

Visualizing Design and Spatial
Assembly of Interactive CSG

Technische Berichte Nr. 7
des Hasso-Plattner-Instituts
für Softwaresystemtechnik an der Universität Potsdam

HASSO - PLATTNER - INSTITUT
für Softwaresystemtechnik an der Universität Potsdam

Florian Kirsch
Marc Nienhaus
Jürgen Döllner

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

Nr. 7

Visualizing Design and Spatial
Assembly of Interactive CSG

Potsdam 2005

Florian Kirsch
 Marc Nienhaus
Jürgen Döllner

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion:
Email:

Vertrieb:

Druck:

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Marc Nienhaus, Jürgen Döllner
{marc.nienhaus, juergen.doellner }@hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@rz.uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2005

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft 7 (2005)
ISBN 3-937786-56-2
ISSN 1613-5652

1

Visualizing Design and Spatial Assembly

of Interactive CSG

Florian Kirsch Marc Nienhaus Jürgen Döllner

Abstract
For interactive construction of CSG models understanding the layout of a model is essential for its efficient ma-
nipulation. To understand position and orientation of aggregated components of a CSG model, we need to realize
its visible and occluded parts as a whole. Hence, transparency and enhanced outlines are key techniques to assist
comprehension.
We present a novel real-time rendering technique for visualizing design and spatial assembly of CSG models. As
enabling technology we combine an image-space CSG rendering algorithm with blueprint rendering. Blueprint
rendering applies depth peeling for extracting layers of ordered depth from polygonal models and then composes
them in sorted order facilitating a clear insight of the models. We develop a solution for implementing depth peel-
ing for CSG models considering their depth complexity. Capturing surface colors of each layer and later combin-
ing the results allows for generating order-independent transparency as one major rendering technique for CSG
models. We further define visually important edges for CSG models and integrate an image-space edge-
enhancement technique for detecting them in each layer. In this way, we extract visually important edges that are
directly and not directly visible to outline a model’s layout. Combining edges with transparency rendering, fi-
nally, generates edge-enhanced depictions of image-based CSG models and allows us to realize their complex,
spatial assembly.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation – Display Algo-
rithms, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Constructive solid geometry

1 Introduction

Constructive Solid Geometry (CSG) represents a funda-
mental concept for modeling 3D solids, e.g., complex ag-
gregate objects such as mechanical components. In interac-
tive applications for constructing CSG models the user
requires both: a constant visual feedback to facilitate inter-
active composition of various transient CSG components as
well as a comprehensible visualization of the CSG models’
design and spatial assembly.

Image-based CSG rendering algorithms synthesize a
graphical representation of CSG models in real-time with-
out calculating their triangulation. In contrast to object-
based CSG algorithms, which involve high computational
costs due to the required triangulation, image-based CSG is
best suited for user interfaces supporting direct manipula-
tion of CSG models.

Depictions produced by image-based CSG rendering al-
gorithms generally illustrate CSG models by shaded ge-
ometry represented only by the outer surface of the solids
(Figure 1a). As a result, inner parts of the CSG models are
not visible and, therefore, the entire assembly becomes
increasingly difficult to understand during the modeling
process. In particular, complex assemblies occur in most
CAD/CAM models.

Non-photorealistic rendering (NPR) focuses on generat-
ing vivid and expressive depictions that facilitate visual
perception. For instance, Diepstraten et al. [DWE02] intro-
duce a concept for view-dependent transparency in the field
of NPR to generate technical illustrations of polygonal
models. As common technique in NPR, enhanced outlines
of single features assist comprehension.

Inspired by classical technical illustrations, we have de-
veloped a real-time rendering technique that generates
transparent, edge-enhanced depictions of CSG models. It
provides a solution for depth peeling of image-based CSG

Figure 1: A CSG model of a spanner rendered with an image-space CSG rendering technique (a), our transparency ren-
dering technique (b), our blueprint rendering technique (c), and our edge-enhanced transparency technique (d).

 a) b) c) d)

