3.4.2 Internal
When measuring internally, we add code snippets to the actual code of the
application. Since source code is directly adapted here, the testers must understand
the program structure and the application processes in detail. Often the time is
measured, which the application needs for the execution of a particular function
to optimize its performance afterward. The possibilities to make application-
internal measurements using client-side executed JavaScript are minimal. For such
measurements, the browser offers the window.performance interface as an API
for the developer.18 Using this interface, we can set markers within the application
code using simple instructions to measure the execution time between these markers.
The results of these measurements are DOMHighResTimeStamps, 19 i.e., doubles
representing timestamps in milliseconds.

Another essential function of the Browser API to better understand and measure
rendering processes is window.requestAnimationFrame().20 Calling this
method tells the browser that an animation should be executed. As a parameter, we
pass a callback, which is called before the browser triggers the next repaint. When

18https://developer.mozilla.org/en-US/docs/Web/API/Performance
(last accessed 2020-07-14).

19https://developer.mozilla.org/en-US/docs/Web/API/DOMHighResTimeStamp
(last accessed 2020-07-16).

20https://developer.mozilla.org/en-US/docs/Web/API/window/
requestAnimationFrame (last accessed 2020-07-16).

180

https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://developer.mozilla.org/en-US/docs/Web/API/DOMHighResTimeStamp
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

6.3 Graphics in the Browser

the browser calls the callback method, it passes a current timestamp as a parameter.
Therefore it is possible to measure how much time is needed for rendering e.g.,
measuring the frame rate. The standard JavaScript timers—setInterval() and
setTimeout()—are subject to large amounts of jitter, making them unsuitablefor
real-time interactivity. So requestAnimationFrame() is the modern way to
display animations fluently on the web [39, 71]. Instead of the client controlling
an animation loop itself, the browser can optimize animations, and the associated
relaying and repainting with window.requestAnimationFrame() and adapt the
animation frames to the frequency of the display (mostly 60Hz). Here is an example
that shows how we can measure the render time needed:

1 measureRendering()
2
3 function measureRendering() {
4 displaySomething()
5 requestAnimationFrame(startRender)
6 }
7
8 function startRender() {
9 performance.mark(”start”)

10 requestAnimationFrame(endRender)
11 }
12
13 function endRender() {
14 performance.mark(”end”)
15 performance.measure(”duration”, ”start”, ”end”)
16 }

In the example, we first call measureRendering(). Within this method,
we call displaySomething(). displaySomething() manipulates the
DOM in some way so that changes have to be rendered. We now call the
method requestAnimationFrame() and pass the callback startRender.
startRender() is called before the browser decides to trigger a rendering. When
startRender() is called, we set a start marker and request the next animation
frame with the callback parameter endRender. When the previous animation frame
is rendered and the browser renders the next frame, it calls endRender(). In this
method, we set an end marker and measure the elapsed time between both markers
with the performance.measure() statement by specifying a start mark and an
end mark.

6.3.4.3 Comparison of External and Internal Measurements
At first glance, it is evident that the Chrome Developer Tools offer considerably more
features than the browser APIs provided for internal measurements. Furthermore,
the metrics are displayed graphically. Also, we leave the actual application code
untouched. We do not need to know the program’s exact structure and make sure
that the application code is not distorted by adding code that should measure the
performance. However, external measurement is difficult to automate. Although
Chrome offers an interface for controlling a headless version of chrome [7], there

181

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

is much more work involved in automated navigation within a web application,
especially since we are on the live system Lively4. It would be easy if we only
need to load a website and want to measure the performance of it. However, we
need to perform many navigation steps within Lively4 to trigger the execution of
a markdown file we have written. Furthermore, the written execution files of the
benchmarks are stored on an access restricted Lively4-server (see section4.4.1.3).
Furthermore, the Chrome developer tools use their own file format to persist the
data of a performance timeline recording. This makes it challenging to parse and
analyze the stored data afterward.

When measuring metrics internally, we need to understand the application code.
Also, one is very limited in the scope of the measurable metrics. Furthermore,
it is possible that the code snippets that are used to measure the performance
of the application can falsify the measurement result. Nevertheless, the internal
measurement of metrics makes it much easier to automate the measurement process
and gives freedom in terms of data export and data format. We will use both
measurement techniques in the latter part of this paper but focusmore on the internal
measurement of metrics for the actual benchmarking.

6.4 Rendering Visualizations with Many Points in Lively4

In order to render several thousand points on the web, different technologies come
into question. This chapter aims to introduce these, show how we have worked with
them, and discuss their advantages and disadvantages.

6.4.1 Web Technologies to Render Points

Sincewe have all browser technologies available,we can use three native technologies
to display points: simple HTML elements, SVG, or Canvas. To compare how we can
render points with these technologies, we will briefly introduce each technology
below and explain the code needed to render a point. We will take a dot (see
Figure 6.5) with the following properties:

• diameter: 6px, radius: 3px
• border-width: 1px
• border color: #00000
• fill color: #eb4438

6.4.1.1 Simple HTML Span- or Div-Elements
Simple HTML <div> or elements can bemanipulatedwith CSS to represent
and render points. Thus, using JavaScript, one could dynamically create such span
elements, adjust their geometric data using CSS, and add or delete them as desired to
the DOM. The advantage would be, that we have a reference to the painted element
at any time because rendered HTML elements are accessible via the DOM. The
representation of such points would be easy to describe using HTML and CSS:

182

6.4 Rendering Visualizations with Many Points in Lively4

Figure 6.5: A rendered dot

1 .dot {
2 height: 6px;
3 width: 6px;
4 background-color: \\#eb4438;
5 border-radius: 50%;
6 border: 1px solid black;
7 position: absolute;
8 }

1 <div class=”dot”></div>

6.4.1.2 SVG
SVG, or Scalable Vector Graphics,21 is a language in an XML file format that was
explicitly designed for scalable 2D graphics. The SVG file format can be used to
display Vector graphic shapes, images, or text. It is possible to use SVG in HTML
files with the <svg> tag, which means that SVG elements are also anchored in the
DOM.

1 <svg height=”100” width=”100”>
2 <circle cx=”2” cy=”2” r=”3” stroke=”black” stroke-width=”1”

fill=”#eb4438” />
3 </svg>

As we can see in the HTML code above, SVG offers some primitives,22 including
the <circle> tag. If this primitive did not exist we would have to describe the circle
with paths, which would be much more complex and time-consuming.

1 <svg height=”100” width=”100”>
2 <path d=”
3 M 100, 100
4 m −75, 0
5 a 75,75 0 1,0 150,0
6 a 75,75 0 1,0 −150,0
7 ”/>
8 </svg>

21https://www.w3.org/TR/SVG2/ (last accessed 2020-07-13).
22https://www.w3.org/TR/SVG2/shapes.html (last accessed 2020-07-13).

183

https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/shapes.html

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

6.4.1.3 Canvas
The <canvas> is an HTML element and offers a free drawing surface on which
various basic shapes can be drawn using JavaScript methods. The canvas itself is
anchored in the DOM. The actual graphical elements drawn on the canvas are not
part of the DOM, so they cannot be referenced through the DOM. It is a low-level
process model that updates a pixel bitmap and does notmanage its own scenemodel.
To work with the canvas element, we have to get a drawing context for this canvas
dynamically using JavaScript. 23

1 let canvas = <canvas width=”800” height=”800”></canvas>;
2 context = canvas.getContext(”2d”)

There are different contexts available for the canvas element, whereby only two
are relevant for us, the CanvasRenderingContext2D and the WebGL context.

The CanvasRenderingContext2D24 interface, part of the Canvas API, provides the
2D rendering context for the drawing area of a canvas element. It is used to draw
shapes, text, images, and other objects. To render the above point in this context, the
following code would be required:

1 <div id=”container”>
2 <canvas id=”draw−canvas” width=”800” height=”800”>
3 </div>

1 let canvas = lively.query(this, ”#draw−canvas”)
2 let context = canvas.getContext('2d')
3
4 drawCircle()
5
6 function drawCircle() {
7 var centerX = getRandomFloat(0, width)
8 var centerY = getRandomFloat(0, width)
9 var radius = 3

10
11 context.fillStyle = '#eb4438'
12 context.lineWidth = 1
13 context.strokeStyle = '#000000'
14
15 context.beginPath();
16 context.arc(centerX, centerY, radius, 0, 2 * Math.PI, false)
17 context.stroke()
18 context.fill()
19 }

The code of the function drawCircle() can be understood as follows. We define
the center of the point (set by random float). We also specify the radius of the point.
Now we specify how the point should be drawn. At this point, we can imagine that

23https://html.spec.whatwg.org/multipage/canvas.html (last accessed 2020-07-15).
24https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

(last accessed 2020-07-16).

184

https://html.spec.whatwg.org/multipage/canvas.html
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

6.4 Rendering Visualizations with Many Points in Lively4

the pencil is assigned the appropriate attributes. So we set the fill-style (inner color
of the area), the line-width (border of the point), and the stroke-style (color of the
border of the point). Afterward, we specify how the pen we just defined is to be
moved over the bitmap. With beginPath() we practically place the pen on the
drawing area. The arc()method defines a circular area. With context.fill()
and context.stroke(), we draw the circle line and fill the resulting area.

The WebGLRenderingContext25 provides an interface to the OpenGL ES 2.026

graphics rendering context for the drawing area of a canvas element. We can draw
on it using WebGL. WebGL programs consist of control code written in JavaScript
and shader code. A shader is a chunk of program code that implements algorithms
to get the pixels onto the screen. Shaders are typically defined in a high-level C-like
language and compiled into code usable by the graphics processing unit (GPU). The
GPU understands just vertices and textures; it has no concept of material, light, or
transform. The translation between those high-level inputs and what the GPU puts
on the screen is done by the shader.[54]

By using the graphics card, WebGL is much more powerful than other web
technologies. However, it also adds much more complexity. To show the code for
rendering a point with WebGL would go beyond the scope of this chapter. To
illustrate the complexity of the task, it should be mentioned that about 80 lines
of code were needed to render the point above. These 80 lines include the JavaScript
code, the shader code and the HTML code. When rendering with WebGL, we use a
low-level library called ReGL.27 The code used during benchmarking can be seen in
section C.4

6.4.2 Discussion

First, we can assign the technologies to one of two modes, Immediate mode or
Retained mode. SVG and simple HTML elements like div or span elements can
be assigned to the Retained mode because the browser manages them in the DOM.
The client is not responsible for the actual rendering, but the browser determines
the display of those elements.

The Canvas element, on the other hand, can be assigned to the Immediatemode[5],
since here the user specifies drawing commands for various graphics primitives and
the browser calls native libraries and interfaces of the local operating system with
the client’s instructions. The browser is merely an intermediary that exposes an area
in the browser window where the operating system is used to draw in. Thus the
actual implementation is dependent on both the browser and the operating system.
Because native rendering technologies are used, the browser does not have tomanage
a scene model, and the objects on a canvas are not managed in the DOM. Therefore
much overhead is eliminated for the browser. Thus the canvas should be much more

25https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext
(last accessed 2020-07-18).

26https://www.khronos.org/opengles/ (last accessed 2020-07-18).
27http://regl.party/ (last accessed 2020-07-24).

185

https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext
https://www.khronos.org/opengles/
http://regl.party/

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

performant, at least from a rendering perspective. We will discuss such performance
metrics in the next chapter.

From the perspective of bidirectionality, all technologies that can be assigned to
the Retained mode are much better suited. Because HTML elements like div, span
or SVG elements are kept in the DOM by the browser, the developer has a reference
to these objects at any time of execution. We can add EventListeners for e.g., click-
events, so that the user can interact with the rendered elements. This is not possible
with graphical elements drawn on a canvas, because the drawn objects are not part
of the DOM.

The complexity of WebGL code is enormous compared to HTML elements or
the 2dRenderingContext of a canvas element. Also, the code necessary to create
bidirectionality between data points and the graphical points in the visualization
is much more complicated for canvas elements (see subsection 5.4.2.1). Because
WebGL is executed on the graphics card, the rendering of these objects is much more
efficient than with technologies of the Retained mode (see subsection 6.5.3).

6.5 Benchmarking Web Technologies

This section of the thesis deals with benchmarking the web technologies mentioned
above. The benchmarks were performed both within the live programming
environment Lively4, and using a locally running server without the Lively4
environment. This allows us to compare the technologies and to evaluate how
Lively4 affects the rendering of points in the browser.

6.5.1 Benchmark process

To benchmark the technologies, there is an execution file that performs
measurements. A measurement may include several metrics measured. In the
execution file, we can define how many measurements should be made. The
measurement results are then exported as a CSV file. These CSV files have a
dimension of the number of measurements times number of metrics measured. The
CSV files are then processed and merged by various Python scripts. The quantitative
evaluation and creation of the charts takes place in Excel.

6.5.2 Benchmark Scenario

We benchmark the technologies only by taking internal measurements. As explained
above, the metrics to be measured are limited to time and heap consumption. So we
want to determine how much time is needed to render n points and how much heap
is allocated by our benchmarks. In doing so, we perform measurements for different
amounts of points.

Basically, we animate points during the measurements. To animate the points,
we define an animation loop that repeatedly requests animation frames via the

186

6.5 Benchmarking Web Technologies

browser API window.requestAnimationFrame(). We measure the time the browser
needs to take up the animation frame and then returns from it by calling the passed
method. Like this, we can measure how long the browser needs to render the points.
Furthermore, in each iteration of this animation loop, we record the allocated heap
size. All points get a random position at the beginning, i.e., an x-position and a y-
position within a fixed area. We call this area the drawing area. When rendering
span-elements, the drawing area is a div element; when rendering points within a
2D context, the drawing area is a canvas. In each iteration of the animation loop, the
position of each point is changed. We increment both x- and y-positions by 1, and
completely clear the drawing are in each iteration. Besides, we manage a counter
variable that holds the number of iterations of the animation loop. So we can stop
the execution of the script as soon as we have 100 measurements.

To be able to show comparisons and optimizations, we will adapt this benchmark
script. We have executed this benchmark script for the different technologies and
with a different amount of points to generate the following measurement series.
Fewer test series were recorded for some technologies, which is due to the fact that
the browser crashed due to overload while the benchmark script was being executed.

See section C.1 for the benchmark protocol. All code that was used for
benchmarking can be found in section C.4

6.5.3 Explanation of Benchmark Results

Initial broad consideration of themeasurement results (see C.2 for all results) reveals
a dichotomy of the technologies, both in the measurement results for Lively4, and in
the measurement results that were determined without Lively4. Thus SVG and span
elements are in one group, and canvas rendering, i.e., 2D context and WebGL, are
in the other group. The dichotomy becomes clear when we take a closer look at the
percentage deviation of the measurement results. We add up the measured times
and calculate the deviations between canvas rendering and rendering with SVG and
span elements in Table 6.1.

In Table 6.1, we see that the speed difference between rendering on canvas and
using SVG and span elements is enormous, especially as the number of points
increases. However, as we can see in Table 6.1, when we compare rendering with
span elements and rendering with SVG, that the differences are not significant.

In Table 6.1, it can also be seen that 800 points is a limit above which the
performance differences of SVG and Span elements differ significantly from those
of 2D context or WebGL.

The groups reflect exactly the above-described division of Immediate mode and
Retained mode rendering techniques. We can clearly see the performance overhead
of managing all rendered elements via the DOM. On the other hand, there is no
more indirect rendering via the DOM when rendering on a canvas.

To see how the difference between Immediate mode and Retainedmode rendering
techniques affects the browser, we can take a closer look at the rendering processwith
the Chrome DevTools. To do this, we run the benchmark script for rendering span

187

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

webgl vs. span webgl vs. svg canvas vs. span canvas vs. svg
100 dots 2% 12% -10% -1%
200 dots 1% 1% 1% 1%
400 dots 2% 4% 0% 2%
800 dots 2% 7% 1% 6%
1600 dots 110% 124% 90% 104%
3200 dots 394% 431% 195% 217%
6400 dots 1012% 1086% 251% 274%
12800 dots 2191% 2286% 164% 175%
25600 dots 5081% 5173% 153% 158%
51200 dots 9443% 11086% 112% 149%

Table 6.1: Deviations of the sum of times to render. See Table C.1 absolute values

span vs. Svg
100 dots -10%
200 dots 0%
400 dots -2%
800 dots -5%
1600 dots -7%
3200 dots -7%
6400 dots -7%
12800 dots -4%
25600 dots -2%
51200 dots -17%

Table 6.2: Deviations of the time to render of SVG and span elements. See Table C.1
absolute values

188

6.5 Benchmarking Web Technologies

Figure 6.6: Chrome DevTools when rendering with WebGL

elements as well as for rendering on a canvas withWebGL and record a performance
timeline recording in parallel.

As we can see in Figure 6.6 (C), of the 3.6 seconds recorded, the browser spends
about 8 ms in rendering. These 8 ms of rendering are needed to display the web
content initially, in this case, the root div of the HTML element and the canvas
(the drawing area). Also in (A), we can only see a green bar. This indicates a
constant repainting of the page. The differences become even more apparent when
we compare the performance timeline recording of the rendering of span elements
in Figure 6.7.

Everything marked purple in Figure 6.7 (A) indicates that the browser was busy
rendering content. We can see that the browser initiates a rendering every time the
DOM is updated (in every iteration of the benchmark script). From the recorded
5.2 seconds in (C), the browser spends 1.6 seconds in rendering processes. When
rendering on a canvas, the operating system is given a fixed area on the display,
the canvas surface. With this, the operating system can render without the browser
having to render all the time. This explains the performance differences between
Immediate mode (the canvas element) and Retained mode (rendering using DOM
elements). Also, as we can see in (C), ca. 2.9 seconds were spend on “Scripting”.
This indicates, that when rendering points as span elements, we always have to
iterate over every data entry to add a corresponding span element to the DOM. In
comparison, when rendering withWebGL, we do not have to add nodes to the DOM;
therefore we spend significantly less time in “Scripting” (See Figure 6.6 (C)).

189

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.7: Chrome DevTools when rendering -elements

Nowwe take a look at the heap consumption of the individual technologies. Again,
we compare the technologies without going into the differences between rendering
within Lively4 and rendering without Lively4. As expected, the same subdivision
as above applies here as well:

In Table 6.3we see, especiallywith a large number of points, the difference between
rendering techniques of the Immediate mode and the Retained mode is visible. SVG
and span elements must be mounted in the DOM, so they take up memory in the
heap. Since the elements rendered on a canvas have no reference in the DOM, less
memory is allocated in the heap.

Another particularity is noticeable when we look the two metrics, both heap
consumption and time to render, when rendering points with SVG (See Figure C.7
and Figure C.11). When looking at the rendering of 51,200 points with SVG elements
in Lively4, it can be seen that there are always outbreaks in the time to render. We do
not have a flat line, but very volatile measurements. If we look at the corresponding
heap measurements, we can see that there are also such breakouts. The deflections
are periodic in both cases. Every fifth measurement is a considerable deflection in
the time to render (Figure 6.8).

In Figure 6.8, we can see that the rendering performance, or rather the smoothness
of the animation, is strongly related to thememory used. In principle, we can observe
the browser at work here. The performance outbursts can be explained with the
browser’s garbage collector. Chrome uses a generational garbage collector[55], which
distinguishes between “young” objects and “old” objects. Deleting “young” objects is
cheap and is done in idle processes of the browser. Deleting “old” objects is expensive.

190

6.5 Benchmarking Web Technologies

webgl svg canvas span
100 dots 8.93090123 8.55797841 8.29355524 17.4111138
200 dots 6.4900493 6.25474926 7.06782768 7.6813499
400 dots 7.02984786 8.5330229 6.8345605 6.01572303
800 dots 7.17516053 6.59598976 7.10518398 8.1429869
1600 dots 6.74618401 7.87780517 7.24223842 8.75730673
3200 dots 7.32184745 10.83753856 7.36471118 11.37400687
6400 dots 9.4806486 23.56274925 9.51280486 35.47085385
12800 dots 31.79363874 50.70004224 8.26959678 67.00521572
25600 dots 19.6146978 108.5658169 8.51574697 139.566563
51200 dots 47.12601747 176.3557883 11.88011913 306.6721561

Table 6.3: Heap consumption when rendering in mb

Figure 6.8: Heap usage and time to render when rendering point with SVG

191

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.9: Rendering with SVG without clean up of drawing area. Performed on a
local server without Lively4

Here, a mark-and-sweep algorithm is executed, which, depending on the number of
objects in the heap, can lead to significant performance degradation, as shown above.
In our case, this is due to the structure of the benchmark script. As described above,
we delete the content of the drawing area in each iteration. This results in 51,200
new SVG elements being allocated in each iteration. If we change the script so that
the drawing area is not cleared, i.e., we save the references to the SVG elements and
change the position directly at the reference, we get a completely different picture,
as can be seen in Figure 6.9.

In Figure 6.9, we can observe that the garbage collector does not have to run the
expensive mark-and-sweep algorithm for old objects once. In this case, much of the
heap is allocated for iterating over the individual SVG elements, not for creating the
SVG elements and mounting them in the DOM.

Now let us look at the differences between rendering in Lively4, and rendering
Lively4, i.e., executing the script on a local server instance.

First, we compare the times. For this, we take the average time to render for each
number of points per technology and calculate the percentage difference between
execution in Lively4 and local execution without Lively4. In Table 6.4 and Table 6.5,
we calculated the absolute averages, which have been rounded to 3 decimal places.

