
Technische Berichte Nr. 142

des Hasso-Plattner-Instituts für
Digital Engineering an der Universität Potsdam

Operating Systems II –
Student Projects

Andreas Grapentin, Clemens Tiedt,
Andreas Polze (Eds.)

Technical Reports of the Hasso-Plattner-Institut for
Digital Engineering at the University of Potsdam

Technical Reports of the Hasso-Plattner-Institut for
Digital Engineering at the University of Potsdam | 142

Andreas Grapentin | Clemens Tiedt | Andreas Polze (Eds.)

Operating Systems II – Student Projects

Universitätsverlag Potsdam

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available on the Internet
via http://dnb.dnb.de/.

Universitätsverlag Potsdam 2023
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Phone: +49 (0)331 977 2533 / Fax: 2292

Email: verlag@uni-potsdam.de

The series Technical Reports of the Hasso-Plattner-Institut for Digital
Engineering at the University of Potsdam is edited by the professors of the
Hasso Plattner Institute for Digital Engineering at the University of Potsdam.

ISSN (print) 1613-5652

ISSN (online) 2191-1665

The work is protected by copyright.
Layout: Tobias Pape
Print: docupoint GmbH Magdeburg

ISBN 978-3-86956-524-8

Also published online on the publication server of the University of Potsdam:
https://doi.org/10.25932/publishup-52636
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-526363

http://dnb.dnb.de/
http://verlag.ub.uni-potsdam.de/
https://doi.org/10.25932/publishup-52636
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-526363

Preface

This technical report presents the results of student projects which were prepared
during the lecture “Operating Systems II” offered by the “Operating Systems
and Middleware” group at HPI in the Summer term of 2020. The lecture covered
advanced aspects of operating system implementation and architecture on topics
such as Virtualization, File Systems and Input/Output Systems. In addition to
attending the lecture, the participating students were encouraged to gather practical
experience by completing a project on a closely related topic over the course of the
semester. The results of 10 selected projects are covered in this report.

Projects 1, 5, 6 and 9 were focused on extending different aspects of the “EV3

NinjaStorms”1 embedded real-time operating system. The system was developed
at our group as a lightweight alternative to the Linux distribution running on the
LEGO Mindstorms EV3 programmable brick. Although marketed as a toy, the
Mindstorms EV3 contains a powerful ARM processor, 64 MB of main memory and
standard interfaces such as Bluetooth and network protocol stacks.

Project 1 extended the Memory Management capabilities of NinjaStorms by
implementing a virtual memory layer. The group has understood and applied
multiple textbook operating system principles such as Page Tables, Page Fault
interrupt handling and User- and Kernel Mode separation on a detailed level, and
were able to fully implement a process abstraction and memory isolation through
managing the virtual memory page tables.

Project 5 implemented a networking stack on NinjaStorms, including a driver for
the e1000 networking hardware, as well as an entire functioning “Address Resolu-
tion Protocol” (ARP) stack, which was capable of completing address resolution
handshakes with other devices on the network. This work required a detailed
understanding of the functionality of a networking device, as well as RFC 826.

Both Project 1 and Project 5 needed to rely on extensions to the architecture of
the NinjaStorms operating system, such as a clean separation of User- and Kernel
mode, as well as a driver infrastructure. By working closely together with Project 6,
which implemented these architectural changes in the kernel, all teams were able
to complete their ambitious projects with impressive results within the time frame
of the semester.

Project 9 also extended NinjaStorms with support for additional LEGO auxil-
iary periphery devices that were communicating with the original LEGO drivers
through a serial interface. This functionality was previously unavailable in earlier
version of NinjaStorms. The group has successfully reverse-engineered the behavior

1https://github.com/ninjastorms/ninjastorms.

v

https://github.com/ninjastorms/ninjastorms

of the periphery devices from the schematics and the upstream source code, and
were able to produce working drivers for devices such as the LEGO Color Sensor.

Project 2 and Project 8 focused on the GNU/Linux operating system. Project
2 explored and evaluated one possible way of extending the Linux kernel with
modules written in the programming language “Rust”. Rust is expected to bring
a number of benefits compared to traditional kernel source code, which is usually
written in C. Rust promises more memory safety and easier error management,
although not all of these features are available outside of the comfort of the process
abstraction. The group has done extensive work to integrate Rust cleanly into the
kernel and have reimplemented an existing kernel module as a proof of concept.

Project 8 extended the kernel packet filtering APIs to userspace in order to make
deep packet inspection and filtering available to applications running in user mode.
For this, the group have developed a custom module for the Linux kernel capable
of modifying the stream of network packages belonging to the network connections
of the applications, and extended an API for dropping, modifying or resending
packets. Afterwards, a thorough and extensive analysis compared the approach
with the capabilities of the “extended Berkeley Packet Filter” (eBPF).

Project 3 revived the “Multicomp” project by Grant Searle, creating a platform
for running historical 8-Bit software on a Zilog Z80 “Soft-Core” implemented on
a “Field-Programmable Gate Array” (FPGA). The group has successfully installed
and booted CP/M on the hardware they configured, solving multiple challenges
in the process. Additionally, they extended the original Multicomp project by
implementing a more reliable means of deploying software on the CP/M instance.

Project 4 implemented an extension to the ELF executable binary format which
makes it possible for an executable file to be run on different “Instruction Set
Architectures” (ISA), either by partial recompilation from immediate code, or by
relinking from object files. To embed both the object files and intermediate code in
the binary, the group have developed the PEX format. As a proof-of-concept, the
group has compiled the GNU stream editor sed into a PEX file capable of running
both on x86_64 and aarch64, followed by an analysis of the caveats of this approach.

Project 7 applied state-of-the art static analysis tools to the Windows Server 2003

research kernel source code to try and confirm a previously published “Common
Vulnerability and Exposure” (CVE) report. In their work, the group have evalu-
ated the efficacy of static code analysis for vulnerability analysis and discuss the
additional challenges presented by analyzing code running in kernel space.

Lastly, Project 10 approached quantum computing with the question how to inte-
grate the new paradigm into existing software engineering techniques. Best prac-
tices such as reusability, maintainability and the integration of quantum algorithms
are presented. To show applicability and limiations, a hybrid implementation of
classical and quantum computing is discussed.

It should be recognized that over the course of the semester all of these projects
have achieved outstanding results which went far beyond the scope and the ex-
pectations of the lecture, and we would like to thank all participating students for
their commitment and their effort in completing their respective projects, as well
as their work on compiling this report.

vi

Contents

Implementing Memory Management in the NinjaStorms Operating System . 1

Marcel Garus, Rohan Sawahn, and Jonas Wanke

Creating Linux kernel modules in Rust . 11

Clemens Tiedt and Clara Granzow

Discovering Grant Searle’s Multicomp . 25

Tim Kuffner and Jannis Rosenbaum

Portable Executables . 35

Linus Hagemann and Tom Wollnik

Project Kraken . 49

Lorenz Woth, Felix Auringer, and Tobias Kantusch

NinjaStorms kernel architecture . 61

Felix Roth and Konrad Hanff

Tool based analysis of the Windows Research Kernel 71

Niklas Schilli

Performing Deep Packet Inspection in User Space 81

Leonard Seibold

LM-EV3-NS-OS-UART-BS-EP . 91

Marc Fabian Lindner

Quantum Computing from a Software Developers Perspective 105

Selina Raschack

vii

Implementing Memory Management
in the NinjaStorms Operating System

Marcel Garus, Rohan Sawahn, and Jonas Wanke

Hasso Plattner Institute for Digital Engineering
marcel.garus@student.hpi.de
rohan.sawahn@student.hpi.de
jonas.wanke@student.hpi.de

Memory management is a central component of modern operating sys-
tems. Our goal was to create a reference implementation for the Ninja-
Storms operating system for educational purposes. Due to the time con-
straints of a single lecture in a single semester, we could only lay the
foundation by enabling the two-level paging capabilities of the MMU.
This includes the handling of page faults to assign physical memory
on-demand and creating a memory layout for the OS. The paper also
describes newcomers’ struggles with low-level programming in C, e.g.,
creating structs suitable for the binary interface, handling errors, and de-
bugging kernel faults. Finally, we examine limitations of our system, such
as using fixed page types, we outline next steps, e.g. compiling processes
separate from the kernel and maintaining a translation table per process,
and we compare our work to real-world implementations by summarizing
features that make Linux’s memory management more complex.

1 Overview & Scope

This report will present the results of our project “NinjaStorms Memory Manage-
ment”1 on which we worked in the context of the lecture “Operating Systems II”
in the summer term 2020 at the Hasso Plattner Institute (HPI) in Germany.

NinjaStorms is a real-time operating system (OS) for the Lego Mindstorms EV3

that was developed by the “Operating Systems and Middleware Group” at the HPI.
The Lego Mindstorms EV3 is a programmable brick that is mainly used to create
and program robots and other interactive systems. It is based on an AM1808 CPU
and features 64 MB of memory.

The CPU comes with a 32-bit ARM9 coprocessor (ARM926EJ-S), which provides
the memory management unit (MMU), with features such as a translation lookaside
buffer (TLB), domain access control and paging. Currently, NinjaStorms provides
basic OS functionalities such as scheduling of (basic) processes, a minimal C li-
brary, and some drivers for hardware such as sensors and buttons. Processes are

1Available at https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms.

1

mailto:marcel.garus@student.hpi.de
mailto:rohan.sawahn@student.hpi.de
mailto:jonas.wanke@student.hpi.de
https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms

M. Garus, R. Sawahn, J. Wanke: Memory Management in the NinjaStorms OS

scheduled preemptively via timer interrupts and represent programs in execution.
The source code of processes is hereby directly compiled together with the kernel.

In an operating system, executed programs need access to required parts of the
memory. This is where memory management takes place: Memory management
is the part of the operating system ensuring that processes have access to the
memory areas they need, without the process having to worry about how to
access these required areas. Memory management allows for a much larger address
space by abstracting physical addresses using virtual addresses. Moreover, memory
management is needed to reach a higher level of security in the operating system.
With memory protection and process isolation, processes can only access selected
parts of the memory and are thereby prevented from affecting other processes
or – even more dangerous – the kernel itself. In addition, memory management
provides the means for more efficient usage of the given hardware. RAM is fast, but
expensive, whereas storage on a disk is cheap, but slower. By allowing currently
unneeded pages to be swapped out to the disk instead of keeping them in memory
constantly, the operating system can ensure more efficient use of given resources.

The aim of our project was to add memory management to the existing operating
system. As outlined above, the system does not have fully isolated processes yet, so
we will only focus on the implementation of two-level demand paging, requiring
usage of the MMU. In the following, we will describe our development process and
give insights on our design choices and difficulties we encountered. Furthermore,
we will outline the limits of and possible extensions to our system.

2 Development Process: Problems & Design Decisions

After installing and getting comfortable with NinjaStorms, it quickly became appar-
ent that trial and error approaches are insufficient for setting up low-level hardware
because you need to get a lot of things right upfront. That’s why, in the beginning,
we spent a great deal of our time reading the Technical Reference Manual provided
by ARM [1]. Our first goal was to activate the MMU without crashing the system.
The MMU offers several page layouts to choose from:2

Root: Translation table. The table where each page lookup starts. It contains 4096

entries pointing to sections or coarse or fine page tables.

Level 1: Sections. These directly map 1 MiB of memory without the need of a
second-level fetch.

Level 1: Coarse page tables. These contain 256 entries pointing to large or small
pages.

Level 1: Fine page tables. These contain 1024 entries pointing to large, small, or
tiny pages.

2See the manual [1], Figure 3.2 “Translating Page Tables”.

2

2 Development Process: Problems & Design Decisions

Level 2: Large pages. These map 64 KiB of memory.

Level 2: Small pages. These map 4 KiB of memory.

Level 2: Tiny pages. These map 1 KiB of memory.

As our implementation is for education purposes, we explicitly decided against
implementing all available page layouts and instead focus on a few that comprise a
structure representative of real-world memory management systems. Most MMUs
and OSs support multi-level paging, so we decided to go with two-level paging,
opting for the medium size in each layer: Having a translation table that points to
coarse page tables, which in turn point to small pages.

Our first step was to implement the structs for those three layouts. Naturally, we
started by implementing two structs for each layer – one for the entry and one for
the table itself that just contains an array of entries. So in total, we ended up with
six structs.3

Actually though, that’s one layer too much: The lowest layer – the small page –
does not have rich structs as entries but instead is merely an array of pointers to
physical addresses. What had happened is that we duplicated the entry definition
of the two lowest layers. We fixed this problem by combining the two lowest layers
back together so that the structs match the specification.4

This problem arose because we assumed a mental model of how the paging
works too early. Also, some of us were inexperienced in reading technical hardware
documentation, so we easily got lost in there.

Another problem was that we did not get bit packing to work. By default, GCC
(the C compiler we used) will choose a memory layout that is performant (for
example, by padding and aligning fields). However, we need our structs to exactly
match the entry definitions in the reference manual – after all, it defines a binary
interface so we must adhere to it bit-by-bit. We attempted to use bit packing, which
is a technique that lets us more explicitly control the memory layout of structs by
telling the compiler how many bits to allocate for each field and where to insert
padding.

By now, we figured out we simply missed adding __attribute__((packed)) an-
notations to the structs. In the meantime, we worked around this issue using raw
uint32_t’s as types and writing accessors (getters and setters) as macros5 as shown
in Listing 1.

This problem occurred because we were relatively inexperienced with writing C
code, let alone writing low-level C code. At least, we now know how to implement
bit packing for future projects.

After our mental model of the required page tables matched the actual model
described in the reference model and our implementation produced the correct
data structure in memory, there were still some problems left to solve.

3memory_small_pte_t, memory_small_pt_t, memory_coarse_pte_t, memory_coarse_pt_t, mem-
ory_translation_table_entry_t and memory_translation_table. See commit 8ec7c09.

4See commit a35c255.
5See commit 23022c9.

3

https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms/commit/8ec7c09f83a1b5cac5aba2e51e0379cd1b9e56ab
https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms/commit/a35c2552683befc4747807803150e8cccdaa78fb
https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms/commit/23022c9f1b6e335f6ea52abaced05c3904170a35

M. Garus, R. Sawahn, J. Wanke: Memory Management in the NinjaStorms OS

Listing 1: Page table entries as raw uint32’s with macros as accessors

1 typedef uint32_t mem_lvl2_entry_t;
2 // ...
3 #define LVL2_ENTRY_GET_BASE_ADDRESS(entry) ENTRY_GET(entry, 12, 20)
4 #define LVL2_ENTRY_SET_BASE_ADDRESS(entry, value) \
5 ENTRY_SET(entry, value, 12, 20)

As the translation page table needs to be aligned to a 16 KiB boundary6 and the
coarse page tables have to be aligned to a 1 KiB boundary, we initially hard-coded
their memory addresses to 0x4000000 and 0x4001000, respectively.

Because the translation table has a size of 4096 entries × 4 B/entry = 16 KiB, it
occupies the space from 0x4000000 – 0x4003FFF. This means that our tables overlap
in the 0x4001000 – 0x4003FFF range. We first solved this problem by adjusting the
offset of our coarse page tables and later on had their offsets set by the linker
directly (v.i.).

Another small mistake happened when we set the translation table base register
(TTBR) of the MMU. Instead of writing the value of a pointer to our translation
table, we temporarily assigned the pointer to another pointer to the translation table.

After these problems were solved, NinjaStorms worked correctly with paging
enabled for the first time. However, our project was not done yet. Only enabling the
address translation with an identity mapping has no benefits but only slows down
memory access. Hence, the next step on our way to full memory management was
demand paging, i.e., only adding entries to page tables when they are actually
required by the currently executed program. This initially saves space for the page
tables and also allows us to remove unused entries in the future.

When a program tries to access a memory location that is not yet mapped by the
MMU, a data abort or prefetch abort exception is generated. These can be handled
by registering the corresponding interrupt handler. To test this behavior, we initially
removed a single coarse page table entry, meaning a 4 KiB block of memory is not
mapped anymore. We then registered a data abort handler function that added
the missing entry and then returned execution to the program, re-executing the
exception-triggering instruction. Next, a simple set and get of a single byte inside
this block was added, intending for our registered data abort handler to add the
missing entry and then retry the access. However, our handler function wasn’t
executed and the CPU stuck with a Page Translation Fault.

The solution to this problem came in the form of an external contribution,7 point-
ing us to the missing data abort stack that is required to execute a data/prefetch
abort handler.

6See the reference manual [1], chapter 3.2.1.
7https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms/pull/1.

4

https://github.com/hpi-bs2-st2020-ninjastorms-memory/ninjastorms/pull/1

2 Development Process: Problems & Design Decisions

With this working, we have now managed to implement basic demand paging.
But to efficiently use the given memory it makes sense not to identity map the
whole available memory. Instead, we want our kernel to initialize the page table
with as little pages as possible and then map new pages later when they are
required.

This quickly raises the question of how many pages actually are needed in order
to set up the system. We only need to initialize the pages that are needed for setting
up the memory management. This is needed in order to then handle incoming
page faults and assign new pages on demand.

We first tried to just guess how much memory will be needed to set up the
system and just assigned half of the possible virtual address space and then tried
to approximate how little memory will be needed to keep the system working.

We realized that about 1
8 of the virtual address space seems to be needed to keep

the system working. 1
8 of the virtual address space is 256 MiB which obviously

cannot be accurate, as we only have 64 MB of physical memory.
So instead of trying to approximate the needed memory, we started looking for

other ways to find the exact amount of memory needed to initialize the page table
with the functions required for paging. We discovered that the linker script offers
the possibility to find out how much memory the compiled functions need that are
needed for memory management.

We defined a section that includes the compiled functions that are needed for
memory management. By using variables that contain the address before and after
this section we can find out the required size for these functions as shown in
Listing 2.

Listing 2: Excerpt from the linker script packing everything required to initialize
memory management into a common section and storing its start and end

1 .minimal_memory_management_part :
2 {
3 . = ALIGN(4K);
4 _minimal_memory_management_part_start = .;
5 kernel/interrrupt.o;
6 kernel/interrupt_handler.o;
7 kernel/main.o;
8 kernel/memory.o;
9 kernel/syscall.o;

10 kernel/syscall_handler.o;
11 _minimal_memory_management_part_end = .;
12 }

Now we are able to access the variables _minimal_memory_management_part_start
and -end from our memory management .c-file. The variables contain the following
values:

5

M. Garus, R. Sawahn, J. Wanke: Memory Management in the NinjaStorms OS

• Start-Address: 0x25000

• End-Address: 0x42921f

Therefore, the space needed to compile these functions is about 0.5 MiB, which
seems reasonable. Our next step then was to initialize 0.5 MiB of pages for the
memory management functions.

Working with the linker script we realized that we should think of how the
memory layout should be first. We needed to define where our page tables should
be placed in memory and hence find out how the whole memory is structured.
Therefore, we looked into existing projects such as the Linux kernel to find out
how the memory layout is designed there. We then decided to stick to the most
common design we could find, which is also implemented in our linker script as
shown in Figure 1.

Figure 1: Memory layout

We decided to have a special section where the compiled code for a minimal
memory management setup lies, which will be linked to the beginning and gives
us information about how much memory is required to set up the minimal memory
management. We then decided to place our page tables at the beginning of the
data section. The Text section contains executable instructions. The Rodata section

6

3 Analysis

contains read-only variables and the Data section contains initialized variables. The
BSS section contains uninitialized variables.

As soon as tasks are compiled by themselves, they will have their own memory
layout, which isn’t possible yet, as they are currently compiled together with the
operating system. Hence, the memory layout we have designed is only used for
the kernel yet.

Due to temporal constraints and the workload of the exam period we were unable
to finish a dynamic solution that adapts to the actual size of functions needed for
memory management. We spent a lot of time trying to find out why the system
stopped working when we initialized less than 1

8 of the virtual address space, but
could not find the reason. Therefore, we have now submitted a system that statically
maps 1

8 of the virtual address space, which is more than enough to initialize the
basic kernel functions needed for memory management. The next step here would
be to properly initialize the page tables with as little memory as possible.

3 Analysis

Here we reflect on what we achieved in relation to our initial goals. We also outline
further improvements that could be made in the future and list what distinguishes
our system from real-world implementations.

3.1 Limitations

Our implementation of memory management for NinjaStorms was developed to
the same basic requirements that NinjaStorms itself has: It should run on the
Lego Mindstorms EV3, as well as on a QEMU emulator.8 Both systems used the
ARM926EJ-S coprocessor for memory management, and hence our implementation
automatically uses a subset of its functionality. Supporting a different platfor-
m/MMU would likely involve a lot of refactoring.

Also, we only generate coarse page table descriptors for the first level and small
page descriptors for the second level. However, as noted above, the MMU also
supports other options.

As those descriptor types can be mixed and matched, we could dynamically
decide which type is a better fit for the current allocation, e.g., by using a heuristic.
When implementing malloc and a program requests 32 KiB of memory, we can
directly map a large page instead of eight small pages. Also, we know that our
kernel has some minimum size and can, e.g., use a section or a coarse page table
combined with large pages, depending on that concrete size.

This decreases the size required for storing all page tables, and should also
slightly increase the final performance as fewer entries have to be retrieved and

8https://github.com/ninjastorms/ninjastorms#introduction.

7

https://github.com/ninjastorms/ninjastorms#introduction

M. Garus, R. Sawahn, J. Wanke: Memory Management in the NinjaStorms OS

hence the TLB can store additional information. In the case of sections, the MMU
also does not have to go through two layers of indirection, but only one.

3.2 Next Steps

When continuing with the goal of “fully-featured” memory management for Ninja-
Storms, an important step is strictly separating different processes by compiling
them separately (so their memory areas do not share any pages) and storing page
tables per process rather than one global table. Context switches then also have to
invalidate the TLB cache and change the TTBR value to match the translation table
of the new process.

For increased security, we should also mark different memory areas as read-
able/writable/executable. This allows code pages to be marked as executable but
not writable, guarding against remote code execution or just accidental modifica-
tions.

Another handy feature with regard to the limited memory size of a Lego Mind-
storms EV3 (60 MiB) is swapping, i.e., moving older memory pages to a persistent
storage medium (e.g., an SD card) to make space for newer data. When access
to the old information is required, it has to be read back from storage. This can
also be combined with memory-mapped files: Offering an API for reading from /
writing to files in the same way you would access RAM while the OS takes care of
buffering and pre-loading files from the underlying storage.

Another feature that may benefit multi-process systems is shared memory: One
process can allow other processes to read/write to parts of its memory for quicker
communication (without the overhead of pipes or sockets, for example). Also, copy-
on-write pages could be used when different pages (coincidentally) contain the
same contents, as is common when implementing Linux’s fork syscall. Instead of
storing both copies, only one page has to be stored and marked as copy-on-write,
and both usages refer to that shared page. As soon as one tries to write to the page,
a copy is created and modified, saving storage in the meantime.

3.3 Comparison to existing works

Our implementation is pretty close to the typical textbook implementation of
memory management. If one would look at the slides of the OS I lectures and
attempt to create a memory management system, the system would be pretty close
to what we have.