2

that extracts layers of ordered depth. The layers are then
composed to implement order-independent transparency
rendering of CSG models (Figure 1b). Although these de-
pictions provide an insight into CSG models, outlines of
single features are still hardly noticeable, in particular in
regions of high depth complexity. Therefore, we extract
visually important edges of outer and inner parts of a CSG
model in image space using blueprint rendering. The result-
ing blueprint-like depictions represent expressive and
meaningful illustrations, which outline inner and outer fea-
tures (Figure 1c). Finally, we combine both techniques to
enrich order-independent transparency rendering by en-
hanced outlines (Figure 1d). The resulting images illustrate
layout and relationships of CSG components very precisely
and, hence, communicate the spatial assembly of CSG
models in a very clear and convincing way.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work, Section 3 describes depth
peeling in general, and Section 4 introduces depth peeling
for CSG models to implement order-independent transpar-
ency. Section 5 presents edge-enhanced transparent depic-
tions of CSG models. Section 6 provides some details about
our implementation and the resulting performance, and
Section 7 discusses future work.

2 Related Work

CSG modeling means defining 3D geometry as result of set
operations (∪, ∩, −), applied to basic, closed 3D primitives
or to other CSG geometry defined in this way. For specify-
ing a CSG shape the CSG tree represents the fundamental
structure (Figure 2a and 2b).

Generating a 3D polygonal model of a CSG shape’s sur-
face is computationally expensive and for complex models
not possible in real-time. Hence, in interactive applications
for modeling CSG geometry, rendering CSG models using
an object-space approach is not appropriate.

Goldfeather et al. developed the first algorithm for im-
age-based rendering of CSG [GMT*89], that is, rendering
CSG images without calculating the final 3D geometric
mesh. An important part of their work is the normalization
of arbitrary CSG trees into an equivalent union-of-partial-

product form. Visibility of partial products (also called
CSG products) can be effectively determined by image-
based graphics hardware operations, and still today all im-
age-based CSG algorithms require the normalization step.

Wiegand described the first adaptation of the algorithm
of Goldfeather for OpenGL [Wie96]. He used an emulation
of two z-buffers, one for calculating the visibility of a sin-
gle primitive and another to combine the results. This ap-
proach was improved by real-time capable, texture-based
approaches, independently developed by Kirsch and Döll-
ner transferring visibility information in color textures
[KD04], and Guha et al., who apply depth peeling and thus
do not require a second depth buffer [GKM*03]. Note that
Guha et al. did not use depth peeling for determining inner
depth layers of CSG shapes, as we describe in this paper.

Non-photorealistic rendering (NPR) has become a core

discipline in computer graphics over the last decades and
increasingly contributes to the field of visualization. Visu-
alization strategies using NPR exist, for instance, for vol-
ume rendering and medical visualizations [LME*02, RE01,
TC00], and for technical and architectural visualizations
[GSG*99, DWE02, ND04]. In this spirit, we introduce a
novel NPR technique that is capable of visualizing the de-
sign and the spatial assembly of CSG models efficiently by
enhancing visible and occluded visually important edges.

In general, object-space and hybrid silhouette rendering
algorithms allow for rendering stylized edges and they can
be applied to occluded edges as well [KDM*03]. The prob-
lem is that they operate on the given polygonal mesh of a
3D model, which cannot be provided by interactive image-
space CSG rendering algorithms. In contrast, image-space
edge enhancement algorithms are generally independent
from the polygonal mesh but cannot be extended to oc-
cluded edges directly. Isenberg et al. [IFH*03] provide a
comprehensible survey on silhouette extraction algorithms.

For enhancing visible and occluded edges of CSG mod-
els, we use the blueprint rendering technique [ND04]. It
applies an image-space edge-enhancement algorithm
[ND03] that extracts visually important edges in real-time
by detecting discontinuities in G-buffers, the normal and
the z-buffer [ST90]. Blueprint rendering further deploys
depth peeling, an image-space technique for extracting
layers of ordered depth from a 3D model. Mammen
[Mam89] initially implemented high-quality antialised
transparency rendering of 3D models by processing pixels
in depth-sorted order using the Virtual Pixel Maps architec-
ture. Diefenbach [Die96] extended this approach to general
hardware by introducing the dual z-buffer concept for ren-
dering fragments in depth-sorted order. Finally, Everitt
[Eve01] implemented the dual z-buffer on common graph-
ics hardware to facilitate depth peeling and order-
independent transparency rendering of 3D models in real-
time.