In Figure 6.10, we calculated the percentage deviation of the values between the
local version and Lively4.

We have mixed results in Figure 6.10. With WebGL, there is hardly any difference,
even with up to 12,800 points. From then on, the render times of WebGL on the local
server are about 80% faster. With the 2D context of a canvas, the differences harden
from 800 points on. The render times of 2D context are between 20% and 40% faster

192

6.5 Benchmarking Web Technologies

webgl-local webgl-lively canvas-local canvas-lively
100 dots 0.016 0.016 0.019 0.017
200 dots 0.017 0.017 0.017 0.017
400 dots 0.016 0.017 0.017 0.017
800 dots 0.017 0.016 0.017 0.018
1600 dots 0.017 0.017 0.019 0.023
3200 dots 0.017 0.017 0.028 0.042
6400 dots 0.017 0.017 0.053 0.080
12800 dots 0.017 0.018 0.146 0.198
25600 dots 0.017 0.027 0.345 0.453
51200 dots 0.018 0.058 0.803 1.002
102400 dots 0.019 0.105 1.583 2.375

Table 6.4: Average time to render per technology: 100 measurements were taken.

span-local span-lively svg-local svg-lively
100 dots 0.017 0.017 0.018 0.017
200 dots 0.017 0.021 0.017 0.018
400 dots 0.017 0.017 0.017 0.033
800 dots 0.017 0.030 0.018 0.067
1600 dots 0.035 0.061 0.038 0.037
3200 dots 0.082 0.135 0.089 0.080
6400 dots 0.187 0.340 0.200 0.185
12800 dots 0.384 0.904 0.400 0.362
25600 dots 0.873 2.767 0.888 0.756
51200 dots 1.702 1.996 1.517
102400 dots 4.01 3.133

Table 6.5: Average time to render per technology: 100 measurements were taken.

Figure 6.10: Percentage differences in time to render in Lively4 and on local server

193

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.11: Comparison of rendering with WebGL in Lively4 and on local server

on the local server. When rendering span-elements, we can see the differences even
earlier. From 400 points on, we can clearly see that the rendering of span elements is
about 40% to 70% faster on the local server. Only the SVG elements are difficult to
classify. Here we can observe that rendering SVG elements up to 800 points on the
local server is up to 80% faster. But above 1,600 points, rendering SVG elements in
Lively4 is 15% to 35% faster.

In Figure 6.11, we see the differences between rendering 204,800 points with
WebGL on the local server and in Lively4. For this purpose, we examine the direct
comparison of the respective measurements.

Again, we can see that the amount of allocated heap is strongly related to rendering
performance. It is noticeable that in the case of Lively4, significantly more heap is
allocated from the beginning. This is because Lively4 itself already consists of a large
number of DOM elements. We can also see in the heap chart, that the measurement
pattern is the same, but repeated at a different frequency. In the case of rendering
without using Lively4, the browser seems to have a different garbage collection
behavior. Here, after 6 to 10 measurements, a garbage collection process can be seen.
In contrast, when rendering in Lively4, we see much more considerable deflections,
and a more time-consuming garbage collection process is only noticeable after 20 to
46 measurements. The reason for this is unknown and is related to implementation
details of the browser. If we compare the average of the time and heapmeasurements,
we see that in Lively4, the average render time is 83% higher. At the same time, the
average amount of allocated heaps in Lively4 is 86% higher than in the local scenario
run.

Also, with span elements and the 2D context of the canvas, it can be seen that the
page’s higher memory consumption leads to worse performance (see section C.2).
This discovery was also confirmed by the Google GMAIL development team[51].
Onlywith SVG elements, this assumption cannot be confirmed by ourmeasurements.
We repeated the measurements several times, both for SVG elements in Lively4 and
for SVG elements on the local server, and the results can be reproduced. We suspect
that this is due to the browser’s caching behavior for SVG elements, but in this case,
we cannot make a reliable statement.

The relationship between memory consumption and performance can be seen.
We found that when rendering more memory-intensive technologies, such as span

194

6.5 Benchmarking Web Technologies

Figure 6.12: Comparison of the impact of the drawing area size on performance

elements and SVG elements, the browser crashes significantly more often. Also,
when rendering span and SVG elements in Lively4, the browser crashes at a much
lower number of points. This is because the heap memory of a tab is limited in
Chrome, and in Lively4 much memory is allocated to other system elements of the
live programming environment from the outset.

Another visualization dimension is the drawing area size. The above benchmarks
all took place in a fixed size of 800x800 pixels. In Figure 6.12, we changed the size
to 8000x8000 pixels for two selected technologies and can compare the results for
rendering 51,200 points. We use SVG and WebGL for this comparison.

In Figure 6.12 we see, while WebGL has experienced significant performance
slumps, SVG performance remains constant. If we compare the average times and
calculate the percentage difference per technology, the average time with WebGL
is 89% higher on the 8000x8000 pixel canvas than on the previously used 800x800
canvas. Rendering of SVG elements was 6% faster on the 8000x8000 pixel drawing
area than on the smaller drawing area used before.

To see how significant the performance differences of the technologies are between
measurements on different days, we have conducted two benchmark series for
rendering in Lively4 and running the benchmark script on a locally running server
without Lively4. Both measurement series were performed with a time lag of several
days. We made sure that the benchmark environment is the same.

In Figure 6.13, we see the comparison of both measurements when rendering in
Lively4. In the following, both measurement series are distinguished by the suffix
“v1” and “v2”.

In Figure 6.13, we can see significant deviations. While the Immediate mode
technologies, i.e., rendering on a canvas element, show a maximum deviation of
11%, SVG and span elements show much more significant differences. There is a
performance difference of up to 70% with SVG elements when rendering 400 and
800 points. With span elements, a maximum difference of about 20% can be seen
with 200 points; otherwise, the deviation is also limited.

Now let us look at the same series of measurements for rendering without Lively4
using a locally running server Figure 6.14.

In Figure 6.14, we can see that the differences are higher for all technologies except
SVG than for rendering in Lively4. While Span elements show the most significant

195

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.13: Comparison of the measurement series from different days using
Lively4

196

6.5 Benchmarking Web Technologies

Figure 6.14: Comparison of the measurement series from different days using local
server

197

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

Figure 6.15: Rendering technologies and requirements

difference of about 21%, WebGL and SVG show about 28%. The performance of the
individual technologies thus seems to be much more volatile on the locally running
server without Lively4 than it is when rendering in Lively4.

6.5.4 Discussion

In general, we could say that, as is usually the case in IT, there is an apparent trade-off
between the complexity of a technology and its performance.

As we can see in Figure 6.15, we can arrange the technologies into the area of
conflict of requirements discussed at the beginning.

WebGL is very performant and memory efficient, but also very complex and less
accessible than the other technologies. Because we have to write our own shader
code in WebGL, we can render all kinds of complex shapes, from 2D graphics to 3D
graphics. SoWebGL gives the programmer much freedom.Writing the code is much
more complex and time-consuming than it was with SVG elements and debugging
the shader code of WebGL (which is executed on the GPU) is more difficult because
the error messages in the browser when executing shader code are much more
limited than with JavaScript code. Also, the documentation and community content
is less detailed and extensive compared to regular JavaScript content about the 2D
context of HTML canvas elements or major libraries like d3.js.

In principle, much applies to rendering on a canvas using the 2D context as
well, but in an attenuated form. Rendering on a 2D context is a bit more memory-
intensive and not as powerful because we cannot use the GPU’s parallelization
technologies efficiently. On the other hand, the 2D context is not as complex as
rendering with WebGL, because no shader code has to be written. Furthermore,

198

6.5 Benchmarking Web Technologies

rendering sophisticated 3D graphics with the 2D context of a canvas is impossible,
or only possible to a limited extent. Nevertheless, using the canvas element, we can
access single pixels of the bitmap and manipulate them as we like.

On the other hand, SVG and span elements consume much memory, and the
technologies are much less performant than rendering on canvas. With SVG, we can
render all kinds of 2D shapes, but we cannot manipulate individual pixel values.
With span elements, however, we can only render rectangles. The point is a particular
form in this case because it is only displayed as a square with rounded edges. No
other shapes, besides rectangles, are possible. Compared to the canvas element,
the freedom in design is thus significantly restricted. On the other hand, these
technologies are also less complex, especially the span elements.

Less sophisticated technologies, such as SVG and span elements, have a higher
memory consumption, which in most cases, also leads to performance losses. The
above-listed differences between rendering in Lively4 and rendering on a local server
also show that the choice of technology depends on the exact circumstances. While
rendering span elements can be useful in an unspoiled environment, the canvas
element is more appropriate in an environment where a range of other web content
is already present.

As shown in the benchmarks above, the influence of the visualization environment
is enormous. Especially when visualizations on theWeb are not rendered in isolation,
but are part of a Web application, or an environment where other content is also
rendered, the memory consumption and performance of the technologies plays an
increasing role. To avoid negatively affecting the rest of the system’s usability, we
should use the most memory-efficient technology.

The different technologies have different strengths and weaknesses, which means
that an effective combination of these technologies is usually required in a specific
application. In many cases, we have usedWebGL only to render points. This allowed
us to keep the shader code and reuse it. The axes of some diagrams were then drawn
by absolutely positioned SVG elements located above the canvas. Another technique
we used was Canvas Layering. Here, a concrete use case was the grouping of points
andmaking this grouping clear by coloring the background (colored polygons). The
rendering of the points was done with WebGL, but the more complex rendering of
the filled polygons was done on a canvas with a 2D context. This allowed us to take
advantage of WebGL’s performance when rendering many thousand points while
rendering more complex shapes (with less memory consumption) with a more
documented and accessible technology. Furthermore, some of our visualizations
work with annotations, such as text fields that appear when the users click on a
point. The content of these annotations must be dynamically created and changeable.
For this, we have used absolute positioned span elements. This way, we could
easily access the ID’s of these span elements via the DOM and change their content.
Furthermore, rendering text in a canvas is expensive and cumbersome, but in a
native spa -element, it is less complicated and much more effective through browser
optimizations.

199

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

To combine the strengths of all technologies, reduce weaknesses, and respond to
the surrounding system, it is necessary to effectively combine the technologies and
work out their use cases within the visualizations.

6.6 Future Work and Further Optimizations

6.6.1 Remaining Problems

Many of our visualizations are very resource-demanding for the browser. Aswe have
seen in the benchmarks, it is quite challenging to render, animate, and interact with
more than 100,000 points on the web. Since the different visualizations highlight
different focal points of the data and thus the underlying topic, it is helpful, if not
necessary, to view several of these visualizations in parallel. With the application we
have built, we can open several visualizations, simulate connections between them,
and data flow through these visualizations.

One problem originates directly from the programming language JavaScript used
on the web. JavaScript works single-threaded.28 This means that when complex
calculations and functions are executed, they block the rest of the client application.
This leads to the problem that several complex visualizations take away execution
time from each other. The blocking behavior of long-running JavaScript functions,
in turn, leads to the user not being able to interact smoothly with the application,
and the animations in various visualizations stall. Especially in a live system like
Lively4 this leads to limited usability of parts of the system. So it happened quite
often that we had to reload Lively4 several times during programming and testing
our applications to continue working with the system. A significant part of the
problem were visualizations that work with simulations (long running animations).
In such simulations, we have to interact with the data, and the visualization
is a continuous animation of the points. If we open one of these simulations,
the remaining visualizations and the whole system performance has decreased
noticeably (especially with a high number of points).

When rendering points on a canvas usingWebGL, the GPU is strained. This means
there is a hardware limit that is not easily fixed. Different devices have different
graphics cards; therefore, the graphic quality of the visualizations depends on the
end device. As web developers and visualization designers, we have no influence
on the solution of this problem.

While we can solve the first problem by applying further optimizations at the code
level, the second problem cannot be solved by us.

28https://dev.to/steelvoltage/if-javascript-is-single-threaded-how-is-it-
asynchronous-56gd (last accessed 2020-07-20).

200

https://dev.to/steelvoltage/if-javascript-is-single-threaded-how-is-it-asynchronous-56gd
https://dev.to/steelvoltage/if-javascript-is-single-threaded-how-is-it-asynchronous-56gd

6.7 Conclusion

6.6.2 Further Optimizations

To get around the blocking behavior of the single-threaded JavaScript, we can use
WebWorkers.29 WebWorkers are a way to execute JavaScript code in the background
of an application. This means a web worker can execute complex, long-lasting
functions without blocking the UI, user interaction, and scripts in the main thread. A
WebWorker is just a JavaScript object that executes a JavaScript file in an independent
thread. Communication between the Web Worker and the actual client application
takes place using messages.[8]

In our case, expensive calculations regarding the data used could be outsourced
to such a worker without blocking the client application.

Another technology that became available in Chrome in 2018 is OffscreenCanvas.
A disadvantage of Web Workers is that we cannot manipulate DOM elements from
within them. Since the Canvas API is bound to the canvas element, it was impossible
to execute the rendering instructions of a canvas element via a Web Worker. The
OffscreenCanvas breaks the binding between the Canvas API and the DOM and
makes it possible to execute rendering instructions in a web worker [31, 56]

1 const offscreenCanvas = document.querySelector('canvas').
transferControlToOffscreen();

2 const worker = new Worker('rendering.js');
3 worker.postMessage({ offscreenCanvas }, [offscreenCanvas]);

Calling the method transferControlToOffscreen(), we get the instance of an
offscreen canvas and can pass the reference of this offscreen canvas to the Web
Worker we created. The Web Worker executes the JavaScript code specified in the
file “rendering.js”.

In our case, we could outsource the rendering of entire visualizations in several
threads running in the background. This would significantly reduce the load on
the main thread, and the usability of the live programming environment Lively4
would be completely preserved. While this would create further indications and
increase the complexity of the application code (by communicating via messages,
propagating data updates), the user experience would be much better, as shown in
an example by Chris Price.30

To make our visualizations more accessible, this would be a useful optimization
approach.

6.7 Conclusion

In this chapter, we considered different technologies to display visualizations in
the browser. This explicitly involved rendering up to 100,000 points on the web.
We also looked at the rendering process of the browser to specifically address

29https://www.w3.org/TR/workers/ (last accessed 2020-07-23).
30https://chrisprice.io/offscreen-canvas/?100000 (last accessed 2020-07-28).

201

https://www.w3.org/TR/workers/
https://chrisprice.io/offscreen-canvas/?100000

6 Evaluating Visualization Technologies for Individual Data Points in Lively4

optimizations and explain the differences between the technologies used to render
the visualizations. To discuss the advantages and disadvantages of the technologies
and to evaluate their performance, we performed benchmarks both in the live
programming environment Lively4 and on a local running server with a clean
environment.

Four technologies were investigated, span elements, SVG, and the canvas element,
both with 2D context and with WebGL context. It has been shown that WebGL is by
far the most performant technology. Furthermore, WebGL offers the greatest design
freedom but is also much more complex than the other technologies. The 2D context
of a canvas is more accessible than WebGL, but also not as performant. Nevertheless,
one can manipulate single pixels in the 2D context and has a lot of design freedom.
Span elements and SVG elements have the highest memory consumption and are
also much less performant than rendering on a canvas. Furthermore, the design
freedom is very limited for SVG elements, but especially for span elements.

We found that the higher the number of points rendered, the more noticeable
the technologies’ performance differences. We were also able to see the relationship
between the memory usage of a technology and its performance in the browser.
Furthermore, by running the benchmarks in different environments, we were able to
observe the influence of a web environment or web application on the performance
of individual technologies. Our visualizations combined many of the technologies
by evaluating their strengths and weaknesses, and weighing the complexity of a
technology against its performance value for the corresponding use case.

The rendering of complex visualizations poses some specific problems.
Multithreading approaches for JavaScript and the possibility to spread the rendering
of visualizations into different threads is a promising way to further improve the
performance of our visualizations and the interaction flow between user and
visualization.

202

7 Visualizing Africa’s Voices: Evaluating
Our Individual-centered Approach to
Visualize People’s Opinions and
Demographic Data

The goal of this project was to design and validate novel visualizations that among
other things enable an interactive exploration process and create empathy. This
chapter evaluates the approach we used to achieve this goal through some of the
prototypes we built. We present walkthroughs of three prototypes. They show how
to interact with the prototypes and how to gain insights from them. We also present
a value-driven evaluation of the prototypes, which among other things discusses
the possible questions that can be answered with them. Finally, we discuss how we
solved the problems Africa’s Voices faces when using visualizations. This discussion
highlights how an individual-focused approach can help to create empathy and trust
in the data. Furthermore, we analyze which interactions our visualizations use and
how they differ. We discuss how our visualizations enable fast feedback cycles to
help in the exploration process.

7.1 Introduction

With this project, we pursued the goal of designing and validating novel
visualizations. Those visualizations should, on the one hand, provide an interactive
and explorable way to analyze multi-dimensional data and, on the other hand, make
the process more empathetic towards the individuals from which the data comes.
These goals are in contrast to the ones more conventional data visualizations try
to solve. Those visualizations want to provide a clear view of the information and,
therefore, abstract the underlying data cases away. In this chapter, we evaluate the
prototypes we built with regard to these goals.

While we constantly tested our ideas and prototypes with our project partner
at Africa’s Voices, we use this chapter to more thoroughly investigate the benefits
of our visualization and our approach for its use case. As we aimed to support
the exploration of data, this chapter illustrates how users can explore and answer
questions through the visualization prototypes we built. Further, we evaluate how
our prototypes differ from analysis with “standard” visualizations.

To this end, we summarize the core problems the data from Africa’s Voices
presents, standard visualizations forAfrica’s Voices pose, and describe the difficulties

203

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

of evaluation of visualizations as well as our evaluation method in section 7.2.
To show how our prototypes work and what their functionalities are, we present
3 walkthroughs in section 7.3. In section 7.4 a value-driven evaluation of our
prototypes is shown according to four categories. Coming back to the problems
summarized in Section 2,wediscuss our solutions to them in section 7.5.We conclude
section 7.6with an outlook on the impact ourwork has for further research at Africa’s
Voices.

7.2 Foundations

In this section, we summarize the problems regarding
1. the data we used,
2. the domain where the data comes from and the intended use case for our

visualizations provided, and
3. evaluation of visualizations.

7.2.1 Problems with Data

The data Africa’s Voices collects and which we want to visualize has two main
foci: demographic and thematic information. While the demographic information
includes attributes such as age, gender, geographic region, language, and whether
a person is recently displaced, the thematic information includes the thematic
coding of the answers from the respondents. This variety of information already
shows that the data is high-dimensional, which is necessary as the data is a
condensed form of what in “grounded theory” is called “thick data”. “Thick data”
includes accounts of personal experience from respondents and records that provide
narratives of experience [16]. This information should be grounded in the context
of the respondents to understand their perspectives.

To display high-dimensional data, there are three main ways to do so: a) display
a high dimensionality visualization, b) project the high-dimensional data to a
lower dimensionality, or c) show multiple low-dimensional visualizations [33].
Understanding and displaying the demographic information is relatively easy,
especially when compared to the challenging thematic codings. Each individual
respondent has multiple themes out of all possible codings. That way, the data can
be up to 50-dimensional. In information retrieval, a field which deals with similar
data, these kinds of codings are often modeled in an n-dimensional vector space,
where each dimension represents a theme [70]. While this makes calculating easier,
this representation is not suited as a visualization. This high-dimensionality of the
overall data and the thematic information, in particular, is a core problem when
visualizing the kind of data Africa’s Voices works with.

Another core problem is the amount of data Africa’s Voices wants to explore.
Several projects have thousands of respondents with many more messages. Future
projects are planned to include even more respondents.

204

7.2 Foundations

7.2.2 Problems from Partner and Domain

In chapter 1, the main problems Africa’s Voices faces when working with
visualizations are explained. Those problems are either part of the domain Africa’s
Voices is working in or part of the goals they want to achieve when working with
visualizations. Here we summarize the problems. For a more detailed description,
refer to subsection 1.1.3.

Slow Feedback Cycles Due to Their Current Process The data analysis process
of Africa’s Voices involves manual data management and copying data from old into
new spreadsheets. There are many steps between getting the data and creating a
visualization. These steps result in a slow feedback cycle. A slow feedback cycle is
detrimental to a data exploration process, where it is crucial to generate questions
and try to validate the underlying hypotheses quickly.

Generalization of Findings Due to Quantitative Data “Standard” visualizations
such as bar charts, pie charts, or bubble charts all display aggregated data, that
means summary statistics based on all the data points. To be able to aggregate
data and therefore evaluate statistical values, the data has to be quantitative.
Those aggregations can suggest a generalization to the whole population. This
generalization is problematic because a) the respondents are self-selected and
therefore not representative for the whole population, and b) its focus on statistical
summaries neglects the context in which each respondent lives.

Viewing Single Individuals and Original Opinions For the data Africa’s Voices
collects, the original messages are crucial. They include the richest information
and are necessary to convey Africa’s Voices’ insights into the presentation of their
findings. However, to analyze the messages further and have a chance to visualize
them, they must be encoded. When encoded themes are used in the visualization,
it is challenging to keep the connection to the original message. Nonetheless, the
connection from the visualization to the original message is essential.