By contrasting our implementation with Linux memory management, it becomes
even more apparent that our work is an education project and that real-world
implementations quickly become much more complex. Here are just some of the
features of Linux’s memory management that are out of scope for this project:

Hardware diversity. Linux needs to run on a variety of hardware configurations
– even ones without an MMU, in which case the “nommu” memory
management is applied, which works totally different. [2]

8

4 Conclusion & Outlook

Non-UniformMemory Access (NUMA). Linux supports architectures with multiple
processors and has optimizations for NUMA. Each processor is phys-
ically closer to a different range of memory and different caches,
so the memory management maintains separate page lists for each
processor. [2]

Zones. Some ranges of memory might restrict access patterns. For example,
you might have a chunk of memory that hardware can directly write
to or other parts that are only available temporarily. [2]

Compaction. Some drivers actually require contiguous chunks of memory, for
example for direct memory access. Enabling allocation and deallo-
cation of contiguous chunks re-introduces the fragmentation issue
solved by pages. That’s why Linux also needs a compaction mecha-
nism. [2]

Kernel SamepageMemory (KSM). If multiple pages have the same data in them (for
example, by starting a program multiple times and thereby loading it
into memory multiple times), Linux recognizes this and de-duplicates
the data. [3]

Memory Hotplug. Sometimes it makes sense to increase/decrease the amount of
memory during runtime – for example, if you want to improve your
system by physically plugging in another NUMA node or if your OS
is running in a VM / cloud instance and the load changes. [4]

4 Conclusion & Outlook

During the project, we were able to learn a lot about several topics, such as interrupt
handling, advantages and disadvantages of one- and two-level paging, and much
more. When we first started the project we only had mixed (mostly little to no)
experience with reading technical hardware documentation, programming in C,
and developing low-level software that interacts directly with the hardware. Due to
this fact we needed some time in the beginning to properly understand the existing
NinjaStorms OS and how the CPU works. With this knowledge, it will now be a lot
easier to dive into existing operating systems in future projects. We improved our
knowledge of the C language and GNU standards enormously and also learned a
lot about debugging hardware-related systems with tools such as gdb.

In general, we deeply improved our knowledge about operating systems and
how theoretical OS concepts can be implemented for working systems. This was
especially interesting because in last year’s lecture “Operating Systems I”, we
learned a lot about the underlying concepts of how operating systems work, but
did not really get in touch with the implementation of these concepts in real-world
operating systems.

At the beginning of the project, our goal was to create a complete memory
management for the Mindstorms EV3 hardware, but while getting more familiar

9

M. Garus, R. Sawahn, J. Wanke: Memory Management in the NinjaStorms OS

with the system, we quickly realized that this might be a bit out of our reach. Due to
the temporal constraints and our difficulties with getting the MMU enabled (such
as debugging a kernel), we decided to refine our goal to provide an implementation
of two-level demand paging for the EV3 hardware. Looking back, we were able
to implement this and have created the fundamental basis for an implementation
of memory management for the NinjaStorms OS. We also had to realize that
unexpected errors occurred frequently, so we had to spend a lot of time finding
their origins and fixing them. Of course, our system is not feature complete, but this
wasn’t the goal of the project. On the basis of our work and the work of the other
groups improving NinjaStorms, it now should be possible to implement memory
management that dynamically distributes memory across all processes. Possible
future features could be isolated processes, proper access control, and swapping,
which would make the system more efficient and secure.

References

[1] ARM926EJ-S Technical Reference Manual. https://developer.arm.com/
documentation/ddi0198/e/. Online; accessed 24-November-2020; referring
to revision E.

[2] The Linux kernel user’s and administrator’s guide: Memory Management: Concepts
overview. https://www.kernel.org/doc/html/latest/admin-guide/mm/
concepts.html. Online; accessed 24-November-2020.

[3] The Linux kernel user’s and administrator’s guide: Memory Management: Kernel
Samepage Mapping. https://www.kernel.org/doc/html/latest/admin-
guide/mm/ksm.html. Online; accessed 24-November-2020.

[4] The Linux kernel user’s and administrator’s guide: Memory Management: Memory
Hotplug. https://www.kernel.org/doc/html/latest/admin-guide/mm/
memory-hotplug.html. Online; accessed 24-November-2020.

10

https://developer.arm.com/documentation/ddi0198/e/
https://developer.arm.com/documentation/ddi0198/e/
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/concepts.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html

Creating Linux kernel modules in Rust
Rewriting a file system in a safe language

Clemens Tiedt and Clara Granzow

Hasso Plattner Institute for Digital Engineering
clemens.tiedt@student.hpi.de
clara.granzow@student.hpi.de

The rsramfs project explored the viability of Rust for the development of
Linux kernel modules. We found that while the tooling and ecosystem for
kernel development are not on par with C yet, Rust has the potential to
make it easier to reason about code and increase trust in it.

1 Introduction

One of the biggest problems in kernel development are memory safety issues. For
example, since 2006, approximately 70% of all security vulnerabilities Microsoft
fixed are related to memory safety. [1] Additionally, C as a programming language
does not prevent these kinds of vulnerabilities. Over 30% of security vulnerabilities
in the most important open-source C projects are because of buffer errors, making
this the most common type by a large margin. [13]

A promising approach to circumvent this problem is the use of a memory-safe
language like Rust. Because of safe and unsafe blocks, possibly unsafe code is
contained to a smaller block and thus easier to review. Run-time garbage collection
is replaced by static checks. This means that Rust does not have to trade memory-
safety for speed. [2]

Rust is currently used at a kernel level only in a very limited fashion. There is
an operating system, RedoxOS, written entirely in Rust. [10] For Linux, there are
currently no modules written in Rust with an actual use-case, only some that serve
as a proof of concept. [4, 5, 6, 7, 12]

2 Contribution

Since there are currently very few Rust kernel module projects, we want to
contribute our own project. Where other modules were mostly proof of concepts,
we wanted to create one with actual functionality. In particular, our goal is to take
an already existing module and translate it into Rust. This gives us the possibility
to write a kernel module that is a little larger while still being able to do this in the
span of one semester. The module we chose is the file system ramfs.

11

mailto:clemens.tiedt@student.hpi.de
mailto:clara.granzow@student.hpi.de

C. Tiedt, C. Granzow: Creating Linux kernel modules in Rust

3 Theory

Before we discuss our architecture and implementation, we provide a short overview
of the theoretical background of our work.

3.1 File Systems in Linux and ramfs

When we started the project, we only knew that we wanted to write a kernel
module in Rust. But we were still unsure what type of kernel module would be
the best. Since we agreed that it needed to be relatively self-contained, the choices
were somewhat limited. After discarding the idea of a device driver due to the
difficulty of interacting with hardware, we settled on a file system, specifically ext2.
This gave us the advantage of an existing implementation in C that we could base
our work on. Additionally, the code for ext2 is relatively short compared to other
file systems.

However, it still proved to be too much for one semester of work. This became
apparent the moment we started to actually try to implement it. Because of this
realization, we decided to go with a simpler filesystem, ramfs, instead.

3.1.1 Introduction to ramfs and the VFS
Ramfs is a very simple Linux file system and can be seen as a barebones virtual file
system (VFS) module historically used to implement the /tmp directory. The code
is relatively short, because most of the work can be done using the existing VFS
caches and does not require any hardware interactions.

The Linux kernel provides an abstraction layer above the actual file system – the
VFS. This allows the Linux user to choose between different file systems and gives
a basic structure that a file system implementation may follow. As such, there are
some important objects that an implementation of a file system like ramfs uses.
Firstly, there is the superblock. This is a struct in which the metadata about the
mounted file system is stored. The superblock contains the general information
about the file system like its type, mount flags and a reference to the superblock
operations. These can, but do not have to be, customized by the file system. They
include things like show_options, which displays the mount options specific to the
file system. Another important object is the index node or inode. This is also a
struct and contains all the information about a specific file, but not its actual data.
A reference to a list of all inodes can be found in the superblock. An inode contains
for example the file’s access rights, its size or the time it was last accessed. There are
also customizable inode operations like mknod, which creates a new file by allocating
an inode. The file system treats a directory like a file that knows a list of files and
other directories. When a directory or file is used, a dentry (directory entry) object
is created. There exists one dentry object for each part of a path name. A dentry is
associated with an inode. There is a dentry cache through which directory access
becomes faster. [3] Ramfs is a file system that is used, as the name implies, to save
files on RAM. This works by using the existing caching infrastructure. However,
the data is never put in storage. Because no access to the hard drive is required,

12

3 Theory

ramfs is fast. But this also means that its data is temporary. A similar filesystem to
ramfs that can be seen as its successor is tmpfs. As such, there is the option to limit
tmpfs’s filesystem size and memory use. Additionally, tmpfs allows for swapping
out pages. Since none of this is possible with ramfs, ramfs poses the danger of
running out of memory. [9]

3.2 A short primer on the Rust language

To be able to properly discuss Rust code and concepts, we now provide a short
introduction to some Rust features relevant to our project. An important concept
is that of attributes. Rust uses attributes (which are written as #[attr_name]) for
various purposes. They can be global (in which case they use a shebang instead
of a hash symbol) to affect the entire crate (i.e. a Rust package) or attached to
pieces of code like a struct or function. They are comparable to annotations or
decorators in other languages. Rust offers a form of object-oriented programming
using interfaces, here referred to as Traits. These make Rust’s type system flexible
and allow for polymorphism as they allow for restrictions on generic parameters.
Some simple trait implementations such as Copy and Clone which handle mov-
ing data implicitly and explicitly can also be automatically generated using the
#[derive(Trait)] attribute. Probably the most important feature to make writing
kernel modules in Rust feasible is its foreign function interface (FFI). Using the FFI,
functions from C libraries can be made available in Rust and Rust functions can
be exposed with a C ABI. It should be noted here that C declarations allow some
features not available in other places in Rust such as variadic functions. Rust also
supports raw pointers which give up safety guarantees and behave like C pointers.
When more complex data types such as structs are used, they need to be replicated
in Rust and marked with the #[repr(C)] attribute which ensures that they are laid
out in memory the same way they would be in C. Unsurprisingly, Rust-specific
types such as enum variants with fields are not FFI-safe.

3.2.1 Memory safety in Rust
An important concept in Rust is safety. Generally, Rust can guarantee that any
code that is not explicitly unsafe will behave correctly in terms of memory usage,
i.e. not produce undefined behavior (such as memory leaks or double frees). Rust
furthermore comes with some features that complement these safety guarantees.
Firstly, there are only two ways for a Rust value to contain a null pointer. Either it
was explicitly constructed with the core::ptr::null() function or it was passed in
through an external function via FFI. In fact, only raw pointers can be null. Rust
differentiates between references and raw pointers. The compiler statically checks
that references are valid and do not outlive the value they reference, whereas raw
pointers make no such guarantees. Secondly, all variables are immutable by default.
This makes it easy to see where values are changed as the relevant variables must
be explicitly mutable. In general, only four kinds of operations are considered
unsafe by Rust. These are dereferencing raw pointers, calling unsafe functions (all
functions called via FFI are considered unsafe), accessing static mutable variables,

13

C. Tiedt, C. Granzow: Creating Linux kernel modules in Rust

and implementing unsafe traits. Unsafe operations may be performed within an
unsafe {} block. However, seemingly paradoxically, unsafe blocks are considered
safe. The reason for this is that unsafe code is not strictly wrong, the compiler just
cannot guarantee its safety – for example not every raw pointer is a null pointer. So,
by writing an unsafe block, the programmer steps in to guarantee that the specific
instance of a generally unsafe operation is safe in the context. This is important
because (to borrow a mathematical term) safe code in Rust forms a closure, i.e. any
combination of safe operations will be safe. With unsafe blocks meaning that the
programmer guarantees the safety instead of the compiler, we can write safe code
that builds on unsafe code.

3.3 Running Rust code in kernel space

Getting code in languages other than C to run in the Linux kernel is generally not
a trivial task. Firstly, not all languages are fit for this task. For example, the Go lan-
guage is often named as a competitor to Rust. However, Go requires a runtime for
memory management (e.g. garbage collection) making it extremely impractical for
use in kernel mode. Even with languages that are better suited to kernel develop-
ment usually two central issues come up. The first one is that the standard libraries
of many languages (including Rust) link against libc which is strictly user mode
only. The second is the lack of bindings to kernel interfaces. Thankfully, the first
issue is comparatively simple to solve in Rust. Rust has a #[no_std] attribute at the
crate level to disable linking against the Rust standard library. Without the standard
library the core library, the dependency-free basis of the standard library is still us-
able. This way, many of Rust’s language features and types are still available. When
writing a crate without the standard library one needs to provide implementations
for a few language features, e.g. the behavior when panicking. Most of these can be
implemented just as stubs. With these steps we could already create a library that
could be linked into a kernel module. However, seeing as the core library does not
provide any memory management, this library was not very useful yet. Specifically,
we could not use any heap-allocated data types such as Box<T> or most importantly
collection types such as Rust’s list type Vec<T>. Fortunately, using the bundled crate
alloc it is possible to define custom memory allocation which we use to allocate and
deallocate heap memory with the krealloc and kfree functions respectively. We
will discuss how we got access to these functions later, right now we just assume
these were imported using an extern "C" block. Finally, we wanted the ability to
print debug output since Rust’s print! macro relies on libc. For this we used the
implementation provided by souvik1997’s example module kernel-roulette which
uses kprintf to redefine Rust’s print macro.

3.3.1 Build process and access to kernel interfaces
At this point, we had a Rust library that could theoretically be linked into a kernel
module. Linking proved surprisingly simple. Linux kernel modules use kbuild
which itself uses makefiles. So, we could just write a kernel module using C
that links against our Rust library in the kbuild process and provided an entry

14

4 Porting C to unsafe Rust

and exit point which would respectively hand over control to our Rust code. The
Rust compiler can compile code for different platforms using target specifications.
Our kernel module target requires a number of special settings such as aborting
instead to attempting to unwind the stack in the event of a panic. The target
specification from kernel-roulette gave us the ability to compile our module for an
x86-64 architecture. However, without kernel bindings we could not hope to build
any functionality. A naïve approach would be to write the necessary bindings
ourselves as extern "C" function declarations and #[repr(C)] structs, but this way
we could not have finished the project in one semester. Another idea would have
been to use opaque representations which would have reduced the number of
interfaces we needed to copy, but it would also have made checking any safety
guarantees a lot harder. What we decided to do instead was to use the tool bindgen
which can create Rust bindings for a C library. Since this process requires linking
against kernel libraries, it is not trivial. Thankfully, fishinabarrel already solved this
issue for their kernel module. Their solution extracts the required compilation flags
from a mock module to then run bindgen using these flags. This causes a few
issues mainly caused by Linux using gcc whereas bindgen relies on LLVM/clang
instead. This restricted us to only being able to create bindings on Linux 4.x due to
incompatibilities on kernel version 5.x. We also had to manually edit the generated
bindings as bindgen failed to derive the Copy trait on some structs.

4 Porting C to unsafe Rust

By now, we had the C source code of ramfs and an empty Rust library capable
of being linked into a kernel module. The next step for us was to port this C
code to Rust. We did this in two steps. In the first one we rewrote the C code
almost as a verbatim translation in Rust. Due to Rust’s FFI, we could rewrite our
code piece by piece and test that each translated function still behaved the same
way. This is the main reason we chose to start with an unsafe implementation.
We could have started with a more complex, but safe implementation, but then
differentiating between errors caused by behavioral differences between C and Rust
and actual defects caused by our implementation would have been significantly
more difficult. As many functions from the original ramfs implementation simply
call other functions with specific arguments or flags, we started with those. In
almost all cases, porting the functions was a matter of translating C types and
control structures to the equivalent Rust ones. There were some exceptions, notably
switch in C behaves differently from Rust’s match with match only matching against
literals or patterns where switch allows for variables. Another issue that occurred
was that on all systems except for Windows Subsystem for Linux 2 assigning a
struct field that should contain a pointer to a const global instance of another
struct caused a panic. While we were unable to determine the root cause, we
were able to create a workaround by passing the struct over to the C side of our
module and doing the assignment there. At this point we also did not port all
functions. Notably, we initially left out the parsing of mount options as we believed

15

C. Tiedt, C. Granzow: Creating Linux kernel modules in Rust

it would be easier to completely rewrite the relevant function using idiomatic Rust
from the beginning. We also decided to only support systems with a memory
management unit whereas the original ramfs implementation provides code for
systems without one. Since we were already limited to x86-64 we considered this a
sensible limitation.

4.1 Rewriting in safe Rust

Unfortunately, C code that has only been blindly translated is not safe Rust code.
So far, our code still contains things like dereferencing of raw pointers and directly
calling C functions. But since Rust’s properties of memory safety are one of the
main reasons we want to use this language in the first place, we need to fix this –
the unsafe code must become safe.

But before going into the details of how we did this, it is helpful to understand
the overall structure our project had after completing this process. In the end, we
had seven files of actual code; six Rust files and one C file. They can be arranged
into two different groupings of three and two files, leaving two files separate. The

Figure 1: The architecture of rsramfs

first of those separate files is inode.c. This forms the starting point of the module.
In essence, this file is just a copy of the inode.c-file from the original C-version
of the file system, but with everything taken out that we moved elsewhere. What
remains is what is needed to initialize the module. Additionally, the file contains
some C-code that would be hard to call via FFI, like inline functions and macros.

Most of the actual functionality of the file system is contained in lib.rs, the second
of the stand-alone files and the root of our Rust library. The implementations for the
file system’s functions can be found here. To be more specific, the file contains the
implementations for ramfs_get_inode, ramfs_fill_super and ramfs_mknod, among
others. Those functions can be called via the C-ABI, as if they were C-functions, by

16

4 Porting C to unsafe Rust

the operating system. Aside from those functions, there are a few helper functions,
mainly to provide Rust wrappers.

But that is not the only place where we can find Rust wrappers. The first grouping
of several files, consisting of bindings.rs, c_structs.rs and c_fns.rs, can be summa-
rized as providing Rust wrappers for kernel interfaces.

Bindings.rs is a file that is automatically generated by the tool bindgen, which
generates Rust FFI bindings to C libraries. [11] This allows us the use of the C
libraries used in the original implementation of ramfs without having to actually
write the bindings by hand.

In c_fns.rs, Rust wrappers are put around the functions from bindings.rs for
which this was necessary.

C_structs.rs contain the wrappers around certain C-structs, like inode. The pro-
cess for this was slightly challenging and will be explained in more detail in a later
paragraph.

The second file grouping contains mem.rs and io.rs, which, as is obvious from
the name, are responsible for memory allocation and input-output. If we want to
do things like printing or allocating pointers on the heap (which is required by
certain data types) from our Rust functions, we need to write this functionality
ourselves based on the kernel versions of these mechanics. Fortunately, we could
take this from previous Rust kernel modules. [4]

Now we can finally tackle the actual question – how do we make unsafe code
safe?

It is not possible for us to get rid of every unsafe line of code. We have to do
those unsafe operations somewhere. But what we can do is hide them.

Dealing with a function call of a C function is relatively straightforward. All we
need to do is put a wrapper function around the unsafe foreign function call –
provided we are sure the code we want to wrap is actually safe. Since Linux kernel
code is written with a high code quality in mind, we do not have to worry about
this.

pub fn rs_kill_litter_super(sb: SuperBlock) {
unsafe { kill_litter_super(sb.get_ptr()) };

}

There are some naming conventions we kept to: Our wrapper functions are
called ‘rs_function_name’, with ‘function_name’ being the original name of the
C function. There are some places where it was beneficial to change the return
type to one of the Rust-specific types Option and Result, which facilitate error
handling. We use an Option when the original return type contains a pointer: It
returns Some(element) if element is not null and None if it was not. This prevents
us from creating wrappers containing null pointers.

pub fn from_ptr(sb: *mut super_block) -> Option<Self> {
if sb == core::ptr::null_mut() {

None
} else {

Some(Self { ptr: sb })

17

C. Tiedt, C. Granzow: Creating Linux kernel modules in Rust

}
}

If the C-function may return an integer that represents an error code, we use a
Result. Either Ok(()), which can be seen as equivalent to returning 0, or Err(error)
is returned.

fn rs_ramfs_mknod(
dir: Inode,
dentry: *mut dentry,
mode: umode_t,
dev: dev_t,

) -> Result<(), cty::c_int> {
use bindings::ENOSPC;
use c_fns::{rs_d_instantiate, rs_dget};

match rs_ramfs_get_inode(dir.get_sb(), dir, mode, dev) {
Some(inode) => {

rs_d_instantiate(dentry, inode);
rs_dget(dentry);
dir.set_mctime_current();
Ok(())

}
None => Err(-(ENOSPC as i32)),

}
}

Thus, we have created a safe interface that we can now interact with like we
would with any other safe Rust code. If we want to use any of these functions, we
will not have to worry about safety anymore.

This whole process is simple enough that we attempted to automate it. For that
purpose, we started to write a tool, wrapgen, [14] that would do this. It is still
rudimentary and has a lot of issues. But because we only had the idea for wrapgen
after we already finished creating most of the wrappers by hand, and because we
prioritized our main project, we put its development aside for now.

There are, of course, a lot of places where we have to deal with more than just
function call but need to use a struct from one of the C libraries instead. We mainly
needed to access various fields from inode and superblock. Dealing with structs
proved to be a little trickier than dealing with functions. The problem were the raw
pointers, since accessing them is almost always unsafe.

Our first idea to solve this problem, defining a trait that would dereference a
*mut c_type to a c_type, was unfortunately impossible. This solution would have
violated Rust’s ownership rules and we would have needed pointers for the C-
interface anyway.

What we did instead was to create lightweight wrapper structs. The only field
they have is for the pointer we want to wrap. The pointer is of the type of the struct
we want to wrap, for example inode.

18

4 Porting C to unsafe Rust

#[derive(Copy, Clone)]
pub struct Inode {

ptr: *mut inode,
}

If we want to access this struct, we have to do it via an associated function, like
get_ptr and from_ptr, which both Inode and SuperBlock have. In addition, Inode
has two special constructors, new to create a new inode using the new_inode function
and null to create one containing a null pointer. We need some associated functions
to access certain fields of the struct we point to, like set_ino, and functions that
have the struct as pointer as an argument need to be added as associated functions
as well.

impl Inode {
pub fn new(sb: SuperBlock) -> Option<Self> {

Self::from_ptr(rs_new_inode(sb))
}

pub fn null() -> Self {
Self {

ptr: core::ptr::null_mut(),
}

}

pub fn from_ptr(inode: *mut inode) -> Option<Self> {
if inode == core::ptr::null_mut() {

None
} else {

Some(Self { ptr: inode })
}

}

pub fn get_ptr(self) -> *mut inode {
self.ptr

}

pub fn set_ino(&self) {
unsafe { (*self.ptr).i_ino = get_next_ino().into() }

}
.
.
.

}

Finally, there were a few things we added to the structs ourselves, like the
RamfsSuperBlockOpts, that gives us the possibility to add a custom debug mode.
They were added as an extension trait.

pub trait RamfsSuperBlockOpts {
fn is_in_debug_mode(&self) -> bool;

}

19

C. Tiedt, C. Granzow: Creating Linux kernel modules in Rust

impl RamfsSuperBlockOpts for SuperBlock {
fn is_in_debug_mode(&self) -> bool {

unsafe {
(*((*self.ptr).s_fs_info as *mut RamfsFsInfo)).mount_opts.debug

}
}

}

After we finished the rewrite to safe Rust, our project ended.

5 Possible future work

We consider rsramfs only a short exploration project to show what the state of
Rust for Linux kernel module development is right now. As such, we see many
possibilities for future work to expand on this topic.