3 Peeling Away Layers of Unique Depth Complexity

Depth peeling is a multipass rendering technique that oper-
ates on a per-fragment basis and extracts 2D layers of 3D

a) b)

∩

−

−

−

Figure 2: The CSG tree (a) shows a partial-product of a
sphere and a box from which cylinders are abstracted. This

results in the CSG model of the widget (b).

3

geometry in depth-sorted order. Generally speaking, depth
peeling successively “peels away” layers of unique depth
complexity.

In general, fragments passing an ordinary depth test de-
fine the minimal z-value at each pixel location. But we
cannot determine the fragment that comes second (or third,
etc.). Hence, we need an additional depth test to extract
those fragments that form a layer of a given ordinal number
with respect to depth complexity. In this way, we extract
the first n layers by n rendering passes.

We denote a layer of unique depth complexity as a depth
layer and a high-precision texture received from capturing
the associated z-buffer contents as a depth layer map. Ac-
cordingly, we call the contents of the associated color
buffer captured in an additional texture a color layer map.
In particular, color layer maps can later be used in depth-
sorted order to compose the final rendition. Figure 3 shows
color layer maps and depth layer maps of a 3D model of
consecutive depth layers.

For depth peeling of polygonal models, we follow the
implementation given by Nienhaus and Döllner [ND04].
We render a 3D model multiple times performing two
depth tests on each fragment produced by the rasterizer. If
no fragment gets rendered into the frame buffer, depth peel-
ing terminates; otherwise it continues with the next depth
layer. That is, if the number of rendering passes has reached
the maximum depth complexity of the model, all its depth
layers have been peeled away.

3.1 Performing Two Depth Tests

In the first rendering pass, we perform an ordinary depth
test on each fragment. We capture the contents of the z-
buffer and the color buffer in a depth layer map and a color
layer map.

In consecutive rendering passes, we perform an addi-
tional depth test on each fragment. For this test, we use the
depth layer map of the previous rendering pass. Thereby,
we project the texture onto the 3D model by generating
texture coordinates in such a way that they correspond to
canvas coordinates of the targeted pixel position. In this
way, a texture access can provide a fragment with the z-
value stored at that pixel position in the z-buffer of the
previous rendering pass.

The two depth tests work as follows:
 If the current z-value of a fragment is greater than the

corresponding texture value of the depth layer map, the
fragment proceeds and the second, ordinary depth test
is performed.

 Otherwise, if the test fails, the fragment gets rejected.
When we have processed all fragments, the contents of

the z-buffer and the color buffer form the new depth layer
map and color layer map. We can efficiently implement the
additional depth test using fragment shaders. Furthermore,
we use occlusion queries [Kil04] to implement the termina-
tion condition.

4 Depth Peeling for CSG Rendering

Depth peeling does not directly map to image-based CSG
rendering, which substantially uses the fact that CSG primi-
tives are only partly visible and calculates the visible areas
in image-space. Therefore, depth layers of the final CSG
shape cannot just be determined by linearly traversing all
CSG primitives for each layer. Instead, CSG calculations
are required for each depth layer.

4.1 Terms and Definitions

For depth peeling of CSG models respectively of a CSG
product, we denote surfaces of the model that face towards
the viewer as front surface, and that face backwards from
the viewer as back surface. Both front and back surfaces
form the surface of a CSG model. For instance, for non-
transparent CSG rendering, only the nearest front surface is
visible. Inner depth layers of a CSG model can consist both
of front and back surfaces.

Image-based CSG rendering relies on determining parts
of CSG primitives that are visible, that is, are part of the
surface of the CSG product they are contained in. An in-
termediate step are potentially visible parts of a CSG primi-
tive, which are a superset of visible parts and can be deter-
mined with a simple cull-face operation: Within the front
surface of a CSG product, front-facing polygons of inter-
sected and back-facing polygons of subtracted primitives
are potentially visible. In the back surface, back-facing
polygons of intersected and front-facing polygons of sub-

Figure 3: The color layer maps (first row) of each depth
layer (column) can be used for transparency rendering of

CSG shapes. Discontinuities in the depth layer map (second
row) and the normal buffer (third row) form the resulting

edge maps (forth row) for each layer.

4

tracted primitives are potentially visible. The complicated
part of image-based CSG rendering is to sort out potentially
visible parts of a CSG primitive that are not visible.