Trust in Data Since Africa’s Voices wants to present their insights to decision-
makers and the population, it is vital to trust the data presented in a visualization.
For analysis, manipulation of the data like filtering is necessary. In their current
workflow, this is tedious and involves much manual work. The manual work, in turn,
cannot be easily reproduced. AVF logs all interactions with the data in a provenance
tracing (refer to 5.2.4.1 for a discussion of these tracings), but the tracing ends before
the data analysis step. Showing the trace information in the visualization and adding
themanipulation steps from the analysis could significantly increase trust in the data
and insights from it.

Trust in Software Going further than that, providing trust in the software by
allowing for code inspection enables even greater transparency.

205

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Connecting Visualizations To showmultiple perspectives and aspects of the data,
multiple diagrams are needed. If they are not connected, it is not easy to see for
the users whether they contain the same data. In this regard, they have to trust
the software and visualization creator. Furthermore, for most visualizations, it is
difficult to interconnect data points across visualizations and draw conclusions from
those comparisons. This difficulty is in part because “standard” visualizations use
their own graphical elements. Lastly, if different visualizations do not share a similar
design language, switching between them is difficult, especially for people without
an analysis background. Thus, it is easier to understand connections in the data if
different visualizations are explicitly connected. Added to that, it helps if they look
uniform and support the same kind of interactions.

Missing Interaction With static diagrams, users only have one view of the data.
Without interaction, the chance of direct and immediate exploration is lost. They
would have to load the whole data into another diagram and build it again.
Interacting with the visualization and, therefore, the data could be most helpful
for researchers. They would have more direct access to the data, which leads to
a completely different exploration and analysis process. Additionally, interactive
diagrams could significantly help people who get presented the data understand
the relationships between multiple views of the data.

Missing Empathy Most visualizations focus on showing the data for a specific
task, for example, comparing two or more groups with a bar chart. In the case
of survey data, the AVF also needs to emphasize that the data is highly personal
and sensitive. Especially when presenting to decision-makers, but also during the
analysis process, it is essential to create empathy for the respondents, to help
understand the underlying issues. Therefore, visualizations should aim to help to
foster it.

Issues With the Mindset When using “standard” visualizations, researchers tend
to stay in familiar thought processes. Visualizations should inspire new questions
and unconventional thinking.

7.2.3 Problems of Evaluation of Visualizations

In the field of human-computer interaction, the evaluation of tools and systems often
means assessing the usability of the system or its interface. This evaluation happens
through a series of benchmark tasks in which researchers evaluate whether a user
could use the system to achieve a predetermined result [41]. This approach has also
been proposed for evaluating visualizations [2]. However, task-focused evaluation
is not sufficient for evaluating visualization systems and fails for several reasons:

• Factors of individual experience and skill in the analysis, as well as the specifics
of the given data, influence performance within a given visualization system
[40, 72].

206

7.3 Walkthroughs

• The familiarity of userswith traditional interfaces: Even after extended training,
it is tough to overcome the bias caused by familiarity with traditional interfaces
[2].

• The task-focused approach fails to evaluate the fundamental aspects of
visualizations [62].

A task-focused evaluation approach shows whether a system is learnable and
comprehensible for potential users and whether users can use it to answer a specific
set of questions about a specific data set. However, this approach fails to encompass
all the advantages a visualization should bring to users. The goal for the usage of
a visualization system is often not only to answer a specific set of questions but to
explore the data set and get a “big picture” understanding of the data. Additionally,
the system should help generate insights about the data beyond specific data values.

To emphasize the last argument, consider an example data set about laptops and
their respective attributes, which means price, performance, storage, wattage, et
cetera. After building a visualization system for this data set, we can evaluate the
system by asking specific questions like:

• What is the most performant laptop?
• Which laptop has the best price-performance ratio?
• Does storage correlate with performance?
While answering those questions certainly gives information about the

visualization system, those data queries do not show the benefit of the visualization.
Most of those questions can be answered with a spreadsheet, maybe even quicker.
The benefits of using a visualization are at a more elemental level [62, 2].

These problems are the reason why we opted to use an approach introduced by
John Stasko called “Value-driven evaluation of visualizations” [62]. In essence, this
approach entails a qualitative analysis of four factors:

1. the time needed to answer a wide variety of questions about data
2. the spur and discovery of insights and/or insightful questions about data
3. the ability to convey the overall essence of data
4. the ability to generate confidence, knowledge, and trust about the data, its

domain, and context

7.3 Walkthroughs

In this section, we present walkthroughs for three prototypes. We describe how to
answer emerging questions in a scenario and show how to analyze data with our
prototypes. The walkthroughs are not only proof of work in that they show that
our visualizations can answer and generate questions and enable an explorative
workflow; they also showcase how users might use the visualizations. Additionally,
they serve as a starting point for further discussions in later chapters.

After explaining the setting, we look at three prototypes. Those are Tab View, Tree
View, and Individual Center. For a more in-depth description of the involved design
decision, refer to sections 3.5.2, 3.5.3, and 3.4.4 respectively. The first two are the

207

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

integrated visualizations; the last one shows another direction of ideation. The three
prototypes represent the approaches of the remaining prototypes reasonably well.

7.3.1 Setting

The prototypes work in the Lively4 environment described in chapter 4. The domain
in this example is data about the Covid-19 pandemic. Africa’s Voices Foundation
ran radio shows regarding the hopes, fears, and questions of the population about
Covid-19 collected the answers via text message and coded the answers with themes.
For a more in-depth explanation of their general process, see subsection 1.1.2. One of
the data sets from a radio show in Somalia is the focus in the followingwalkthroughs.

The walkthroughs have three parts, each covering another prototype we
developed: (1) Tab View, (2) Tree View, and (3) Individual Center. Each time, the
goal is to explore the data set and gain meaningful insights about the data and
respondents. That means the goal is to discover interesting trends and aspects of the
data about the respondents’ demographic makeup, as well as what the respondents
said and possible connections between those two. Consider always to be careful
about generalizing the data to the total population: participants are self-selected and
biased by access to radio shows and the possibility to send text messages.

7.3.2 Tab View

By examining all respondents’ demographic information, we can gain insights
into the representation of different groups in our data set. There are two different
visualization types in this prototype to help inspect demographic information: XY
Diagram, which is a mix between a bar chart and scatterplot, and a Map. To have
the most flexibility in what groups to view, we look at the XY Diagram first. In
this visualization, selecting appropriate demographic attributes as grouping criteria
is possible to see different distributions. To see the split into male and female
respondents, we group by gender. The result looks similar to a bar chart and is
shown in the screenshot Figure 7.1. In contrast to a regular bar chart, it is still possible
to inspect any individuals’ opinions in the distribution. To get a sense of some
individual respondents, we click on some points, each representing a person who
answered by text message. This interaction allows users to inspect the demographic
information and the answers to the questions from the radio show in an inspector
window. The interesting aspect of this interaction is that it allows for a qualitative
analysis inside the quantitative analysis. By inspecting the individual respondents,
users connect specific knowledge about a few individuals to the general knowledge
gained from the overview distribution. For example, by selecting some individuals,
we find out about two interesting themes in male and female respondents: “call for
right practice” and “religious practice”.

In the XY Diagram, it is also possible to group along the y-axis to incorporate a
second dimension. In this view, users can estimate correlative dependencies in the
data. We group the y-axis by age and get the following view, as shown in Figure 7.2.
In this view, users can see which age-gender group responded most often. The scale

208

7.3 Walkthroughs

Figure 7.1: Dataset grouped by gender

Figure 7.2: Dataset grouped by gender and age

of respondents in each age-gender bucket depends on the density of the points in
the box. With this metric, it is not easy to discern small differences or accurately tell
the number of individuals in each box. However, it is possible to recognize bigger
trends. In the example, we see that the age group from 18-35 is the most prominent
for male and female respondents, while more participants were male than female.

209

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Figure 7.3: Map, colored by recently displaced

To see a geographical distribution of the respondents, we switch to the Map view
and see all individuals arranged according to their home district. Once again, the
scale is the district’s point density, which depends on how many individuals are in
each district. To add another dimension to this diagram, users can use color all dots
according to one attribute. To find out whether there are regions where there are
more displaced people than in others, we color all individuals on the map according
to their displaced status. The result is shown in Figure 7.3. We can see that there is
one district with many displaced people in the center of Somalia. This is a fascinating
insight, which we can follow up on later on.

The information about what was said is represented in our data by the thematic
coding. By looking at individuals earlier, we found two interesting themes: the
“religious practice” and the “call for right practice”. To visualize these groups, we
switch to another diagram, an adapted Venn diagram. In this diagram, it is possible
to select all themes that belong either to the “religious practices” or to “call of right
practice” and group them (see Figure 7.4). There are three groups of people: one
group for people who mentioned “religious practice”, one for respondents who
mentioned a “call for right practice”, and one for people who mentioned both. The
size of the circles corresponds to the number of individuals who mentioned the
corresponding theme combination. Like the density metric, this metric is better
suited to detect more prominent trends than to make accurate comparisons. In the
example, it is possible to see that both standalone groupings attract about the same
amount of individuals. However, there are slightly more individuals who only talk
about “religious practice”.

To find out how the demographic makeup of respondents mentioning specific
themes looks like, users can choose a demographic distribution to look at in the
XY Diagram and filter all individuals according to the mention of those themes.
This process is limited to specific demographic attributes and themes. Therefore,
users should know which themes are interesting to them. In the exploration process,

210

7.3 Walkthroughs

Figure 7.4: Venn Diagram, groupings for themes ‘call for right practice’ and
‘religious practice’

“recently displaced” and the themes “religious practice” and “call for right practice”
were particularly interesting, so we focus on the possible correlation of those
categories. To achieve this, we (1) switch to the XY Diagram, (2) filter by one of
the themes, (3) set the x-axis to represent displaced status, and (4) set the y-axis
to display the number of individuals. We repeat this process for both themes. The
results are shown in Figure 7.5. By comparing the height of the bars, it is possible to
see how the demographic distributions of people mentioning specific themes differ.
Interestingly, it is possible to easily see relative sizes in the distribution, since the
bars’ heights are normalized to the height of the biggest bar. In Figure 7.5 we can see
that displaced people are more likely to mention “religious practice” than “call for
right practice” than non-displaced people.

Figure 7.5: Dataset grouped and colored by recently displaced:
filtered by the mention of ‘call for right practice’ (right),

filtered by the mention of ‘religious practice’ (left)

211

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

This comparison leads to the conclusion that when tackling the coronavirus crisis
in Somalia, it can help to work with religious authorities to ensure health messaging
is effective. This insight is especially truewhen trying to communicatewith internally
displaced people.

In this walkthrough, we were able to gain different insights about the data and the
respondents. The insightswe gained concern the demographic aswell as the thematic
information. We got insights into who the respondents are and also what they are
generally are talking about. Additionally, we could infer some combined thematic
and demographic information, which can help communicate with the population.
That means we were able to achieve our goal for this walkthrough.

7.3.3 Tree View

The next prototype we examine incorporates the same basic visualizations as the
previous one but combines them differently.

Since it served us well, we use the same data exploration structure as in the last
prototype: Starting with an analysis of the demographic information followed by the
thematic information. An important difference to the previous prototype is that the
visualizations users look at remain visible throughout the exploration process. They
form a tree-like structure, where users can see previous steps and, more importantly,
make direct comparisons between similar visualizations and even across data sets.

We start the exploration by looking at the age distribution of people who were
recently displaced and those who were not. This comparison is achieved by (1)
creating two visualizations, (2) filtering according to displaced status, and (3)
group them according to age. The result is shown in Figure 7.6. By looking at the
visualizations side by side, the differences in the age structure become very apparent:
The group consisting only of recently displaced people has a lower part of younger
respondents and a higher proportion of older respondents. This comparison is much
easier to do than in the previous walkthrough; viewing multiple visualizations at
once moves the work from the users to the visualization system.

To understand the groups’ internal structure more, it is necessary to add more
dimensions to the visualization. In this prototype, there are the following ways to
do that:

• Filtering,
• Coloring, and
• Grouping along the Y-Axis.
All of these interactions were shown in the previous walkthrough. However, in

this prototype, there is another way of filtering: a lasso-select tool, which allows
users very quickly to “zoom in” on a specific group. To see the gender split of the
corresponding individuals aged 18 to 35, we (1) select it with a lasso-selection tool,
(2) create new visualizations, and (3) group them by gender. Due to the side by side
comparison, we notice the differences easily: The percentage of female respondents
from all the respondents, who were recently displaced, is lower than the one from
all respondents, who were not recently displaced. As in the previous prototype, it is
possible to select single individuals to see all demographic and thematic information,

212

7.3 Walkthroughs

Figure 7.6: Age distributions of recently displaced (left) and not recently displaced
(right) respondents

Figure 7.7: Different kinds of dimensionality expansions. Left visualizations
include recently displaced, right visualizations, not recently displaced people.

Colored by household language, neon green is Somali.

and if the information is available, also the written messages. In this prototype, the
selected individual is also highlighted across all other visualizations in the tree. Users
can get a sense of the context she is in and how big the corresponding groups are.
This highlighting is an interesting aspect because it enables users to connect the
visualizations qualitatively.

To see how the spoken household language differs in the shown groups, we color
all individuals according to this attribute (see Figure 7.7). The coloring is applied to

213

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Figure 7.8: Left visualizations include recently displaced, right visualizations not
recently displaced people. Colored by household language, neon green is Somali.

Bottom two visualizations correlate zone by gender.

all visualizations, so users see a consistent color scheme. The majority in all groups
in the visible diagrams speak Somali. Other than that, no pattern emerges.

To get a sense of the geographic spread of the filtered respondents, we create
Maps from the selections. Since the coloring applied earlier is also present in the
new visualizations, we notice that two districts have another language, “Maimai”, as
the dominant household language of respondents. Also, some districts have a much
higher density of respondents who are recently displaced than not.

As the household language distinction is quite interesting, we want to see whether
this pattern prevails in the complete data set with all respondents. Therefore we
create a Map from the data source. This Map is also already colored according to
household language, which saves time. The difference is still very clear, as we can
see in Figure 7.9. To avoid that users have to start over building interesting views
every time they create new visualizations, new visualizations inherit all actions from
the visualization they were created from. Coloring is an exception from that as it is
applied globally. It is globally applied because having different meanings for each
color across multiple visualizations is a source of mistakes in the exploration process.

To move on to an exploration of the thematic coding, we create Venn Diagrams
from the previous selections and group by “call for right practice” and “religious
practices”. Wondering how the theme “collective hope” would interact with those
groups, we add “collective hope” (see Figure 7.10). There is not a big difference
when comparing the two visualizations, which is also an interesting insight. In both
diagrams, statements of “collective hope” are mentioned more often in combination
with “religious practice” than with “call for right practice”.

214

7.3 Walkthroughs

Figure 7.9: Age distributions of recently displaced (left) and not recently displaced
(right) respondents and map colored by household language (middle),

Somali is neon green, Maimai is black.

Figure 7.10: Venn Diagrams (bottom two) from selection in age distribution

215

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Figure 7.11: Exemplary graph after exploration

During the exploratory analysis of the data set, users constantly add and create
visualizations in the tree-structure. In the end, there are many visualizations in this
graph, as shown in Figure 7.11. After and during the analysis, users can always
backtrack their exploration steps to either branch at a visualization or use the tree
to create a narrative around their exploration. Especially the last part can be helpful
if users want to communicate their findings to other people. When looking at the
exploration graph, users can also see how their exploration process worked and gain
meta-information about how they explored and what attributes, groups, and views
they focused on in the exploration.

In this walkthrough, we were able to gain insights about groups of respondents,
the different age distributions in demographic-specific groups, in what language
they speak, and how this differs from district to district. We made heavy use of
displaying multiple visualizations and the lasso-select.

7.3.4 Individual Center

This prototype is a bit different from the other two we looked at so far. It is a single
visualization instead of a combination of multiple visualizations.

When opening this prototype, users see dots representing all individuals displayed
at random positions. By clicking on a dot, users can inspect the corresponding
individual and all its demographic and thematic information in a viewer. This
interaction is central to this prototype.We click on several individuals and get to know

216

7.3 Walkthroughs

Figure 7.12: Individuals grouped in circles according to their demographic
similarity to a chosen individual

them until finding someone especially interesting. We find a middle old man from a
city who speaks about “religious practice”. The prototype now allows users to, in a
very literal meaning, focus on the selected individual. All other individuals are then
arranged with respect to and in circles around the selected individual. Individuals
closer to the center are also closer to the individual concerning their attributes.

We first compare by demographic attributes and choose to exclude household
language, as this information is missing from the selected individual (see
Figure 7.12). We can easily see that a lot of individuals are similar to our selected
individual regarding the chosen demographic information. Those individuals
are displayed on the innermost ring. Also, we can see what attributes the other
individuals differ. From here, we can easily explore what the individuals in the direct
“peer group” as well as what people most different from our selected individual,
think and what they are saying. By inspecting individuals in the closest ring, we see
that while some share his views, a lot of them do not. We find another interesting
individual who mentions “collective hope”. We focus on that individual. This time
we use thematic codings as a comparison (see Figure 7.13). In this view, users can
see who mentions the same things as the selected individual.

The comparison by theme reveals that both groups, the onementioning “collective
hope” and the one not mentioning “collective hope”, differ from the selected
individual in a lot of different ways. This difference can be seen by the number
of blocks in the circles and the number of colors. The colors indicate the attribute in
which the individuals differ from the selected individual.We can, therefore, conclude
that those are both quite diverse and heterogeneous groups. From this view, we can

217

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Figure 7.13: Individuals grouped in circles according to their thematic similarity to
a chosen individual

quickly see how diversely a group voices an opinion. The interesting aspect of this
visualization is that it primarily performs a data dimensionality reduction. It reduces
the dimensionality to one. The relevant dimension in this visualization is the distance
from the center.

In this walkthrough, we were able to get a shallow look at a lot of different
individuals and a more in-depth look into fewer individuals. We developed an
understanding for the individuals by looking at their demographic and thematic
information and getting a general feel for their peer groups. While this prototype
guided a qualitative exploration, we could not gain insights as quickly as in the
previous walkthroughs.

7.4 Value-driven Evaluation

In this section, we provide a value-driven evaluation of our prototypes. In most
parts, we concentrate on general aspects shared across all our visualizations. If
more in-depth examples of visualizations are necessary, we constrain them to the
visualizations in the walkthroughs.

7.4.1 Time Needed to Answer a Wide Variety of Questions about Data

Visualizations should allow users to answer different questions about the data by
only viewing or also interacting with the visualization. They should be able to

218

7.4 Value-driven Evaluation

present different forms of data in parallel and thus to compare them [62]. Effective
visualizations also allow for answering “low-level” questions like retrieving values,
finding extrema, identifying correlations, or enablement of comparisons [62, 1,
pp. 26–31, 14].

To evaluate this aspect, we split the discussion into two parts: (1) what questions
are possible and (2) how fast they can be answered.

7.4.1.1 Possible Questions
Possible questions that can be asked about the distribution of the data include:

1. Demographic information–1-D distributions: Which age/gender/recently
displaced/geographic groups are represented in this data set?

2. Demographic information–correlative: “higher dimensional distribution”—From
the age groups, how is the split according to gender, and also how many are
recently displace within these groupings?

3. Thematic information–1-D distributions: How many people answered with
one of the themes?

4. Thematic information–correlative: How many people answered with a
combination of specific themes?

5. Thematic and demographic information–correlative: Where are the people
from, how old are they, what gender do they have, in what way are they
distinctive and answered questions with a specific set of themes?

The last aspect, the possible interplay, and correlations of thematic and
demographic information is the most interesting category since insights from
there show us what specific groups are saying and might be worried about. These
answers can lead to more meaningful changes.

In the following table Table 7.1 can be seen which of the visualizations from the
walkthroughs can answer which questions.

Table 7.1: Table to test captions and labels

information category X-Y Map Venn Individual Center

demographic - distributions X X X
demographic - correlative X X
thematic - distributions X X
thematic - correlative X X
thematic and demographic X

The Map visualization can only by itself show distributions constrained to
geographic information. While it is technically correct that the Individual Center
visualization can answer questions from all categories, one always needs to find
the right individual or even several individuals.

219

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Interestingly, the three visualizations usedmost in our prototypes can only answer
questions from at most two categories. This limitation can be expanded by using the
interactions filtering and coloring.

Filtering and Coloring The interactions to filter and color the data allow for
correlative questions from another dimension in visualizations. This dimension can
be of demographic or thematic information since users can color and filter according
to all attribute-value-pairs. When coloring, the points get colored according to the
specified attribute, and the users see more of a general pattern than clear statistics.
When filtering, the additional dimension is given by “zooming in” on a specific
attribute.

Individual-centric Questions Our design model with the correspondence of a
graphical dot to an individual enables individual-centric questions like: What does
this individual think? How are the other individuals similar to this individual?
What do the “peers” of this individual think? In an aggregated view, these kinds
of questions are not easily answered. Furthermore, this design model also makes
references of groups of individuals across views, as implemented in the Tree View
visualization, very easy and allows for questions like: How does this group look like
from different perspectives? What other attributes does this group share? These are
questions generally associated with a qualitative analysis.