5.1 Future work on rsramfs

At this point, rsramfs is feature-complete. There are however some remaining
issues we would like to solve. We needed to split off a version that only ran in the
Windows Subsystem for Linux 2 kernel because due to what we can only assume
is a memory management bug assigning a reference to a global struct created in
the Rust code causes a kernel panic. Other than that, we would like to separate
the kernel bindings from our filesystem code. For a small project such as this one,
it made sense to keep these in one crate, but the bindings and wrappers could
be useful to other projects as well. By splitting them off into their own crate, they
could be used by different projects and updated or expanded independently from
our project. Beyond that, there are only some code style changes that might be
useful. For example, the wrappers could be unified into a Wrapper<T> type that
comes with functions to create one from a pointer of type *mut T and accessing
that pointer when interacting with C code. We did not make this change in our
project because the little code duplication was not an issue for us and other issues
took priority.

5.2 Opportunities for improved tooling

Our project focused mainly on making C interfaces easily accessible through Rust
code. Future work could also consider making it easier to export Rust functions
into C code. The ones we expose take raw pointers as arguments and need to
construct wrappers from them manually. It would be easier for programmers to
be able to write their function using Rust semantics and automatically generate
an extern "C" function that takes raw pointers for each wrapped argument of the
Rust function and converts them. This would have taken too much time during
our project, but it is achievable using Rust’s procedural macros. In fact, we built a

20

5 Possible future work

prototype that given a function that takes some arguments of type Wrapper<T> can
create a function that instead takes arguments of type *mut T and generates the
required wrappers. However, we believe that this tool requires more development
before it could actually be used productively.

5.2.1 Performance considerations
Another concern here is performance. In general, we noticed no performance
differences between the original ramfs implementation and rsramfs. However, our
wrappers are not completely free of performance overhead. Almost every action is
wrapped in a function call and while this may not be an issue with smaller tasks
(such as writing or reading short text files), the overhead might become noticeable
in larger or more complex tasks. There is some performance overhead we cannot
get rid of, e.g. conditionals for null checking. We believe that by inlining function
wrappers we could get rid of the bulk of the overhead. With this overhead gone,
we believe that a larger kernel module using wrappers such as ours could actually
be faster than a C one as e.g. null checks would only have to happen at the creation
of a value instead of every time it is accessed.

5.3 Future work on other kernel modules

We see great potential in using Rust to create or rewrite more kernel drivers.
Given the nature of ramfs our project had virtually no direct interactions with
physical devices. Therefore we are very interested in seeing which challenges and
opportunities arise when using Rust to create a proper device driver. Firstly, it
could be interesting to build upon the abstractions we already wrote to create or
recreate a file system that operates on an actual disk. Another project could be to
write a driver for some sort of peripheral (e.g. PCIe) device. This should provide
some insight into how well interacting with devices at a low level, e.g. having to
use precise timings in communication protocols, works in Rust. Given that Rust is
also used in embedded systems we have high hopes in this regard.

5.3.1 Testing Rust kernel modules
Another aspect our project did not explore is testing. Generally, testing kernel
modules is not trivial and we resorted to a kind of simple integration test. How-
ever, kernel testing frameworks such as KUnit exist and it should be possible to
create Rust wrappers around them. Rust’s built-in testing support also works in a
#[no_std] environment and we are eager to see how further work in this area can
help make the functionality of Rust kernel modules more verifiable.

5.4 Possible official Rust support in the Linux kernel

Rust is still a relatively new programming language. Still, when we started the
project, there were several other projects on GitHub for a Rust module for the
Linux kernel. [4, 5, 6, 12] None of them are very big and all of them definitely
experimental, but it is clear that there is some interest in the topic. Of particular

21

C. Tiedt, C. Granzow: Creating Linux kernel modules in Rust

note is a project that is attempting to create a framework for writing a Linux kernel
module in Rust. Its authors are actively pushing the topic of using Rust in the
Linux kernel into more official spaces: As a step in this direction, they presented
their project on the Linux Security Summit North America 2019. [7]

But despite these valuable efforts, every developer that wants to delve into
projects like this at the current moment in time will inevitably run into the problems
that come with the lack of support.

This summer, however, offered a spark of hope that such a thing is not that far off
into the future. Linus Torvalds himself stated in an interview that he could see Rust
being used in the Linux kernel in the future – the kernel team was already looking
into having interfaces to write things like drivers in Rust. On an exchange on the
Linux kernel mailing list, he sounded a little more cautious but still ultimately
receptive to the idea. On the Rust side of things, Josh Triplett, Rust language team
leader, seems open for collaborations and enhancing the Rust language itself in
order to facilitate kernel integration. [8]

This culminated in a discussion about in-tree Rust support at this year’s Linux
Plumber’s Conference at the LLVM microconference. All in all, there seems to be
a lot of enthusiasm for the idea, but there are still many problems that need to
be solved. For example, when creating bindings with bindgen, macros and inline
functions are currently not supported very well – a problem that we encountered
in our project as well. Related to this is the issue of needing to write a large amount
of wrappers by hand, which we also noticed during our project. On a more abstract
note, since the only currently mature Rust compiler, rustc, uses a LLVM backend,
there are support questions with kernel architectures that are not supported by
LLVM, as well as possible ABI compatibility issues with a kernel built with gcc. [2]

All in all, it does not seem like there is going to be any actual official support
anytime soon. However, we are confident that Rust support in the Linux kernel (be
it official or unofficial) will improve in the coming years.

5.5 Conclusion

Writing a Linux kernel module in Rust is, at the current moment in time, viable but
challenging. In our project, we successfully created such a module by translating
the existing module ramfs from C to Rust. This proved that while there is no official
Rust support in the Linux kernel so far, Rust is already usable in this context and
may become a viable option for productive use in the future.

There are, however, some unresolved problems, particularly the need to split off
a version for Windows Subsystem for Linux 2 kernel, whose root cause remains
uncertain.

There were also some issues relating to the lack of support of Rust in the Linux
kernel. There exist no official bindings to kernel interfaces, and while bindgen is a
very useful tool to circumvent this, it cannot help with inline functions and macros,
and the resulting kernel interfaces need to be manually wrapped. This is what
we spent most of our work time on, but could (and probably should) be at least
partially automated to ensure that future projects can focus on the actual work to

22

References

be done. The further development of the tool wrapgen we started for this purpose
is a possible avenue to achieve this.

References

[1] A proactive approach to more secure code. https://msrc-blog.microsoft.
com/2019/07/16/a- proactive- approach- to- more- secure- code/.
Online; accessed 29-September-2020.

[2] Barriers to in-tree Rust. https://www.youtube.com/watch?v=FFjV9f_Ub9o.
Online; accessed 29-September-2020.

[3] D. Bovet and M. Cesati. Understanding the Linux Kernel. Sebastopol: O’Reilly,
2006.

[4] kernel roulette. https://github.com/souvik1997/kernel-roulette. On-
line; accessed 29-September-2020.

[5] kmod. https://github.com/saschagrunert/kmod. Online; accessed 29-
September-2020.

[6] linux kernel module rust. https://github.com/lizhuohua/linux-kernel-
module-rust. Online; accessed 29-September-2020.

[7] linux kernel module rust. https://github.com/fishinabarrel/linux-
kernel-module-rust. Online; accessed 29-September-2020.

[8] Programming languages: Now Rust project looks for a way into the Linux kernel.
https://www.zdnet.com/article/programming-languages-now-rust-
project-looks-for-a-way-into-the-linux-kernel/. Online; accessed
29-September-2020.

[9] Ramfs, rootfs and initramfs. https://www.kernel.org/doc/html/late
st/filesystems/ramfs-rootfs-initramfs.html. Online; accessed 29-
September-2020.

[10] RedoxOS. https://gitlab.redox-os.org/redox-os. Online; accessed
29-September-2020.

[11] rust bindgen. https://github.com/rust- lang/rust-bindgen. Online;
accessed 29-September-2020.

[12] rust.ko. https://github.com/tsgates/rust.ko. Online; accessed 29-
September-2020.

[13] What are the most secure programming languages. https://resources.white
sourcesoftware.com/research-reports/what-are-the-most-secure-
programming-languages. Online; accessed 29-September-2020.

[14] wrapgen. https : / / github . com / ctiedt / wrapgen. Online; accessed 30-
September-2020.

23

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://www.youtube.com/watch?v=FFjV9f_Ub9o
https://github.com/souvik1997/kernel-roulette
https://github.com/saschagrunert/kmod
https://github.com/lizhuohua/linux-kernel-module-rust
https://github.com/lizhuohua/linux-kernel-module-rust
https://github.com/fishinabarrel/linux-kernel-module-rust
https://github.com/fishinabarrel/linux-kernel-module-rust
https://www.zdnet.com/article/programming-languages-now-rust-project-looks-for-a-way-into-the-linux-kernel/
https://www.zdnet.com/article/programming-languages-now-rust-project-looks-for-a-way-into-the-linux-kernel/
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html
https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html
https://gitlab.redox-os.org/redox-os
https://github.com/rust-lang/rust-bindgen
https://github.com/tsgates/rust.ko
https://resources.whitesourcesoftware.com/research-reports/what-are-the-most-secure-programming-languages
https://resources.whitesourcesoftware.com/research-reports/what-are-the-most-secure-programming-languages
https://resources.whitesourcesoftware.com/research-reports/what-are-the-most-secure-programming-languages
https://github.com/ctiedt/wrapgen

Discovering Grant Searle’s Multicomp
Implement the Zilog Z80-Processor on an FPGA Board

Tim Kuffner and Jannis Rosenbaum

Hasso Plattner Institute for Digital Engineering
tim.kuffner@student.hpi.de

jannis.rosenbaum@student.hpi.de

Anyone who today still wants to physically plugin and start a Zilog Z80

processor from 1976 must overcome a many hurdles. However, emulators
do not offer a satisfactory solution either: they often simplify, leave out
historical hardware restrictions, and make it difficult to connect peripher-
als. Therefore, a good middle course is to map the processor "gate exact"
on an FPGA. Any peripherals can then be connected directly to the FPGA
or implemented directly on the FPGA. The authors have investigated this
approach using the Multicomp project of Grant Searle [18] and were also
able to solve problems with memory connection, CP/M compilation, and
program transfer.

1 Introduction

If one wants to run historical 8-bit software today, the main problem is to meet the
hardware requirements. There are two solutions to this problem: On the one hand,
the reconstruction of a computer from historical components or, on the other hand,
the use of virtualization/emulators.

Obtaining and installing physical components is time-consuming and costly.
However, emulators are not an optimal solution either, as they often abstract hard-
ware details that have been exploited by some programs or simply do not provide
the same connectivity as a physical hardware implementation. In the following,
this paper examines a middle course: The implementation of historical processors
– taking the Zilog Z80 as an example – on Field Programmable Gate Arrays (FPGA).
In doing so, the Multicomp project of Grant Searle [18] is elaborated and enriched
by specific problem solutions and context. Multicomp enables the easy creation of
computer systems with a choice of hardware, including the Z80, various ROMs
and several user interfaces.

2 Technologies behind Multicomp

To understand the Multicomp project, one must understand what Field Programmable
Gate Arrays (FPGAs) are. They consist of a set (an array) of programmable logic
blocks (the gates) and reconfigurable connections so that these blocks can be wired

25

mailto:tim.kuffner@student.hpi.de
mailto:jannis.rosenbaum@student.hpi.de

T. Kuffner, J. Rosenbaum: Discovering Grant Searle’s Multicomp

together. From this grouping of logic blocks, almost any logic circuit can be de-
signed and reconfigured “in the field” (in a few seconds). FPGAs, therefore, have a
considerable advantage over classical ASICs, application-specific integrated circuits,
which have to be produced anew at great expense for each change. [23] FPGAs can
be programmed using the hardware description language Very High-Speed Integrated
Circuit Hardware Description Language (VHDL).

Now, Multicomp builds on this technology and offers a VHDL template into which
the desired components can be copied as VHDL source code. Multicomp supports
the processors Motorola 6809, MOS Technology 6502 and Zilog Z80. Communication
with these processors can either take place via up to two serial interfaces or via a
keyboard connected to the FPGA and an analogue, VGA or SCART video output.

This paper focuses on the Z80, a microprocessor from the Zilog company from
1976, which was binary compatible with the Intel 8080. This meant that most
of the programs written for the successful 8080 could also be executed on the
Z80. Furthermore, the Z80 was even more straightforward to integrate, faster and
cheaper. It is still produced in different forms, and over the years it was found
again and again as (auxiliary) processors in numerous technical devices, such as the
SEGA Megadrive, Commodore C128 and several Texas Instruments pocket calculators.
[12]

However, probably the most important application of the Z80 was of course as
the main processor (CPU) in home computers. One of the earliest operating systems
CP/M also contributed to this. It was first introduced in 1974 for the Intel 8080. This
OS contributed significantly to reducing the configuration effort required to install
software on new hardware. Thus, it is certainly one of the driving forces behind
the further spread of "home" computers. So it is not surprising that many major
software products had their first versions under CP/M. These include WordStar
(the first, widely used word processing program), dBase (a popular DBMS), and
Microsoft Multiplan (a predecessor of Excel). [11]

3 Discovering Multicomp

3.1 The Goal

The goal of this project is to implement a Zilog Z80 with Multicomp and then to
install and start CP/M and run various software.

Furthermore, the necessary process should be documented in detail and, where
possible, simplified so that everyone – even without previous knowledge – can
configure a Z80 with CP/M.

3.2 The Setup

To achieve the goal, the first step is to connect the hardware. There are various
possibilities for this, which can be used depending on the desired range of functions.

26

3 Discovering Multicomp

The most basic variant uses only the serial interface for communication and has
an external RAM and an SD card. The FPGA – more specifically a Altera Cyclone
II Board – handles the ROM and all connections from and to the processor. This
basic structure is shown in Figure 1.

Figure 1: Basic setup [19]

With this structure, the whole project can be implemented. With additional
components, the setup can be extended by a monitor connection and a keyboard.
Figure 2 shows the FPGA with all supported peripherals. One can connect an
external monitor in different ways; it is even possible to output a video signal via
Analog Video-Out, VGA or SCART. When choosing the components, one has to pay
attention to the compatibility among each other. For example, it is not possible to
use an SDHC, SDXC or SDUC card. It is possible to use three different processors,
the Zilog Z80, the MOS Technology 6502 and the Motorola 6809. The Multicomp kit
provides the necessary resources for each processor to simulate it on the FPGA
and to make all connections correctly. The FPGA also simulates one component for
serial communication and one for SD card access. CP/M later perceives the SD card
as 16 floppy disks, each with 8 MB memory.

3.3 The Challenges

The first, expected challenge, came with the minimum requirements of CP/M. For
CP/M 2.2 at least 20KB of memory are needed, [2] but with Multicomp it is only
possible to implement 4KB of memory directly on the FPGA. So an external RAM

27

T. Kuffner, J. Rosenbaum: Discovering Grant Searle’s Multicomp

chip had to be purchased and connected. The choice fell on the fast available
AKM6264ALP-12 64KB SRAM chip.

After this was connected, the next problem appeared. Formatting of the SD card
as described in the Multicomp instructions was not possible. Apparently, our chip
was either faulty or not compatible with Multicomp, because a BASIC Memory-
Check (to be found in the project repository [9]) showed at irregular intervals bytes
that could not be written. An unusually large number of these faulty bytes were in
the area where the disk formatting program was written.

So it was necessary to write the program into a different memory area, but
the memory area was hardcoded into the assembler program code; so it was
necessary to recompile the program, the TASM Assembler from Speech Technology
Incorporated had to be used for this. The required version was only available for
DOS. Fortunately, the DOSBox [3] project allows to run DOS software on modern
Windows, Linux and macOS computers. So we could recompile the program for a
different memory area. Afterwards, the disk formatting program was transferred
and was then executable.

Figure 2: Setup with all supported hardware extensions [19]

28

3 Discovering Multicomp

A minor problem was then only the connection of the SD card. It seemed to be
reasonable to solder only a micro SD card adapter to avoid soldering a real SD
card and possibly destroying it. Unfortunately, the adapters we tested were not
compatible with Multicomp, and finally, we had to solder an SD card. Afterwards,
the formatting ran without further problems.

So we assumed that we could also install CP/M with a changed memory area, but
CP/M needed much more memory than the formatting program and there was no
sufficient error-free memory segment to be found. So we decided to order the exact
SRAM chip (AS6C1008-55PCN), which was also used for the original Multicomp
project.

Apart from the considerable delivery time of this chip, we were then able to
complete the CP/M installation as described.

Now, a CP/M Installation by itself does not do much: Only the absolute fundamen-
tals programs for the “navigation” of the file system are included. As mentioned,
our goal was, the installation of additional software; but how does one get the soft-
ware onto the FPGA? We did not connect a floppy disk drive, and the SD card was
soldered. If one would unsolder it, clean it and connect it to a modern computer,
one could, for example, transfer Oscar Vermeulen’s Demo Disc. [21] However, this
solution is very inflexible. Better is the approach Grant Searle had already taken:
the transmission over the serial interface. For this purpose, Multicomp also pro-
vided a packager and download client. The download client could be loaded into
memory in Intel-HEX[8] format via CP/M-ROM and then saved in CP/M on the
SD card. Afterwards one could convert .COM program files into an ASCII format
using the packager, which was then transferred via copy-paste into an open serial
terminal running the Downloader.

This process posed a big problem: The transfer via copy-paste is very unreliable:
modern terminals like to insert text in whole chunks, i.e. several bytes at the same
time, and the CP/M system does not keep up. The terminal client must, therefore,
be configured in such a way that only individual characters are pasted. Besides, the
Downloader must be waited for, especially after line breaks, because a checksum
is still calculated and compared.

If the checksum was incorrect, the entire file must be manually retransmitted.
Moreover, that can – due to the character by character transfer – mean another
waiting time of 10-20 minutes. This process is by no means satisfactory, especially
considering how many factors can influence the transfer.

Furthermore, the packager’s user experience was anything but good. The instal-
lation did not run smoothly and only worked under Windows. The Drag&Drop
insertion of files did not work; additionally, there were almost no configuration
options. (See 3a)

True to the goal of this project to make Multicomp accessible to everyone, we
decided to write a new Packager. The result is the Z80-Uploader [10] (See 3b). With
this packager anyone can easily upload programs to the Z80 resp. CP/M; more
details can be found in the next section.

29

T. Kuffner, J. Rosenbaum: Discovering Grant Searle’s Multicomp

4 What we achieved

After overcoming these problems, we had a functioning CP/M installation. Fur-
thermore we could transfer and run software like TurboPascal, dBase or Sargon. We
were also able to document our project extensively and publish this documenta-
tion open-source on Github: [9] In doing so, we wrote more than 5000 words and
several code examples creating two guides, several contextual classifications, as
well as numerous recommendations on how to use BASIC and CP/M. Thus, the
inclined retro-computing beginner will find everything he needs to learn a lot
about the historical Z80 processor and CP/M software – without losing the fun
when encountering the numerous stumbling blocks.

No less elaborate is the Z80-Uploader, [10] whose architecture we would like –
as announced – to explain in more detail at this point:

The “Uploader” is an electron application and is mainly based on Typescript and
React. It can translate (/packetise) any files (e.g. executables or text files) into the
INTEL-Hex [8] format and then transfer them to the Z80 via the serial interface
of the host computer. Our corresponding downloader client can read Intel-Hex
files under consideration of multiple checksums and save them as a file. The
Downloader is written in TurboPascal and is specially designed for CPM-80 systems,
but should also run under e.g. DOS with no/minimum adjustments. Of course, the
Downloader and the Uploader can also be used separately, but when used together,
they have automatic error detection and correction, which makes it easy to send
large amounts of data over the unreliable serial connections.

4.1 Which enhancement potentials are there ?

The most straightforward extension would be to try out more software. It would
also be interesting to research how the user experience of software has changed
over the years, or which user interaction concepts were first tried out under CP/M.

(a) The Multicomp Packager (b) The Z80-Uploader

Figure 3: Comparison between the old and new “Packager”

30

4 What we achieved

A more in-depth examination of BDOS, the kernel of CP/M is also conceivable;
for example, in the form of a hardware-related software project.

Concerning the keyword “hardware-related”, other accessory devices such as
printers or floppy disk drives are of course also of particular interest. Obtaining
these and then connecting them to the FPGA would undoubtedly be an educational
experience.

Finally, Multicomp also offers – as described – other processors; these in turn,
of course, offer other operating systems that could be installed. However, the
biggest challenge would be to write a separate ROM to install the operating system.
This programming would be most likely possible with reasonable effort since the
Multicomp-assembler-source code is mostly available.

4.2 What will the future bring for similar FPGA Projects ?

Like much in the technology industry, FPGAs have become cheaper and more
potent in recent years. FPGAs suitable for retro computing are available for about
20€. Also, the developer tools and documentation e.g. for VHDL programming,
have become increasingly better in recent years. [16]

However, this is also necessary because newer processors are of course more
complex than the 8-bit processors of the Multicomp project. Furthermore, reverse
engineering of processors is hardly possible, at least of current processors, so it is
therefore up to the manufacturer or license holder to publicize their processor.

This publication often happens in the form of a so-called Softcore, that is a proces-
sor (core), which is available as software and can be easily integrated into a ASIC or
FPGA. Depending on the license conditions, everyone can integrate the processor
into their hardware-projects or, for example, for retro-computing on an FPGA. [5]

Due to the value of such an architecture, this happens very rarely; nevertheless,
IBM, for example, has recently published its power (known from the PowerPC-
Processors) architecture as open-source. [14] Furthermore, there are also other
approaches about which we will report in the following section.

4.3 Related Work

The consensus is that open CPUs and soft microprocessors – including soft cores –
offer an excellent opportunity for the OpenSource and Maker community. Therefore
there have been constant attempts in recent years to implement or emulate other
historical/current OpenSource architectures. At this point, we want to introduce a
few of these projects.

Directly comparable to Multicomp and documented with similar effort is the
project of S. Edwards to implement a Apple II on an FPGA. [4] Further there are
projects for Z1013, [6] ZX Spectrum and BBC Micro. [20] Usually, if there is a
softcore, there is probably also an FPGA implementation attempt.

What Multicomp is for processors 8-bit from the 70/80s is of course also available
for newer architectures.

31

T. Kuffner, J. Rosenbaum: Discovering Grant Searle’s Multicomp

There is the Zet processor, which is machine-code compatible with 16-bit x86
hardware, allowing it to run DOS or Windows 3.0. [13]

Or the 32-bit ARM-compatible amber core, but due to the lack of an MMU it can
only run special Linux variants. [17]

More interesting is the OpenSPARC project of Sun Microsystems [22] or the com-
parable OpenRISC project, [15] which provide various 32-/64bit multicore/thread-
ing processors, that however have their own architecture, i.e. can only execute
software that has been explicitly adapted for OpenSPARC/-RISC. This software
includes several major Linux distributions.

Nevertheless, the probably best-known project of the Open-/Softcore community
is certainly RISC-V. [1] RISC-V is, first of all, only an open instruction set architec-
ture; however, there are already numerous softcores that implement the instruction
set and are thus mostly compatible with software developed for commercial in-
struction set implementations.

Of course, the last-mentioned projects are not directly comparable to Multicomp,
because Multicomp allows implementing “real” historical processors. But should
these processors/architectures become established and be supported by the major
operating systems – it will be easy for the tinkerers and “software archaeologists”
of tomorrow to continue to run this software for many years to come. However,
an assessment of whether and when RISC-V or OpenSPARC/-RISC will be real
competitors to AMD64, Intel-64 or ARM, would be out of scope here.