A visibility channel is a color channel that holds binary
information whether a CSG primitive is visible or not. As
described in [KD04], texture maps holding visibility chan-
nels can be used efficiently for the visibility transfer, i.e., to
assemble visible parts of different CSG primitives in the
frame buffer: We project the visibility map onto visible
parts of the CSG primitive using a “z-less” test. Thereby,
with the alpha-test only fragments that pass are marked as
visible in the visibility map.

4.2 Determining the front CSG depth layer

Until now all algorithms for image-based CSG have only
determined the front most visible depth layer of a CSG
shape. In this section, we describe the basic CSG algorithm,
which we later enhance to support depth peeling. We re-
strict our description to convex primitives because the ex-
tensions to support concave primitives for CSG depth peel-
ing do not differ from normal CSG algorithms at all.

For each CSG primitive P in a partial product, we calcu-
late separately which parts are within the front surface of
the product and, hence, are visible. For this, in a temporary
off-screen buffer we render the potentially visible part of P
into the depth buffer and we also mark this area of P in a
visibility channel. Then, for each other primitive Q in the
partial product we calculate the parity, i.e., the number of
depth layers of Q in front of P, using stencil-inversion op-
erations. For visible parts of P, the parity must be odd for
intersected Q and even for subtracted Q. Hence, the parity
is used to filter out parts of P, which are invisible due to Q.
Those areas are marked as invisible in the visibility chan-
nel. After the parity has been calculated for all Q, the visi-
bility channel encodes visible parts of P. The channel is
used as texture for the visibility transfer, i.e., to regenerate
the depth values of visible parts of P in the main depth
buffer.

After all primitives in all partial products have been proc-
essed this way, the main depth buffer contains the first
depth layer of the CSG shape. The respective depth layer
map is used for depth peeling in the next rendering pass.

4.3 Determining inner CSG depth layers

Inner depth layers of a CSG shape can consist of both front
and back surfaces of CSG products. For instance, consider
the second depth layer: It can consist of the back surface of
the partial product of which the front surface formed the
first depth layer. But it can also consist of the front surface
of a second partial product that penetrates the first CSG
product.

Therefore, for inner depth layers we do the CSG calcula-
tion twice for each primitive, once to determine visible
parts in the front surface of the CSG product and once for
the back surface. A CSG calculation for a primitive works
similarly as described in Section 4.2, but with some addi-
tions: Potentially visible areas are determined with respect
to the depth layer map of the former depth layer, i.e., only
fragments behind the depth layer map are considered to be
potentially visible. In the same way, during the visibility
transfer only fragments behind the depth layer map are
generated.

The parity test, on the other hand, is done without depth
peeling. It does also not depend whether we test visibility in
the front or in the back surface: Because no surface of a
primitive in a CSG product can be located between the
front and next back surface of the product, the result of the
parity does not differ for these neighboring surfaces. Con-
sequently the parity test can be always applied in the same
way.

function cullMode(P ← CSG primitive, mode ← {front, back})
begin

if (P.isIntersected and mode=front) return cullBackFaces
if (P.isSubtracted and mode=front) return cullFrontFaces
if (P.isIntersected and mode=back) return cullFrontFaces
if (P.isSubtracted and mode=back) return cullBackFaces

end

procedure calcCSG (G ← CSG product,mode ← {front, back})
begin

for (P ← each CSG primitive in G)
 enable temporary frame buffer

F ← rasterize(P) with cullMode(P, mode)
/* potentially visible parts of P */

 for (f ← each fragment in F)
if (i=1 or f.depth >valuedepth layer map(i-1))

f.depth → z-buffer
visible → visibility channel

end for
 /* determine visible parts of P with parities */

for (Q ← each CSG primitive in G \ P)
// calculate parity for all fragments of Q
// if fragment f in F is not visible due to parity

not visible → visibility channel
end for

 /* visibility transfer */
 visibility map ← capture(visibility channel)
 enable main frame buffer
 for (f ← each fragment in F)

if (i=1 or f.depth >valuedepth layer map(i-1))
 if (valuevisibility map is visible)
 f.depth → z-buffer
 end for

end

procedure CSGDepthPeeling(S ← CSG shape)
begin

i ← 1
do

for (G ← each CSG product in S)
 calcCSG(G, front)
 if (i>1)
 calcCSGt(G, back)

 end for
depth layer map(i) ← capture(z-buffer)
i ← i+1

while (fragments were rendered in main frame buffer)
end

Listing 1: Pseudo code illustrating our implementation of
depth peeling for CSG shapes.