Comparisons Having more than one window displaying visualizations enables
users to ask comparative questions about more specific groups. While it is possible
to compare groups in a bar chart according to one attribute and in our XY Diagram it
is possible to compare groups according to two attributes, by filtering and selecting
subgroups and viewing those in separate windows, in theory, it is possible to
compare groups along asmany attributes as needed. This comparison is also possible
without multiple windows, but then the users have to sequentially go through all
combinations and retain all the information themselves. This retention of information
becomes quickly unfeasible as the number of combinations increases exponentially
with each attribute.

Quantitative Questions While our approach enables a lot of new questions, it also
makes asking some kinds of questions more difficult. Those questions concern either
the retrieval of specific values or differences or the comparison of parts of groups
of respondents. An example for each of those categories are (1) “How many of
the respondents are male, from Mogadishu, and were recently displaced?” and (2)
“Which part of the populationmentions’ collective hope’more often in comparison to
all of the respondents?”. This is because all of our visualizations show total amounts
opposed to relative amounts. In all views, users can see all individual respondents.
Relative views, on the other hand, are always in relation to another scale. When all
shown views are normalized and therefore relative to always the same parameter, it
is easier to compare them: It is easier to always make comparisons with for example
10% of two groups even when they are a different size, instead of trying to compare

220

7.4 Value-driven Evaluation

1,000 with 10,000 data points. Of the presented prototypes, only in the XY Diagram
can users normalize the view when displaying the distribution along one dimension.
All other visualizations and views are not able to do this.

7.4.1.2 Time Needed
The time needed to answer a question is an essential factor when facilitating a
frictionless explorationworkflow.We noticed that every interaction that helps reduce
the time needed to answer a new question is helpful. Most of the above questions can
be answered by looking at the visualization or inspecting the displayed individuals.
Especially the way back to the original messages is very short: in all visualization,
it is a click on the individual in question. When comparing this to the connection
to the original messages in an aggregated view, this workflow becomes even more
impressive. In an aggregated view, users first have to find an unaggregated view
where users can see the individuals, find the ones that have the attributes they
want, and then again find the individual’s original message. Many questions in our
visualizations can be answered in the same view by applying filters or colorations.

7.4.2 Spur and Discover Insights and/or Insightful Questions about
Data

Visualizations should help users learn and gain insights from a data set, whichwould
be more difficult to gain without the visualizations. The knowledge gained this way
is more than just reading data points, but involves looking at structures and different
groups of data points and comparing them. In this context, it is useful to think about
insight in reference to knowledge-building and model-confirmation [15, 62]. Insight
is a by-product of exploration. It cannot be gained with a task-driven analysis [73,
62].

Aswehave shown in thewalkthroughs, our visualizations help users learn insights
about the data. For example, they help to see clusters of respondents with certain
attributes in a specific group or regarding other attributes, for example, respondents
whowere recently displaced on amap. They help to easily see the size comparisons of
groups of respondents, such as in theVennDiagram in the context of thematic codings.
They also help generate questions about data. In the walkthroughs, we saw several
examples of this; for example, when noticing anomalies or other patterns, natural
questions arise to whether this prevails in another context. In the walkthroughs, we
wondered whether the dominant household language in the two data sets would
be different for all respondents in these districts. The visualizations help generate
questions in the form of “How does this look if we change…”. They help due to
their relative simplicity and the ease with which to answer those questions. In the
walkthroughs, this kind of question emerged and was answered in the Venn Diagram
when we added “collective hope” as a theme to see which intersecting groups would
be bigger. These kinds of questions are important for the exploration process, as they
make it easy to think about the next possible steps.

Most of these insights are spurred by “emergent phenomena”. Thatmeans they are
generated by theway low-level entities combine and form trends [9]. In our approach,

221

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

the low-level entities are the dots representing individuals. Those phenomena are
more easily perceived by humans than they are quantifiable. To illustrate, what
emergent phenomena are, consider a heap of wheat. Mentally, start taking grains
away. The question now is: When does the collection of grains stop forming a heap?
This is hard to specify with numbers, but easy to perceive as a phenomenon.

In an exploration process with our visualizations questions arise organically and
insights are discovered almost automatically.

7.4.3 Ability to Convey the Overall Essence of Data

Visualizations should help users gain an overview understanding of a data set. This
is a deeper understanding, which is more than just learning about each data point.
It provides more of a “big picture” view on the data and helps to gain knowledge
about the characteristics and specific patterns of the data set [62].

More than showing the individual respondents’ answers, viewing the
visualizations gives users a broad perspective of who the respondents are and
what they are saying. Most of our visualizations convey a very literal sense of
overview. This sense is a side effect of the design model: By showing the individuals
one by one and putting them in relation to each other, an overview presents
itself. Metaphorically, it provides a bird’s-eye view on how individuals would
look from above when they arrange themselves according to different attributes.
Furthermore, most visualizations start with an overview with the ability to “zoom
in” on the displayed data set with various interactions. The emergent phenomena,
which are very important for our approach, can only be seen from an overview
perspective. They embody characteristics and specific patterns of the data set. With
our visualizations, users can also easily gain a sense of what people are saying and
how many people think alike. This process embodies an in the literature established
visualization “mantra” of “Overview first, zoom and filter, details on demand”[60].

7.4.4 Ability to Generate Confidence, Knowledge, and Trust about the
Data, Its Domain, and Context

Visualizations should help understand more than “just” the information in the data
set. They should go beyond that and show the importance of the data in its domain
context. This supports a sense of confidence and trust in the data and the insights
gained from the data. Effective visualizations can also help see where more data is
needed or what other data sets should be looked at [62].

Our individual-centric design model supports the creation of trust in the data.
At all times, users can select all data points, which means all individuals and
inspect them. This possibility improves trust in the data, as users can always see
the individual respondents in every view in a transparent way. There is no doubt
about whether people say a specific opinion since it can always be checked upon. Our
visualizations help to gain knowledge about what people are saying and therefore
thinking about specific topics. The visualizations generate confidence about the data
and its context. They are able to emphasize that each respondent is not only an

222

7.5 Discussion

individual but also shows their responses in the visualization. This feature is in
contrast to aggregated views, which cannot accurately support the wide spectrum of
responses. It is also possible to gain knowledge about the demographicmakeup of the
respondents. Inspecting individuals and being able to match what they are saying
in the visualization to what they are saying in the original data and see possible
errors quickly, helps to check the complete system on apparent errors. We used this
mechanism several times in our development cycle to debug, for example, an error
in our filter tool.

7.5 Discussion

In this section, we discuss howwe handled the problems described in the foundation
section (refer to 7.2.1 and 7.2.2). The discussion focuses on a higher-level evaluation
of our approach. The approach we used to create visualizations is more bottom-up
than top-down.We created graphical primitives that associate with low-level entities,
dots represent individuals, created tools to look at trends and then at individuals (see
discussion about emergent phenomena and qualitative analysis 7.4.2), and provided
tools to interrogate from either or both directions by integrating the visualizations
into environments.

7.5.1 Dealing with High-dimensional Data

Our approach of showing all individuals and building all visualizations around
these primitives seems to work best with associated low-dimensional visualizations
that can be interacted with to add dimension by dimension in a controlled way.
This way, users can see directly what influence the additional dimension has in the
view, instead of figuring out from the viewwhich dimension caused certain patterns.
As shown above in the walkthroughs, gaining insights from the prototypes built
around amethod of internal data-dimensionality reduction, like the Individual Center
prototype, is more difficult. While we also had some ideas about high-dimensional
visualizations, which try to display almost all of the visualization’s dimensions, the
tests with our partner revealed theywere less useful. The success of low-dimensional
visualizations could be due to their relatively simple views, contrasting high-
dimensional visualizations, and their direct representation of attributes, contrasting
data-dimensionality reduction visualization.

Another data-related issue is the sheer number of respondents. For aggregated
views it makes no difference whether the original data set contains 100, 10,000,
or 1 million data cases, because they only display statistical summaries. For our
approach it makes a big difference, since the individual-centric views display all
respondents.While we evaluated our used technologies formore than 100,000 points
in chapter 6, due to lack of a big enough data set, we did not evaluate the prototypes
in an actual exploration on such a big data set. Since most of the insight generating
capabilities are due to emerging patterns, the biggest question might be how to get

223

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

Figure 7.14: Main feedback cycles involving creation of visualizations

a big enough screen to display all points. However, this is an interesting aspect for
future investigation.

7.5.2 Slow Feedback Cycles Due to Their Current Process

As described in the problem description, slow feedback cycles hamper the
exploration process and worsen the analysis’s quality. It is, therefore, essential
to provide a fast feedback cycle. When looking at the feedback cycles in the analysis
process, there are two important ones (see Figure 7.14): (1) from the data to the
visualization and (2) from arising questions to the next visualization to answer
those questions. Since the latter feedback cycle embodies the exploration, it is more
influential on the exploration experience. Some tools necessitate users to go back to
the code level, for example, ggplot2, (which was introduced in 1.3.2) or other tools
require it to go back to the data level, like Excel. We chose to make this feedback
cycle as short as possible and have prefigured visualization options in our integrated
tools. Users can access those visualizations via interactions and also customize
those views with interactions. While this decision dramatically reduces the friction
in the exploration process, it limits the possible views for end users to the ones
prefigured and able to create by interaction. However, the interactions provided by
our visualizations enable users to changemany factors in the current view. As shown
above, it is also possible to answer a wide variety of questions with a somewhat
limited collection of diagrams. We think that the missing flexibility does not hurt
the exploration process per se, especially when it is possible to expand the range of
usable visualizations programmatically.

7.5.3 Generalization of Findings Due to Quantitative Data

With our individual-focused approach, we did not solve the issue of aggregated
views suggesting viewers to generalize what they see. Instead, as described several
times, we opted to show only non-aggregated views, where all corresponding
respondents are visible. By always seeing all corresponding points, users can always

224

7.5 Discussion

see how big the current sample size is and do not get trapped into thinking it
is representative of the whole population. Furthermore, the views our approach
generates always show each respondent as a separate entity and therefore emphasize
that the sample users look at is unique in the population.

7.5.4 Viewing Single Individuals and Original Opinions

Our design model simplifies the process of viewing single individuals and original
opinions a lot. By always displaying the individual respondents, it it is easier to view
a single one and show their original opinions (subsection 5.5.5). Thus, finding quotes
from specific groups also becomes simple; for example, in the Venn Diagram finding
individuals who expressed a set of themes is as easy as selecting the themes and
clicking on an individual. Since we did not have meaningful answers in the provided
data sets, displaying the opinions of individuals and displaying all opinions, was less
of a focus in our prototypes, but could be an interesting point of further investigation.

7.5.5 Trust in Data

Our approach improves trust in the data, as users are always able to see the individual
respondents in every view and make sure they are unique. For a deeper discussion
of these points, see the last paragraph and value-driven evaluation. In their data
preparation pipeline, AVF goes one step further and logs all modifications in a
provenance trace (for a more in-depth explanation see 1.1.2.3). While we had
ideas to visualize them (they are categorized under “history” in 2.3.4), we did not
pursue those in our prototypes, because our ideas in other directions seemed more
promising. However, it might be interesting to see how the trace information from
the data preparation could be incorporated into our design model, for example, by
showing the trace information for each individual in addition to their answers when
clicking on adot. Furthermore, it could be interesting to add logs from the exploration
process to the tracing information. In a sense, those are visible in the tree in our Tree
View prototype, as seen in the walkthrough in subsection 7.3.3. Explicitly adding
them to the tracing information would emphasize that the data is manipulated
during the exploration process, creating awareness and trust in the exploration.

7.5.6 Trust in Code

Although creating ideas in the ideation phase for creating trust in the behavior
by helping to inspect the associated code, we did not build prototypes in this
direction. Instead we depend in this regard on the used development environment.
The development environment Lively4 provides capabilities to make it easier to
examine code, change it, and see live how the system changes. The usage of web
components for more complex visualization systems allows to directly select the
component and inspect its code. For a more in-depth discussion about the usage
of web components in Lively4 see 4.3.2. This is a way to improve trust in the used

225

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

software. However, this approach is limited to users who can understand the source
code.

7.5.7 Connecting Visualizations

As discussed above, for high-dimensional data, it is useful to connect multiple
visualizations. We built two prototypes that integrate visualizations, as described
in section 3.5. Because they incorporate the same basic visualizations, comparing
them comes down to the integration environment they provide. We noticed that
simultaneously displaying multiple visualizations is a great benefit when exploring
the data set. Exploring in different directions and comparing across visualizations
becomes a lot easier. This behavior is implemented in the Tree View prototype. Since
all our basic visualizations adhere to the same design model, this comparison across
diagrams is also less exhausting as users do not have to switch contexts. Additionally,
the interrelation of selected data points across diagrams becomes easier compared to
some aggregated diagrams even possible, because all diagrams have as a primitive
the dot as an individual.
Combining visualizations also helps in the exploration process if the same
interactions and elements are used across all combined visualizations. It lets the
specific interaction stay in the background and keep the focus on the data.

7.5.8 Missing Interaction

All prototypes we built had some form of interaction:
1. direct interaction with the data, for example by clicking on a dot or by selecting

a group of individuals with a lasso select,
2. drop-down based interaction, for example for explicitly filtering and coloring,

and
3. interactions with sliders, which set parameters for an algorithm or settings

inside the visualization.
Those kinds of interactions fall correspondingly into the categories “fullymanual”,

“mechanized”, and “steerable” from chapter 2 (for an explanation see 2.3.1). The
most useful prototypes, the ones presented in the walkthroughs, did not have any
kind of interactions from the last category (3). We assume that the reason for this
observation is that this interaction hints at an underlying complexity, which makes
it difficult to see patterns. The prototypes Individual Forces and Movement are an
example of this difficulty. In contrast to the other two kinds of interactions, the
changes made by interaction (3) are not directly represented in the data set. When
comparing the remaining two kinds of interactions, there seems to be a trade-off
between discoverability on the one hand and more direct interaction with the data
on the other hand. The more direct interactions are also directly using the graphical
primitives. While a filter menu is discoverable, a lasso-select lets users directly see
what data points they are selecting; it is a kind of “what you see is what you get”-
interaction. The more direct interaction is faster and allows for an even shorter
feedback cycle, but it is not discoverable. Considering that the intended users are

226

7.5 Discussion

researchers, who can be trained to use the visualizations, we think that in our use
case, direct interactions should be used wherever possible. Interestingly, those are
the interactions that are enabled especially by our approach.

7.5.9 Missing Empathy

Helping to create empathy was an important goal for our visualizations. While it
is difficult to determine whether a visualization achieves this goal, we suggest that
our individual-centered approach helps to empathize with the people who sent
responses. Every visualization has a design model, the model the creators had in
mind, and a user model, the model the users have in mind by using the visualization
(see Figure 7.15). Our design model, where we display each individual with a dot,
makes the individuals explicit as design elements. This explicitness can help align the
user model to the design model. This alignment is important, as our design model
puts the focus on each individual. Our low-level graphical primitives, the dots, have a
representation in the real world: the persons responding. This representation enables
amore empathetic view on the data than an aggregated view can. This is because it is
easier to identify oneself with a single person than a whole group. Having a concrete
example of a person with age, gender, residence, and opinions helps to empathize
more than having an abstract description of a group such as “all 28-year-olds”.

Figure 7.15: Interplay of design and user model;
based on “The Functional Art” [14, 65]

Furthermore, many metaphors for our visualizations are quite vivid and also
individual-centric and come to mind easily when viewing them (the metaphors are
described in section 3.3 and section 3.3). The insights gained by using a visualization
are influenced by the visual metaphor presented in a visualization. This result
suggests that thosemetaphors can further create empathy in users [74]. As described
in chapter 2 (see 2.4.2 for reference), we also had the idea to create empathy by

227

7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data

adding a sense of “liveliness” to the individuals, for example, by adding movement.
The prototypes built around these ideas are interesting to look at but are often too
variable to gain useful information.

7.5.10 Issues with the Mindset

The effect our visualizations have on the underlying mindset of the users is even
more difficult to measure than other parts of this evaluation. We think that our
visualizations can be a step in the right direction by providing new visualizations
which put the focus on the individual. Some of the presented prototypes are similar
to familiar, aggregated visualizations, which can help adoption.

7.6 Conclusion and Outlook

Our goal was to evaluate our approach and prototypes with respect to the problems
Africa’s Voices is facing when visualizing their data.

We presented walkthroughs for three prototypes. In them, we showed how to
use our systems to explore a data set and generate insights as well as questions. We
performed a value-driven evaluation and showed that it is possible to answer a wide
variety of questions in a short period of time, spur insights and questions about the
data, convey the essence of data, and generate confidence and trust in the data and
domain. We conclude that answering quantitative questions with our approach is
possible. At the same time, in most of our visualizations, answering quantitative
questions is more difficult than it is in aggregated views. Instead, our visualizations
generate insights through emergent phenomena by showing trends in the data. We
also discussed how we handled the main problems Africa’s Voices faces when using
visualizations. Our approach of visualizing every individual as a dot can help to
create empathy. We evaluated that a combination of multiple visualizations and
direct interaction with the data allows for a faster feedback cycle, which is essential
for exploration. Furthermore, our visualizations help to create trust by allowing users
to easily see the makeup of a visualization, look at the provenance information, and
inspect every individual respondent closely. In this way, our visualizations combine
a qualitative and quantitative analysis approach.

In this chapter, we showed that our work provides value for interactive and
empathetic exploration. Therefore, our project can serve as a starting point for further
research in this area.

Outlook - Work at Africa’s Voices
Africa’s Voices goal of helping with accountability to affected populations in the
aid sector is not achieved by our project and requires ongoing commitment. The
clients of the aid world are the people they are trying to help. Listening to what they
say often gets forgotten. Our project tries to make their voices and the individuals
behind those voices visible. If someone says something interesting, a key challenge is
to keep paying attention to that individual over the exploration process. A necessary

228

7.6 Conclusion and Outlook

prerequisite for that is that interactive visualization makes this possible from day
one. Luke Church, technical lead at Africa’s Voices, states about our work: “It is
an essential requirement that all projects will start with a visualization system like
that.” Africa’s Voices has three to four prototype visualization systems at themoment.
Integrating them and thinking about how to disrupt expectations of what is possible
are critical next steps. Since building the visualizations is often easier than the
design of the visualizations, especially when trying to visualize tens of thousands of
people, our project will guide their future work. Our design will become the basis
of their design process in the future and build the core for the next generation of
visualizations. To quote Luke Church: “This work has set the future for how it is that
we are going to visualize citizens’ conversations.”

229

8 Conclusion

We set out to develop new interactive and explorable visualizations of personal
opinions and demographic datawith a focus on the individuals they are representing.
Therefore, they need to create empathy and trust and ideally disrupt the mindset for
handling visualizations that standard charts have created. With these visualizations,
we wanted to solve domain-specific problems, combine quantitative and qualitative
analysis, and enable the tracing of a data point’s provenance.

In this report, we described our ideation process and its results for the discovered
problems. We found prevalent concepts, that help with exploration. These concepts
include displaying individuals as points, showing different perspectives of the same
data, and being able to manipulate the view, code, and data to change visualizations.
Also, we discovered that the design space has a lot of potential for future work.
Based on our ideas we implemented several visualization tools and extracted
interaction patterns that work well with the concept of individuals as points. We
showed that the design concept of individuals as points is feasible and discussed
considerations for implementing explorable visualization tools and environments.
These considerations can provide guidance for further developers and designers of
explorable individual-centered visualizations. Discussing used core concepts of the
development environment Lively4, we explained how the platform helped us with
documenting, prototyping, collaborating, and testing ideas for our project. For us,
quick feedback cycles, the direct inspection of code, and the live environment proved
valuable for ourwork.We evaluated three strategies to achieve bidirectionalmapping
and showed how we implemented the most promising ones into our prototypes.
In our project, the bidirectional mapping of data and UI enabled us to develop
interactive visualizations, that allow direct interactions with the underlying data.
We considered different technologies to display visualizations with up to 100,000
points in the browser. We performed benchmarks both in Lively4 and on a local
server to assess their performance. We found that, for our use case, using HTML-
Canvases provides enough performance and a high enough abstraction level to
enable the implementation of bidirectional mapping strategies. We showed how
to generate insights with our visualizations by presenting three walkthroughs. We
explored, how our approach of visualizing every individual as a dot can help create
empathy. We evaluated that a combination of multiple visualizations and direct
interaction with the data is essential for exploration. Our visualizations help to
create trust by allowing users to easily see the makeup of a visualization, look at
the provenance information, and inspect every individual respondent closely. In our
work, the provenance information only traces back to the original data. However,
including all information from a preprocessing pipeline in a visualization is worth
further investigation.

231

8 Conclusion

Our work demonstrates that a design strategy built around primitive entities
works in visualizations. With this strategy, insights are generated through emergent
phenomena by showing trends in the data. We showed that it is feasible both
technically and analytically to showevery person as a separate entity in visualizations
for around 10,000 persons. Since not any one view is sufficient to visualize opinions
as well as demographic information, the visualization environment matters and
needs to support an exploration workflow. We showed possible ways to integrate
visualizations in the browser. Most importantly, we showed that the design space
for explorative visualizations, which enable the creation of empathy and trust in the
data, is quite rich and that there is a lot of potential for future visualizations.