Multicomp was also implemented for other FPGA hardware, among others the
successor model Altera Cyclone IV. Code and hardware can be found in Doug
Gilliland’s GitHub repository. [7]

5 Conclusion

We were able to achieve our set goal: We have completely reconstructed the Mul-
ticomp project and have a working CP/M on a Z80 Implementation on our FPGA.
We have also successfully installed and executed software. In the form of the
Downloader we also had contact with the software development under C/PM with
TurboPascal. We documented the steps and learnings both in this paper and in
even greater depth in an OpenSource project. Thus, a basis and a starting point for
further discussions about Multicomp and retro-computing on FPGAs, in general, are
laid. Based on our experience with this project, we believe that softcores on FPGAs
are an excellent alternative to cumbersome hardware projects or emulators. The
related projects we mentioned also show that tomorrow’s hardware will perhaps
be much easier to implement on FPGAs. Progress we will watch with great interest.

32

References

References

[1] About RISC-V. www.riscv.org/about/. Online; accessed 30-September-2020.
2020.

[2] CP/M 2.2 Operating System Manual. Online; accessed 30-September-2020. Dig-
ital Research Inc., 1983.

[3] DOSBox: An x86 emulator with DOS. www.dosbox.com. Online; accessed 30-
September-2020.

[4] S. A. Edwards. “Retrocomputing on an FPGA”. In: Online; accessed 30-
September-2020. 2009.

[5] FPGA Soft Core. www.mikrocontroller.net/articles/FPGA_Soft_Core.
Online; accessed 30-September-2020. 2020.

[6] Fpgakuechle. Retrocomputing auf FPGA. www.mikrocontroller.net/articl
es/Retrocomputing_auf_FPGA. Online; accessed 30-September-2020. 2013.

[7] D. Gilliland. Spins of Grant Searle’s MultiComp. www.github.com/douggilli
land/MultiComp. Online; accessed 30-September-2020. 2020.

[8] T. Kuffner and J. Rosenbaum. The Intel-HEX Format. www . github . com /
sinnaj-r/z80-on-an-fpga/blob/master/The_Intel_HEX_Format.md.
Online; accessed 30-September-2020. 2020.

[9] T. Kuffner and J. Rosenbaum. Z80 on an FPGA Github Repository. www.github.
com/sinnaj-r/z80-on-an-fpga. Online; accessed 30-September-2020. 2020.

[10] T. Kuffner and J. Rosenbaum. Z80 Uploader Github Repository. www.github.
com/sinnaj-r/z80-uploader. Online; accessed 30-September-2020. 2020.

[11] B. Leitenberger. CP/M: der erste Betriebssystemstandard für PCs. www.bernd-
leitenberger.de/cpm.shtml. Online; accessed 30-September-2020. 2003.

[12] B. Leitenberger. Intels Niederlage - Der Z80. www.bernd-leitenberger.de/
z80.shtml. Online; accessed 30-September-2020. 2003.

[13] G. Marmolejo. Zet - The x86 (IA-32) open implementation. www.opencores.
org/projects/zet86. Online; accessed 30-September-2020. 2008.

[14] Open Power CPU: Open-Source-ISA als letzte Chance. https://www.golem.de/
news/open-power-cpu-open-source-isa-als-letzte-chance-2001-
145893-3.html. Online; accessed 30-September-2020.

[15] OpenRISC. www.openrisc.io. Online; accessed 30-September-2020. 2020.

[16] T. Richter and Y. Krasteva. “Scale-In, Then Scale-Out - MPP Postgres Database
with FPGA Acceleration”. www.tele-task.de/lecture/video/7870. On-
line; accessed 30-September-2020. 2019.

[17] C. Santifort. Amber - ARM-compatible core. www.opencores.org/projects/
amber. Online; accessed 30-September-2020. 2010.

[18] G. Searle. Grant’s Homebuilt Electronics Page. www.searle.wales. Online;
accessed 30-September-2020. 2014.

33

www.riscv.org/about/
www.dosbox.com
www.mikrocontroller.net/articles/FPGA_Soft_Core
www.mikrocontroller.net/articles/Retrocomputing_auf_FPGA
www.mikrocontroller.net/articles/Retrocomputing_auf_FPGA
www.github.com/douggilliland/MultiComp
www.github.com/douggilliland/MultiComp
www.github.com/sinnaj-r/z80-on-an-fpga/blob/master/The_Intel_HEX_Format.md
www.github.com/sinnaj-r/z80-on-an-fpga/blob/master/The_Intel_HEX_Format.md
www.github.com/sinnaj-r/z80-on-an-fpga
www.github.com/sinnaj-r/z80-on-an-fpga
www.github.com/sinnaj-r/z80-uploader
www.github.com/sinnaj-r/z80-uploader
www.bernd-leitenberger.de/cpm.shtml
www.bernd-leitenberger.de/cpm.shtml
www.bernd-leitenberger.de/z80.shtml
www.bernd-leitenberger.de/z80.shtml
www.opencores.org/projects/zet86
www.opencores.org/projects/zet86
https://www.golem.de/news/open-power-cpu-open-source-isa-als-letzte-chance-2001-145893-3.html
https://www.golem.de/news/open-power-cpu-open-source-isa-als-letzte-chance-2001-145893-3.html
https://www.golem.de/news/open-power-cpu-open-source-isa-als-letzte-chance-2001-145893-3.html
www.openrisc.io
www.tele-task.de/lecture/video/7870
www.opencores.org/projects/amber
www.opencores.org/projects/amber
www.searle.wales

T. Kuffner, J. Rosenbaum: Discovering Grant Searle’s Multicomp

[19] G. Searle. Grant’s MULTICOMP pick and mix computer. http : / / searle .
x10host.com/Multicomp/index.html. Online; accessed 30-September-2020.
2014.

[20] M. Stirling. ZX Spectrum and BBC Micro on FPGA. www.mike- stirling.
com/2016/01/zx-spectrum-and-bbc-micro-vhdl-on-github/. Online;
accessed 30-September-2020. 2011.

[21] O. Vermeulen. Multicomp FPGA - CP/M Demo Disk. www . obsolescence .
wixsite.com/obsolescence/multicomp-fpga-cpm-demo-disk. Online;
accessed 30-September-2020.

[22] D. L. Weaver. OpenSPARC internals: OpenSPARC T1/T2 CMT throughput com-
puting. English. OCLC: 601007974. Santa Clara, CA: Sun Microsystems, 2008.
isbn: 9780557019748.

[23] What is an FPGA. Online; accessed 30-September-2020. Xilinx Inc., 2020.

34

http://searle.x10host.com/Multicomp/index.html
http://searle.x10host.com/Multicomp/index.html
www.mike-stirling.com/2016/01/zx-spectrum-and-bbc-micro-vhdl-on-github/
www.mike-stirling.com/2016/01/zx-spectrum-and-bbc-micro-vhdl-on-github/
www.obsolescence.wixsite.com/obsolescence/multicomp-fpga-cpm-demo-disk
www.obsolescence.wixsite.com/obsolescence/multicomp-fpga-cpm-demo-disk

Portable Executables
ISA Independent Executables for Linux

Linus Hagemann and Tom Wollnik

Hasso Plattner Institute for Digital Engineering
linus.hagemann@student.hpi.uni-potsdam.de
tom.wollnik@student.hpi.uni-potsdam.de

We present an approach to build executables that can be ported between
different instruction set architectures (ISAs). Our approach draws on the
LLVM Intermediate Representation (IR).1 We make use of a wrapper
around clang, 2 the LLVM3 compiler for the C programming language.
The IR allows for recompilation of the application if necessary. We pro-
vide a prototypical implementation that can build a portable version of
GNU sed.4 We observe some drawbacks (e.g. performance impact) of our
approach and propose how future work might mitigate these.

1 Context and Motivation

The ability to run programs on CPUs with different Instruction Set Architectures
is becoming increasingly important. The dominance of Intel x86 CPUs in modern
mobile and desktop computers is being challenged by ARM.5 Apart from this shift
in consumer devices, data centers are also becoming more heterogeneous. [4] For
example, one may find Intel x86, ARM, and PowerPC CPUs all in one data center.
Also, there is a wide range of possible server configurations, e.g. with regard
to the available accelerators. This strengthens the need for executables that can
easily be ported between machines with different ISAs and different accelerator
configurations.

A successful implementation of ISA independent executables could also support
efforts for energy aware computing by making it easier to migrate programs and
compute jobs between different machines. This aids the compute load balancing
across servers in a data center based on the energy supply. [3]

1LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html#abstract (ac-
cessed on 09 Sept 2020).

2Clang C language family frontend for LLVM. https://clang.llvm.org (accessed on 09 Sept
2020).

3The LLVM Compiler Infrastructure Project. https://llvm.org (accessed on 09 Sept 2020).
4GNU sed. https://www.gnu.org/software/sed (accessed on 09 Sept 2020).
5E.g. Apple announced in June 2020 that they will transition their computer lineup from x86 to

ARM based Apple Silicon over the next two years.

35

mailto:linus.hagemann@student.hpi.uni-potsdam.de
mailto:tom.wollnik@student.hpi.uni-potsdam.de
https://llvm.org/docs/LangRef.html#abstract
https://clang.llvm.org
https://llvm.org
https://www.gnu.org/software/sed

L. Hagemann, T. Wollnik: Portable Executables

2 Related Work

A multitude of approaches for portable binaries have been proposed throughout
the years.

In this section we want to highlight some approaches that are strongly related
to the one we chose for our project and also briefly comment on the respective
differences.

2.1 Fat Binaries

The approach that arguably had the most impact for a wide range of users is known
as Fat binaries, in which an executable contains code native to different ISAs. [2]
This results in file sizes larger than standard executables, thus their name. Often
it is possible to engineer such formats in a way that some parts of the application
(e.g. assets) can be used for both ISAs. For this reason Fat binaries can be smaller
than the sizes of the respective standard executables combined.

For users, the advantage of Fat binaries is that only a single file has to be provided
for installation. Therefore, no special knowledge is required to identify which
version of a program should be installed. Additionally, this advantage does not
come with a significant performance overhead, since native code is executed and
the selection of the appropriate code is supported directly by the operating system.
The only disadvantage is larger file sizes.

The following implementations supported only a predetermined combination of
ISAs.

2.1.1 Apple’s Universal Binaries
Apple’s transitions from PowerPC to Intel and from Intel to ARM are well known
cases of the usage of Fat binaries. In both instances, native code for both ISAs was
contained in a single file. Additionally, different word lengths could be supported.6

In June 2020, Apple announced the new version Universal 2 for the transition of
x86 to ARM for their Macs and Macbooks.7

2.1.2 FatELF
FatELF is a prototypical implementation of the Fat binary approach for GNU/Linux
and its ELF (Executable and Linkable Format)8 format. Different ELF files are
concatenated with some additional header information. The proof of concept im-
plementation is available for Ubuntu 9.04. However, since currently there is no

6Mac OS X ABI Mach-O File Format Reference. https://web.archive.org/web/20090901205800/
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/
MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889 (ac-
cessed on 09 Sept 2020).

7Building a Universal macOS Binary. https://developer.apple.com/documentation/xcode/
building_a_universal_macos_binary (accessed on 09 Sept 2020).

8Executable and Linking Format (ELF) Specification, Version 1.2. https://refspecs.
linuxfoundation.org/elf/elf.pdf (accessed on 09 Sept 2020).

36

https://web.archive.org/web/20090901205800/http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889
https://web.archive.org/web/20090901205800/http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889
https://web.archive.org/web/20090901205800/http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889
https://developer.apple.com/documentation/xcode/building_a_universal_macos_binary
https://developer.apple.com/documentation/xcode/building_a_universal_macos_binary
https://refspecs.linuxfoundation.org/elf/elf.pdf
https://refspecs.linuxfoundation.org/elf/elf.pdf

2 Related Work

integration of this work into the mainline Linux Kernel and none is planned as of
this writing, involved changes to ones OS are necessary in order to get support for
FatELF.9

2.2 Binary Translation

Another approach for portable executables is the translation of binary files before
their execution. Therefore, the executable itself is not strictly portable but there
exists tooling that translates code native to another ISA before or while a program
is executed for the first time. This process is transparent to the user, although it
takes significant time. However, this translation has to happen only once. This
makes it overall faster than emulation, if the program is used sufficiently often
since in an emulated environment one has to deal with a constant overhead. [5]
Modern approaches use different strategies such as caching and memoization in
order to translate as few lines of code as possible.

Again, Apple provides a prominent example for this approach with Rosetta and
Rosetta 2.10

2.3 Comparison to this project

We will see in section 4 that our implementation builds on both of the described
ideas.

We recompile code for different ISAs from an architecture independent interme-
diate representation. Additionally, we store the generated ELF files in order to only
compile once per target configuration.

This leaves us with a worse performing solution (both in terms of space and
performance) than the solutions above (see 6). Additionally, we cannot bridge
differences in processor word-length.

However, the on demand recompilation makes the provided prototype more
flexible: Our review of “The Architecture Of Open Source Applications” [1] and
the LLVM Documentation11 suggest that the only requirement for an ISA to be
supported is that an LLVM backend exists. The set of supported ISAs does not have
to be predetermined and no substantial changes to code, build tools or operating
system are necessary in order to use our prototype.

9FatELF: Universal Binaries for Linux. https://icculus.org/fatelf/ (accessed on 09 Sept 2020).
10Apple–Rosetta. https://www.apple.com/rosetta/index.html (accessed on 09 Sept 2020).
11LLVM Documentation: Writing an LLVM Backend. https://llvm.org/docs/

WritingAnLLVMBackend.html (accessed on 25 Sept 2020).

37

https://icculus.org/fatelf/
https://www.apple.com/rosetta/index.html
https://llvm.org/docs/WritingAnLLVMBackend.html
https://llvm.org/docs/WritingAnLLVMBackend.html

L. Hagemann, T. Wollnik: Portable Executables

3 Requirements and Goals

There are three main requirements for our implementation of portable executables.

The executable should be portable and extensible. Portable executables need to be able
to run on machines with different ISAs. Additionally, they should be able to run
on machines where different accelerators are available. It should not be necessary
to know the concrete configurations of these setups in advance.

It should be easy to create and run portable executables. Firstly, this means that users
should not have to make significant changes to their existing workflows. We want
to accomplish this by providing a compiler and a linker that can act as drop-in
replacements for the clang compiler and linker in C projects.

Secondly, there should be only a minimal administration overhead. Our tools
should only use standard dependencies and no configuration should be necesseary
to get started.

Thirdly, users who run the portable executable should not notice a difference to
running a standard executable. Any startup logic needs to be hidden from the end
user.

The first language to support is C.

4 Implemented Prototype

Our approach builds on the LLVM Intermediate Representation to generate portable
executables. We want to explore the use of compiler intermediate products for
program portability. A working prototype using the LLVM IR can provide valu-
able insights into challenges and possibilities of this implementation strategy for
portable executables. A reason for choosing LLVM IR is that a portable format us-
ing it could make it possible to bridge a multitude of programming languages and
target architectures (including GPUs), due to the large and rising number of avail-
able front- and backends. LLVM also allows to perform architecture independent
optimizations on the IR, which would enable optimizations prior to distribution
and recompilations of a portable executable that uses the proposed approach.

We use a container format. The general idea is that a file in our PEX format
contains a tar archive with the LLVM IR for the program and executables in the
ELF format for different ISAs and compiler flag configurations.

4.1 LLVM Intermediate Representation

The LLVM IR is the foundation of our portable executable format. LLVM IR is
an intermediate, assembly-like code format used by the LLVM compiler suite. It
is designed to act as an intermediary between compiler frontends for different
programming languages and backends for different target architectures. The IR is
mostly machine-independent. There are some portability issues, as discussed in
subsection 6.4.

38

4 Implemented Prototype

As an example, listing 1 shows the C code and listing 2 shows the corresponding
LLVM IR for a simple Hello World program. We will come back to this example
when discussing the limitations of IR portability in subsection 6.4.

We make use of the LLVM IR’s portability to build portable executables. Portable
executables in our format contain the LLVM IR for the program. The specifics are
discussed below in subsection 4.2. When a PEX file is executed on a machine with
an ISA unknown to this PEX file, we can compile the program for the new ISA from
the IR that is stored in the PEX file. If it is possible to treat the generated LLVM
IR as sufficiently architecture agnostic it would always be possible to compile on
any target architecture with an LLVM backend available. In theory, this does not
have to be the compiler initially used to generate the IR (e.g. clang). This would
allow for a flexible usage of the portable executables, due to less strict requirements
regarding the software available for execution.

Listing 1: Simple Hello World program in C.

#include <stdio.h>
int main() {

printf("Hello World!");
return 0;

}

Listing 2: LLVM IR for the simple Hello World program (shortened).

1 ; ModuleID = 'helloworld.c'
2 source_filename = "helloworld.c"
3 target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
4 target triple = "x86_64-pc-linux-gnu"
5

6 @.str = private unnamed_addr constant [13 x i8]
7 c"Hello World!\00", align 1
8

9 ; Function Attrs: noinline nounwind optnone uwtable
10 define i32 @main() #0 {
11 %1 = alloca i32, align 4
12 store i32 0, i32* %1, align 4
13 %2 = call i32 (i8*, ...) @printf(
14 i8* getelementptr inbounds (
15 [13 x i8], [13 x i8]* @.str, i32 0, i32 0))
16 ret i32 0
17 }
18

19 declare i32 @printf(i8*, ...) #1
20

21 attributes #0 = {[...] "target-cpu"="x86-64"
22 "target-features"="+fxsr,+mmx,+sse,
23 +sse2,+x87" [...] }
24 [...]

39

L. Hagemann, T. Wollnik: Portable Executables

4.2 PEX Format

Having discussed the LLVM IR and how it can be used to achieve portability we
will now take a closer look at the file format developed in this project.12 We use a
container format as depicted in Figure 1. PEX files consist of a loader Shell script
and an integrated tar archive.

Tar archive. The tar archive in a PEX file contains the LLVM IR for all source
files of its program, linker flags, and one or more bundles. A bundle is the com-
piled program for one ISA or one compiler flag configuration and its object files.
Listing 3 shows the contents of the tar file for an example Hello World PEX file.
The file helloworld.ll contains the IR for the single source file of the program.
LINKER_FLAGS stores the flags that were used to link the different object files when
the PEX was first created (i.e., the linker call in the Makefile, see section 4.3).
The example tar archive contains two bundles: aarch64-unknown-linux-gnu and
x86_64-pc-linux-gnu. Each bundle holds the actual executable for one ISA (file
a.out) and the object files compiled for this ISA. The names of the bundles tell us
which ISA and OS the bundles were created for.

The loader script. The loader is a shell script that is run when a PEX file is executed.
It unpacks the tar archive, recompiles the program from the IR if necessary, and
executes the program. Note that the need for a recompilation is determined by
checking if a bundle for the current machine exists (via clang -dumpmachine) as a
default. However, this behavior can be overridden. In that case the user specifies
a bundle to create/execute. This allows for multiple configurations per ISA and
operating system, e.g. due to different available accelerators.

loader
shell script

tar archive

...

LLVM IR

linker flags

bundle 1

bundle 2

PEX file

Figure 1: The proposed portable executable format PEX

Listing 3: Contents of the tar archive for a simple hello world PEX file

IR
|--helloworld.ll

12Portable Binaries Project Repository. https://github.com/linusha/Portable-Binaries (ac-
cessed on 09 Sept 2020).

40

https://github.com/linusha/Portable-Binaries

4 Implemented Prototype

LINKER_FLAGS
aarch64-unknown-linux-gnu

|-- a.out
|-- src

|-- helloworld.o
x86_64-pc-linux-gnu

|-- a.out
|-- src

|-- helloworld.o

4.3 Workflow

In previous subsections we have looked at the PEX format. Now we want to
describe how PEX files can be created for C projects. Given is an example Makefile
that uses clang and compiles a simple C project with just two files (listing 4). To
generate a PEX file instead of a standard executable we only need to change the
compiler and linker. This is done by setting the CC and the LD variables in the
Makefile appropriately. This modified Makefile creates portable executables in the
PEX format.

The pex compiler and linker can be used as a drop-in replacements for clang
in most projects. This makes it simple to start generating PEX files. Note that we
currently only support workflows with a single linker call that only links object
files (see section 6.3).

Listing 4: Makefile that compiles a small C project. Left: Original Makefile that uses
clang. Right: Modified Makefile that uses the pex compiler and linker to create
PEX files.

CC = clang
LD = clang

a.out: foo.o bar.o
$(LD) -o $@ $^

%.o: foo.c bar.c
$(CC) -c -o $@ $<

CC = pex
LD = pex

a.out: foo.o bar.o
$(LD) -o $@ $^

%.o: foo.c bar.c
$(CC) -c -o $@ $<

4.4 Managing PEX Files

To make working with PEX files more comfortable we provide a small tool that
allows for the inspection and modification of PEX files. This manager program
supports the following operations:

• ls and tree. These commands list the contents of the tar archive from a given
PEX file using ls or tree.13

13tree(1) - Linux man page. https://linux.die.net/man/1/tree (accessed on 09 Sept 2020).

41

https://linux.die.net/man/1/tree

L. Hagemann, T. Wollnik: Portable Executables

• rm. The manager program can remove a bundle from a PEX file. This is
especially useful to force recompilation for a configuration that the PEX file
already knows.

• extract. Extract the content of the tar archive of a PEX file.

• merge. This command adds the possibility of merging two PEX files with
disjoint bundle names into a new PEX file. Users can now compile a program
multiple times using different compiler flags. The resulting PEX files can
be merged and users can choose which program version should be used
each time the resulting PEX file is executed. This allows for a great degree
of flexibility and enables PEX files to use different accelerators depending
on the compiler flags that were set for the selected bundle. This feature is
directly related to the requirement that the executable should be portable
accross accelerator configurations.

4.5 Summary

PEX files consist of a loader script and a tar archive. The tar archive contains the
IR, linker flags, and one or more bundles. The IR is used to recompile the program
for previously unknown ISAs. We also provide a management program.

5 Proof of Concept

To demonstrate a more advanced usage of our prototype we built a PEX file for the
text editor GNU sed on a x86 machine and an aarch machine.14 Both builds then
could be executed on the other architecture.

We use sed here as an example since it is a complex, large, and well-tested C
project. This makes it suitable as a proof of concept, since presumably all common
features of the C language are used. By successfully compiling sed as a PEX file
we can therefore expect our tool to work for all C programs, within the limitations
discussed later in section 6.

To compile sed to a PEX we set the CC and CPP variables in sed’s Makefile to pex
and pex -E, respectively.

However, since this build process is more advanced than the processes we looked
at before, another modification has to be made in order to receive a working PEX
File. In the unmodified sed build process some object files are bundled as an
archive (.a files). Archives are currently not supported by our implementation (see
section 6 and 7). Therefore, we have to make a final call to pex with all object files

14Our testing setup for this section, as well as for the discussions in section 6 consists of one
machine running a) an Intel x86_64 processor running GNU/Linux (4.11.0-13-generic) Ubuntu
16.04 and clang version 3.8.0-2ubuntu4 and b) an aarch64 processor running GNU/Linux (4.9.216-
69) Ubuntu 18.04 with clang version 6.0.0-1ubuntu2.