5

Listing 1 outlines the entire depth-peeling algorithm for
image-based CSG.

4.4 Optimization for single CSG products

The algorithm described above requires two CSG calcula-
tions for each primitive and for all depth layers except the
first. Since this is rather expensive, it is worthwhile to op-
timize the common case of only a single CSG product
(Listing 2). In this case, we can profit from the fact that, for
consecutive depth layers, front surfaces of the CSG product
alternate with back surfaces. This means that potentially
visible polygons in the second, and in all even depth layers
are exactly those polygons that are not potentially visible in
the first depth layer. More specifically, in even depth layers
only the back faces of intersected primitives and the front
faces of subtracted primitives are potentially visible.

Therefore, to determine an even depth layer, we only
need to find the nearest back-facing polygons of intersected
and front-facing polygons of subtracted primitives behind
the formerly calculated depth layer map. Since we already
know that the former depth layer is a front surface of the
CSG product, it is clear that these polygons limit the extent
of the CSG product backwards.

To determine the third and greater odd depth layers, we
do a CSG calculation and apply the parity test for all primi-
tives again. But since odd depth layers can only consist of
the front surface, only front facing polygons of intersected
respectively back facing polygons of subtracted primitives
are potentially visible, as in the case of the first depth layer.
Additionally, only fragments behind the former, equal
depth layer map are considered to be potentially visible.
The parity then is calculated and used for determining visi-
bility as before.

4.5 Transparency Rendering of CSG Models

In addition to writing depth values of visible parts of primi-
tives we can also write shaded colors into the color buffer
during the visibility transfer. The resulting depth layer and
color layer maps for each depth layer suffice to generate a
depth correct depiction of a transparent CSG shape. For
this, we render the color layer maps as depth sprites in
depth-sorted order from back to front. Thereby, for each
depth layer, we texture a screen-aligned quad covering the
whole viewport of the canvas with the according textures as
input. A specialized fragment shader then replaces the
depth value of each fragment of the quad by the correspon-
dent texture value of the depth layer map. Additionally, the
shader replaces the color value and the alpha value of each
fragment by the correspondent texture value of the color
layer map. In this way, we blend each depth sprite with the
contents of the frame buffer using alpha blending. Figures
1b and 4a illustrate the resulting rendering of transparent
CSG models.

a) b) c)

Figure 4: A transparency rendering of a CSG shape (a). A blueprint as an edge enhanced depth complexity cueing visualizes
the design of a CSG shape (b). An edge-enhanced transparency rendering of a CSG shape visualizes the design

 as well as its spatial assembly (c).

procedure backCSG(G ← CSG product)
begin

for (P ← each CSG primitive in G)
 F ← rasterize(P) with cullMode(P, back)
 for (f ← each fragment in F)

if (f.depth < z-buffer
 and f.depth > valuedepth layer map(i-1))

 f.depth → z-buffer
 end for
end for

end

procedure CSGDepthPeeling(G ← CSG product)
begin

i ← 1
do

if (i is odd)
 calcCSG(G, front)

else /* i is even */
 backCSG(G)

depth layer map(i) ← capture(z-buffer)
i ← i+1

while (fragments were rendered in main frame buffer)
end

Listing 2: Depth peeling for a single CSG product.

6

5 Edge-Enhanced Depictions of CSG Models

For visualizing the design of CSG models in a more explicit
way, we use blueprint rendering to enhance their visually
important edges that are directly visible or that become
visible when peeling away depth layers.

5.1 Visually Important Edges

We consider silhouette edges and crease edges [ND03] of a
closed 3D model as visually important and enhance these
edges to increase the perception of the model.

With respect to polygonal 3D geometries, each visually
important edge corresponds to edges of the mesh that con-
nect vertices: A silhouette edge is an edge adjacent to one
front facing polygon and one back facing polygon; a crease
edge is adjacent to two front facing polygons whose dihe-
dral angle is below some threshold.