232

Appendices

A Appendix Chapter 2

A.1 Idea Collection

A.1.1 Idea 1

Figure A.1: Word Cloud with themes. Font size encodes the number of times
messages coded with this theme were sent

A.1.2 Idea 2

Figure A.2: Data points represented by shape. Color encodes theme, and shapes
encode other attributes

235

A Appendix Chapter 2

A.1.3 Idea 3

Figure A.3: Individuals as points on a map colored by the value of a selected
attribute

A.1.4 Idea 4

Figure A.4: Pie charts for each district displaying the values of a selected attribute
for the corresponding individuals. Clicking on pie slices filters values. A time slider

allows undoing or redoing filter or selection steps.

236

A.1 Idea Collection

A.1.5 Idea 5

Figure A.5: Nodes represent individuals or messages. Each dimension encodes
different information. The graph can be reordered to let nodes represent

individuals or messages.

A.1.6 Idea 6

Figure A.6: Individuals are morphed into different representation forms,
depending on selected filter argument (1). Chaining of filters by using other

dimensions of data visualizations to show groupings in groups. For example, the
filter argument “age” displays individuals in a graph. Clicking on “gender”,

individuals are morphed into a bar chart (2),(3).

237

A Appendix Chapter 2

A.1.7 Idea 7

Figure A.7: Individual as point as a reference point in the center. All individuals are
arranged around the referenced individual according to their “distance” regarding
one characteristic. Clicking on another individual makes this individual the new

reference point.

A.1.8 Idea 8

Figure A.8: Message as a reference point in the center. All messages are arranged
around the referenced message in a graph according to their distance between the
districts of the corresponding individuals. Edges represent similarity of messages.

Clicking on another message makes this message the new reference point.

238

A.1 Idea Collection

A.1.9 Idea 9

Figure A.9: A graph connecting messages to their corresponding district. Zooming
out, messages are abstracted by their theme. Zooming out further, districts are

abstracted by the combination of themes, each pixel representing one theme of a
message.

A.1.10 Idea 10

Figure A.10: Themes represented by icons. Dragging and dropping the icon into the
canvas with messages, then messages with these themes are connected to the icon.

A.1.11 Idea 11

Figure A.11: Word cloud with themes. Font size encodes the number of times
messages coded with this theme were sent. Clicking on a theme reveals all

messages with the selected theme.

239

A Appendix Chapter 2

A.1.12 Idea 12

Figure A.12: Themes represented as sound. Messages are displayed in the world.
The sound volume of a theme encodes the number of individuals who sent

messages coded with that theme. Zooming in on a message, the message gets read.
Filtering takes only the corresponding messages into the calculation of the sound

volume of the theme.

A.1.13 Idea 13

Figure A.13: Messages are read out loud. Buttons to toggle sequential mode and
parallel mode. In sequential mode, messages that are read are highlighted. Filtering

and selection of messages is possible.

240

A.1 Idea Collection

A.1.14 Idea 14

Figure A.14: Individuals as points on a canvas. Select individuals to highlight them.
Filter and reorder by attributes.

A.1.15 Idea 15

Figure A.15: Individuals as points on a canvas. Select individuals to highlight them.
Filter and reorder by attributes. Display different possibilities of the reordering to

ensure that no information is derived from a random position.

241

A Appendix Chapter 2

A.1.16 Idea 16

Figure A.16: Sunburst as bar chart without the 100% of participants a sunburst
chart conveys. Show a smaller diagram above the primary point of view. Show a

smaller diagram inside of the bars of the primary one.

A.1.17 Idea 17

Figure A.17: Bar chart that allows filtering. Different filtering options are presented.
Clicking on bar focuses on data (1). Selection of another parameter for comparison

(2). Active filters are shown. Filter/selection history in which steps are
exchangeable.

242

A.1 Idea Collection

A.1.18 Idea 18

Figure A.18: Guided Exploration. Minimap shows which “paths” are possible.
Navigation through layers by sorting or filtering the parameters. Arrows show what

point of view can be shown next.

A.1.19 Idea 19

Figure A.19: Attributes are arranged in the center by drag and drop. Messages are
structured as a mind map. Individuals who don’t have an age but a district are

directly connected to the corresponding district node.

243

A Appendix Chapter 2

A.1.20 Idea 20

Figure A.20: Individuals as points in different diagrams regarding different
attributes. Points representing one individual are connected. Possible with two or

more diagrams.

A.1.21 Idea 21

Figure A.21: Color individuals represented by pixels according to attribute value.
Sort or filter them to see how the pattern changes.

244

A.1 Idea Collection

A.1.22 Idea 22

Figure A.22: Grouping individuals as points on a coordinate system in predefined
areas

A.1.23 Idea 23

Figure A.23: Choosing x-axis per drag and drop

245

A Appendix Chapter 2

A.1.24 Idea 24

Figure A.24: Selecting a bar from a bar chart to exclude it in the other displayed
diagrams

A.1.25 Idea 25

Figure A.25: One centered chart that can be interacted with. Selecting a bar to show
the ratios in other diagrams, creating stacked bar charts. Selecting a different

diagram centers it.

246

A.1 Idea Collection

A.1.26 Idea 26

Figure A.26: Selecting a bar highlights the corresponding parts in the other charts,
creating stacked bar charts

A.1.27 Idea 27

Figure A.27: Selecting a bar highlights the corresponding parts in the other charts
in form of a heat map, depending on how many individuals from the selected

group are in this category.

247

A Appendix Chapter 2

A.1.28 Idea 28

Figure A.28: Plot different diagrams for a selected group

A.1.29 Idea 29

Figure A.29: Show charts with similar ratios

248

A.1 Idea Collection

A.1.30 Idea 30

Figure A.30: Individuals as points positioned in regards to one or two dimensions
as “gravity fields”

A.1.31 Idea 31

Figure A.31: Draggable three dimensions that represent attribute values.
Individuals as points are placed according to their values

249

A Appendix Chapter 2

A.1.32 Idea 32

Figure A.32: Individuals as points connected to their themes

A.1.33 Idea 33

Figure A.33: Individuals as points positioned according to their themes. Variation:
moving them between themes

250

A.1 Idea Collection

A.1.34 Idea 34

Figure A.34: List of different messages. Different diagrams are displayed for a
selected message. Corresponding data points are highlighted.

A.1.35 Idea 35

Figure A.35: Selecting a bar displays a random message

251

A Appendix Chapter 2

A.1.36 Idea 36

Figure A.36: Displaying the most relevant messages for a selected theme

A.1.37 Idea 37

Figure A.37: Bar chart with y-axis representing number of messages

252

A.1 Idea Collection

A.1.38 Idea 38

Figure A.38: Bubbles represent groups of individuals. Show overlaps of different
attributes. Clicking on overlaps displays diagrams regarding both bubbles.

A.1.39 Idea 39

Figure A.39: Determine attribute values to group by. Individuals as points are
displayed inside their corresponding areas.

253

A Appendix Chapter 2

A.1.40 Idea 40

Figure A.40: Bubbles represent groups of individuals. Color encodes attribute
value. Bubbles clustered by theme.

A.1.41 Idea 41

Figure A.41: Fusing two pie charts into one stacked line chart

254

A.1 Idea Collection

A.1.42 Idea 42

Figure A.42: Comparing different radio shows by number of messages using line
charts

A.1.43 Idea 43

Figure A.43: Overlaps display individuals who answered in multiple radio shows.
Show comparison of similar themes of messages sent by these individuals.

255

A Appendix Chapter 2

A.1.44 Idea 44

Figure A.44: Multiple scatterplots with different attributes. Selecting one or
multiple individuals as points in one diagram selects the same individuals in all

other diagrams.

A.1.45 Idea 45

Figure A.45: Individuals as points in windows connected with each other. Each
window represents one state. Individuals can be grouped, filtered, and colored.
Data can be displayed in a diagram as well. Individuals can be selected per drag

and drop to create new windows.

256

A.1 Idea Collection

A.1.46 Idea 46

Figure A.46: Individuals as points on a canvas. Individuals can be grouped,
selected, and filtered. Hovering displays information regarding the individual or a

group of individuals.

A.1.47 Idea 47

Figure A.47: Notebook with different widgets that can be arranged according to
one’s wishes. Different diagram types can be included. Notebooks can be exported

to create a report.

257

A Appendix Chapter 2

A.1.48 Idea 48

Figure A.48: Processing steps of the data are stacked like index cards. Select a card
to show more information.

A.1.49 Idea 49

Figure A.49: Processing steps of the data are sorted in the form of a timeline.
Navigation through arrows and a slider. Selected step is displayed bigger.

258

A.1 Idea Collection

A.1.50 Idea 50

Figure A.50: Display message processing flow. Nodes represent processing steps.

A.1.51 Idea 51

Figure A.51: Display the exploration process, including dead ends and final
recommendations

259

A Appendix Chapter 2

A.1.52 Idea 52

Figure A.52: Highlight relevant diagrams for a selected recommendation.

A.1.53 Idea 53

Figure A.53: Showing a video of the recorded process of finding insights for a
selected recommendation.

A.1.54 Idea 54

Figure A.54: Select or inspect visualization elements to adapt properties by code

260

A.1 Idea Collection

A.1.55 Idea 55

Figure A.55: Select or deselect lines of code to include or exclude the code. Adapt
properties of visualization elements by code.

A.1.56 Idea 56

Figure A.56: Hover over a line of code to highlight the corresponding element in
the diagram

261

A Appendix Chapter 2

A.1.57 Idea 57

Figure A.57: Adapt code and compare the state of the visualization before and after
the change directly in a window next to the code

A.1.58 Idea 58

Figure A.58: Select element to edit the code. Code and visualization are then
displayed next to each other. Changes are adapted directly.

262

A.1 Idea Collection

A.1.59 Idea 59

Figure A.59: Hover or select elements to highlight all parts of the code that adapt
its properties

A.1.60 Idea 60

Figure A.60: Formulate the required changes as a statement. A suggestion is
displayed that can be edited or accepted.

263

A Appendix Chapter 2

A.1.61 Idea 61

Figure A.61: Hovering over a line of code displays a description of what this line of
code does to the element in the visualization. Dropdowns offer property values that

can be selected.

A.1.62 Idea 62

Figure A.62: Comments describe what the line of code does. Uncommenting the
following line(s) of code adapts visualization.

264

A.1 Idea Collection

A.1.63 Idea 63

Figure A.63: Generating statements using code formulas and templates.

A.1.64 Idea 64

Figure A.64: Diagrams displaying divergence of missing data

265

A Appendix Chapter 2

A.1.65 Idea 65

Figure A.65: Scatterplot with an area for missing values

A.1.66 Idea 66

Figure A.66: Chart with number of missing values per attribute value

266

A.1 Idea Collection

A.1.67 Idea 67

Figure A.67: Display box next to a map in which individuals are placed that have a
missing value for their district

A.1.68 Idea 68

Figure A.68: Show number of missing values by attribute and combination of
attributes

267

A Appendix Chapter 2

A.1.69 Idea 69

Figure A.69: Filtering by dragging and dropping bars into and out of hiding

A.1.70 Idea 70

Figure A.70: Highlighting points by letting them vibrate

268

A.1 Idea Collection

A.1.71 Idea 71

Figure A.71: Hand drawn selection lasso to select, group, or filter a subset of
individuals

A.1.72 Idea 72

Figure A.72: Select axes attributes by connecting attribute values per drag and drop

269

A Appendix Chapter 2

A.1.73 Idea 73

Figure A.73: Similar to a Sankey diagram. Multiple axes for different attributes.
Individuals are represented by a line. Choose axis to color code. Filter on axis to

hide the rest of the data.

A.1.74 Idea 74

Figure A.74: Line chart displaying the number of individuals of certain age groups
who sent messages coded with certain themes

270

A.1 Idea Collection

A.1.75 Idea 75

Figure A.75: Chaining groupings of individuals as points according to selected
attributes. History of the chained attributes to undo or redo steps.

A.1.76 Idea 76

Figure A.76: Attracting individuals as points to each other
depending on their similarity. Coloring individuals according to a selected attribute.

271

A Appendix Chapter 2

A.1.77 Idea 77

Figure A.77: Tabs containing one visualization type each. Inspector to inspect
individuals. Control panel to color, filter, and select individuals in the

visualizations.

A.1.78 Idea 78

Figure A.78: Inspecting individuals as points to display information about attribute
values

272

A.1 Idea Collection

A.1.79 Idea 79

Figure A.79: Inspecting individuals as points to display information about attribute
values and a (sketched) image of the individual

A.1.80 Idea 80

Figure A.80: Individuals as points on a canvas. Showing groups with and without
overlaps

273

A Appendix Chapter 2

A.2 Technical Categorization

274

A.3 Task Categorization

A.3 Task Categorization

275

A Appendix Chapter 2

A.4 Interaction Level - Task Categorization

276

A.5 Representation Mode - Task Categorization

A.5 Representation Mode - Task Categorization

277

B Appendix Chapter 5

Listing B.1: Utility functions for the scenario implementations

1 export function getMax(arrayOfNumbers) {
2 let max = -1
3
4 arrayOfNumbers.forEach(number => {
5 if (number > max) max = number
6 })
7
8 return max
9 }

10
11 export function removeUnneededData(data) {
12 let unusableData = []
13 data.forEach(individual => {
14 if (individual.consent_withdrawn === ”TRUE”) {
15 unusableData.push(individual)
16 }
17 })
18
19 unusableData.forEach(individual => {
20 data.splice(data.indexOf(individual), 1)
21 })
22
23 data.forEach((individual, index) => {
24 individual.id = index
25 delete individual.themes
26 delete individual.languages
27 delete individual.consent_withdrawn
28 delete individual.recently_displaced
29 delete individual.end_date
30 delete individual.start_date
31 })
32 }
33
34 export function getHexStringWithTwoCharacters(number) {
35 if (number == 0) {
36 return ”00”
37 }
38
39 let result = ””
40 if (number < 16) {

279

B Appendix Chapter 5

41 result += ”0”
42 }
43
44 return result + number.toString(16)
45 }
46
47 export function createAgeGroups(data) {
48 let groups = {}
49
50 data.forEach(element => {
51 let bucket = getAgeBucketKey(element.age)
52 if (!groups[bucket]) {
53 groups[bucket] = {”data”: []}
54 }
55 groups[bucket].data.push(element)
56 })
57
58 return groups
59 }
60
61 export function getAgeBucketKey(age) {
62 switch(true) {
63 case age < 10:
64 return ”<10”
65 case age < 15:
66 return ”10−14”
67 case age < 18:
68 return ”15−17”
69 case age < 36:
70 return ”18−35”
71 case age < 55:
72 return ”36−54”
73 case age === ”missing”:
74 return ”missing”
75 default:
76 return ”over 55”
77 }
78 }

Listing B.2: Page for the application of the evaluation scenario with the double
rendering strategy

1 <style>
2 #diagram {
3 width: 300px;
4 height: 300px;
5 border: 1px solid black;
6 }
7 </style>
8
9 <canvas id=”diagram”></canvas>

280

B Appendix Chapter 5

10
11 <script>
12 import { AVFParser } from ”https://lively−kernel.org/voices/parsing

−data/avf−parser.js”;
13
14 import {
15 getColorStringFromImageData,
16 drawBars,
17 createColorMapping,
18 createColoredAgeGroups
19 } from ”./double−rendering.js”;
20
21 import { removeUnneededData } from ”./utils.js”
22
23 let canvasDimensions, context, groups, colorMapping,

identifyingImageData
24
25 ;
26 (async () => {
27 //canvas preparation
28 let diagram = lively.query(this, ”#diagram”)
29 context = diagram.getContext('2d')
30 canvasDimensions = {width: 300, height: 300}
31
32 //data preparation
33 let data = await AVFParser.loadCovidData()
34 removeUnneededData(data)
35 groups = createColoredAgeGroups(data)
36 colorMapping = createColorMapping(groups)
37
38 //drawing with identifying colors
39 drawBars(context, canvasDimensions, groups, ”uniqueColor”)
40 identifyingImageData = context.getImageData(0, 0,

canvasDimensions.width, canvasDimensions.height)
41
42 //drawing with colors meant for users
43 drawBars(context, canvasDimensions, groups, ”color”)
44
45 //waiting for a click
46 diagram.addEventListener(”click”, event => {
47 lively.openInspector(getClickedGroup(event))
48 })
49 })()
50
51 function getClickedGroup(event) {
52 let colorString = getColorStringFromImageData(
53 identifyingImageData,
54 event.layerX,
55 event.layerY
56)
57 let groupKey = colorMapping[colorString]

281

B Appendix Chapter 5

58 let group = groups[groupKey]
59
60 return group
61 }
62 </script>

Listing B.3: Functions for the implementation of the double rendering strategy

1 import {
2 getHexStringWithTwoCharacters,
3 createAgeGroups,
4 getMax
5 } from ”./utils.js”
6
7 export function getColorStringFromImageData(imageData, x , y) {
8 let startPosition = (y * imageData.width + x) * 4
9

10 let red = getHexStringWithTwoCharacters(imageData.data[
startPosition])

11 let green = getHexStringWithTwoCharacters(imageData.data[
startPosition+1])

12 let blue = getHexStringWithTwoCharacters(imageData.data[
startPosition+2])

13
14 return ”#” + red + green + blue
15 }
16
17 export function drawBars(context, canvasDimensions, groups,

colorSelector) {
18 context.clearRect(0, 0, canvasDimensions.width, canvasDimensions.

height)
19
20 let groupKeys = Object.keys(groups)
21
22 let dataLengths = groupKeys.map(key => groups[key].data.length)
23 let max = getMax(dataLengths)
24
25 groupKeys.forEach((groupKey, index) => {
26 let barHeight = Math.floor(canvasDimensions.height * (groups[

groupKey].data.length / max))
27 let barWidth = Math.floor(canvasDimensions.width / groupKeys.

length)
28
29 context.fillStyle = groups[groupKey][colorSelector]
30
31 context.fillRect(
32 barWidth * index,
33 0,
34 barWidth - 5,
35 barHeight
36)

282

B Appendix Chapter 5

37 })
38 }
39
40 export function createColorMapping(groups) {
41 let mapping = {}
42
43 Object.keys(groups).forEach(groupKey => {
44 mapping[groups[groupKey].uniqueColor] = groupKey
45 })
46
47 return mapping
48 }
49
50 export function createColoredAgeGroups(data) {
51 let groups = createAgeGroups(data)
52
53 Object.keys(groups).forEach((groupKey, index) => {
54 groups[groupKey][”color”] = ”#ffee00”
55 groups[groupKey][”uniqueColor”] = ”#ffee0” + index.toString(16)
56 })
57
58 return groups
59 }

Listing B.4: Page for the application of the evaluation scenario with the position
matching strategy

1 <style>
2 #diagram {
3 width: 300px;
4 height: 300px;
5 border: 1px solid black;
6 }
7 </style>
8
9 <canvas id=”diagram”></canvas>

10
11 <script>
12 import { AVFParser } from ”https://lively−kernel.org/voices/parsing

−data/avf−parser.js”;
13
14 import {
15 positionMatchesGroup,
16 createPositionedAgeGroups,
17 drawBars
18 } from ”./position−matching.js”;
19
20 import { removeUnneededData } from ”./utils.js”
21
22 let groups, context, canvasDimensions
23

283

B Appendix Chapter 5

24 ;
25 (async () => {
26 //canvas preparation
27 let diagram = lively.query(this, ”#diagram”)
28 context = diagram.getContext('2d')
29 canvasDimensions = {width: 300, height: 300}
30
31 //data preparation
32 let data = await AVFParser.loadCovidData()
33 removeUnneededData(data)
34 groups = createPositionedAgeGroups(data, canvasDimensions)
35
36 //rendering the image
37 drawBars(context, canvasDimensions, groups)
38
39 //waiting for a click
40 diagram.addEventListener(”click”, event => {
41 lively.openInspector(getClickedGroup(event))
42 })
43 })()
44
45 function getClickedGroup(event) {
46 let groupArray = Object.keys(groups).map(key => groups[key])
47 let position = {x: event.layerX, y: event.layerY}
48
49 let results = []
50 groupArray.forEach(group => {
51 if (positionMatchesGroup(position, group)) results.push(group)
52 })
53
54 return results
55 }
56
57 </script>

Listing B.5: Functions for the implementation of the position matching strategy

1 import {
2 createAgeGroups,
3 getMax
4 } from ”./utils.js”
5
6 export function drawBars(context, canvasDimensions, groups) {
7 context.clearRect(0, 0, canvasDimensions.width, canvasDimensions.

height)
8
9

10 Object.keys(groups).forEach(groupKey => {
11 let group = groups[groupKey]
12
13 context.fillStyle = ”ffee00”

284

B Appendix Chapter 5

14 context.fillRect(group.x, group.y, group.width, group.height)
15 })
16 }
17
18 export function createPositionedAgeGroups(data, canvasDimensions) {
19 let groups = createAgeGroups(data)
20
21 let groupKeys = Object.keys(groups)
22 let dataLengths = groupKeys.map(key => groups[key].data.length)
23
24 let max = getMax(dataLengths)
25
26 groupKeys.forEach((groupKey, index) => {
27 let group = groups[groupKey]
28
29 let barHeight = Math.floor(canvasDimensions.height * (group.

data.length / max))
30 let barWidth = Math.floor(canvasDimensions.width / groupKeys.

length)
31
32 group[”x”] = barWidth * index
33 group[”y”] = 0
34 group[”width”] = barWidth - 5
35 group[”height”] = barHeight
36 })
37
38 return groups
39 }
40
41 export function positionMatchesGroup(position, group) {
42 return position.x >= group.x &&
43 position.x <= group.x + group.width &&
44 position.y >= group.y &&
45 position.y <= group.y + group.height
46 }

Listing B.6: Page for the application of the evaluation scenario with the tracing
graph strategy

1 <svg id=”diagram”></svg>
2
3 <script>
4 import { AVFParser } from ”https://lively−kernel.org/voices/parsing

−data/avf−parser.js”;
5 import { removeUnneededData, createAgeGroups, getMax } from ”./

utils.js”
6 import d3 from ”src/external/d3.v5.js”;
7
8 ;
9 (async () => {

10

285

B Appendix Chapter 5

11 //data preparation
12 let data = await AVFParser.loadCovidData()
13 removeUnneededData(data)
14 let groups = createAgeGroups(data)
15 groups = Object.keys(groups).map(key => {return {group: key, data

: groups[key].data}})
16
17 let dataSizes = groups.map(group => group.data.length)
18 let max = getMax(dataSizes)
19
20 //canvas preparation
21 let diagram = lively.query(this, ”#diagram”)
22 let canvasDimensions = {width: 300, height: 300}
23 let margin = 5
24 let barContainerWidth = Math.floor(canvasDimensions.width /

groups.length)
25
26 let svg = d3.select(diagram)
27 .attr(”width”, canvasDimensions.width)
28 .attr(”height”, canvasDimensions.height)
29 .selectAll('rect').data(groups)
30 .enter().append(”rect”)
31 .attr(”width”, (group) => {return barContainerWidth - margin

})
32 .attr(”height”, (group) => {return Math.floor(

canvasDimensions.height * (group.data.length / max))})
33 .attr(”x”, (group) => {return barContainerWidth * groups.

indexOf(group)})
34 .attr(”y”, (group) => {return canvasDimensions.height - Math.

floor(canvasDimensions.height * (group.data.length / max))
})

35 .on(”click”, (group) => {
36 lively.openInspector(group)
37 })
38
39 console.log(svg)
40 })()
41
42 </script>

286

C Appendix Chapter 6

C.1 Benchmark protocol

C.1.1 General

Name of protocolant:
• Moritz Spranger
Date:
• First benchmark run (v1): 19.07.2020
• Second benchmark run (v2): 26.07.2020
Benchmark objective:
• The goal of this benchmark series is to compare web technologies for rendering

points in the browser. For this purpose, the “time to render” is measured and
the heap consumption of the technologies. The benchmarks are performed
both in the live programming environment Lively4 and on a locally running
server without Lively4. This allows us to additionally evaluate how big the
performance difference between the technologies in Lively4 is.