42

6 Limitations

generated during the unmodified build process. More details on this can be found
in the project repository.15

6 Limitations

We want to discuss some limitations of our current implementation, as well as
some limitations of the underlying approach.

6.1 Replicating clang Behavior

A general problem arises from the fact that pex replaces clang in compilation
workflows. Since the behavior of clang differs depending on the given flags our
implementation needs to mimic these behaviors as well. However, because of
the variety of possible flags and their combinations we cannot guarantee correct
behavior in all cases. We provide POSIX compliant behavior for all combinations
of the -o, -E, and -c flags.

6.2 Performance Implications

Our approach of recompiling the entire program and bundling files in a tar archive
has some serious performance implications.

First, a PEX file is significantly larger than the corresponding standard ELF file.
For our sed example this means that a PEX generated on a x86 Ubuntu machine
without any additional bundles is approximately 24MB large, while the on-system
binary is drastically smaller than even 1MB. The size of a PEX file grows with each
new architecture it is executed on and with each configuration that is created (i.e.,
the number of contained bundles).

Second, the current implementation suffers from a significant slowdown at
startup time. When we execute a PEX, the loader script is executed inside a Shell
process and the tar archive is extracted. Depending on whether a configuration
corresponding to the current ISA is found, a recompilation from IR is necessary, as
well as recreating the tar archive with the new content. For the final execution of
the executable contained in the relevant bundle another Shell subprocess is started.
For the example of sed we measured the time necessary to execute a simple sed
call for a natively compiled sed and our PEX sed. While it took ∼ 0.004s for the
executions of standard sed, the PEX calls took ∼ 0.02s on average.16 With larger
program runtimes the performance implications become less relevant, e.g. because
the tar archive is extracted only once.

15Portable Binaries Repository–Proof of Concept Guide. https://github.com/linusha/Portable-
Binaries/blob/master/Proof_of_Concept_Guide.md (accessed on 23 Sept 2020).

16For details see the project repository. https://github.com/linusha/Portable-Binaries/blob/
master/Proof_of_Concept_Guide.md (accessed on 23 Sept 2020).

43

https://github.com/linusha/Portable-Binaries/blob/master/Proof_of_Concept_Guide.md
https://github.com/linusha/Portable-Binaries/blob/master/Proof_of_Concept_Guide.md
https://github.com/linusha/Portable-Binaries/blob/master/Proof_of_Concept_Guide.md
https://github.com/linusha/Portable-Binaries/blob/master/Proof_of_Concept_Guide.md

L. Hagemann, T. Wollnik: Portable Executables

6.3 Complex Build Processes

Another limitation lies with more advanced build processes (as seen in section 5)
and library usage.

The problem here is that the knowledge about the build process lies completely
outside of our tool, e.g. in a Makefile. Even in the simple case of bundling multiple
object files inside a .a file this becomes a problem. The reason for this is that our
tool currently assumes the existence of one source file with IR per object file in the
project, as described in section 4. For the case of archives a possible solution to
this problem is discussed in section 7.

Similar problems could also arise when using shared libraries and dynamic
linking. However, this was not investigated as part of this project.

6.4 LLVM IR

When LLVM IR is treated as architecture agnostic multiple problems arise.

6.4.1 clang Version Differences
Different versions of clang produce IR that is not necessarily compatible.

For example, our testing machines ran clang version 6.0.0-1ubuntu2 (ARM) and
3.8.0-2ubuntu4 (x86). Initially, the IR created on the ARM machine could not be
used to compile on x86.

We could track the problem to a single line that could be removed without
altering the functionality of the IR. However, it cannot be assumed that there are
no other cases in which different clang versions may create incompatible IRs or
that no such cases will be introduced in the future.

6.4.2 Non-trivial ISA Differences and Dependent Code
Since it was possible to compile a working version of sed both from IR created
on ARM and on x86, it is justified to assume that the vast majority of C code
can correctly be compiled from the corresponding IR. However, cases in which
architecture dependencies exist in the C code remain problematic.17

Preprocessor Definitions The C preprocessor is run before the IR is created. There-
fore, architecture dependencies within Macros,... cannot be resolved by recompila-
tion. For example, a definition with #ifdef __x86_64__ will not be kept in the IR if
first compiled on ARM, thus leading to unexpected behavior if one later uses that
IR to compile an executable on x86.

17Examples for these can be found in the caveats folder of https://gitlab.hpi.de/osm/
portable-binary.

44

https://gitlab.hpi.de/osm/portable-binary
https://gitlab.hpi.de/osm/portable-binary

7 Future Work

Data Type Sizes Differences in the bit-length of data types are hard coded into
the IR, as seen in e.g. listing 2 line 3. Therefore, the current implementation does
not allow for portability from e.g. a 16 Bit system to one with a 64 Bit architecture.

Inline Assembler If inline assembler code is present in the program (using
__asm__,...) the resulting IR will not be portable due to the platform specificity
of the assembler code.

7 Future Work

As seen in section 6 there are multiple shortcomings of the approach described
here and the implementation provided. In this section we want to highlight some
areas where substantial improvements can be made.

7.1 Operating System Integration

As we saw earlier, the independence of our software of most parts of the underlying
system comes with a significant cost in performance, i.e., startup time. A part of
the overhead we observed comes from the fact that we do not execute any ELF
directly. Instead multiple other processes are started.

Similar to FatELF an integration via a Kernel patch could be used to solve this
problem. But another, less invasive option could also be pursued: One could build
an ELF file for the current architecture and then add the other parts of PEX (i.e IR,...
see section 4) as data in sections. Additionally a custom handler via binftm_misc
that triggers the recompilation if necessary should be provided.18 This could lead to
faster startup times with less necessary modifications of ones system. An approach
like this also allows for PEX files to be correctly recognized as binary executables
(e.g. with the file command).

7.2 Additional Language Support

Since we build upon the IR generated by an LLVM Compiler, it should be possible
to transfer the presented approach and large parts of the presented implementation
to other languages that have an LLVM frontend available.

7.3 Support for More Build Processes

The current implementation only allows for one type of simple build process, in
which multiple .c files are compiled into multiple .o files which are then linked
into one executable.

18Portability Experiments for LLVM Intermediate Representation. https://gitlab.hpi.de/osm/
portable-binary (accessed on 09 Sept 2020).

45

https://gitlab.hpi.de/osm/portable-binary
https://gitlab.hpi.de/osm/portable-binary

L. Hagemann, T. Wollnik: Portable Executables

7.3.1 Enhancement of the Presented Implementation
As we saw in section 5 our current implementation does not support linking li-
braries in the form of .a files. Since such files are just archives of object files it
should be possible to adapt our implementation to extract the IR for each file con-
tained in such an archive. We think this is possible without any major modifications
to our format or the already existing logic.

7.3.2 Integration into clang
More complicated and advanced future work could also deal with the question if
and how an approach for portable binaries could be supported directly by clang
or other LLVM frontends. This would make the adoption of portable binaries
easier, since no additional tooling would be necessary. It would also allow for more
certainty in regards to the possible usage of flags and allow arbitrarily complex
build processes.

7.3.3 How Portable is the LLVM IR?
A central question to the viability of our approach and also most of the proposed
future work is: How portable is the IR generated by LLVM? Earlier, we identified
some issues (e.g. data type length differences) we currently see as a hard limit for
the portability of LLVM IR.

Future research could a) systematically investigate whether the problems named
in this work are exhaustive and b) whether they can be mitigated, either due to
manipulation of the generated IR or due to changes in the underlying language
design.

8 Conclusion

We saw that it is possible to treat LLVM IR as portable between different instruction
set architectures and use IR generated on one machine to compile a program on
a machine with a different ISA. We presented a prototype that draws on this fact
in order to build portable executables. Portability is achieved by recompiling the
program if necessary. Our prototype is likely able to support any ISA with an
LLVM backend without prior selection, as discussed in subsection 2.3. Integration
in existing projects is easy in most cases, since our implementation is a wrapper
around clang. We were able to demonstrate the potential of our approach by
successfully applying it to GNU sed.

However, LLVM IR is not completely architecture agnostic and we also could
observe implications on file sizes, performance and problems with complicated
build processes.

Here we have identified several areas in which future research could improve
the presented approach, e.g. regarding the question of how certain compatibility
problems in the LLVM IR could be mitigated.

46

References

References

[1] A. Brown and G. Wilson. “LLVM”. In: The Architecture of Open Source Applica-
tions. 2012.

[2] M. Franz and T. Kistler. “Slim binaries”. In: Communications of the ACM 40.12

(1997), pages 87–94.

[3] B. Herzog, T. Hönig, W. Schröder-Preikschat, M. Plauth, S. Köhler, and A.
Polze. “Bridging the Gap: Energy-efficient Execution of Software Workloads
on Heterogeneous Hardware Components”. In: June 2019, pages 428–430.
doi: 10.1145/3307772.3330176.

[4] P. Olivier, S.-H. Kim, and B. Ravindran. “OS support for thread migration
and distribution in the fully heterogeneous datacenter”. In: Proceedings of the
16th Workshop on Hot Topics in Operating Systems. 2017, pages 174–179.

[5] M. Probst. “Dynamic binary translation”. In: UKUUG Linux Developer’s Con-
ference. Volume 2002. 2002.

47

https://doi.org/10.1145/3307772.3330176

Project Kraken
Implementing a network stack on the NinjaStorms OS

Lorenz Woth, Felix Auringer, and Tobias Kantusch

Hasso Plattner Institute for Digital Engineering
lorenz.woth@student.hpi.de

felix.auringer@student.hpi.de
tobias.kantusch@student.hpi.de

The goal of this project was to implement a network stack up to the ARP
protocol on the NinjaStorms OS. First we started by writing a driver for
the local PCI bus. Therefore we configured the processor to be able to
use the PCI bus correctly and developed a PCI driver according to the
PCI 2.2 specification afterwards. Following we virtually connected an
E1000 network card using the previously configured PCI bus. We then
developed a driver for the E1000 that configures it for being able to send
synchronically and receive packets asynchronously using interrupts. As
the E1000 requires memory addresses to be 16-byte aligned we added
a basic Unix-like malloc to the system. We continued by implementing
the Ethernet protocol as a basis for our network stack and implemented
the Address Resolution Protocol (ARP) afterwards as a basis for IPv4

networks. To invalidate cached ARP entries we needed a system time that
we added as an additional functionality to the OS.

As a final result we were able to start two instances of our operating
system that could then request and respond each other using the ARP pro-
tocol. In following work one can use our work as a basis for implementing
higher level network protocols like the IPv4 and TCP. To complete the
network stack in terms of layers one could then implement the HTTP.

1 How it all began

The NinjaStorms OS is a simple real-time operating system for the Lego Mind-
storms EV3 that also runs in a virtual environment. It comes with its own custom
C-library that, at the start of our project, only provided a basic version of the printf
function to output text to the console. The operating system itself contained a basic
round-robin scheduler to handle concurrent tasks as well as a timer interrupt for
the scheduler. Most importantly the OS was able to boot.

As all members of our team are heavily interested in networking and security,
we decided to add basic network functionality to the OS.

49

mailto:lorenz.woth@student.hpi.de
mailto:felix.auringer@student.hpi.de
mailto:tobias.kantusch@student.hpi.de

L. Woth, F. Auringer, T. Kantusch: Project Kraken

2 Context

Before starting our work, we had to understand basic concepts that make up the
building blocks for our project.

2.1 TCP/IP Stack

The Internet protocol suite is the conceptual model and set of communications pro-
tocols used in the Internet and similar computer networks. It is commonly known
as TCP/IP because the foundational protocols in the suite are the Transmission
Control Protocol (TCP) and the Internet Protocol (IP). [11]

The link layer defines the networking methods within the scope of the local
network link on which hosts communicate without intervening routers. This layer
includes the protocols used to describe the local network topology and the inter-
faces needed to affect the transmission of Internet layer datagrams to next-neighbor
hosts. [11] ARP and Ethernet are part of that lowest network layer.

2.2 QEMU

QEMU is a generic and open source machine emulator and virtualizer. When used
as a machine emulator, QEMU can run OSes and programs made for one machine
(e.g. an ARM board) on a different machine (e.g. your own PC). [10]

2.3 Tap device

Tap devices are a Linux kernel feature that allows you to create virtual network
interfaces that appear as real network interfaces. Packets sent to a tap interface
are delivered to a userspace program, such as QEMU, that has bound itself to the
interface. [1]

2.4 Peripheral Component Interconnect

Peripheral Component Interconnect (PCI) is a local computer bus for attaching
hardware devices in a computer and is part of the PCI Local Bus standard. Devices
connected to the PCI bus appear to a bus master to be connected directly to its own
bus and are assigned addresses in the processor’s address space. [7]

2.5 ARM926EJ-S

The ARM926EJ-S is part of the ARM9 processor family with an older 32-bit RISC
architecture. It is the main processor of the Lego Mindstorms EV3, for which the
NinjaStorms OS is designed.

50

3 Virtual Machine Setup

2.6 Intel 82540EM

The Intel 82540EM is a PCI compliant network interface card of the 8254x series
produced by Intel. [3] It can easily be emulated by QEMU. Because it is commonly
referred to as Intel E1000 we will also use this name.

3 Virtual Machine Setup

Developing an operating system solely on the hardware itself is hard to debug and
thus we run the OS in a virtual machine. As virtualizer we use QEMU, as done by
the original developers of NinjaStorms.

3.1 Basic networking

Since we want to focus on the E1000 as a network device, we need to make sure
that this card will be attached. An easy way to do this is using the options -device
e1000,netdev=net0 -netdev user,id=net0 when starting QEMU. This will use
the E1000 as the network device and specify a simple user networking backend.

However this was very easy to set up and worked well in the beginning to
test our hardware driver, this configuration will only work with TCP and UDP
protocols. As a result we would not be able to test our network stack until we reach
the transport layer, which is out of scope for our project. This was not feasible and
we decided to switch to the more complicated to set up but yet more versatile tap
networking.

3.2 Tap networking

As tap devices are supported by the Linux bridge drivers, we can also set up a
network bridge and attach QEMU to it. This way we can test our network stack
with multiple instances of our os in the same network. Creating the necessary
virtual devices under Linux is straightforward using the ip tool. The whole setup
process is done using the commands shown in Listing 1.

Listing 1: Setup of network devices for QEMU on Linux using ip

1 ip tuntap add dev tap0 mode tap # Create tap device
2 ip link add br0 type bridge # Create bridge
3 ip link set dev tap0 master br0 # Attach tap0 to bridge
4 ip link set dev br0 up # Start bridge
5 ip link set dev tap0 up # Start tap device
6 ip address add dev br0 10.0.2.15 # Assign ip to bridge

Afterwards QEMU can be started using the options -device e1000,netdev=net0
-netdev tap,id=net0,ifname=tap0,script=no,downscript=no instead of the
ones shown in subsection 3.1. QEMU will now attach to the previously created tap

51

L. Woth, F. Auringer, T. Kantusch: Project Kraken

device tap0 and use it as the network interface for NinjaStorms. Our host machine
can now monitor the network traffic on the br0 interface as well as send packets
via that interface to our vm.

4 PCI bus driver

Extension cards for computers like graphic cards or in our case network cards are
most commonly attached via a PCI expansion slot on the motherboard. This exact
procedure is emulated by QEMU and thus the E1000 network card that we will use
is attached via PCI. We first have to implement a driver for the PCI bus that allows
us to configure the attached component.

4.1 Configuration Space

The PCI specification provides for totally software driven initialization and con-
figuration of each device on the PCI Bus via a separate Configuration Address
Space. [12] All devices attached to the PCI bus are required to provide 256 bytes
of configuration registers, also known as the Configuration Space Header. For our
use it contains the following important information.

The Device ID/Vendor ID are used to precisely identify a device and thus the
corresponding slot number.

The Command register controls the device’s ability to generate and respond to
PCI cycles, e.g. to act as a bus master or responding to memory space accesses.

The Base Address Registers (BARs) are used to gather information on how
much and what type of memory is required by a device. They also hold the base
addresses of the memory regions.

4.2 Self-configuration

Before we are able to use the PCI bus, we have to do a self configuration of our chip.
Looking at the ARM926EJ-S the device id is 0x0002 and the vendor id is 0x0000.
Finding the slot where our chip is plugged in is as easy as scanning the addresses
0x41000000 + (n << 11), where 11 ≤ n ≤ 31. For each address, we check the first
4 bytes of the Configuration Space Header to obtain the device id and vendor id.
Once we find a matching pair we are done.

Afterwards we write the value of n into the PCI_SELFID register. This way the
chip knows in which slot it is located. Furthermore we make use of the Command
register in the chips configuration space header to make it the initiator on the
system.

52

5 E1000 driver

4.3 Device configuration

Now that the PCI_SELFID register holds the chips slot number, we scan the normal
configuration space located at 0x42000000 to find devices as done in subsection 4.2.
After we found a certain device we have to read how much and what type of
memory is required. As defined in the PCI specification we write 0xFFFFFFFF to
the BAR to get the encoded size information. We then allocate that memory in one
of the PCI memory regions and write the base address of it to the BAR.

Here our first bigger problem occurred. Having written the correct addresses
to the E1000 BARs, we were still unable to read its data. The documentation
states as the last step for PCI configuration, that one has to "Set the PCI control
registers at 0x10001000 appropriately [...]" and that "An example of PCI scanning and
configuration is provided as an example on the CD." [5] As the chip is quite old and so
is the documentation, it is very unlikely that we find the corresponding CD lying
around somewhere. Furthermore the word appropriate is very inaccurate.

It took us a while fiddling with different configurations, until we eventually
found the appropriate settings. The said PCI control registers include the PCI_IMAPx
registers. They are used to translate our machine addresses to PCI addresses.
By writing 0x5 to PCI_IMAP1 and 0x6 to PCI_IMAP2, we configured what values
should be used for the high bits of the PCI address bus. Accesses to the memory
regions 0x50000000 and 0x60000000 (which are two PCI memory regions) were
now translated correctly and we were able to read data from the PCI device.

5 E1000 driver

In order to connect to a network a network interface card (NIC) is needed. We
decided to use the common Intel E1000 because it is supported by QEMU and has
an extensive documentation. The E1000 is connected via PCI and can therefore be
accessed with our PCI bus driver. The next step was to implement a driver for the
E1000 so that we can control it to receive and send packets.

5.1 Configuration of the E1000

We start with getting the PCI device for the E1000 whose vendor ID is 0x8086 and
device ID is 0x100E. We can interact with the E1000 in two ways:

Firstly the E1000’s registers or flash storage is mapped into system memory via
PCI. We configured this mapping by writing addresses to the BARs of the E1000

PCI device. Using the written address with the offset 0x5400 we can now read the
MAC address of our network card. For handling incoming packets asynchronously
we also need to enable interrupts by setting an interrupt bit mask in the register at
the offset 0x00D0.

Secondly we use a shared memory region on the host to exchange information
with the E1000. Therefore we have to enable bus mastering for the E1000 PCI
device by setting a bit in the configuration space. This allows the E1000 to initiate

53

L. Woth, F. Auringer, T. Kantusch: Project Kraken

direct memory access to the host’s memory over the PCI bus which is required for
efficiently handling the incoming and outgoing packets.

Both incoming and outgoing packets are stored in buffers in the shared memory
accessible by E1000 and host processor. Each packet has a corresponding descriptor
that contains the address and length of the packet, the status and other information
like a checksum. The descriptors are arranged in circular buffer queues.

This did not work for us at first. Because the buffers need to be 16-byte aligned,
and we used stack addresses (which did not have any alignment guarantee so far)
the packets were not written into our memory correctly. Thus we wrote a malloc
function to allocate their memory and guarantee alignment.

We now write information about the queues like length, base address and some
control bits into the E1000’s registers. The E1000 then can use the buffer addresses
in the descriptors to access the host’s memory for writing or reading packets. The
offsets for the registers and the control bits are well documented in the OSDev
Wiki. [6]

5.2 Transmitting a packet

Our driver populates the current transmit descriptor from the ring buffer with the
address and length of the data to be sent. It then sets the appropriate command
bits for sending in the descriptor. Increasing the queue’s end on the E1000 triggers
a send of all new descriptors. Our driver waits until the status of the old descriptor
has been changed by the E1000 indicating that the packet has been processed.
Because of that the sending takes place synchronously and pauses the execution of
the current thread.

5.3 Receiving a packet

When receiving a packet the E1000 writes it to the next buffer in the queue. In
order to minimize the number of interrupts, it generates an interrupt only after a
certain time or number of packets.

The PCI bus is not directly connected to the primary interrupt controller (PIC)
and thus the interrupts didn’t arrive in our first versions. By looking at the ARM
documentation we found out that our processor contains two interrupt controllers.
To make the interrupts arrive at the PIC we had to enable a passthrough for our
PCI interrupts.

Because the interrupt is asynchronously we want the interrupt service routine to
be as quick as possible. Therefore the interrupt handler only clears the interrupt
on the E1000 and inserts all new packets in a new packet queue. Those elements
will be processed later by a network task.

54

6 Ethernet

6 Ethernet

Implementing the ability to send raw packets with the E1000 driver gave us the
opportunity to build more abstract layers of the network stack. To make Ninja-
Storms work with Ethernet frames, we firstly had to define how the frame should
be formatted. We decided to reduce the standard IEEE 802.3 Ethernet frame to
the most important fields for rudimentary functionality of Ethernet. After these
shortenings our final struct for Ethernet frames looked like that:

Table 1: NinjaStorms OS Ethernet Frame Structure

Destination MAC Source MAC EtherType Payload
6 Byte 6 Byte 2 Byte ??? Byte

To further reduce the complexity, we decided to only implement three of all com-
mon EtherTypes. We added a distinction between the most common EtherTypes:
ARP, IPv4, and IPv6. Part of our actual implementation was only ARP. Each of
these EtherTypes has its own hex value transmitted within the Ethernet header
field which is used to determine which subroutine we want to call.

6.1 Receiving Ethernet frames

Handling new Ethernet frames is not invoked directly via the NIC driver. We
implemented a small process to handle different EtherTypes in a more structured
way. Therefore we created a queue for newly received packets from the E1000

driver. A network receiving task runs constantly to check for new packet in the queue.
If there is a new packet, the packet will be removed from the queue and starts a
process that we call PDU1 Encapsulation. It takes the buffer’s data from the raw
E1000 packet and casts it to an Ethernet frame.

Based on the EtherType further functions will be invoked to handle this Ethernet
frame, e.g. for ARP.

6.2 Sending Ethernet frames

Sending Ethernet frames is basically just the construction of a new one based
on the given arguments. A function takes source, destination, EtherType and the
payload as arguments and builds an Ethernet frame out of it. Sending is performed
by the E1000 driver. This task was complicated to solve at first place, because
back then malloc was not part of our library. Implementing malloc made it much
easier to move the payload from one function to another without much effort. This
simplified and shortened the function a lot.

1Protocol Data Unit.

55

L. Woth, F. Auringer, T. Kantusch: Project Kraken

6.3 Little and Big Endianness

Since our NinjaStorms OS is working with little endian, we noticed on receiving
our first packets that network related things usually work with big endian. That
led to some confusion in the beginning, so we decided to implement some helper
functions that translate the byte sequence order for us. As in the POSIX standard
defined, we created rudimentary functions to change byte orders from little to big
endianness, here called host byte order (little endian) and network byte order (big
endian).