Set operations applied to CSG primitives for composing
CSG models produce surfaces whose edges cannot be rep-
resented by edges of the original polygonal meshes in gen-
eral. Furthermore, image-space CSG algorithms clip part of
the mesh without adding new polygons. In conclusion,
visually important edges of the resulting CSG model do not
necessarily correspond to edges of the mesh of one of its
CSG primitives. Figure 5a exemplifies that visually impor-
tant edges of the final CSG model (yellow) are obviously
independent from edges of its underlying meshes (black).

Therefore, we need to alter our definition of visually im-
portant edges. Hence, silhouette edges of CSG shapes rep-
resent edges where part of a front surface joins part of a
back surface. Crease edges represent edges where two front
surfaces or two back surfaces of CSG primitives join and
form a certain angle. Figure 5b illustrates silhouette and the
crease edges that are produced by set operations.

An image-space edge enhancement algorithm is capable
of extracting visually important edges of 3D models regard-
less of the constitution of their meshes. The algorithm ob-
tains silhouette edges by detecting discontinuities in the z-
buffer and crease edges by detecting discontinuities in the
normal buffer. For this, z-values and encoded per-fragment
normal values are rendered directly into textures. Then, we

texture a screen-aligned quad using these textures. Sam-
pling neighboring texels allows us to extract discontinuities
that result in intensity values. Finally, the assembly of in-
tensity values constitutes edges that we render directly into
a single texture, called an edge map. Figure 5b depicts the
normal and z-buffer and the resulting edges.

5.2 Visible and Not Visible Edges

We denote visually important edges that are directly seen
by the virtual camera as visible edges. In contrast, not visi-
ble edges represent visually important edges that are oc-
cluded by faces of the 3D model, i.e., they are not directly
seen.

We complement our original depth-peeling algorithm for
CSG models by the edge-enhancement algorithm to extract
visually important edges for each depth layer. Since discon-
tinuities in the normal buffer and z-buffer constitute visible
edges we have to construct both in each rendering pass. We
encode per-fragment normal values as color values to gen-
erate the normal buffer as color layer map. Then, we can
directly construct the edge map, because the depth layer
map already represents the depth buffer. In conclusion, not
visible edges become visible when peeling away depth
layers successively and can then be extracted in the same
manner.

As a result, our technique preserves visible and not visi-
ble edges as edge maps in depth-sorted order for further
enhancements. Figure 3 shows z-buffers, normal buffers,
and resulting edge maps of the CSG model produced for
successive depth layers.

5.3 Blueprint Composition

When edge maps have been produced for all depth layers,
we start composing blueprints by rendering visible and not
visible edges in back-to-front order. In contrast to transpar-
ency rendering, we now render edge maps of each depth
layer as depth sprites. For this, we use the according depth
layer map and edge map as input. Besides replacing depth
values, the modified fragment shader replaces the color
value of each fragment by the intensity value of the edge
map. Furthermore, rejecting fragments that do not contrib-

Crease Edge

Silhoette Edge

a) b)
Figure 5: Generally, visually important edges of a CSG model do not correspond to edges of the polygonal mesh (a).

 Crease and silhouette edges represent discontinuities in the normal and z-buffers and are assembled as edge
intensities in the edge map (b).

7

ute to edges (determined via a threshold value) generates a
wire-frame depiction of the CSG model produced by visible
and not visible visually important edges only.

For depth complexity cueing while keeping edges en-
hanced, we, alternatively, blend each depth sprite with the
frame buffer contents. For this, the shader replaces the al-
pha value of each fragment by the edge intensity and re-
places its color value by the product of the intensity value
and a constant, e.g., a bluish color.

Either way, blueprints can easily be merged with further
3D scene contents because depth values of the original
CSG model are used.

Figures 1c and 4b depict the final blueprints of CSG
models using edge-enhanced depth complexity cueing.

5.4 Edge-Enhanced Transparency Rendering

Composing visible and not visible edges of a CSG model
outlines its design. But its spatial assembly based on several
CSG primitives is still difficult to perceive because visual
indicators such as surface shading, which facilitate identify-
ing single components and their orientation in 3D space, are
missing. In contrast, transparency renderings provide sur-
face shading, but their outlines are hardly noticeable, in
particular in regions of high depth complexity. Therefore,
we enhance transparency renderings of CSG models by
additionally accentuating visible and not visible edges.