Software language: - Javascript (HTML + CSS)

C.1.2 Hardware dependencies

• GPU
• Network

C.1.3 Software dependencies

• Browser
• Lively4

C.1.4 System and environment

C.1.4.1 Hardware
Machine:

• Name: MacBook Pro 16”, 2019
• Model identifier: MacBookPro16,1
CPU:
• Name: 2,4 GHz 8-Core Intel Core i9
• Cores: 8
• Speed: 2,4 GHz

287

C Appendix Chapter 6

• L2 Cache (per core): 256 KB
• L3 Cache: 16 MB
• Hyper-Threading: enabled
GPU:
• Name: AMD Radeon Pro 5500M
• VRAM: 4 GB
• PCIe Lane Width: x8
• EFI Driver Version: 01.01.190
• gMux Version: 5.0.0
• Name: Intel UHD Graphics 630 (build-in)
• VRAM: 1536 MB
• gMux Version: 5.0.0
RAM:
• 32 GB 2667 MHz DDR4
Network card:
• Name: AirPort Extreme (0x14E4, 0x7BF)

C.1.4.2 Software
OS:

• Version: macOS 10.15.5
• Kernel Version: Darwin 19.5.0
Google Chrome:
• Version 83.0.4103.116 (Official Build) (64-bit)
Active Add-ons in Chrome:
• Bitwarden
• AdblockPlus
• SessionBuddy v3.6.4
• VueJs Dev Tools
• Facebook Pixel Helper

C.1.5 Recorded Benchmark Measurements

The data of all test series can be accessed via Voices repository in Lively4.1

1https://lively-kernel.org/lively4/lively4-bp2019/start.html?edit=https:
//lively-kernel.org/voices/BP2019RH1-report/content/topic6/benchmark_
results/cycle_data.

288

https://lively-kernel.org/lively4/lively4-bp2019/start.html?edit=https://lively-kernel.org/voices/BP2019RH1-report/content/topic6/benchmark_results/cycle_data
https://lively-kernel.org/lively4/lively4-bp2019/start.html?edit=https://lively-kernel.org/voices/BP2019RH1-report/content/topic6/benchmark_results/cycle_data
https://lively-kernel.org/lively4/lively4-bp2019/start.html?edit=https://lively-kernel.org/voices/BP2019RH1-report/content/topic6/benchmark_results/cycle_data

C.2 Benchmark Results

C.2 Benchmark Results

Figure C.1: Box plot for rendering points on canvas 2dContext in Lively4

Figure C.2: Box plot for rendering points with HTML -elements in Lively4

289

C Appendix Chapter 6

Figure C.3: Box plot for rendering points with SVG in Lively4

Figure C.4: Box plot for rendering points on canvas with WebGL in Lively4

290

C.2 Benchmark Results

Figure C.5: Time to render when rendering points with canvas 2dContext in Lively4

Figure C.6: Time to render when rendering points with -elements in
Lively4

291

C Appendix Chapter 6

Figure C.7: Time to render when rendering points with SVG in Lively4

Figure C.8: Time to render when rendering points with WebGL in Lively4

292

C.2 Benchmark Results

Figure C.9: Heap usage when rendering with canvas 2dContext in Lively4

Figure C.10: Heap usage when rendering points with -elements in Lively4

293

C Appendix Chapter 6

Figure C.11: Heap usage when rendering with SVG in Lively4

Figure C.12: Heap usage when rendering with WebGL in Lively4

294

C.2 Benchmark Results

Figure C.13: Box plot for rendering points on canvas 2dContext on local server

Figure C.14: Box plot for rendering points with -elements on local server

295

C Appendix Chapter 6

Figure C.15: Box plot for rendering points with SVG on local server

Figure C.16: Box plot for rendering points with WebGL on local server

296

C.2 Benchmark Results

Figure C.17: Time to render when rendering points with canvas 2dContext on local
server

Figure C.18: Time to render when rendering points with -elements on local
server

297

C Appendix Chapter 6

Figure C.19: Time to render when rendering points with SVG on local server

Figure C.20: Time to render when rendering points with WebGL on local server

298

C.2 Benchmark Results

Figure C.21: Heap usage when rendering with canvas 2dContext on local server

Figure C.22: Heap usage when rendering with -elements on local server

299

C Appendix Chapter 6

Figure C.23: Heap usage when rendering with SVG on local server

Figure C.24: Heap usage when rendering with WebGL on local server

300

C.3 Tables

C.3 Tables

webgl canvas span svg
100 dots 1.644 1.850 1.669 1.836
200 dots 1.664 1.665 1.679 1.674
400 dots 1.646 1.671 1.678 1.709
800 dots 1.655 1.676 1.686 1.777
1600 dots 1.682 1.854 3.529 3.777
3200 dots 1.667 2.792 8.245 8.851
6400 dots 1.685 5.345 18.737 19.983
12800 dots 1.678 14.566 38.436 40.024
25600 dots 1.684 34.47 87.251 88.805
51200 dots 1.784 80.296 170.252 199.567

Table C.1: Sum of time to render for 100 measurements in seconds of the
technologies.

301

C Appendix Chapter 6

C.4 Code

Listing C.1: Basic benchmark code

1 <script language=”javascript” src=”https://npmcdn.com/regl/dist/
regl.js”></script>

2 <script language=”javascript” src=”https://cdnjs.cloudflare.com/
ajax/libs/d3/5.16.0/d3.js”></script>

3
4 <div id=”root”>
5 <button id=”start”>Start test</button>>
6 </div>
7
8 <style>
9 .dot {

10 height: 6px;
11 width: 6px;
12 background-color: #eb4438;
13 border-radius: 50%;
14 border: 1px solid black;
15 position: absolute;
16 }
17 </style>
18
19 <script type=”module”>
20
21 import { SVGRenderer } from './modules/renderer.js';
22
23 let root = document.getElementById(”root”)
24 let button = document.getElementById(”start”)
25 button.addEventListener(”click”, start)
26
27 // Specify number of points
28 let data = d3.range(50000)
29
30 // Kepp track of measurements
31 let numberOfCycles = 100
32 let counter = 0
33
34 // Store performance metrics
35 let performances = []
36 let usedHeapSizes = []
37
38 // Choose rendering technology
39 let renderer = new SVGRenderer(root, data)
40 renderer.setUp()
41
42 // Clean up
43 performance.clearMeasures()
44 performance.clearMarks()

302

C.4 Code

45
46 function cycle() {
47 performance.mark(counter)
48
49 if(counter > 0) {
50 let time = performance.measure(counter, counter-1, counter).

duration / 1000.0
51 let usedHeap = performance.memory.usedJSHeapSize / 1000000.0
52 performances.push(time)
53 usedHeapSizes.push(usedHeap)
54 renderer.changePosition()
55 }
56
57 if(counter < numberOfCycles) {
58 renderer.clear()
59 renderer.render()
60 counter += 1
61 requestAnimationFrame(cycle)
62 }
63
64 else {
65 performance.mark(”end_total”)
66 performance.measure(”total”, ”begin_total”, ”end_total”)
67 performances.push(performance.getEntriesByName(”total”)[0].

duration / 1000.0)
68 writeToFile()
69 return
70 }
71 }
72
73 function start() {
74 performance.mark(”begin_total”)
75 cycle()
76 }
77
78 function writeToFile() {
79 let performanceCsv = buildCSV(performances, ”dots”, data)
80 let performanceFilename = renderer.name() + ”_” + data.length + ”

_performance.csv”
81 //lively.files.saveFile(”https://lively−kernel.org/lively4/

BP2019RH1/benchmarks/reports/” + performanceFilename,
performanceCsv)

82
83 let heapCsv = buildCSV(usedHeapSizes, ”dots heap”, data)
84 let heapFilename = renderer.name() + ”_” + data.length + ”_heap.

csv”
85 //lively.files.saveFile(”https://lively−kernel.org/lively4/

BP2019RH1/benchmarks/reports/” + heapFilename, heapCsv)
86
87 root.innerHTML = ””
88

303

C Appendix Chapter 6

89 var downloadLink = document.createElement(”a”);
90 var blob = new Blob([”\ufeff”, performanceCsv]);
91 var url = URL.createObjectURL(blob);
92 downloadLink.href = url;
93 downloadLink.download = performanceFilename;
94 downloadLink.innerHTML = ”Download time data”
95 document.body.appendChild(downloadLink);
96
97
98 var downloadLinkHeap = document.createElement(”a”);
99 var blobHeap = new Blob([”\ufeff”, heapCsv]);

100 var urlHeap = URL.createObjectURL(blobHeap);
101 downloadLinkHeap.href = urlHeap;
102 downloadLinkHeap.download = heapFilename;
103 downloadLinkHeap.innerHTML = ”Download heap data”
104 document.body.appendChild(downloadLinkHeap);
105 }
106
107 function buildCSV(datapoints, name, data) {
108 let csvContent = 'index, ' + data.length + ” ” + name + '\r\n'
109
110 datapoints.forEach((datapoint, i) => {
111 csvContent += i + ”,” + datapoint + ”\r\n”;
112 })
113
114 return csvContent
115 }
116
117 </script>

Listing C.2: Code for different render technologies

1 var fragShader = `
2 precision mediump float;
3 varying vec4 fragColor;
4 void main () {
5 float r = 0.0, delta = 0.0, alpha = 1.0;
6 vec2 cxy = 2.0 * gl_PointCoord - 1.0;
7 r = dot(cxy, cxy);
8 if (r > 1.0) {
9 discard;

10 }
11 gl_FragColor = fragColor * alpha;
12 }`
13
14 var vertShaderDraw = `
15 precision mediump float;
16 attribute vec2 position;
17 attribute float pointWidth;
18 attribute vec4 color;
19

304

C.4 Code

20 varying vec4 fragColor;
21 uniform float stageWidth;
22 uniform float stageHeight;
23
24 // helper function to transform from pixel space to normalized
25 // device coordinates (NDC). In NDC (0,0) is the middle,
26 // (−1, 1) is the top left and (1, −1) is the bottom right.
27 // Stolen from Peter Beshai's great blog post:
28 // http://peterbeshai.com/beautifully−animate−points−with−webgl−

and−regl.html
29 vec2 normalizeCoords(vec2 position) {
30 // read in the positions into x and y vars
31 float x = position[0];
32 float y = position[1];
33
34 return vec2(
35 2.0 * ((x / stageWidth) - 0.5),
36 // invert y to treat [0,0] as bottom left in pixel space
37 -(2.0 * ((y / stageHeight) - 0.5)));
38 }
39
40 void main () {
41 gl_PointSize = pointWidth;
42 gl_Position = vec4(normalizeCoords(position), 0, 1);
43 fragColor = color;
44 }`
45
46
47 class Renderer {
48 constructor(rootDiv, dataPoints) {
49 this.root = rootDiv
50 this.data = dataPoints
51 }
52
53 setUpDrawingInformation() {
54 this.data = this.data.map(() => {
55 let drawingInformation = {
56 x: getRandomFloat(0,800),
57 y: getRandomFloat(0,800)
58 }
59 return drawingInformation
60 })
61 }
62
63 changePosition() {
64 this.data = this.data.map(datapoint => {
65 datapoint.x += 1
66 datapoint.y += 1
67 return datapoint
68 })
69 }

305

C Appendix Chapter 6

70 }
71
72 export class Context2dCanvasRenderer extends Renderer {
73
74 name() {
75 return ”2dContext”
76 }
77
78 setUp() {
79 this.canvas = document.createElement(”CANVAS”)
80 this.canvas.width = ”800”
81 this.canvas.height = ”800”
82 this.root.appendChild(this.canvas)
83 this.context = this.canvas.getContext(”2d”)
84
85 this.setUpDrawingInformation()
86 }
87
88 render() {
89 this.data.forEach(datapoint => {
90 this.drawCircle(datapoint)
91 })
92
93 }
94
95 clear() {
96 this.context.clearRect(0, 0, 800, 800)
97 }
98
99 drawCircle(datapoint) {

100 var radius = 3;
101 var centerX = datapoint.x
102 var centerY = datapoint.y
103
104 this.context.beginPath();
105 this.context.arc(centerX, centerY, radius, 0, 2 * Math.PI,

false);
106 this.context.fillStyle = '#eb4438';
107 this.context.fill();
108 this.context.lineWidth = 1;
109 this.context.strokeStyle = '#000000';
110 this.context.stroke();
111 }
112
113 }
114
115 export class SpanRenderer extends Renderer {
116 name() {
117 return ”span”
118 }
119

306

C.4 Code

120 setUp() {
121 this.drawingArea = document.createElement(”div”)
122 this.drawingArea.style.width = ”800px”
123 this.drawingArea.style.height = ”800px”
124 this.root.appendChild(this.drawingArea)
125
126 this.setUpDrawingInformation()
127 }
128
129 render() {
130 this.data.forEach(datapoint => {
131 this.drawCircle(datapoint)
132 })
133 }
134
135 clear() {
136 this.drawingArea.innerHTML = ””
137 }
138
139 drawCircle(datapoint) {
140 let newElement = document.createElement(”SPAN”)
141 newElement.className = ”dot”
142 newElement.style.top = datapoint.x +”px”
143 newElement.style.left = datapoint.y +”px”
144 this.drawingArea.appendChild(newElement);
145 }
146 }
147
148 export class SVGRenderer extends Renderer {
149 name() {
150 return ”svg”
151 }
152
153 setUp() {
154 this.drawingArea = document.createElementNS(”http://www.w3.org

/2000/svg”,'svg')
155 this.drawingArea.setAttribute(”width”, ”800”)
156 this.drawingArea.setAttribute(”height”, ”800”)
157 this.root.appendChild(this.drawingArea)
158
159 this.setUpDrawingInformation()
160
161 }
162
163 render() {
164 this.data.forEach(datapoint => {
165 this.drawCircle(datapoint)
166 })
167 }
168
169 clear() {

307

C Appendix Chapter 6

170 this.drawingArea.innerHTML = ””
171 }
172
173 drawCircle(datapoint) {
174 var newElement = document.createElementNS(”http://www.w3.org

/2000/svg”, 'circle');
175 newElement.setAttribute(”cx”, datapoint.x);
176 newElement.setAttribute(”cy”, datapoint.y);
177 newElement.setAttribute(”r”,”3”);
178 newElement.setAttribute(”stroke−width”, ”1”)
179 newElement.setAttribute(”stroke”, ”black”)
180 newElement.setAttribute(”fill”, ”#eb4438”)
181 this.drawingArea.appendChild(newElement);
182 }
183 }
184
185 export class WebGLRenderer extends Renderer {
186 name() {
187 return ”webgl”
188 }
189
190 setUp() {
191 this.canvas = document.createElement(”CANVAS”);
192 this.canvas.width = ”800”
193 this.canvas.height = ”800”
194 this.root.appendChild(this.canvas)
195 this.context = this.canvas.getContext(”webgl”)
196
197 this.setUpDrawingInformation()
198 this.setUpRegl()
199 }
200
201 setUpRegl() {
202 this.regl = createREGL(this.context)
203 this.drawPointsShader = this.regl({
204
205 frag: fragShader,
206
207 vert: vertShaderDraw,
208
209 attributes: {
210 position: function(context, props) {
211 return props.points.map(function(point) {
212 return [point.x, point.y];
213 });
214 },
215 color: function(context, props) {
216 return props.points.map(function(point) {
217 return [255/255.0, 20/255.0, 20/255.0, 1];
218 });
219 },

308

220 pointWidth: function(context, props) {
221 return props.points.map(function(point) {
222 return 10;
223 });
224 }
225 },
226
227 uniforms: {
228 stageWidth: this.regl.context(”drawingBufferWidth”),
229 stageHeight: this.regl.context(”drawingBufferHeight”),
230 },
231
232 count: function(context, props) {
233 return props.points.length;
234 },
235 primitive: ”points”
236 });
237 }
238
239 clear() {
240 this.regl.clear({
241 color: [1, 1, 1, 1],
242 depth: 1,
243 stencil: 0
244 })
245 }
246
247 render() {
248 this.drawPointsShader({
249 points: this.data,
250 })
251 }
252
253 }
254
255 function getRandomFloat(min, max) {
256 return Math.floor(Math.random() * (max - min) + min);
257 }

309

Bibliography

[1] R. A. Amar, J. Eagan, and J. T. Stasko. “Low-Level Components of Analytic
Activity in Information Visualization”. In: InfoVis 2005: Symposium on
Information Visualization. IEEE, 2005.

[2] K. Andrews. “Evaluating information visualisations”. In: BELIV 2006:
Workshop on BEyond time and errors: novel evaluation methods for information
visualization. ACM, 2006.

[3] F. Asplund,M. Biehl, J. El-Khoury, andM. Törngren. “Tool Integration beyond
Wasserman”. In: Lecture Notes in Business Information Processing (2011).

[4] F. Asplund and M. Törngren. “The Discourse on Tool Integration Beyond
Technology, a Literature Survey”. In: Journal of Systems and Software 106 (2015).

[5] R. Battagline. Hands-On Game Development with WebAssembly: Learn
WebAssembly C++ programming by building a retro space game. Packt Publishing,
2019.

[6] U. Bhardwaj. How Web Browsers Work — Behind the scene Architecture,
Technologies, and Internal Working. 2019. url: https : / / medium . com /
web - god - mode / how - web - browsers - work - behind - the -
scene - architecture - technologies - and - internal - working -
fec601488bfa (visited on 2020-07-28).

[7] E. Bidelman. Automated testing with Headless Chrome | Web. 2019. url: https:
//developers.google.com/web/updates/2017/06/headless-
karma-mocha-chai (visited on 2020-07-29).

[8] E. Bidelman. The Basics of Web Workers - HTML5 Rocks. 2010. url: https:
//www.html5rocks.com/en/tutorials/workers/basics/ (visited
on 2020-07-25).

[9] E. Bonabeau, J.-L. Dessalles, and A. Grumbach. “Characterizing emergent
phenomena (1): A critical review”. In: Revue internationale de systemique 9.3
(1995).

[10] M. Bostock, V. Ogievetsky, and J. Heer. “D3 data-driven documents”. In:
Transactions on Visualization and Computer Graphics 17.12 (2011).

[11] A. Bouchefra, T. Jankov, H. James, and Z. Antolovic. Performance Tools.
SitePoint, 2018.

[12] P. Buneman,A. Chapman, and J. Cheney. “Provenancemanagement in curated
databases”. In: SIGMOD 2006: International Conference on Management of Data.
ACM, 2006.