7 Address Resolution Protocol

As described in the Ethernet part, a function called PDU Encapsulation is responsible
to decide what to do with the incoming frame. To determine if the incoming frame
is an ARP frame, the EtherType needs to equal: 0x0806. If that is the case, our
ARP subroutine starts. Before explaining the functionalities of our ARP functions,
a proper understanding of our ARP table is necessary.

7.1 ARP Table Implementation

The ARP table is basically an array containing so called arp_table_entry_t ele-
ments. They only contain the IPv4 address, the hardware address and a timestamp
when the element has been added to the table. We also considered more sophisti-
cated approaches to implement the ARP table (e.g. a hash table), but we decided to
keep it simple yet. In our tests we used a maximum of 10 entries with a maximum
living time of 300 seconds.

We implemented functions to read, add, and update entries from the ARP table.
Once an entry is used, its timestamp is updated. Entries that are too old are
removed. If the ARP table is full of entries, the oldest entry will be replaced.
Iterating over the table is performed via basic linear search.

7.2 Receiving ARP Requests

After extracting the payload, we follow the algorithm for packet reception as
defined in RFC 826. [9] We check if the protocol type and address length imply
IPv4 and the hardware address type and address length imply Ethernet. Then the
update procedure follows. The arp_table_update-function is invoked with the
incoming ARP frame and will either return true, if the update was successful or
false if not (the ARP entry will be added to the ARP table later in this function).

Now the ARP reply is constructed. Therefore we create an empty ARP frame and
use our own addresses (IPv4 and MAC) as sender and the original sender as new
receiver. This reply is sent via the Ethernet sending function, described in section 6.

56

8 Evaluation

7.3 Sending ARP Requests

Sending ARP requests is very simple to accomplish. We construct an ARP frame
with the NinjaStorms IPv4 and MAC address as source addresses. As ARP Opera-
tion Code we use 0x0001. It indicates the ARP request. This frame is then sent to
the broadcast MAC ff:ff:ff:ff:ff:ff.

8 Evaluation

In the end, we started two instances of our operating system. Both were basically
the same code, we only adjusted the IP and MAC addresses. Each instance had a
simple ping task running that would periodically ping the other machine using
the ARP protocol and print received packets. That this works, shows very well that
our initial goal to implement a network stack up to the ARP layer was completely
achieved.

All in all we have gone through the various abstraction layers in an OS and a
network stack. We wrote assembler code to handle interrupts, implemented real
device drivers and high level functions like arp_send. Additionally we created
helpful library functions like malloc and implemented a system clock as well as
a logger that shows important information more attractively. We also refined the
existing interrupt handler to allow more interrupt service routines.

In following work one can use our work as a basis for implementing higher level
network protocols like the IPv4 and TCP. With IPv4 and TCP one can then imple-
ment Telnet to ultimately watch Star Wars Episode IV on towel.blinkenlights.nl.
All the necessary basics for that like the ARP protocol are already provided by our
work.

9 Related Work

There are several other projects that implement drivers for PCI and NICs and even
more that implement a network stack. In the following we introduce some of the
projects we used as inspiration.

The most known project surely is the Linux kernel. But because it aims for full
compatibility with a lot of hardware and compliance with all the standards, it is so
extensive that it was very hard to understand their implementation.

Another very active project is SerenityOS. [4] It is a self-made UNIX-like operat-
ing system written in C++ that also implements drivers for PCI and the E1000 and
is much smaller and better to understand than the Linux kernel.

An example for a similar, but further advanced network stack is the now inactive
netstat project on GitHub. [2]

Furthermore there is a lab in the Operating System Engineering lecture of the
Parallel & Distributed Operating Systems Group at the MIT that is very similar to

57

L. Woth, F. Auringer, T. Kantusch: Project Kraken

our project. The students have a skeleton of an operating system that they emulate
using QEMU and develop basic functionalities for this OS during the course. Lab 6

[8] provides information for implementing a driver for the E1000 and building a
network stack on top of it.

References

[1] ArchLinux wiki contributors. QEMU. https://wiki.archlinux.org/
index.php?title=QEMU&oldid=632898. Online; accessed 2-September-2020.
2020.

[2] J. Groocock. netstack: TCP/IP network stack implementation in userland. https:
/ / github . com / frebib / netstack. Online; accessed 19-September-2020.
2017.

[3] Intel Corporation. PCI/PCI-X Family of Gigabit Ethernet Controllers Software
Developer’s Manual. https://www.intel.com/content/dam/doc/manual/p
ci-pci-x-family-gbe-controllers-software-dev-manual.pdf. Online;
accessed 12-September-2020. 2009.

[4] A. Kling. SerenityOS. http://serenityos.org/. Online; accessed 19-September-
2020. 2020.

[5] A. Limited. PCI configuration. https://developer.arm.com/document
ation/dui0224/i/programmer- s- reference/pci- controller/pci-
configuration?lang=en. Online; accessed 29-September-2020. 2008.

[6] OSDev Wiki contributors. Intel Ethernet i217. https://wiki.osdev.org/
Intel_Ethernet_i217. Online; accessed 12-September-2020. 2020.

[7] OSDev Wiki contributors. PCI. https://wiki.osdev.org/index.php?
title=PCI&oldid=25084. [Online; accessed 5-September-2020]. 2020.

[8] Parallel & Distributed Operating Systems Group, MIT. Lab 6: Network Driver
(default final project). https://pdos.csail.mit.edu/6.828/2018/labs/
lab6/. Online; accessed 19-September-2020. 2018.

[9] D. C. Plummer. Ethernet Address Resolution Protocol: Or converting network
protocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware.
STD 37. http://www.rfc-editor.org/rfc/rfc826.txt. RFC Editor, Nov.
1982.

[10] QEMU wiki contributors. Main Page. https://wiki.qemu.org/index.php?
title=Main_Page&oldid=9546. Online; accessed 2-September-2020. 2020.

[11] Wikipedia contributors. Internet protocol suite — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Internet_
protocol_suite&oldid=974885345. Online; accessed 2-September-2020.
2020.

58

https://wiki.archlinux.org/index.php?title=QEMU&oldid=632898
https://wiki.archlinux.org/index.php?title=QEMU&oldid=632898
https://github.com/frebib/netstack
https://github.com/frebib/netstack
https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf
https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf
http://serenityos.org/
https://developer.arm.com/documentation/dui0224/i/programmer-s-reference/pci-controller/pci-configuration?lang=en
https://developer.arm.com/documentation/dui0224/i/programmer-s-reference/pci-controller/pci-configuration?lang=en
https://developer.arm.com/documentation/dui0224/i/programmer-s-reference/pci-controller/pci-configuration?lang=en
https://wiki.osdev.org/Intel_Ethernet_i217
https://wiki.osdev.org/Intel_Ethernet_i217
https://wiki.osdev.org/index.php?title=PCI&oldid=25084
https://wiki.osdev.org/index.php?title=PCI&oldid=25084
https://pdos.csail.mit.edu/6.828/2018/labs/lab6/
https://pdos.csail.mit.edu/6.828/2018/labs/lab6/
http://www.rfc-editor.org/rfc/rfc826.txt
https://wiki.qemu.org/index.php?title=Main_Page&oldid=9546
https://wiki.qemu.org/index.php?title=Main_Page&oldid=9546
https://en.wikipedia.org/w/index.php?title=Internet_protocol_suite&oldid=974885345
https://en.wikipedia.org/w/index.php?title=Internet_protocol_suite&oldid=974885345

References

[12] Wikipedia contributors. Peripheral Component Interconnect — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Pe
ripheral_Component_Interconnect&oldid=976234642. Online; accessed
2-September-2020. 2020.

59

https://en.wikipedia.org/w/index.php?title=Peripheral_Component_Interconnect&oldid=976234642
https://en.wikipedia.org/w/index.php?title=Peripheral_Component_Interconnect&oldid=976234642

NinjaStorms kernel architecture
Improving a toyOS

Felix Roth and Konrad Hanff

Hasso Plattner Institute for Digital Engineering
felix.roth@student.hpi.de
konrad.hanff@student.hpi.de

We outline our progress of incremental changes to an ARM-based operat-
ing system called NinjaStorms. We describe newly implemented features
such as a working syscall system, and specific syscall building upon that
like create_process and wait_on_pid. We outline the initial operating sys-
tems, our goals, as well as hurdles on the way and discuss some of our
implementations in comparison to other operating systems.

1 Initial Situation

We based our work on the code of the NinjaStorms operating system, which was
published in a Github repository, [2] a basic operating system for the ARMv5

architecture, implemented to run on the board of a LEGO mindstorms robot and
be emulated with QEMU. It is largely written in C, with some ARM assembly code
inlined and in additional files. Our first steps were understanding the given project,
we have outlined the initial state below.

1.1 Tasks

A task is a struct (task_t) that stores the 16 CPU registers and the Current Program
Status Register (cpsr) of a process when the scheduler stops its execution and
schedules another task. They are stored in a ring buffer that is defined in the
scheduler’s source. Tasks can be added during runtime with add_task. The tasks
are executed in the user mode of the CPU by setting the corresponding bits in the
saved cpsr on task struct creation.

1.2 Interrupts

A complete interrupt table is present, although we initially did not understand this
section of code. Comments that we did only understand after we figured out how
it worked were present but did not help initially. Only one interrupt handler is
implemented, the irq_handler. The interrupt gets triggered periodically by a timer
initialized elsewhere and is responsible for scheduling the next task.

61

mailto:felix.roth@student.hpi.de
mailto:konrad.hanff@student.hpi.de

F. Roth, K. Hanff: NinjaStorms kernel architecture

1.3 Scheduler and Dispatcher

The scheduler logic is implemented in C, while the dispatcher, responsible for
saving and loading CPU registers when necessary, is implemented in assembly
which gave us trouble at first, but when implementing the later features was really
no problem at all. The saving routine is executed on the periodic timer interrupt.
It then starts the scheduler which changes the content of the current_task pointer
to point to the struct of the task that should be loaded next, then jumps to the
non-returning function load_current_task_state, which loads all saved registers
including the cpsr into the CPU registers. After that, the newly scheduled tasks
continues where it left off before being interrupted by the timer interrupt.

2 Goals

As the initial system was very basic, we had a lot of options to expand. The initial
idea was to implement a network stack, which seemed like a daunting task. We
therefore split the group in two teams, where we would be tasked with creating
the fundamental architecture that would allow a network stack to be built on top
of it. 1 While this was an initial motivation, we acted largely independent and set
our own goals, which are outlined below.

2.1 Kernel- and Usermode

Modern general purpose operating systems use a distinction between kernel and
user mode, where in many features are restricted to kernel mode. This makes
an interface to the kernel necessary, if any of the kernel features are relevant for
user mode programs. In Linux this is implemented with syscalls, which are user
mode functions that permit processes to use kernel mode features. As we wanted to
establish a clear distinction between the two fundamental operating modes, we also
wanted to implement syscalls. To achieve this goal, we would have to implement a
handler for software interrupts, a wrapper library as well as dispatchers on kernel
mode side which then perform the appropriate actions for each specific syscall.

2.2 Processes

Tasks or Process are the fundamental units of operation in many popular operating
systems. While a task struct was already used in an array of tasks, we wanted to
implement many new features that would allow identification of processes and
save relevant data. These goals were closely linked with the goal of syscalls. In the
matter of processes, syscalls would be required to create and exit syscalls as well
as gather information about the currently running or other processes.

62

3 Progress

2.2.1 Inter-process communication
With processes firmly established, we wanted to implement a way for distinct
processes to communicate with each other, without breaking inter-process isolation.

2.3 Further Goals

As the operating systems can run in two different environments, the kernel code
included some checks for the current running board using the C preprocessor.
We found this to be a breach of abstraction layers, and wanted to push these to
a lower level, a hardware abstraction layer. We also planned on going further if
the time frame permitted it, with user interaction on the terminal and further
implementation of the subset of library functions that were included with the
operating systems.

3 Progress

Table 1: Timeline of the project in chronological order

Activity

Project selection
Start working on syscalls
Syscalls are working
Add process structure
IPC buffer

End work on fork,
Start work on wait

Rewrite syscall handler in assembly
Start cleaning up and adding examples,

some hardware abstraction
Implement cooperative multitasking,

project finalization

3.1 Processes

After assessing the existing task_t struct, we noticed that some valuable informa-
tion was not saved. In the initial version there was no way to exit tasks, so the
position in the array of tasks was a unique identifier for every process. Since we
wanted to create and exit processes during the runtime, we implemented a unique
process id (pid) for every task/process. This is quite similar to the POSIX standard,

63

F. Roth, K. Hanff: NinjaStorms kernel architecture

implemented in Linux, where every process can be identified by a pid. Similar to
that standard, in our operating system we also created an initialization process on
user mode side with pid 1. With processes created by other processes, a parent
structure was an obvious next step. Every process now has a parent process that
is identified by pid, while the init process has itself as parent. We also saved some
information that would become necessary in the implement of wait and exit, as
well as stored the errno on process level, so it is predictable for each process, rather
than possibly getting changed through scheduling of other processes. Inter-process
communication, which requires some data in the task_t struct, is described in
subsection 3.3. Tasks and processes are treated as synonyms.

3.2 Syscalls

Our implementation of syscalls was very much inspired by the standard approach,
found in many textbooks. Since processes already run in user mode, we needed
a mechanism to switch to kernel mode (called svc mode in the ARM architecture
we worked with). Since this is already an effect of an interrupt, we just needed to
generate an interrupt and get the necessary information about what we want to
call in the kernel and with arguments should be used through.

ARM provides the SVC{cond} #imm instruction, that stands for supervisor call,
which copies the cpsr into the spsr (Saved Program Status Register), switches the
CPU to svc mode and jumps to the address of the interrupt vector table plus 8.
It also masks interrupts so the execution of a syscall can not be interrupted by
another interrupt, e.g. the scheduling of another process.

The svc instruction takes an immediate argument that remains in the machine
code and could theoretically be retrieved, but we don’t use this feature as it would
require us to build the instruction at runtime, which could get messy. Instead we
use the general purpose registers r0 and r1 to send the number of the syscall and
a pointer to its argument. They are set in usermode, which then executes svc #0,
and read in kernel mode.

As stated above, when svc #0 is executed, the CPU jumps to the address of the
interrupt vector table plus 8. There we place an instruction that loads the program
counter with the address of the syscall_handler, the entrypoint for syscalls in the
kernel.

The syscall_handler is an assembly function that stores the CPU registers and
cpsr in the task struct, calls the syscall_dispatcher(uint32_t syscall_number,
void *data), passing on the values for syscall number and the pointer to the
arguments it received in r0 and r1.

The syscall_dispatcher calls the correct kernel mode function for the given
syscall number with the argument. That function executes the actual syscall and
returns an integer when it is finished, that may include a pid or a status number.
The syscall_dispatcher also returns the same value.

The syscall_handler then either returns to the user mode process with the
integer result or loads a new process, depending on the type of syscall. More on
that in paragraph 3.2.3.

64

3 Progress

In the user mode, there are generally two layers of abstraction around the svc
instruction. There is a syscall(unsigned int number, void *data) function that
moves its arguments to the registers r0 and r1, calls svc #0 and returns the result
for abstraction from the assembly instructions to execute the supervisor call. The
second layer is a syscall-specific wrapper function for syscall(number, &data), it
provides the correct syscall number and data argument, generally a struct contain-
ing all necessary information. The syscall function as well as the specific functions
for each use case are stored in a user mode library.

3.2.1 create_process
The most fundamental and obvious use of a syscall is to create a new process from
within the current running process. Therefore we adapted the existing add_task()
function to be accessible from user mode. create_process, just as its predecessor,
requires the passing of a function pointer that determines the start of the execution
of the process, this is being passed through a struct with the syscall.

The dispatcher for create_process searches for an empty space in the tasks array,
assigns a new process id by incrementing the previously assigned process id, and
creates a task_t struct that represents the process on kernel side. In this struct, the
pc is then set to the passed address, the process is assigned a stack (an address
space) and set to the user operating mode by appropriately setting the cpsr. The
process is scheduled as soon as possible, as it is initialized in the TASK_RUNNING
state.

In Windows NT one would create a process with a function of the CreateProcess
family with a lot of arguments. Our system is more closely modeled after Linux,
so this implementation was not a consideration, even though some similarities are
shared, not only in name. The standard way of creating a new process in Linux
is the use of the fork/exec pattern, which is described in the next section. Our
implementation can more directly be compared to posix_spawn, even though, again,
this call allows for much greater flexibility with arguments.

3.2.2 fork and exec
In Linux, as well as the POSIX standard, the syscalls fork and exec can be used
to create new processes from a process and then selecting a new program for
execution. This pattern has long been established and has some advantages over
a seemingly more direct approach with create_process, especially in that the
creating process has total control over parameters of the program execution through
sequential additional instructions between fork and exec, where as all parameters
would have to be supplied in a create_process, as that call immediately results in
the execution of the new process.

At this point we didn’t require additional parameters for execution, so that was
no pressing concern. That’s why there seemed to be little reason to implement fork
in a system that already had a create_process equivalent to use it in conjunction
with exec. Furthermore, some additional problems with that pattern were evident.
[1] There are other ways to use fork, for example in combination with wait, that
did warrant implementation.

65

F. Roth, K. Hanff: NinjaStorms kernel architecture

Even though the use cases may be limited, we wanted to implement fork to
increase similarity to Linux, and thereby familiarity to users. As pages were not
used in the operating system at that point, we could not simply copy pages (or
mark pages as copy on write) for the new forked process. Instead we had to copy
the stack of the process. This was however not possible, as the stack contained not
only relative addresses, which we could copy easily, but also absolute addresses.
For these addresses, we would have to determine if they referenced process external
data or data in the process stack. The latter would have to be translated into new
addresses. This was a challenge we did not solve.

The implementation of exec was not possible for the simple reason that no file
system is implemented that would supply the file to execute.

3.2.3 exit
Since we can create processes, we also want a way to exit a process, returning
a result. This is done by the exit(int32_t result) syscall. It marks the task as
TASK_DONE so it does not get scheduled anymore and removes it altogether if pos-
sible (No task waiting 3.2.4). For further convenience, we set up each process on
creation so that it calls exit automatically when returning if it does not exit itself.

Due to the nature of exit, in that it does not return to the calling process, we need
to schedule and load another process during the syscall. This proved problematic,
since when we called the load_current_task_state function responsible for this
from somewhere in our kernel code, all stack frames of function call leading up
to this would remain on the supervisor mode stack while the execution continues
in user mode. The next syscall would be executed with all the frames still on the
stack and on each exit the stack would grow even more. This was a memory leak
we knew of but didn’t know how to prevent.

Later investigation shows that the Linux kernel gets around this problem by
having a dedicated kernel mode stack for each process[3] that does not interfere
with syscalls from other processes and can be cleared when a process ends. This
approach also works better than the one kernel mode stack for everything when
running concurrent or parallel processes, because multiple processes can execute
syscalls simultaneously.

Return to user mode This memory leak existed quite a long time until, during
the finalization of the wait_on_pid syscall, we found a solution. The solution is
to not load a new process during the execution of a syscall but to only declare
the wish to do so and then fulfill this request when no harm can be done. This is
when the control flow of a syscall returns to the syscall_handler which formerly
would have returned to user mode. During an instance where only the frame of
the current syscall_handler function is on the stack (in comparison to before the
syscall, there are still other frames), a variable is checked to decide whether the
control flow should return to the calling process as usual, or the process pointed to
by the current_task pointer should be loaded. The syscall can change the contents
of the pointer as well as change the variable indicating a new process should be
loaded or the syscall_handler should return to user mode in the calling process.

66

3 Progress

Since we also remove all remains of the current frame from the stack, there is
nothing unwanted left on the stack when execution in user mode continues, even
if it is in another process.

3.2.4 wait_on_pid
Since we could not implement fork/exec/wait, the next best thing that was possible
is creating a process using create_process and waiting until it exited with a result.

This is implemented as follows. When a process p1 creates another process p2

it receives the pid of p2. When it calls the wait_on_pid(pid) syscall, p1 is marked
as waiting on p2 in the task struct. When the scheduler looks at p1 for possible
scheduling, it also checks if p2 has exited already. If not, p1 will not be scheduled,
but if true, the exit result of p2 is placed in r0 of the saved state of p1 and p1

is loaded, therefor it seems to the syscall as if syscall_handler had returned the
result. The process can then use the result.

Also, when a process in the TASK_DONE state is considered by the scheduler, it
checks if any other process is still waiting on it. If not, it is removed, thereby freeing
space in the limited tasks array.

3.2.5 Cooperative Multitasking
Since our OS can manage multiple processes, we must consider how they share
the limited resources of the CPU. Since the system is designed for one CPU core, it
is not possible to truly run processes in parallel. Instead, we could employ batch
processing, where each program runs until it exits before another one starts to run.
In our mind, this is not really useful, especially since we have at least two other
options: Cooperative and preemptive scheduling.

With cooperative scheduling, processes can give control (yield) to the next process.
This requires the program and therefore the programmer to actively end its current
time slice.

Another option is preemptive scheduling, where programs do not contain code to
yield control but the OS interrupts the running process, stores its state and replaces
it with another one after a specified amount of time. This process is transparent to
the processes.

In contrast to cooperative multitasking, preemption does not need the processes
to be well-behaved and yield control regularly. Even if a process enters an infinite
loop without giving up control, other processes will continue to run, because the
OS simply interrupts after a short period of time. Also, it requires less thought
from the programmer, who does not need to decide where in e.g. a long calculation
the execution should temporarily interrupted, especially with a complex control
flow. Preemption is also useful for interactive systems reacting to input, like the
LEGO Mindstorms controller NinjaStorms was originally intended for. Depending
on the length of each time slice, processes handling input can run and process
input without long delays.

While preemptive scheduling is useful in a context where processes are constantly
busy and starvation is not acceptable, cooperative scheduling brings the benefit of
task having very little work being able to yield control if they don’t need the full

67

F. Roth, K. Hanff: NinjaStorms kernel architecture

time slice preemption would provide. This can improve general performance of the
system.

Using the return to user mode/load new process functionality, it is easy to add
cooperative multitasking to the OS. A process can choose to call the syscall yield()
and end its current time slice early. The scheduler then runs and selects a new
process, also resetting the timer for the next scheduling interrupt, to guarantee the
next process gets a full time slice. If this was not done, a process could always use
nearly its full time, then yield, and the next process would always have very few
instructions to run.

We added the ability to disable preemption when starting the scheduler, so the OS
now supports full cooperative or preemptive multitasking, as well as preemptive
multitasking with the possibility to yield control early.

3.3 Inter-process communication

While we could not implement memory isolation between processes as we lacked
paging or segmentation, we did create ways for processes to interact and communi-
cate with one another in isolation conforming ways. The create_process/ return/
wait_on_pid pattern described earlier is one way of inter-process communication.
Here we describe two additional ways.

3.3.1 Buffer
Every process has some fields that can be used for inter-process communication.
The general behavior is as follows: A process with pid t marks its IPC buffer as
open by calling ipc_buffer_open(0). Another process can then send data d to the
process, in the size of words (4 bytes) d[i], by calling ipc_buffer_send(d[i], t).
This word d[i] is then saved in the IPC buffer of process t, meaning it is saved in
the tasks array in the kernel. Process t can then retrieve the data at any later point,
by calling ipc_buffer_read(), which will return one word and remove it from the
buffer. t may also check the length of the buffer with a syscall. All these syscalls
make use of appropriate error numbers to communicate what went wrong, failing
for example when the buffer is full, empty or closed.