For this, we have to synthesize two different color layer
maps for each depth layer: One color layer map for preserv-
ing the surface shading of the CSG model and one color
layer map for preserving the normal buffer of the CSG
model. We create both textures simultaneously using multi-
ple render targets [Kil04], i.e., we write into several color
buffers at once, and reuse the results as texture maps.

As before we can construct the edge map for each depth
layer. Then, we combine the edge map with the color layer
map that contains the surface shading when rendering each
depth layer as depth sprite. In particular, we multiply inten-
sity values of the edge maps by color values of the color
layer map. We then blend each layer with the frame buffer
contents using alpha values of the color layer map as blend
factors. Figures 1d and 4c illustrate resulting edge-
enhanced transparency renderings of CSG models.

6 Implementation and Performance

Our rendering technique runs at interactive frame rates on
today’s graphics cards. It fully exploits its capabilities: It is
based on the OpenGL Shading Language [Ros04], uses
multiple render targets, and dynamically generates multiple
intermediate rendering results as textures for storing visibil-
ity maps, depth layer maps, color layer maps, and edge
maps.

A fundamental graphics operation is depth peeling to
process all depth layers of a CSG model up to its depth
complexity. In practice, the first few layers are typically
sufficient. The remaining depth layers have less visually
impact to the overall composition because only few, often
isolated pixels are produced. In order to increase perform-
ance, we restrict the number of rendering passes. Depth
peeling terminates if fewer than a specified (desired) mini-
mal number of fragments are rendered for the CSG model.
This way, we decrease the number of rendering passes
while we maintain visual quality of our depictions. The
tradeoff between speed and quality can easily be imple-
mented by configuring the occlusion query extension. Fig-
ure 6 depicts the spanner using different numbers of depth
layers.

Besides the polygon count, the performance of our ren-
dering technique is essentially bound to (1) the depth com-
plexity respectively the number of rendering passes, (2) the
window resolution, (3) the number of CSG primitives, and
(4) the layout of the normalized CSG tree, respectively, the
set operations that are used.

The widget in Figure 4 takes 38.6 fps for the transpar-
ency rendering, 30.4 fps for the blueprint depiction, and
30.1 fps for the edge-enhanced transparency rendering
while considering 4 depth layers at a window resolution of
512×512 on a GeForce 6800 GT. Since the widget only
contains a single CSG product these numbers are for the
optimized algorithm for CSG depth peeling of a single CSG
product. The spanner in Figure 1 takes 9.2 fps for the trans-
parency rendering, 8.6 fps for the blueprint depiction, and
8.1 fps for the edge enhanced transparency rendering in the
same environment. It is notable that the spanner takes 8.7,
7.1, and 7.0 fps for rendering at a window resolution of
1024×1024, i.e., the rendering performance decreases only
slightly with higher resolution.

Figure 6: Edge enhanced transparency renderings of the spanner for which two depth layers (a), three depth layers (b), and
four depth layers (c) have been considered. The visual quality of b) and c) in showing details is nearly identical.

a) b) c)

8

7 Conclusions

We have presented a novel real-time rendering technique
for visualizing, illustrating, and outlining in a perceivable
way design and spatial assemblies of image-based CSG
models. It is implemented on top of OpenGL, and its results
can be merged with arbitrary 3D scene contents. Thus, one
can integrate this technique into any real-time modeling and
rendering framework, for example, to provide visual feed-
back and insight when constructing CSG models.

Our approach handles unions of CSG products in a way
that is not the only possible one: Depth layers of different
CSG products that intersect are calculated and visualized
independently. Therefore, inside the volume of a CSG
product, visually important edges of other products are
visible (Figure 7a). Another approach would be to visualize
only the intersecting edges of the borders of different CSG
products and not to follow the extent of participating CSG
products inside other CSG products (Figure 7b). This
method may feel more suitable for CSG, which guarantees
that CSG shapes are solid and form a volume. But for blue-
print rendering our method is able to emphasize spatial
relations of different CSG products even more, as it dis-
plays the common area of different CSG products in a dif-
ferent tone. Nonetheless, more research is required in this
direction.

References

[Die96] DIEFENBACH P. J.: Pipeline Rendering: Interaction
and Realism Through Hardware-based Multi-Pass
Rendering. Ph.D. thesis. University of Pennsylvania,
June 1996.