311

https://medium.com/web-god-mode/how-web-browsers-work-behind-the-scene-architecture-technologies-and-internal-working-fec601488bfa
https://medium.com/web-god-mode/how-web-browsers-work-behind-the-scene-architecture-technologies-and-internal-working-fec601488bfa
https://medium.com/web-god-mode/how-web-browsers-work-behind-the-scene-architecture-technologies-and-internal-working-fec601488bfa
https://medium.com/web-god-mode/how-web-browsers-work-behind-the-scene-architecture-technologies-and-internal-working-fec601488bfa
https://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
https://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
https://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
https://www.html5rocks.com/en/tutorials/workers/basics/
https://www.html5rocks.com/en/tutorials/workers/basics/

Bibliography

[13] P. Buneman, S. Khanna, and W. C. Tan. “Data Provenance: Some Basic
Issues”. In: FST TCS 2000: Conference on Foundations of Software Technology
and Theoretical Computer Science. Volume 1974. Lecture Notes in Computer
Science. Springer, 2000.

[14] A. Cairo. The functional art: an introduction to information graphics and
visualization. New Riders, 2013.

[15] R. Chang, C. Ziemkiewicz, T. M. Green, and W. Ribarsky. “Defining Insight
for Visual Analytics”. In: IEEE Computer Graphics and Applications 29.2 (2009).

[16] K. Charmaz. “The Search for Meanings-Grounded Theory”. In: Rethinking
Methods in Psychology. Sage Publications, 1996.

[17] M. Chen and R. J. Norman. “A Framework for Integrated CASE”. In: IEEE
Software 9.2 (1992).

[18] D. Clément. “A Distributed Architecture for Programming Environments”.
In: SDE 4: Symposium on Software Development Environments. Irvine, California,
USA: ACM, 1990.

[19] Y. Cui and J. Widom. “Lineage Tracing for General Data Warehouse
Transformations”. In: VLDB J. 12.1 (2003).

[20] W. Cunningham. Wiki Design Principles. Wiki. 2014. url: https://wiki.c2.
com/?WikiDesignPrinciples (visited on 2020-07-29).

[21] R. Davidson and D. Harel. “Drawing Graphs Nicely Using Simulated
Annealing”. In: ACM Trans. Graph. 15.4 (1996).

[22] H. P. I. of Design at Stanford. An Introduction to Design Thinking PROCESS
GUIDE. 2010.

[23] P. Deutsch. “DEFLATE Compressed Data Format Specification version 1.3”.
In: RFC 1951 (1996).

[24] P. Eades. “A Heuristic for Graph Drawing”. In: Congressus Numerantium 42
(1984).

[25] A. Emamdjomeh. Animating Lots and Lots of Circles with WebGL and REGL.js.
2019. url: https://web.archive.org/web/20200730064918/https:
//observablehq.com/@emamd/animating-lots-and-lots-of-
circles-with-regl-js (visited on 2020-07-29).

[26] F. U. Falk and W. Brenner. Design Thinking: The Handbook. World Scientific,
2020.

[27] N. J. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
“Combinators for Bidirectional Tree Transformations: A Linguistic Approach
to the View-update Problem”. In: Transactions on Programming Languages and
Systems 29.3 (2007).

[28] T. M. J. Fruchterman and E. M. Reingold. “Graph Drawing by Force-directed
Placement”. In: Software Practice and Experience 21.11 (1991).

312

https://wiki.c2.com/?WikiDesignPrinciples
https://wiki.c2.com/?WikiDesignPrinciples
https://web.archive.org/web/20200730064918/https://observablehq.com/@emamd/animating-lots-and-lots-of-circles-with-regl-js
https://web.archive.org/web/20200730064918/https://observablehq.com/@emamd/animating-lots-and-lots-of-circles-with-regl-js
https://web.archive.org/web/20200730064918/https://observablehq.com/@emamd/animating-lots-and-lots-of-circles-with-regl-js

Bibliography

[29] T. Garsiel. How Browsers Work. 2020. url: http://taligarsiel.com/
Projects/howbrowserswork1.htm#Rendering_engines (visited on
2020-07-28).

[30] T. Garsiel and P. Irish. How Browsers Work: Behind the Scenes of Modern Web
Browsers - HTML5 Rocks. 2011. url: https://www.html5rocks.com/en/
tutorials/internals/howbrowserswork/ (visited on 2020-07-28).

[31] E. Gasperowicz.OffscreenCanvas — Speed up Your Canvas Operations with a Web
Worker. 2019. url: https://developers.google.com/web/updates/
2018/08/offscreen-canvas (visited on 2020-07-25).

[32] I. Grigorik. Render-tree Construction, Layout, and Paint | Web Fundamentals. 2019.
url: https://developers.google.com/web/fundamentals/perfo
rmance/critical-rendering-path/render-tree-construction
(visited on 2020-07-27).

[33] G. Grinstein and M. Trutschl. “High-Dimensional Visualizations”. In:
Proceedings of the Visual Data Mining Workshop, KDD. 2001.

[34] A. Grosskurth and M. W. Godfrey. “A Reference Architecture for Web
Browsers”. In: ICSM’05: International Conference on Software Maintenance. 2005.

[35] J. Gruber. Daring Fireball: Markdown. Blog. 2004. url: https://daringfire
ball.net/projects/markdown/ (visited on 2020-07-29).

[36] P. Hanrahan. “Vizql: a language for query, analysis and visualization”. In:
SIGMOD 2006: International Conference on Management of Data. ACM, 2006.

[37] R. Ikeda and J. Widom. Data Lineage: A Survey. Technical Report. Stanford
University, 2009.

[38] D. Ingalls, T. Felgentreff, R. Hirschfeld, R. Krahn, J. Lincke, M. Röder, A.
Taivalsaari, and T. Mikkonen. “A world of active objects for work and play:
the first ten years of lively”. In: Onward! 2016: International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software. ACM, 2016.

[39] P. Irish. requestAnimationFrame for Smart Animating. 2011. url: https://w
ww.paulirish.com/2011/requestanimationframe-for-smart-
animating/ (visited on 2020-07-28).

[40] P. Isenberg, T. Zuk, C. Collins, and S. Carpendale. “Grounded evaluation
of information visualizations”. In: BELIV 2008: BEyond time and errors: novel
evaLuation methods for Information Visualization. Edited by E. Bertini, A. Perer,
C. Plaisant, and G. Santucci. ACM, 2008.

[41] G. I. Johnson, C. W. Clegg, and S. J. Ravden. “Towards a Practical Method of
User Interface Evaluation”. In: Applied Ergonomics 20.4 (1989).

[42] D. A. Keim. “Visual Techniques for Exploring Databases”. In: KDD’97:
Knowledge Discovery in Databases. 1997.

[43] D. A. Keim and H. Kriegel. “Visualization Techniques for Mining Large
Databases: A Comparison”. In: Transactions on Knowledge and Data Engineering
8.6 (1996).

313

http://taligarsiel.com/Projects/howbrowserswork1.htm#Rendering_engines
http://taligarsiel.com/Projects/howbrowserswork1.htm#Rendering_engines
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://developers.google.com/web/updates/2018/08/offscreen-canvas
https://developers.google.com/web/updates/2018/08/offscreen-canvas
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/render-tree-construction
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://www.paulirish.com/2011/requestanimationframe-for-smart-animating/
https://www.paulirish.com/2011/requestanimationframe-for-smart-animating/
https://www.paulirish.com/2011/requestanimationframe-for-smart-animating/

Bibliography

[44] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz. “Lively Wiki A
Development Environment for Creating and Sharing Active Web Content”.
In:WikiSym ’09: International Symposium onWikis and Open Collaboration. ACM,
2009.

[45] M. Lewrick, P. Link, and L. Leifer. The Design Thinking Playbook: Mindful Digital
Transformation of Teams, Products, Services, Businesses and Ecosystems. JohnWiley
& Sons, 2018.

[46] J. Lincke. “Evolving Tools in a Collaborative Self-supporting Development
Environment”. PhD thesis. Universität Potsdam, 2014.

[47] J. Lincke, S. Ramson, P. Rein, R. Hirschfeld, M. Taeumel, and T. Felgentreff.
“Designing a Live Development Experience for Web Components”. In:
PX/17.2: Programming Experience Workshop, co-located with OOPSLA. ACM,
2017.

[48] A. E. Lunzer. “Reconnaissance: A Widely Applicable Approach Encouraging
Well-informed Choices in Computer-based Tasks”. PhD thesis. University of
Glasgow, UK, 1995.

[49] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In: Journal
of Machine Learning Research 9 (2008).

[50] J. H. Maloney and R. B. Smith. “Directness and Liveness in the Morphic user
Interface Construction Environment”. In:UIST ’95: Symposium onUser Interface
and Software Technology. ACM, 1995.

[51] J. McCutchan and L. Lee. Effectively Managing Memory at Gmail scale - HTML5
Rocks. 2013. url: https://www.html5rocks.com/en/tutorials/memo
ry/effectivemanagement/ (visited on 2020-07-29).

[52] J. Nielsen. Response Time Limits. 1993. url: https://www.nngroup.co
m/articles/response-times-3-important-limits/ (visited on
2020-07-28).

[53] H. Ossher, W. Harrison, and P. Tarr. “Software Engineering Tools and
Environments: A Roadmap”. In: ICSE ’00: Conference on The Future of Software
Engineering. ACM, 2000.

[54] T. Parisi. WebGL: Up and Running. O’Reilly, 2012.
[55] H. Payer and R.McIlroy.Getting Garbage Collection for Free · V8. 2015. url: http

s://v8.dev/blog/free-garbage-collection (visited on 2020-07-29).
[56] C. Price. Rendering charts with OffscreenCanvas. 2020. url: https://blog.

scottlogic.com/2020/03/19/offscreen-canvas.html (visited on
2020-07-25).

[57] Z. C. Qin Chengzhi and P. Tao. “Taxonomy of Visualization Techniques and
Systems – Concerns between Users and Developers are Different”. In: Asia
GIS Conference. Volume 35. 2003.

[58] S. P. Reiss. “Software Tools and Environments”. In: Computing Surveys (CSUR)
28.1 (1996).

314

https://www.html5rocks.com/en/tutorials/memory/effectivemanagement/
https://www.html5rocks.com/en/tutorials/memory/effectivemanagement/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://v8.dev/blog/free-garbage-collection
https://v8.dev/blog/free-garbage-collection
https://blog.scottlogic.com/2020/03/19/offscreen-canvas.html
https://blog.scottlogic.com/2020/03/19/offscreen-canvas.html

Bibliography

[59] M. Satran.RetainedMode Versus ImmediateMode -Win32 apps. 2018. url: https:
//docs.microsoft.com/en-us/windows/win32/learnwin32/retai
ned-mode-versus-immediate-mode (visited on 2020-07-27).

[60] B. Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations”. In: SVL 1996: Symposium on Visual Languages.
IEEE, 1996.

[61] B. Smus. Improving HTML5 Canvas Performance - HTML5 Rocks. 2013. url: ht
tps://www.html5rocks.com/en/tutorials/canvas/performance/
(visited on 2020-07-29).

[62] J. T. Stasko. “Value-driven evaluation of visualizations”. In: Proceedings of
the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for
Visualization, BELIV 2014, Paris, France, November 10, 2014. Edited by H. Lam,
P. Isenberg, T. Isenberg, and M. Sedlmair. ACM, 2014.

[63] M. Stickdorn, J. Schneider, K. Andrews, andA. Lawrence. This Is Service Design
Thinking: Basics, Tools, Cases. Volume 1. Wiley Hoboken, NJ, 2011.

[64] C. Stolte, D. Tang, and P. Hanrahan. “Polaris: A system for query, analysis, and
visualization of multidimensional relational databases”. In: IEEE Transactions
on Visualization and Computer Graphics 8.1 (2002).

[65] M. Tory and T. Möller. “Rethinking Visualization: A High-Level Taxonomy”.
In: InfoVis 2004: 10th Symposium on Information Visualization. Edited by M. O.
Ward and T. Munzner. IEEE, 2004.

[66] L. Tweedie. “Characterizing Interactive Externalizations”. In: CHI ’97: Human
Factors in Computing Systems. Edited by S. Pemberton. ACM, 1997.

[67] A. I. Wasserman. “Tool Integration in Software Engineering Environments”.
In: InternationalWorkshop on Environments on Software Engineering Environments.
Springer, 1990.

[68] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, 2016.
[69] B. Wilson. How Chromium Displays Web Pages - The Chromium Projects. 2012.

url: https://www.chromium.org/developers/design-documents/
displaying-a-web-page-in-chrome (visited on 2020-07-28).

[70] S. K. M. Wong, W. Ziarko, and P. C. N. Wong. “Generalized vector spaces
model in information retrieval”. In: Proceedings of the 8th annual international
ACMSIGIR conference on Research and development in information retrieval - SIGIR
’85. ACM, 1985.

[71] L.Wyse and S. Subramanian. “TheViability of theWebBrowser as aComputer
Music Platform”. In: Computer Music Journal 37.4 (2013).

[72] J. S. Yi. “Implications of Individual Differences on Evaluating Information
Visualization Techniques”. In: International Journal of Human-Computer Studies
45.6 (2012).

315

https://docs.microsoft.com/en-us/windows/win32/learnwin32/retained-mode-versus-immediate-mode
https://docs.microsoft.com/en-us/windows/win32/learnwin32/retained-mode-versus-immediate-mode
https://docs.microsoft.com/en-us/windows/win32/learnwin32/retained-mode-versus-immediate-mode
https://www.html5rocks.com/en/tutorials/canvas/performance/
https://www.html5rocks.com/en/tutorials/canvas/performance/
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome

Bibliography

[73] J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko. “Understanding and
Characterizing Insights: How Do People Gain Insights Using Information
Visualization?” In: BELIV 2008: BEyond time and errors: novel evaLuation methods
for Information Visualization. Edited by E. Bertini, A. Perer, C. Plaisant, and G.
Santucci. ACM, 2008.

[74] C. Ziemkiewicz and R. Kosara. “The Shaping of Information by Visual
Metaphors”. In: Transactions on Visualization and Computer Graphics 14.6 (2008).

316

List of Figures

1.1 Context of Africa’s Voices’ work . 2
1.2 A variety of visualizations used in the project ‘Somali Views In The

Early Days Of Covid-19: A Rapid Diagnostic’ 4
1.3 An examplary bar chart displaying the amount of different themes

mentioned by males (blue) and females (red). 5
1.4 An examplary bubble chart showing the frequency of themes. 6
1.5 A Tableau Worksheet . 18
1.6 The resulting ggplot2 scatterplot . 20
1.7 A D3 bubble chart with tooltip on hover (A) 22

2.1 The diverging and converging process in Design Thinking [45] . . . 29
2.2 The microcycle in Design Thinking [45] 30
2.3 The persona named Tom . 33
2.4 Fusing two pie charts into a stacked line chart (41) 34
2.5 Extract of the storyboard for the idea of fusing diagrams (41) 35
2.6 Theme Centers (33). Placing individuals as points around and

between their themes . 39
2.7 Individual Centered (7). Placing individuals as points around one

individual. Their distance is based on the difference of their attribute
values regarding a certain attribute . 40

2.8 Forces (31). Attracting individuals as points to their corresponding
values . 41

2.9 Map (3). Placing individuals as points on a map using the geographic
positions of their districts . 42

2.10 XY-Axis (22). Grouping individuals as points into predefined areas. 43
2.11 Individual Forces (76). Attracting individuals as points to each other

depending on their similarity . 44
2.12 Venn (39). Individuals as points in a Venn diagram 45
2.13 Group Chaining (75). Chaining groupings of individuals as points

according to selected attributes . 46
2.14 Panes (45). Windows containing individuals as points. Connections

between windows make the exploration flow visible 47
2.15 Tab View (77). Tabs containing one visualization type each. Inspector

to inspect individuals. Control panel to color, filter, and select
individuals in the visualizations . 48

2.16 Individuals on Canvas (46). Individuals as points that can be
grouped, selected, and filtered. Hovering displays information
regarding the individual or a group of individuals. 49

317

List of Figures

2.17 StatementGenerator (63). Generating statements using code formulas
and templates . 50

2.18 Highlighting points across diagrams (44) 54
2.19 Highlighting bars across diagrams (25) 54
2.20 Graph structure displaying relationships between messages and

individuals (5) . 55
2.21 Highlighting points across diagrams (55) 56
2.22 Ideas manipulating the view of data 58
2.23 Highlighting bars across diagrams (27) 59
2.24 Highlighting points across diagrams (34) 60
2.25 Map with time slider to redo or undo filter or selection steps (4) . . . 61
2.26 Displaying missing data in scatterplots (65) 63

3.1 Individuals displayed as points . 67
3.2 Individuals displayed as points with fill versus only strokes 69
3.3 Inspecting an individual on click . 70
3.4 Coloring individuals according to gender 71
3.5 Using filter-out logic to remove individuals without expected values

from display in the Filter Chain prototype 72
3.6 Using filter-in logic in the Filter Widget prototype to only work with

individuals up to 35 years . 72
3.7 Using a Freehand Selection to filter selected individuals into the next

created visualization . 74
3.8 Highlighting the distribution of middle-aged respondents in groups

defined by language and gender . 75
3.9 Chaining grouping for gender and county 76
3.10 Hovering over the Mogadishu district while using the Map prototype 77
3.11 Statistical calculations about the distribution of people talking about

good governance in Mogadishu . 78
3.12 Using the XY Diagram to display groups by gender and age 79
3.13 Using the XY Diagram to create a bar chart which maintains a

connection to each individual . 80
3.14 Using the Venn Diagram prototype to explore connections between

two theme groups . 80
3.15 Using the Individual Center prototype with thematic comparison to

compare and explore two individuals with equal theme tags on
gender, age category and household language 82

3.16 Using the Individual Center prototype with demographic comparison
to explore two individuals with equal values for gender, household
language, region and age category . 82

3.17 Using the Movement prototype with a very high fade factor 84
3.18 Using the Movement prototype with a low fade factor 84

318

List of Figures

3.19 Using the Individual Forces prototype. Forces are calculated according
to the theme categories each individual belongs in (question, answer,
escalate, and missing). Points are colored according to their theme
category. 87

3.20 Using the t-SNE algorithm based on demographic data. Points are
colored according to county. 87

3.21 Using the Statistics Panel prototype for displaying predefined statistics
for a selected group of individuals . 89

3.22 Using the Panes prototype to explore the data using grouping,
colouring and filtering . 90

3.23 Using the XY Diagram in the Tab View prototype with coloring
according to age . 93

3.24 Using the Map prototype in the Tab View prototype with coloring
according to age . 93

3.25 Using the Venn Diagram in the Tab View prototype with coloring
according to age . 94

3.26 Basic components of the Tree View prototype 96
3.27 Creating a new visualization pane in the Tree View prototype 96
3.28 Using the Freehand Selection for selecting individuals to display in the

newly created pane . 97

4.1 Overview of Lively4 client application and Lively4 server architecture 105
4.2 URL of Lively4 client application . 106
4.3 Lively4 world loaded within the browser with a Lively4 browser, a

workspace, github sync tool, and another Lively4 tool launched . . . 107
4.4 Lively4 browser with index.md loaded in *edit* mode (background);

Lively4 browser with index.md loaded in *view* mode (foreground) 108
4.5 Lively4 client application loaded with two Lively4 browser windows

launched. Browser windows both access different files from the
Lively4 server. 109

4.6 Rendered markdown with opened edit iFrame for the draw.io figure 111
4.7 Rendered markdown with executed scripts and native HTML

elements embedded . 112
4.8 Rendered markdown with codeblock and chart on canvas 114
4.9 Shadow DOM in relation to the document DOM 118
4.10 Lively4 browser web component architecture visible in the DOM . . 122
4.11 UI of the Tab View prototype divided according to the web component

structure . 125
4.12 Workflow for dynamically creating new web component instances in

the UI of the Tree View prototype . 127
4.13 The Tree View prototype markdown view before and after reloading

the Lively4 browser . 129
4.14 Lively4 wiki workflow in one Lively4 session 131
4.15 Automatic reloading of Lively4 browser windows that show the same

URL . 132

319

List of Figures

4.16 Forbidden query for a file on the private voices server from within a
session started from the public Lively4 server 133

4.17 The Lively4 one checkout and multiple checkout collaboration 134
4.18 Conflicting collaboration of two Lively4 users at realtime 135
4.19 Comparing versions of ‘index.md‘ in the Lively4 client application . 136
4.20 GitHub sync tool before, while and after syncing the BP2019RH1

repository with the remote origin . 137

5.1 An example of mapping as bipartite graphs with the restrictions of
the appropriate relation type . 146

5.2 An example bar chart of the age distribution in the age buckets [<10,
10-14, 15-17, 18-35, 36-54, over 55, missing] 148

5.3 An example of building a tracing graph. The upper half displays the
operations’ singlemappings. The lower half displays the concatenated
mapping graph. 149