This implementation is very simple, and has its problems. Buffer size can not be
altered, as the buffer is directly in the tasks array. This could be solved by saving
an address to a growing buffer, which could be easily implemented with pages
and dynamic memory. Furthermore the receiving process can not restrict access to
specific processes and can not determine the sender.

We took some inspiration from other inter-process communication tools from
UNIX or UNIX-like operating systems. Pipes also use kernel buffers to transfer data
between processes. File descriptors were not implemented in the current version,
but could be a logical next step to take this implementation. UNIX sockets make
use of a file system, which is not provided in our operating systems and were thus
not an option. In the long term, sockets would be a good idea, since we strive to
create a networking operating system, which may well use a socket implementation
when communicating via TCP.

68

4 Conclusion

3.3.2 Security in shared memory with mutexes
With processes defined as functions in code, a programmer may include variables
and data outside of functions, that all functions can access. Thereby processes
may interact by altering these variables, which are stored at fixed position by the
compiler. To facilitate a fruitful communication between multiple processes writing
or reading on the same data, we implemented mutexes. To use these, such a shared
data as described has to be defined and referred to by all participating processes.
This variable m can be used as the mutex. This common variable should not be used
to store data, but to synchronize processes. A process can then call lock_mutex(&m),
to acquire the mutex. If the mutex has not been acquired and not freed before,
the process will busy wait until the mutex is freed with unlock_mutex(&m) by
another process. By using spinlocks, both mutex calls are handled in user mode.
As NinjaStorms uses the ARMv5 instruction set, the use of LDREX and STREX is not
available. Therefore, the mutex is implemented with the SWP instruction.

This implementation is once again quite simple, but not perfect. Busy waiting is
something that should be avoided, and a better implementation may be possible
with the use of syscalls, with behavior like the current wait_on_pid call.

4 Conclusion

During development of new features we focused on getting things running and
did not pay much attention our solution’s impacts on performance. Currently there
are no critical and noticeable performance bottlenecks we are aware of. We did
not use the OS for time critical applications but there could be problems in the
future or even when introducing a large number of simultaneous processes, since
the scheduler we implemented has linear worst case time complexity in the current
number of tasks.

It always considers all processes, not just the currently running ones and for a
process that has already exited, all other processes are checked if they are waiting
for it. Also reparenting children of terminated processes takes linear time in the
number of processes. Using other data structures than a one-dimensional array
of processes structs to hold all relevant information could improve scheduling
performance drastically.

4.1 Next steps

We mostly operated independently and look forward to merging our progress with
that of the other two groups that worked on other aspects of the same operating sys-
tem. With the addition of dynamic memory and paging some major improvements
could be made, for example an implementation of fork, managed shared memory
for processes to communicate and real memory isolation between processes. With
the advancements of the network development group (See page 49), new syscalls
can be implemented, as a timer is implemented, we may be able to implement a
sleep call that pauses execution for a set amount of time.

69

F. Roth, K. Hanff: NinjaStorms kernel architecture

Many modules of our system are not designed to be especially efficient, and can
be improved. Examples are the inter process communication, that may be improved
with file descriptors or an implementation of semaphores in addition to mutexes.
Aside from that, the scheduler may as well be improved to understand priorities
or threads added as the scheduling unit instead of processes. A major step would
be user interaction on a terminal.

References

[1] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe. “A Fork() in the Road”.
In: Proceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’19.
Bertinoro, Italy: Association for Computing Machinery, 2019, pages 14–22.
isbn: 9781450367271. doi: 10.1145/3317550.3321435.

[2] A. Grapentin, D. Korsch, C. Werling, and C. Walther. ninjastorms. https://
github.com/ninjastorms/ninjastorms/. Online; Accessed 24-September-
2020. 2020.

[3] R. Love. In: Linux Kernel Development. Addison-Wesley Professional; 3rd Edi-
tion, 2010, page 21. isbn: 978-0672329463.

70

https://doi.org/10.1145/3317550.3321435
https://github.com/ninjastorms/ninjastorms/
https://github.com/ninjastorms/ninjastorms/

Tool based analysis of the Windows Research Kernel
Using static analysis and mapping of CVEs to source

Niklas Schilli

Hasso Plattner Institute for Digital Engineering
niklas.schilli@student.hpi.de

The Windows Research Kernel (WRK) mirrors the kernel used in Win-
dows Server 2003 and XP SP1. In this paper we aim to apply modern
static analysis techniques to evaluate the usefulness of user-space focused
analyzers with the kernel as it was when the WRK was released by using
the PVS-Studio C analyzer. Furthermore we try to map Common Vulner-
abilities and Exposures (CVEs) on to the WRK using PVS-Studio (PVS),
a user space based C and C++ analyzer. We examine CVE-2005-2827 in
detail, as the entire defect chain is located inside of the WRK.

1 Introduction

The released WRK source code includes code for processes, threads, virtual memory
management, scheduling and other core NTOS functionality. It was originally
licensed for academia, which enabled swaths of universities to use the material
for teaching. While the source code is by now widely available even outside of
academia, the challenge still remains of injecting modern analyzers in the by now
dated toolchain. Analyzing the WRK with a user-space analyzer requires a lot of
legwork. While the WRK was itself originally analyzed by Microsoft PreFAST, the
tool has since long been discontinued and does not work with newer toolchains.
Also, the choice of PVS as analyzer precludes the use of many of its features, mainly
those involving memory management analysis. As such, only a subset of relevant
results can be considered relevant from PVS.

1.1 Contributions

I would like to thank Andreas Grapentin and Andreas Polze for allowing me
to investigate this during the 2020 Operating Systems II course, even though it
was not a pre-approved topic. Furthermore I would like to thank Raymond Chan
for explaining the intricacies of the 16-Bit Windows remnants of CS_CLASSDC
and CS_OWNDC. His blog, The Old New Thing1 is an invaluable resource for
people looking into insights of Windows development and historical information
on remnants of older Windows versions.

1devblogs.microsoft.com/oldnewthing.

71

mailto:niklas.schilli@student.hpi.de
devblogs.microsoft.com/oldnewthing

N. Schilli: Tool based analysis of the Windows Research Kernel

2 Context

Figure 1: Windows Kernel - Source https://docs.microsoft.com/en-us/windows-
hardware/drivers/kernel/overview-of-windows-components

The WRK does not include all features listed in shown Diagram. Features such as
the Plug and Player Manager , Power Manager, the Device Verifier and the Virtual
DOS Machine. Furthermore there are some components which come precompiled,
so static analysis has far from the complete picture when applied to the WRK. As
such, any CVE mapping may easily cross available source boundaries.

72

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-components

3 Problem

2.1 Background

PVS is a static analyzer first released in 2006 which offers support for multiple
programming languages. Their C analyzer is focused on user space programs
which is expressed by their reliance on malloc and free for memory management
routines, and unfortunately alternative memory management routines can not be
substituted for analysis. Other analyzers support this functionality allowing for
custom memory management functions to be considered. CLang even created its
own tool with only memory management analysis features, MallocChecker.

3 Problem

Modern analyzers do not integrate well with batch based compilation. Solution
formats have changed over the years, the makefile does not offer a well formed
entry point to include static analysis down the line. Additionally the actual tools
are so out of date that one can be happy to find a accurate documentation for a at
best twenty year long maintained tool in an ancient version. toolset used for the
WRK either requires diligent setup on Windows 10 machines or getting a Windows
XP VM with tools which have been deprecated for 15 years, such as Visual Studio
2003. Another concrete problem arising from the CVE mapping is that the WRK at
best mirrors the windows kernel at the 12th July 2006, the date where the license
file was last modified. As such, some exploits may have already been fixed in the
WRK source which is hard to verify due to the fact that the exploits do not include
the windows source code at the time of their writing.

3.1 Specific Problem

PVS results come in three severity degrees: advice, warning and critical. The advice
results are largely in line with pedantic compiler warnings, such as comparing a
signed with an unsigned value (even when the comparing value is a constant) or
branch simplification where two consecutive checks against the same variable may
be placed in an outermost if block. They mostly do not offer a lot of insight, and as
such are not the primary target of this investigation. Warning and critical results
in this application refer mostly to missing parameter validation, an unfortunate
byproduct of not having control flow analysis which can trace argument validation
to the callsite. These cases are all annotated with comments describing that the
parameter will not be verified as the caller has already done that.

4 Solution

Modern toolchains for analysis are invaluable and are used at Microsoft to affect
static analysis. PreFAST, the long discontinued tool has been absorbed into the

73

N. Schilli: Tool based analysis of the Windows Research Kernel

Figure 2: Number of errors found by PVS Studio.

Microsoft Visual C compiler (MSVC) which in its newest version (MSVC 2019)
offers a plethora of diagnostics which are unavailable in the 2003 version of the
product. Furthermore, kernel analysis on e.g. the Linux kernel does suffer fewer of
the drawbacks, as the source code is completely available and modern enough to be
compilable with current toolchains. As that is not easily applied to our use case, we
decided on writing manual helpers which try to extract comment validation from
the source and match them with the PVS results. As for the mapping of CVEs to
the source code we also employed a helper to classify the defect origin containing
component to ease the workload for finding an exploit present in the WRK source
code.

4.1 Specific Solution

During analysis of the results we decided on finding variations of commonly used
comments to get an estimate for the amount of PVS results which can be explained
by comments in the source code. Ultimately we settled on the word list in Annex A,
which definitely does not include all comments which explain missing validations.
Nevertheless the small word list generated 150 different matches in the .c files,
which often coincided with PVS results.

74

5 Implementation

Figure 3: Kinds of assumptions expressed in comments.

5 Implementation

The WRK analysis tool checks all .c files and checks line by line whether they
contain a common comment annotation substring, i.e. an expression which occurs
in different places as a comment explaining the missing validation. This approach
obviously is far from ideal, as it currently is suffering from a bad hit rate on
varying expressions due to missing a stopword filter, stemmer and the like. The
only normalization done is transforming all text to the lower character variants to
elide capitalization errors. As this was not the focus of this project the drawbacks
are acceptable for us. The second analysis tool checks the tables downloaded from
the CVE Details website2 for component names such as ’GDI’, ’.NET’ etc. to reduce
the amount of exploits to be checked before we find one where all components are
present in the WRK source code. Of the 500 exploit descriptions checked this way,
306 contained one term listed in Annex B.

In the resulting set of exploits we discovered CVE-2005-2827, a local privilege
escalation exploit which resides inside the thread termination routine. The entire
infection chain resides inside of source code available in the WRK.

2https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-739/
Microsoft-Windows-Xp.html.

75

https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-739/Microsoft-Windows-Xp.html
https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-739/Microsoft-Windows-Xp.html

N. Schilli: Tool based analysis of the Windows Research Kernel

Figure 4: Sources of exploits found by the analysis.

5.1 Minor Detail

The vulnerability origin is located inside PsPExitThread’s APC freeing loop as
well as in the behaviour of KiMoveApcState, which is in the call stack down-
stream from PsPExitThread. When a thread is in the process of exiting, PsPExit-
Thread will detach the thread’s APC queues from the first two elements in the
EThread.ApcState.ApcListHead list, so that each queue is now a circular doubly-
linked list. Here the defect occurs, as it is intended to free the pointer supplied by
the kernel. If the exiting thread is the last thread associated with a process, PsPEx-
itProcess may be called during the apc cleanup routines, which in turn reconnects
the previously disconnected first list elements. The callstack is displayed in Figure 5

for brevity, as the actual code spans several hundred lines.

6 Evaluation

PVS would not have been able to find this vulnerability due to not working well
with inline assembler in C source code. Furthermore, it is an intricate exploit which
requires knowledge of control flow and entries to Windows data structures which
PVS does not have. A kernel based static analyzer would not have caught this
exploit either due to the same reasons. Nevertheless the choice of PVS as analyzer
was definitely misguided.

76

7 Related Work

Figure 5: Call stack of the CVE-2005-2827 vulnerability.

6.1 Threats to Validity

The choice of PVS was a blunder, a kernel focused analyzer would most probably
provide better insights. Also, as we did not have the entire kernel source code
available our analysis was obviously incomplete. A more thorough approach could
be taken by trying to obtain PreFAST and use this to facilitate better understanding
of the windows kernel as it was used during that time at Microsoft for the windows
kernel. Ultimately, better analysis tools could produce better results but as far as
the analysis with PVS went it was sufficient for some insights. Furthermore, due
to the recent leak of Windows source code spanning from 3.1 to Windows 7 CE
one could probably apply more modern techniques to the newer source code. This
might result in clearer insights as well as a more uncurated view on the source
code, as the WRK source was explicitly polished before the release.

7 Related Work

Fuzzing is an integral part in kernel hardening, as projects such as kAFL or Google’s
Syzcaller have demonstrated. Fuzzing is an automated analysis technique where
the system under test (SUT) is provided with unexpected or invalid data input.
If the SUT responds in an unintended manner a bug may have been found. The
effectiveness of this technique has been proven time and time again by revelations

77

N. Schilli: Tool based analysis of the Windows Research Kernel

such as Shellshock or more recently in 2018 when the existence of a reduced in-
struction set (RISC) was discovered which allowed circumventing all processor
privilege checks. Research into kernel hardening and security has lead to scores
of new security features for the kernel, such as Kernel Address Protection, Patch-
Guard, Boot Configuration Data or most recently, Kernel Data Protection by means
of virtualization based security. These features all work to prevent unauthorized
kernel data modification, but as complexity rises new attack vectors still continue
to appear regularly. The static driver verifier (SDV) deserves a special mention here
as well. It is the must-use tool for Windows kernel driver development, offering
intricate knowledge of the Windows driver kit (WDK) functions and their use and
even finding dozens of bugs in the official WDK samples.

8 Conclusion

Using a user space analyzer for kernel space code comes with several drawbacks
which seriously limit the ability to glean useful insights into the SUT. All memory
management based warnings are useless, as malloc/free are not present but rather
kernel specific allocation routines. Furthermore due to not being able to trace call-
sites argument validation bugs was a big false positive source as well. In addition
to this, we also have an even more limited analysis as all functions containing inline
assembler are not processed either. In conclusion, while the analysis did provide
some results, they were often annotated by comments in the source code. In ad-
dition to the reduced result set due to earlier mentioned shortcomings the results
were not as meaningful as hoped. This does not reflect on other analyzers, as a
kernel focused analyzer will probably provide better results. A modern compiler
will also emit more warnings and suggestions than the MSVC 2003 compiler, which
would be valuable on its own.

78

9 Annex A – Comments analyzed

9 Annex A – Comments analyzed

must be 0

must be <
must be smaller than
must be >
must be greater than
must be zero
must be non-zero
must be aligned
must fit within
at least as large
is expected to
is required to
must be sizeof

79

N. Schilli: Tool based analysis of the Windows Research Kernel

10 Annex B – Exploit description terms

gdi
win32k.sys
.net
internet explorer
bluetooth
font
rdp
rap
csrss
directx

11 Annex C – Abbreviations

PVS - PVS-Studio, a static analysis tool
WRK - The Windows Research Kernel
WDK - Windows Driver Kit
RISC - Reduced instruction set

80

Performing Deep Packet Inspection in User Space
Implement a nf_queue backend to filter packet payloads in user space

Leonard Seibold

Hasso Plattner Institute for Digital Engineering
leonard.seibold@student.hpi.de

While there are already many tools for rule based filtering of packets
available, most prominently iptables, those tools are usually limited to
packet header information and do not allow for a more in-depth analysis
of the application layer payload. This may suffice in most use-cases, deep
packet inspection however can allow for much more advanced intrusion
detection and traffic shaping. The author has investigated ways to imple-
ment deep packet inspection on Linux, how the process can be moved
into user space and demonstrated a way how user space packet filters can
be orchestrated using UNIX pipes.

81

mailto:leonard.seibold@student.hpi.de

L. Seibold: Performing Deep Packet Inspection in User Space

1 Introduction

This reports represents the development process, results and changes in the original
idea of my project “Deep Packet Inspection” I worked on for the Operating Systems
II lecture at the Hasso Plattner Institute. The goal of the project originally was to
perform “Deep Packet Inspection” on a Linux based operating system, however,
new ideas started to emerge while learning more about the architectures and APIs
used in the Linux kernel.

Deep packet inspection is generally understood to be the process of analyzing
packet payload data and taking actions according to that data if wanted. Actions
may include dropping the packet, traffic shaping, network address translation or
even manipulating the payload before the packet gets passed on. Typical firewalls,
for example the well-known iptables, usually only filter by information found
in the internet and transport layer headers of packets, such as source and target
IP addresses, TCP/UDP ports and so on. This suffices in most situations, as it
allows for network address translations and traffic shaping operations, securing
servers by allowing only specific source IP addresses and so on. There are how-
ever many use cases for which a firewall that is capable of deep packet inspection
may provide significant benefits. For example by analyzing the application layer
protocol, much more advanced intrusion detections and DDoS protections are
possible. Attackers often abuse bugs in serverside applications by sending data
the protocol-implementation cannot handle properly and thereby causing a much
higher workload than just sending packets that get dropped instantly. Other appli-
cations of the technique such as load balancing are conceivable as well. The scope
of this project is however not to find and implement these applications but merely
to explore ways how deep packet inspection can be implemented on a Linux based
operating system.

2 Development Process

2.1 Creating a Loadable Kernel Module

The fist step was to understand how package filtering is typically done in the Linux
kernel. After a bit of research, it quickly became apparent that a kernel module
would be needed to perform deep packet inspection. As I did not have any experi-
ence with Linux development, my first goal was to create a loadable kernel module
(LKM). As the build process is not trivial, I decided set up the project repository
with CMake. This ensured builds are reproducible, source files could be added
easily without manually updating a Makefile and it would be easy to later add
new modules to the project, for example a user space library to interact with the
kernel module.

82

2 Development Process

2.2 The Netfilter API

After getting a simple kernel module to load, the next step was to understand
how I could hook into the packet traversal in the Linux kernel. Since version 2.4,
Linux includes the so called Netfilter API. [6] This API allows Kernel developers
to register synchronous hooks at various stages of the packet traversal (e.g. at pre
routing, forwarding, input etc.). [4] Those stages happen to match iptables’ filter
chains, as the iptables backend that actually filters packets is in fact implemented
using the same Netfilter API. Those hooks then receive a pointer to a sk_buff (the
data structure that represents packets in the Linux kernel) and can decide whether
to accept, drop or queue the packet (see Listing 1 for a simple example).

Listing 1: Registering a hook to the Netfilter Framework

1 static struct nf_hook_ops *nfho = NULL;
2

3 unsigned int hook_func(void *priv
4 struct sk_buff *skb
5 const struct nf_hook_state *state)
6 {
7 // analyze packet data and cast a verdict
8 return NF_ACCEPT;
9 }

10

11 static int __init LKM_init(void)
12 {
13 nfho = (struct nf_hook_ops *)
14 kcalloc(1, sizeof(struct nf_hook_ops), GFP_KERNEL);
15 nfho->hook = (nf_hookfn*) hook_func;
16 nfho->hooknum = NF_INET_PRE_ROUTING;
17 nfho->pf = PF_INET;
18 nfho->priority = NF_IP_PRI_FIRST;
19 nf_register_net_hook(&init_net, nfho);
20 }
21

22 module_init(LKM_init);

This approach worked fairly well. The hook function can access the full packet
payload, interpret it and take actions accordingly. It can even manipulate packet
data and therefore even advanced operations such as traffic shaping and network
address translation are possible.

83

L. Seibold: Performing Deep Packet Inspection in User Space

2.3 Moving the Filter to User Space

It is however quite inconvenient to write a Kernel module for every filter we want
to apply. At this point, I decided to try and move the actual filter process to user
space. As the Linux kernel does not have direct upcalling capabilities (there is no
way to just call a function in user space from kernel space without some sort of
inter process communication), I therefore needed to explore different ways of how
to communicate with a user space process. [3]

My first idea was to use a pseudo filesystem. Pseudo filesystems are commonly
used to expose kernel space information to user space and to provide an inter-
face for configuration of Kernel (module) features at runtime. This is done via
files. These do however not represent information written to physical disk, but
rather constitute inter process communication with the kernel. Many examples for
this technique can be found in the Linux kernel, for example the process pseudo
filesystem that exposes information about running processes, or the devices pseudo
filesystem that contains raw interfaces to physical (and virtual) devices of all kind.
After getting a simple sysfs based interface to work, I quickly discarded this first
approach, as the read and write operations are not stream based. The API simply
provides a char buffer that can be read from or written to. While there are ways to
implement stream based operations (e.g. via a character device driver), other inter
process communication techniques seemed much more appropriate for the stream
oriented nature of packet traversal.

2.4 IPC via Sockets

My next idea was to use socket based inter process communication to transmit
packet data and receive verdicts from a user space process. I decided to go for a
UNIX domain socket. The specification allows us to use the filesystem as address
space. This means, a file will be created when launching the socket that represents
it to user space. One advantage if this is that I did not need to implement any
authentication or access control myself, I could just set the file access modes ap-
propriately, for example to only allow user space processes running under the root
user to access the socket.

As the socket API is not well documented and has some important differences
to the user space variant, it took me a while to get basic communication to work.
I was then able to send packets to a user space client. I then noticed a problem
with the approach: to receive the verdict from user space, the thread receiving the
data needs to wait. Normally this is done by scheduling the thread until a client
writes to the connection. This does however not work in the hook function’s context
as the kernel is atomic at that time. Trying to wait anyway causes a kernel panic.
While it would technically be possible to use a busywait loop that continuously
checks whether new data has been written to the connection, this is not advisable

84

2 Development Process

as blocking an atomic kernel thread causes further problems. These kernel threads
wont be scheduled automatically so a busywait can ultimately cause the system
to become completely unresponsive. This was a big problem, as there is no easy
workaround.

After many hours of research, I learned about another feature of the Netfilter
framework. Netfilter hooks not only can decide whether to drop or accept a packet,
they can also make the framework queue it. This means, that the packet will not
continue in packet traversal, but its memory resources will also not be freed. It
can then later be reinjected into packet traversal using another API function. While
trying to learn more about this part of the API, I noticed that it is already used by
another in-source kernel module called the nfnetlink subsystem. [7] This subsystem
implements essentially exactly what I was trying to achieve: it provides an IPC in-
terface using a netlink socket (which works fairly similar to UNIX domain sockets)
for user space packet filtering. Due to the basically non-present documentation,
I was however not able to get it to work as promised. As this is also a learning
project and the socket communication part was already implemented, I therefore
decided to go ahead with my own implementation.

2.5 Implementing a Queue Handler

The Netfilter API allows us to register queue handlers similar to the registration
of packet hooks. This queue handler gets called whenever a hook commands the
framework to queue a packet. The queue handler is however allowed to schedule
at any time. This allowed me to keep track of meta information needed to reinject
the packet that was sent to user space in a thread safe manner using mutex locks.
After many debug sessions (I ran in many smaller multithreading related problems
such as lost wakeups due to unsafe locking, etc.) I eventually got this approach to
work and was able to to filter packets in user space. I also wrote a small user space
library to easily pull packets from the kernel without the need to manually handle
the socket connection.