[DWE02] DIEPSTRATEN J., WEISKOPF D., AND ERTL T.: Trans-
parency in Interactive Technical Illustrations. Com-
puter Graphics Forum 21, 2 (Sept. 2002), C317-
C325. (Proc. Eurographics’02).

[Eve01] EVERITT C.: Interactive Order-Independent Transpar-
ency. Technical report. NVIDIA Corporation, 2001.

[GKM*03] GUHA S., KRISHNAN S., MUNAGALA K., AND
VENKATASUBRAMANIAN S: Application of the Two-
Sided Depth Test to CSG Rendering. In Proc. of the
2003 Symposium on Interactive 3D Graphics, 177-
180.

[GMT*89] GOLDFEATHER J., MOLNAR S., TURK G., AND FUCHS
H.: Near Realtime CSG Rendering Using Tree Nor-
malization and Geometric Pruning. In IEEE Com-

puter Graphics and Applications 9, 3 (May 1989), 20-
28.

[GSG*99] GOOCH B., SLOAN P.-P. J., GOOCH A., SHIRLEY P.,
RIESENFELD R.: Interactive Technical Illustration. In
Proc. of the 1999 Symposium on Interactive 3D
Graphics, 31-38.

[IFH*03] ISENBERG T., FREUDENBERG B., HALPER N.,
SCHLECHTWEG S., AND STROTTHOTTE T.: A Devel-
oper's Guide to Silhouette Algorithms for Polygonal
Models. In IEEE Computer Graphics and Applica-
tions 23, 4 (July/August 2003), 28-37.

[KD04] KIRSCH F. AND DÖLLNER J.: Rendering Techniques
for Hardware-Accelerated Image-Based CSG. In
Journal of WSCG’04, 221-228.

[KDM*03] KALNINS R. D., DAVIDSON P. L., MARKOSIAN L, AND
FINKELSTEIN A.: Coherent Stylized Silhouettes. In
ACM TOG 22, 3 (July 2003), 856-861. (Proc. of
ACM SIGGRAPH 2003).

[Kil04] KILGARD M. (ED.): NVIDIA OpenGL Extension
Specifications. NVIDIA Corporation, December
2004.

[LME*02] LU A., MORRIS C., EBERT D., RHEINGANS P., AND
HANSEN C.: Non-photorealistic Volume Rendering
Using Stippling Techniques, In Proc. of IEEE Visu-
alizaton 2002, 211-218.

[Mam89] MAMMEN A.: Transparency and Antialiasing Algo-
rithms Implemented with the Virtual Pixel Maps
Technique. In IEEE Computer Graphics and Applica-
tions 9, 4 (July 1989), 43-55.

[ND03] NIENHAUS M. AND DÖLLNER J.: Edge Enhancement –
An Algorithm for Real-Time Non-Photorealistic Ren-
dering. In Journal of WSCG’03, 346-353.

[ND04] NIENHAUS M. AND DÖLLNER J.: Blueprints – Illustrat-
ing Architecture and Technical Parts using Hardware-
Accelerated Non-Photorealistic Rendering. In Proc.
of Graphics Interface 2004, 49-56.

[RE01] RHEINGANS P. AND EBERT D.: Volume Illustration:
Non-Photorealistic Rendering of Volume Models. In
IEEE Transactions on Visualization and Computer
Graphics 7, 3 (2001), 253-264.

[Ros04] ROST R. T.: OpenGL Shading Language. Addison-
Wesley, 2004.

[ST90] SAITO T. AND TAKAHASHI T.: Comprehensible Ren-
dering of 3-D Shapes. In Proc. of ACM SIGGRAPH
1990, 197-206.

[TC00] TREAVETT S. M. F. AND CHEN M.: Pen-and-Ink Ren-
dering in Volume Visualisation. In Proc. IEEE Visu-
alization 2000, 203-210.

[Wie96] WIEGAND T. F.: Interactive Rendering of CSG Mod-
els. In Computer Graphics Forum 15, 4 (1996), 249-
261.

a) b)

Figure 7: Two different visual interpretations of a union of
CSG products: Each part rendered independently (a); both

part rendered as a single volume (b).

ISBN 3-937786-56-2
ISSN 1613-5652