5.4 Resulting bar chart (A) displayed with the diagram structure (B) and
the stored data per bar (C) . 150

5.5 The double rendering process . 151
5.6 Two graphical elements overlapping: Once with 50% opacity (left),

once with 100% opacity (right) . 152
5.7 The position matching process . 155
5.8 The XY Diagram separated in its four parts 158
5.9 Screenshots of the three main canvases of a map 160
5.10 Screenshot of the Venn prototype with two theme groups 161
5.11 Converting a Venn diagram to a graph 162
5.12 A screenshot of one bar chart of a statistics panel 164
5.13 Screenshot of a not connected child visualization of a statistics panel 165
5.14 A screenshot of the XY Diagram, with the gender on the x-axis and

amount on the y-axis . 167

6.1 Basic browser architecture . 174
6.2 WebKit rendering process . 176
6.3 Immediate mode and Retained mode 178
6.4 Google Chrome DevTools overview 180
6.5 A rendered dot . 183
6.6 Chrome DevTools when rendering with WebGL 189
6.7 Chrome DevTools when rendering -elements 190
6.8 Heap usage and time to render when rendering point with SVG . . . 191
6.9 Rendering with SVG without clean up of drawing area. Performed on

a local server without Lively4 . 192
6.10 Percentage differences in time to render in Lively4 and on local server 193
6.11 Comparison of rendering with WebGL in Lively4 and on local server 194
6.12 Comparison of the impact of the drawing area size on performance . 195
6.13 Comparison of themeasurement series fromdifferent days using Lively4196

320

List of Figures

6.14 Comparison of themeasurement series fromdifferent days using local
server . 197

6.15 Rendering technologies and requirements 198

7.1 Dataset grouped by gender . 209
7.2 Dataset grouped by gender and age 209
7.3 Map, colored by recently displaced . 210
7.4 Venn Diagram, groupings for themes ‘call for right practice’ and

‘religious practice’ . 211
7.5 Dataset grouped and colored by recently displaced 211
7.6 Age distributions of recently displaced (left) and not recently

displaced (right) respondents . 213
7.7 Different kinds of dimensionality expansions. Left visualizations

include recently displaced, right visualizations, not recently displaced
people. Colored by household language, neon green is Somali. 213

7.8 Left visualizations include recently displaced, right visualizations
not recently displaced people. Colored by household language, neon
green is Somali. Bottom two visualizations correlate zone by gender. 214

7.9 Age distributions of recently displaced (left) and not recently
displaced (right) respondents and map colored by household
language (middle), Somali is neon green, Maimai is black. 215

7.10 Venn Diagrams (bottom two) from selection in age distribution . . . 215
7.11 Exemplary graph after exploration . 216
7.12 Individuals grouped in circles according to their demographic

similarity to a chosen individual . 217
7.13 Individuals grouped in circles according to their thematic similarity

to a chosen individual . 218
7.14 Main feedback cycles involving creation of visualizations 224
7.15 Interplay of design and user model . 227

C.1 Box plot for rendering points on canvas 2dContext in Lively4 289
C.2 Box plot for rendering points with HTML -elements in Lively4289
C.3 Box plot for rendering points with SVG in Lively4 290
C.4 Box plot for rendering points on canvas with WebGL in Lively4 . . . 290
C.5 Time to render when rendering points with canvas 2dContext in Lively4291
C.6 Time to render when rendering points with -elements in Lively4291
C.7 Time to render when rendering points with SVG in Lively4 292
C.8 Time to render when rendering points with WebGL in Lively4 292
C.9 Heap usage when rendering with canvas 2dContext in Lively4 293
C.10 Heap usage when rendering points with -elements in Lively4 293
C.11 Heap usage when rendering with SVG in Lively4 294
C.12 Heap usage when rendering with WebGL in Lively4 294
C.13 Box plot for rendering points on canvas 2dContext on local server . . 295
C.14 Box plot for rendering points with -elements on local server . 295
C.15 Box plot for rendering points with SVG on local server 296

321

List of Figures

C.16 Box plot for rendering points with WebGL on local server 296
C.17 Time to render when rendering points with canvas 2dContext on local

server . 297
C.18 Time to renderwhen rendering pointswith-elements on local

server . 297
C.19 Time to render when rendering points with SVG on local server . . . 298
C.20 Time to render when rendering points with WebGL on local server . 298
C.21 Heap usage when rendering with canvas 2dContext on local server . 299
C.22 Heap usage when rendering with -elements on local server . 299
C.23 Heap usage when rendering with SVG on local server 300
C.24 Heap usage when rendering with WebGL on local server 300

322

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

135

978-3-86956-503-3

Fast packrat parsing in a live
programming environment :
improving left-recursion in
parsing expression grammars

Friedrich Schöne, Patrick Rein,
Robert Hirschfeld

134

978-3-86956-502-6

Interval probabilistic timed
graph transformation systems

Maria Maximova, Sven
Schneider, Holger Giese

133

978-3-86956-501-9 Compositional analysis of
probabilistic timed graph
transformation systems

Maria Maximova, Sven
Schneider, Holger Giese

132

978-3-86956-482-1

SandBlocks : Integration
visueller und textueller
Programmelemente in Live-
Programmiersysteme

Leon Bein, Tom Braun, Björn
Daase, Elina Emsbach, Leon
Matthes, Maximilian Stiede,
Marcel Taeumel, Toni Mattis,
Stefan Ramson, Patrick Rein,
Robert Hirschfeld, Jens Mönig

131

978-3-86956-481-4

Was macht das Hasso-Plattner-
Institut für Digital Engineering
zu einer Besonderheit?

August-Wilhelm Scheer

130

978-3-86956-475-3

HPI Future SOC Lab :
Proceedings 2017

Christoph Meinel, Andreas
Polze, Karsten Beins, Rolf
Strotmann, Ulrich Seibold,
Kurt Rödszus, Jürgen Müller

129

978-3-86956-465-4

Technical report : Fall Retreat
2018

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich, Erwin Böttinger,
Christoph Lippert

128

978-3-86956-464-7

The font engineering platform :
collaborative font creation in a
self-supporting programming
environment

Tom Beckmann, Justus
Hildebrand, Corinna Jaschek,
Eva Krebs, Alexander Löser,
Marcel Taeumel, Tobias Pape,
Lasse Fister, Robert Hirschfeld

127 978-3-86956-463-0

Metric temporal graph logic over
typed attributed graphs :
extended version

Holger Giese, Maria
Maximova, Lucas Sakizloglou,
Sven Schneider

126 978-3-86956-462-3

A logic-based incremental
approach to graph repair

Sven Schneider, Leen
Lambers, Fernando Orejas

ISBN 978-3-86956-504-0
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Domain and Specific Challenges of Visualizing Demographic Data and Personal Opinions
	1.1 Domain
	1.1.1 Africa’s Voices Foundation
	1.1.2 Process of Africa’s Voices
	1.1.2.1 Radio Shows
	1.1.2.2 Projects
	1.1.2.3 Data Analysis and Visualization
	1.1.2.4 Reports
	1.1.2.5 Workshops

	1.1.3 Problems
	1.1.3.1 Slow Feedback Cycles Due to Their Current Process
	1.1.3.2 Generalization of Findings Due to Quantitative Data
	1.1.3.3 Viewing Single Individuals and Original Opinions
	1.1.3.4 Trust in Data
	1.1.3.5 Trust in Software
	1.1.3.6 Connecting Visualizations
	1.1.3.7 Missing Interaction
	1.1.3.8 Missing Empathy
	1.1.3.9 Issues With the Mindset

	1.2 Project Description, Prerequisites, and Requirement Analysis
	1.2.1 Project Goal
	1.2.2 Prerequisites and Requirements
	1.2.2.1 Project Partner’s Views
	1.2.2.2 Provided Context Information
	1.2.2.3 Data and Data Scheme
	1.2.2.4 Data Handling and Data Visualization
	1.2.2.5 Potential Users
	1.2.2.6 Lively4

	1.3 Developing Customized Visualizations: State of the Art
	1.3.1 Tableau
	1.3.1.1 Usage
	1.3.1.2 Underlying Technology
	1.3.1.3 Interaction
	1.3.1.4 Customizability

	1.3.2 ggplot2
	1.3.2.1 Usage
	1.3.2.2 Underlying Technology
	1.3.2.3 Interaction
	1.3.2.4 Customizability

	1.3.3 D3
	1.3.3.1 Usage
	1.3.3.2 Underlying Technology
	1.3.3.3 Interaction
	1.3.3.4 Customizability

	1.3.4 Conclusion

	1.4 Our Approach
	1.5 Our Contribution
	1.5.1 New Visualizations
	1.5.2 Connections Between Visualizations
	1.5.3 Changed Workflows
	1.5.3.1 Developers
	1.5.3.2 Researchers
	1.5.3.3 Presenters

	1.5.4 Summary

	2 Concepts for Visualizations and Exploration and Categorization of the Design Space
	2.1 Introduction
	2.2 Exploration of the Design Space and Ideation
	2.2.1 Overview Design Thinking
	2.2.1.1 Understanding
	2.2.1.2 Observing
	2.2.1.3 Defining the Point of View
	2.2.1.4 Ideating
	2.2.1.5 Prototyping
	2.2.1.6 Testing

	2.2.2 Our Approach
	2.2.2.1 Understanding
	2.2.2.2 Observing
	2.2.2.3 Defining the Point of View
	2.2.2.4 Ideation
	2.2.2.5 Prototyping
	2.2.2.6 Testing

	2.2.3 Evaluation

	2.3 Categorization and Analysis
	2.3.1 Technical Taxonomy
	2.3.2 Task Taxonomy
	2.3.3 Technical Dimension
	2.3.3.1 Pixel-oriented
	2.3.3.2 Geometric Projection
	2.3.3.3 Icon-based
	2.3.3.4 Hierarchy-based
	2.3.3.5 Graph-based
	2.3.3.6 Media-based
	2.3.3.7 Hybrid
	2.3.3.8 No Specific Representation Mode
	2.3.3.9 Other Concepts

	2.3.4 Task Dimension
	2.3.5 Findings
	2.3.5.1 Distribution of Ideas
	2.3.5.2 Technical Dimension
	2.3.5.3 Task Dimension
	2.3.5.4 Recurring Concepts

	2.4 Concepts
	2.4.1 Explorability
	2.4.1.1 Individuals As Points and Inspection
	2.4.1.2 Viewing Different Perspectives
	2.4.1.3 Comparison Across Visualizations
	2.4.1.4 Traceability of Exploration Paths

	2.4.2 Empathy
	2.4.2.1 Individuals As Points and Inspection
	2.4.2.2 Liveliness

	2.4.3 Trust
	2.4.3.1 Inspection
	2.4.3.2 Manipulation of Code
	2.4.3.3 Keep Missing Data Visible

	2.5 Conclusion

	3 Implementation and Integration Into an Environment of Explorable Visualization Tools
	3.1 Introduction
	3.2 Individuals as Points
	3.3 Interaction Patterns
	3.3.1 Inspect
	3.3.2 Inspect Variation: Inspect-Human
	3.3.3 Color
	3.3.4 Filter
	3.3.5 Filter-variation: Freehand Selection Used as Filter
	3.3.6 Highlight
	3.3.7 Group
	3.3.7.1 One Attribute
	3.3.7.2 Two Attributes
	3.3.7.3 More Attributes

	3.4 Visualizations Tools
	3.4.1 Map
	3.4.2 XY Diagram
	3.4.3 Venn Diagram
	3.4.4 Individual Center
	3.4.5 Movement Prototype
	3.4.6 Individual Forces/t-SNE
	3.4.6.1 Individual Forces
	3.4.6.2 t-SNE

	3.4.7 Polygon Theme Forces
	3.4.8 Statistics Panel
	3.4.9 Panes

	3.5 Integration of Tools
	3.5.1 Initial Integration Level of Visualization Tools
	3.5.2 Tab View
	3.5.2.1 Technical Implementation
	3.5.2.2 Integration

	3.5.3 Tree View
	3.5.3.1 Technical Implementation
	3.5.3.2 Integration

	3.5.4 Discussion
	3.5.4.1 Extensibility
	3.5.4.2 Presentation Integration
	3.5.4.3 Control Integration
	3.5.4.4 Data Integration

	3.6 Conclusion

	4 Using the Lively4 Platform with Its Active Content Capabilities
	4.1 Introduction
	4.2 Lively4 System Introduction
	4.2.1 Lively4 Core Concepts
	4.2.2 Server-client Structure
	4.2.3 Workflows and the Lively4 Browser in the Lively4 Client Application
	4.2.3.1 Lively4 Browser

	4.3 Technical Capabilities of Lively4
	4.3.1 Markdown Files in the Lively4 Wiki
	4.3.1.1 The Markdown Technology
	4.3.1.2 Lively4 Markdown Implementation
	4.3.1.3 Documenting Our Architecture
	4.3.1.4 Including Code Evaluation
	4.3.1.5 Making an Evaluation Interactive
	4.3.1.6 Client Side Wiki

	4.3.2 Web Components in Lively4
	4.3.2.1 The Web Component Technology
	4.3.2.2 Web Components in Lively4
	4.3.2.3 Building Visualization Prototypes with Web Components

	4.3.3 Markdown Vs. Web Components in Lively4
	4.3.3.1 Usage
	4.3.3.2 Life Cycle

	4.4 Collaborating in Lively4
	4.4.1 The Lively4 Wiki Workflow
	4.4.1.1 Wiki Principles
	4.4.1.2 Working in the Client Side Wiki
	4.4.1.3 Working with Personal Data in a Wiki

	4.4.2 Working Collaboratively in Realtime
	4.4.2.1 Different Modes of Collaboration
	4.4.2.2 Changing a File Simultaneously

	4.4.3 Version Control in Lively4
	4.4.3.1 Versioning a Wiki
	4.4.3.2 Syncing to GitHub

	4.5 Conclusion

	5 Mapping of Data and UI for Interactive and Explorable Visualizations
	5.1 Introduction
	5.2 Data and Provenance
	5.2.1 Data Provenance
	5.2.2 Provision of the Data
	5.2.3 Non-disclosure Agreement
	5.2.4 Africa’s Voices Foundation’s Data Formats
	5.2.4.1 Traced Data Objects
	5.2.4.2 Conversation Objects
	5.2.4.3 CSV Table
	5.2.4.4 Evaluation of Africa’s Voices’ Data Formats

	5.2.5 Our Individual-centered Data Format

	5.3 Bidirectional Mapping
	5.3.1 Definition of Mapping
	5.3.2 Common Problems with Bidirectional Mapping
	5.3.3 What We Need Bidirectional Mapping For

	5.4 Evaluation of Existing Strategies for Bidirectional Mapping of Data and User Interface
	5.4.1 Scenario
	5.4.2 Tracing Graph
	5.4.2.1 Evaluation
	5.4.2.2 Application to the Scenario

	5.4.3 Double Rendering
	5.4.3.1 Prerequisites
	5.4.3.2 Limitations
	5.4.3.3 Evaluation
	5.4.3.4 Application to the Scenario

	5.4.4 Position Matching
	5.4.4.1 Prerequisites
	5.4.4.2 Evaluation
	5.4.4.3 Application to the Scenario

	5.4.5 Evaluation

	5.5 Our Approach on Bidirectional Mapping
	5.5.1 XY Diagram
	5.5.1.1 Click Interaction
	5.5.1.2 Free-Hand Selection Interaction

	5.5.2 Map Prototype
	5.5.2.1 Click Interaction
	5.5.2.2 Hovering Interaction
	5.5.2.3 Free-Hand Selection Interaction

	5.5.3 Venn Diagram
	5.5.3.1 Layout of the Force Centers
	5.5.3.2 Click Interaction
	5.5.3.3 Double Click Interaction
	5.5.3.4 Drag Interaction
	5.5.3.5 Free-Hand Selection Interaction

	5.5.4 Statistics Panel
	5.5.4.1 Hover Interaction
	5.5.4.2 Click interaction
	5.5.4.3 Choice of Visualization Library

	5.5.5 Evaluation of Our Approach on Bidirectional Mapping

	5.6 Conclusion

	6 Evaluating Visualization Technologies for Individual Data Points in Lively4
	6.1 Introduction
	6.2 Visualization Environment and Approach
	6.2.1 Browser and Lively4
	6.2.2 Visualization Approach
	6.2.3 Visualization Requirements
	6.2.3.1 Fast Prototyping
	6.2.3.2 User Experience
	6.2.3.3 Explorability through Responsiveness
	6.2.3.4 Bidirectional Mapping
	6.2.3.5 Novelty

	6.3 Graphics in the Browser
	6.3.1 Browser Architecture
	6.3.2 Render Process in the Browser
	6.3.3 Immediate Mode Vs. Retained Mode
	6.3.4 Measuring Rendering in the Browser
	6.3.4.1 External
	6.3.4.2 Internal
	6.3.4.3 Comparison of External and Internal Measurements

	6.4 Rendering Visualizations with Many Points in Lively4
	6.4.1 Web Technologies to Render Points
	6.4.1.1 Simple HTML Span- or Div-Elements
	6.4.1.2 SVG
	6.4.1.3 Canvas

	6.4.2 Discussion

	6.5 Benchmarking Web Technologies
	6.5.1 Benchmark process
	6.5.2 Benchmark Scenario
	6.5.3 Explanation of Benchmark Results
	6.5.4 Discussion

	6.6 Future Work and Further Optimizations
	6.6.1 Remaining Problems
	6.6.2 Further Optimizations

	6.7 Conclusion

	7 Evaluating Our Approach to Visualize People’s Opinions and Demographic Data
	7.1 Introduction
	7.2 Foundations
	7.2.1 Problems with Data
	7.2.2 Problems from Partner and Domain
	7.2.3 Problems of Evaluation of Visualizations

	7.3 Walkthroughs
	7.3.1 Setting
	7.3.2 Tab View
	7.3.3 Tree View
	7.3.4 Individual Center

	7.4 Value-driven Evaluation
	7.4.1 Time Needed to Answer a Wide Variety of Questions about Data
	7.4.1.1 Possible Questions
	7.4.1.2 Time Needed

	7.4.2 Spur and Discover Insights and/or Insightful Questions about Data
	7.4.3 Ability to Convey the Overall Essence of Data
	7.4.4 Ability to Generate Confidence, Knowledge, and Trust about the Data, Its Domain, and Context

	7.5 Discussion
	7.5.1 Dealing with High-dimensional Data
	7.5.2 Slow Feedback Cycles Due to Their Current Process
	7.5.3 Generalization of Findings Due to Quantitative Data
	7.5.4 Viewing Single Individuals and Original Opinions
	7.5.5 Trust in Data
	7.5.6 Trust in Code
	7.5.7 Connecting Visualizations
	7.5.8 Missing Interaction
	7.5.9 Missing Empathy
	7.5.10 Issues with the Mindset

	7.6 Conclusion and Outlook

	8 Conclusion
	A Appendix Chapter 2
	A.1 Idea Collection
	A.1.1 Idea 1
	A.1.2 Idea 2
	A.1.3 Idea 3
	A.1.4 Idea 4
	A.1.5 Idea 5
	A.1.6 Idea 6
	A.1.7 Idea 7
	A.1.8 Idea 8
	A.1.9 Idea 9
	A.1.10 Idea 10
	A.1.11 Idea 11
	A.1.12 Idea 12
	A.1.13 Idea 13
	A.1.14 Idea 14
	A.1.15 Idea 15
	A.1.16 Idea 16
	A.1.17 Idea 17
	A.1.18 Idea 18
	A.1.19 Idea 19
	A.1.20 Idea 20
	A.1.21 Idea 21
	A.1.22 Idea 22
	A.1.23 Idea 23
	A.1.24 Idea 24
	A.1.25 Idea 25
	A.1.26 Idea 26
	A.1.27 Idea 27
	A.1.28 Idea 28
	A.1.29 Idea 29
	A.1.30 Idea 30
	A.1.31 Idea 31
	A.1.32 Idea 32
	A.1.33 Idea 33
	A.1.34 Idea 34
	A.1.35 Idea 35
	A.1.36 Idea 36
	A.1.37 Idea 37
	A.1.38 Idea 38
	A.1.39 Idea 39
	A.1.40 Idea 40
	A.1.41 Idea 41
	A.1.42 Idea 42
	A.1.43 Idea 43
	A.1.44 Idea 44
	A.1.45 Idea 45
	A.1.46 Idea 46
	A.1.47 Idea 47
	A.1.48 Idea 48
	A.1.49 Idea 49
	A.1.50 Idea 50
	A.1.51 Idea 51
	A.1.52 Idea 52
	A.1.53 Idea 53
	A.1.54 Idea 54
	A.1.55 Idea 55
	A.1.56 Idea 56
	A.1.57 Idea 57
	A.1.58 Idea 58
	A.1.59 Idea 59
	A.1.60 Idea 60
	A.1.61 Idea 61
	A.1.62 Idea 62
	A.1.63 Idea 63
	A.1.64 Idea 64
	A.1.65 Idea 65
	A.1.66 Idea 66
	A.1.67 Idea 67
	A.1.68 Idea 68
	A.1.69 Idea 69
	A.1.70 Idea 70
	A.1.71 Idea 71
	A.1.72 Idea 72
	A.1.73 Idea 73
	A.1.74 Idea 74
	A.1.75 Idea 75
	A.1.76 Idea 76
	A.1.77 Idea 77
	A.1.78 Idea 78
	A.1.79 Idea 79
	A.1.80 Idea 80

	A.2 Technical Categorization
	A.3 Task Categorization
	A.4 Interaction Level - Task Categorization
	A.5 Representation Mode - Task Categorization

	B Appendix Chapter 5
	C Appendix Chapter 6
	C.1 Benchmark protocol
	C.1.1 General
	C.1.2 Hardware dependencies
	C.1.3 Software dependencies
	C.1.4 System and environment
	C.1.4.1 Hardware
	C.1.4.2 Software

	C.1.5 Recorded Benchmark Measurements

	C.2 Benchmark Results
	C.3 Tables
	C.4 Code

	Bibliography
	List of Figures
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