2.6 Orchestrating User Space Packet Filter with Pipes

While presenting my progress in the BS2 Sessions another idea arose. It would
be nice to be able to orchestrate multiple small filter programs together instead
of one single complex filter program. A UNIX centric approach that uses already
well known concepts seemed like a sensible solution: combining multiple filter
programs with FIFO pipes. I therefore implemented a simple user space program
that simply writes the packets it receives from the kernel module via the socket
connection to a FIFO pipe and reads the packets and verdicts to push back to
the kernel module from another FIFO pipe. I could then implement small filter
programs that read packet and verdict information via the standard input and

85

L. Seibold: Performing Deep Packet Inspection in User Space

write packet data and their verdict to standard output instead of using the socket
connection directly. This allowed me to simply chain them together via shell pipe
operators. I also extended the user space library with functions to wrap the read
and write process and provide data structures for the packet data and verdict. A
simple packet filter that uses this framework can now be implemented as simple
as seen in Listing 2.

Listing 2: Filtering packets in user space using the pipe based approach

1 #include "dpi.h"
2 #include <stdlib.h>
3 #include <unistd.h>
4

5 int main()
6 {
7 p_buff packet;
8 unsigned char data[MAX_BUF_SIZE];
9 unsigned int verdict;

10

11 while (1) {
12 read_packet(STDIN_FILENO, &packet, data, &verdict);
13 /*
14 analyze packet.data, eventually set the verdict,
15 e.g. to DPI_DROP
16 */
17 write_packet(STDOUT_FILENO, &packet, verdict);
18 }
19

20 return 0;
21 }

The pipe handler also pushes back the packet data to the kernel module, so it
is also possible to manipulate the packet payload. This means a user space packet
filter has essentially the same capabilities as a Netfilter hook based packet filter
in kernel space and can even implement advanced things like network address
translation.

This concludes the development process of this project.

3 Analysis

3.1 Limits

While this approach for user space filter programs is quite powerful regarding its
packet filtering and manipulation capabilities, there is a big downside to it: per-

86

3 Analysis

formance. Sending packets to user space via sockets comes with a lot of overhead.
Multiple threads are involved, those threads regularly need to wait for locks to
ensure thread safety. This introduces many context switches that need to happen
before a packet continues traversal. The packet data also gets copied around in
memory quite a bit as kernel memory is not directly shared with the receiving side
of the socket connection (this would obviously constitute a big security risk and
violate the kernel space isolation). On the client side it does not look better: all
read and write operations regarding the socket are implemented with system calls
which means that receiving a single packet with meta information in user space
needs multiple software interrupts. Adding the pipe based orchestration technique
makes this even worse as this is the same for read and write operations on pipes.

This analysis makes it obvious that the process comes with a probably quite
significant performance impact, even though I was not yet able to properly measure
this impact due to time constraints for this project.

3.2 Related Work and Alternatives

The most important alternative to mention is of course the existing nfnetlink sub-
system and the corresponding user space library (called libnfnetlink_queue)
of the Netfilter project. The approach is extremely similar to mine, the biggest dif-
ference essentially being the use of a different socket type. The nfnetlink subsystem
also implements more sophisticated things such as per network namespace queues.

Another approach that deserves to be mentioned are extended Berkeley Packet
Filters, or short eBPF. [1, 2] Newer Linux kernels (from 3.15) include a in-kernel
virtual machine. This machine can execute eBPF programs (compiled to a bytecode
format) at various trace points in the kernel. This allows for packet filters that are
safe (a crash does not affect the kernel as the programs runs in a virtual machine)
and much faster [5] than my approach (the filter program gets executed directly
in kernel space without the need to communicate with a user space process).
While eBPF has many advantages, especially regarding the performance impact, it
also has its own limitations. For example to be able to guarantee that a program
terminates, the eBPF virtual machine does not allow instructions to jump back in
the execution, so while writing eBPF programs, only loops that can be unrolled
at compilation time can be used. [5] eBPF programs also have a size limit. [5]
While it possible to work around this by attaching multiple eBPF programs that
get executed in succession, these limitations in combination with the fact that user
space libraries cannot be used make it significantly harder to implement packet
filters, especially those that parse application layer protocols.

3.3 Next Steps

The first thing needed is to make the implementation more stable. At its current
state the repository is highly unstable. There are several memory leaks present
in the kernel module. Also, it does not properly clean up, e.g. the file the socket

87

L. Seibold: Performing Deep Packet Inspection in User Space

gets bound to will not be deleted automatically after unloading the module which
prevents it from loading again if not deleted manually. There are also other imple-
mentation details that should be improved.

To be able to assess the usability of this approach better, a more in-depth perfor-
mance analysis including performance profiling data is needed as this is the biggest
limiting factor. More research is also needed to evaluate whether the process can
be sped up by more parallelization in kernel and/or user space (this could possible
make sense in the case of multiple network interfaces).

Furthermore, it would be interesting to investigate whether alternative techniques
such as eBPF could be integrated into the process to make use of their respective
advantages.

4 Conclusion

While working on this project, I learned a lot about Linux development: how load-
able kernel modules work, what the Netfilter API is and how packets traverse the
kernel, how thread safety becomes quite important in kernel space and how to use
different approaches to inter process communication. I was able to greatly improve
my understanding of operating system concepts by actually working with them
directly.

While I reached my original project goal faster than I thought in the beginning of
the semester, this also allowed me to introduce new goals after learning more about
what the challenges are and how the different APIs work. I was therefore able to
achieve more than I thought possible with the amount of experience and time I had.

The project greatly motivated me to deepen my knowledge and understanding
of operating systems and especially the Linux kernel even further. As already
explained in subsection 3.3 there are many ways to continue this project.

References

[1] J. Corbet. A JIT for packet filters. https://lwn.net/Articles/437981/.
Online; accessed 30-September-2020.

[2] T. Graf. Why is the kernel community replacing iptables with BPF? https://ci
lium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-
iptables/. Online; accessed 30-September-2020.

[3] Kernel Space, User Space Interfaces. https://wiki.tldp.org/kernel_user_
space_howto/. Online; accessed 30-September-2020.

88

https://lwn.net/Articles/437981/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://wiki.tldp.org/kernel_user_space_howto/
https://wiki.tldp.org/kernel_user_space_howto/

References

[4] I. Pronchev. Packet Capturing Using the Linux Netfilter Framework. Technische
Universität München. Online; accessed 30-September-2020. 2006.

[5] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle. “Per-
formance Implications of Packet Filtering with Linux eBPF”. In: 2018 30th
International Teletraffic Congress (ITC 30). Volume 01. https://www.net.
in.tum.de/fileadmin/bibtex/publications/papers/ITC30-Packet-
Filtering-eBPF-XDP.pdf. 2018, pages 209–217.

[6] The Netfilter Project. https://www.netfilter.org/. Online; accessed 30-
September-2020.

[7] The netfilter.org “libnfnetlink” project. https://www.netfilter.org/project
s/libnfnetlink/. Online; accessed 30-September-2020.

89

https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ITC30-Packet-Filtering-eBPF-XDP.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ITC30-Packet-Filtering-eBPF-XDP.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ITC30-Packet-Filtering-eBPF-XDP.pdf
https://www.netfilter.org/
https://www.netfilter.org/projects/libnfnetlink/
https://www.netfilter.org/projects/libnfnetlink/

LM-EV3-NS-OS-UART-BS-EP
Extending NinjaStorms by UART drivers

Marc Fabian Lindner

Hasso Plattner Institute for Digital Engineering
marlindner@uni-potsdam.de

This project report shows the development of a new feature for the Ninja-
Storms Operating System, which enables one to read data from the Lego
Mindstorms EV3 UART Sensors. We create a function to print out colors
that were measured with the EV3 color sensor, which can be used as a
blueprint for other sensors. To do that, we will give a summary on the
protocol, that the EV3 sensors use. We also discuss different problems
and other complications that arose during the development process and
how these problems were solved. For that matter, we will compare our
own developed code with the original Lego Source Code for the EV3

and take a look at the different advantages and disadvantages of both
implementations. We end our report with an outlook on possible further
advancements and improvements of this feature.

1 Introduction

1.1 Motivation

The Lego Mindstorms EV3
1 (short: EV3) is a programmable robot out of Lego

parts, which aims to introduce kids and teenagers to programming. On the EV3

itself installed is a custom made Linux distribution. However the EV3 also allows to
launch a custom made operating system from a MicroSD Card. One of these custom
made operating systems is NinjaStorms.2 It is a very minimal operating system and
only supports some basic features. For example it can already read out the state
of the EV3 touch sensor or the EV3 ultrasonic sensor. Since most of the sensors,
especially the newer ones, are more complex and support more features, they now
use UART (Universal Asynchronous Receiver Transmitter) devices to communicate
with the EV3. Currently there is no feature implemented in NinjaStorms, that would
allow one to communicate with these UART sensors, which makes it impossible to
read out data from these sensors. The main goal of this project is to implement this
functionality and lay out the groundwork to read out data from all UART sensors.

1https://www.lego.com/en-us/product/lego-mindstorms-ev3-31313.
2https://github.com/ninjastorms/ninjastorms.

91

mailto:marlindner@uni-potsdam.de
https://www.lego.com/en-us/product/lego-mindstorms-ev3-31313
https://github.com/ninjastorms/ninjastorms

M. Lindner: LM-EV3-NS-OS-UART-BS-EP

1.2 The development plan

To achieve this goal we created the following project plan:

1. Control the already existing sensor code: In this step we check if the already
implemented code for the touch sensor and the ultrasonic sensors are working
correctly. We do this to ensure, that we won’t run into errors and problems
later on, that arise from the assumption, that the already implemented code
works correctly.

This step also has the added purpose of learning and understanding the
source code of NinjaStorms. We especially look out for parts of the code that
can be reused for our own implementation of the UART sensors.

2. Learn UART communication: This step focuses on gathering information on
UART devices and how they communicate with one another. We also need
to research how we can send and receive data on a software level, since we
do not know how much access to the hardware of the EV3 we will have.
Therefore it is especially important to find information targeted specifically
at the chipset that is used in the EV3.

Since this step shares some common goals with the next and previous step,
we can work on this step in parallel to the other two.

3. Read the documentation for the EV3 and the UART sensors: After we
informed ourself how the UART communication works in general, we will
take a look at the official documentation for the EV3. For us the Hardware
Development Kit and the Firmware Development Kit are of great interest.3

We will use these two documentations to learn, how the EV3 communicates
with it’s sensors and which top-level protocol or format it uses for that.

All this is mainly preparation for the next step of our plan.

4. Look at already existing implementations: This is the most important part
of our entire project work. Here we will take a look at previous works, that
already implemented the UART protocol for the EV3. We have the choice
between a lot of custom made operating systems for the EV3 that support
communication via UART. To achieve the best results, we decided to mainly
look at just one specific code base: the official operating system for the EV3,
which was developed by the Lego Company.4

We will use this code together with our accumulated knowledge from the
previous steps as a base for writing our own implementation.

5. Implement code to communicate with UART devices: After we finished our
research on the topic, we can start our own implementation of the UART

3https://education.lego.com/en-us/support/mindstorms-ev3/developer-kits.
4https://github.com/mindboards/ev3sources.

92

https://education.lego.com/en-us/support/mindstorms-ev3/developer-kits
https://github.com/mindboards/ev3sources

2 Research Summary

communication in NinjaStorms. Our goal is to write code that is independent
from a specific sensor and can therefore work with every UART device, not
just the EV3 sensors. If possible we also want our code to be not specific
to the EV3 and also work in different situations (for example on a different
hardware), most notably the QEMU5 emulator.

6. Add functions to communicate with EV3 sensors and implement one new
sensor: In the final part of our project work, we will make use of our pre-
viously created code and functionality to implement top-level functions for
communicating with the EV3 sensors. We conclude our project with writing
one function to read out actual data from one EV3 sensor, which can after-
wards be used as a blueprint to write new functions for new EV3 sensors or
functions with different behavior.

We need to point out, that many of the steps have overlapping parts. Therefore
we often worked in multiple steps at once and sometimes even went back to old
steps, but with some new knowledge or to gather new information. Even though it
was not possible to follow the outlined order of steps strictly, the plan still provides
a good overlook at the approach we took and the order in which we completed
tasks during our project work.

Therefore we have to note, that the plan proved to be a very successful approach
to achieve the final goal of this project.

2 Research Summary

In this chapter we will summarize the most import research findings for the future
project work. This will mainly cover steps one to three of our research plan, but
will also include some knowledge from step four.

2.1 UART

UART stands for "Universal Asynchronous Receiver Transmitter". It refers to dif-
ferent hardware devices, that can be used for a serial communication. Two UART
devices can communicate with one another via two shared lines, commonly called
the TX (Transmitter Line) and RX (Receiver Line). The UART device can accept one
byte of data and it sends all bits sequentially, which will than be received by the
opposite UART device, from which the full byte can be retrieved afterwards.

Since we use two different lines, we have a bi-directional communication. It is
however to note, that UART devices don’t use a clock line, like many other devices
to transmit and receive data. Therefore we have to manually set the used bitrate
(the number of bits transmitted per second) for every application and the bits need

5https://www.qemu.org/.

93

https://www.qemu.org/

M. Lindner: LM-EV3-NS-OS-UART-BS-EP

to be send asynchronously. To ensure a correct transmission, the bitrate needs to
be identical on both ends.

We can access and modify different settings, as well as send and receive data
on a software level via the use of multiple registers, which are mapped to specific
hardware addresses.

2.2 Protocol used for sensor communication

The EV3 implements its own protocol on top of UART to communicate with the
different EV3 sensors, here called the sensor protocol. The protocol itself is very
modular, which makes it possible to easily use new sensors, without modifying or
extending the original EV3 firmware.

Every sensor has different modes. The data it will measure and send is deter-
mined by the mode the sensor is currently in. A sensor can only be in one mode at
a time and the amount of modes a sensor has is different for each sensor.

A visualization of the protocol can be seen in Figure 1. The protocol is described
in further detail below. It can be roughly separated into two different parts.

Figure 1: A summary of the sensor protocol

94

3 Implementation Phase

First comes the initialization sequence. In this part the sensor just sends a bunch
of data to the EV3, mainly describing its different modes. It sends for example
the names of every mode, as well as a range of values it can send while in this
mode and in how many bits this data is transferred. But the sensor also sends some
generic information about itself, for example the bitrate which it will use to send
the measured data. At the end of the initialization sequence the sensor expects a so
called ACK Byte (Acknowledgement Byte) from the EV3, to confirm the integrity
of the transmitted data. This also marks the initialization sequence as complete.
If the sensors does not read an ACK Byte, it will simply retransmit the data after
a short amount of time. After the initialization sequence is completed, the sensor
will change the bitrate in which it will transmit data from now on and it will start
sending data for the default (first) mode. As an example, the initialization sequence
of the EV3 color sensor can be found in Appendix 1.

With that the second part of the protocol begins, where the sensor will continu-
ously send the data it measures. While switching modes, the sensor changed the
bitrate it communicates in. Therefore we also need to adjust the bitrate of the EV3,
in order to receive this data correctly. The data is send in packets. Each packet
begins with a start byte, which contains the mode the sensor is currently in and
also the amount of bytes of actual data, which is equal to the length of the packet
minus 2. After that the data is send. A packet ends with a checksum byte, which
is a simple XOR Operation over all previous bytes from the packet. The start and
checksum both do not contain new information and are just a help to determine
the start of a packet or check for the integrity of the transmitted data. We are able
to change the current mode of the sensor by sending a specific MODE packet. The
sensor will change modes, as soon as it receives the MODE packet. In order to
confirm, that all the data was transmitted correctly, the sensor expects a NACK
Byte (Not Acknowledgement Byte) to be send at least once per second. If it does
not receive such a NACK Byte it will reset itself and we have to go through the
initialization sequence again.

3 Implementation Phase

After we have gathered enough information from our research, we are ready to
start implementing our own solution. Since a very primitive UART write function
already exists in the NinjaStorms codebase to communicate with a serial console,
we will start there and try to extend it, to allow also reading from a serial console.
When this turns out to be successful, we will then start to implement our first layer
of code, which handles the raw UART communication with different devices. In
the end we will write our second layer of code, which will implement the commu-
nication protocol used by the EV3 sensors and write a small example function to
communicate with an EV3 color sensor.

95

M. Lindner: LM-EV3-NS-OS-UART-BS-EP

3.1 getchar function

We start by writing a simple getchar function, which will read one character of
data from an UART device and output it. It is intended to be used with the serial
console. We can base our function on the already implemented function putchar,
which takes one character as an input and sends it to an UART device.

We can access the last read byte, by simply dereferencing a specific hardware
address, which points to the Receive Buffer Register (RBR). This will also clear
the register for the next byte. The hardware address can be found by reading the
documentation of the chipset, that is used in the EV3. Because the built in UART
device used for sending and receiving data has a FIFO built into it, we don’t have
problems with characters arriving in the wrong order or characters dropping out
for now. This makes our code significantly easier.

The only thing we have to look out for, is to only read out the register, when
actual new data is available. If we try to read the contents of the register, while
there is no new data available, the read operation will return an undefined result.
Therefore we have to wait until new data is available before we start the read
operation. The UART device offers us two possibilities to do this.

The first is to make use of the built in interrupt system. By reading out the state of
the Interrupt Identification Register (IIR), we can wait for an interrupt that signals
new incoming data. This solution works in most cases, but we run the risk, of not
receiving the interrupt, because it was already handled by another function. Since
interrupts are only send once and the state of the IIR resets when we read it, too,
we could potentially wait indefinitely.

The alternative solution is to make use of the Line Status Register (LSR). This
special register holds various information on the state of the UART device. This also
includes one bit which indicates wether new data is available to read. The LSR has
the benefit, that it does not reset when we read it and it therefore always represents
the current state of the device. This solution is also very easy to implement and
keeps our code short and easy to understand.

Using the second approach, our code is only a few lines long and works very
well with a serial console, as long as we can read and process the data fast enough.
If we fail to do this, the internal FIFO of the UART device will overflow and new
incoming data will overwrite old data. This can lead to weird and unpredictable
behavior. This problem was not fixed, because we would need a working interrupt
system and an ability to request memory at runtime to store newly read data, both
of which were not implemented in NinjaStorms at the start of the project work.

3.2 GPIO pins and UART register setup

After implementing this first prototype, we immediately notice some big problems:
Our code only works with a serial console and only on port 1. We assumed, that
the sensors needs some extra initialization to start a UART communication, so we
started looking for initialization functions in the original EV3 code. We found a few
functions that were involved during the initialization phase, which handled the

96

3 Implementation Phase

setup of some other UART register and that also enabled some General Purpose IO
(GPIO) pins. So we extended our own implementation and created an initialization
function.

But this still was unsuccessful and we were unable to read any data from the
UART sensors. This problem proved to be a great obstacle and took many days
of research across different sources and some help to overcome. We found the
solution in the hardware documentation of the chip that was built into the EV3.
This chip had some extra registers, one of which was the Power Management
register (PWMG), which had to be set to a special value, in order to send power
to the sensor. This was not needed if a serial console was attached, since it was
already powered by the other end point of the connection, most likely a computer.

There is one other point of interest with this problem however: The PWMG
register was never used in the original EV3 source code. We also could not find
any other code, that would fulfill the same purpose. It is unknown wether the
original EV3 source code works as expected and if so, how it manages to do so.
Since building the EV3 source code proved to be a non trivial task, this was not
further looked into.

We also need to note, that a closer look at the original EV3 source code revealed,
that the UART communication for the sensor ports 3 and 4 works entirely different
than the one for the first to ports and therefore needs it’s own separate implemen-
tation. This was also confirmed by the EV3 hardware development kit. In order
to keep this project manageable, we decided to focus our future work only on the
ports 1 and 2.

3.3 UART implementation summary

The biggest decision we had to make for our implementation, was how we wanted
to access the different UART registers. We had multiple options, all with there own
advantages and disadvantages. We decided, it would be best, to keep our code the
most readable and accessible for future work. Therefore we concluded, that the use
of C-Structs would be the most optimal and give the most natural result.

We started by creating a new Struct datatype uart_registers, which lists all
the names of the available registers in the order they appear in. This approach
works well, since all the registers of one UART device are grouped together with
no memory in between and all registers have the same byte length. In the case of
the EV3 it was four bytes for each register. For every element of the struct we need
to choose a datatype which corresponds to exactly four bytes of length. In most
cases, the normal int datatype fulfills this requirement. We chose to use unsigned
int, to make accessing single bits of a register a bit less troublesome. Since some
registers use the same hardware addresses, but are restricted to read or write only
access, we also made use of unnamed unions in our struct.

As a convenience, we also created an array which contains pointers to uart_registers,
but instead of creating these structs ourself and writing the addresses into the array,
we simply write the addresses of the first UART register to the array. This makes
it possible to access all UART registers of all the UART devices (currently only

97

M. Lindner: LM-EV3-NS-OS-UART-BS-EP

the devices for port 1 and 2) via a single array. The port can be selected via the
numbers 0 to 3, or via the already existing sensor_port enum, and the register
can be selected by accessing single values of the struct. If we, as an example, want
to access the Line Status Register (LSR) of port 2, we can do this very easily with
the following snippet:
uart_ports[SENSOR_PORT_2]->lsr

This approach has also some disadvantages. The biggest one, is that the whole
code is extremely vulnerable to changes in the uart_registers struct and the
corresponding data types. One small change could easily make the entire code fail
and lead to undefined and potentially dangerous behavior. This problem however
should not appear in practice, since modifications on the struct are not expected
to happen and are also not needed, since the struct already contains all available
registers.

The other disadvantage being that we cannot protect the registers from unin-
tended use, meaning it is possible to write to a read-only register or read from a
write-only register. Since a read and a write-only register share the same address
space, this leads to the access of a wrong registers, which in turn can lead to un-
defined behaviors and errors. This could be solved to some degree by the use of
wrapper functions for every register, but this would make the code unnecessarily
complex for just such a simple task. Therefore at the moment caution is advised,
when working with the UART registers directly.

We also implemented some small and simple functions to work with the UART
device, which make use of the UART registers. The functions we implemented for
example enable us to read and write data via a UART port or change the bitrate,
that the UART device works with. These functions are very simple and only a few
lines long, wherefore we will not discuss these functions in more detail here.

3.4 EV3 sensor example code

On top of the functions for the UART communication we made some functions to
communicate with the EV3 sensors specifically. These functions mainly consist of
reading data until some specific sequence of data was read and afterwards sending
some specific data. These functions implement different aspects of the EV3 sensor
protocol. With the help of these functions it is really easy to write code for different
applications, which want to make use of the EV3 sensors.

We will now take a look at an example application, which uses the EV3 color
sensor to detect colors and prints out the numbers associated with the detected
colors on the console. A simple version of this demo function looks like this:

Listing 1: EV3 color sensor example function

1 void demo_ev3_color(void) {
2 uartsensor_setup_color(SENSOR_PORT_2);
3 uartsensor_change_mode(SENSOR_PORT_2, COL_COLOR);
4 while(1) {
5 unsigned char d = uartsensor_read_data(SENSOR_PORT_2);

98

4 Evaluation

6 printf("%i\n", d);
7 uartsensor_send_nack(SENSOR_PORT_2);
8 }
9 }

Using this function as a blueprint, we can easily create new functions for other
UART sensors. The primary thing we need to change for that, is the function
uartsensor_setup_color. Therefore we will also take a look at this function:

Listing 2: The uartsensor_setup_color function

1 int uartsensor_setup_color(sensor_port_id port) {
2 uartsensor_setup(port);
3 uartsensor_wait_init(port, EV3_COLOR_ID);
4 uartsensor_dump_bytes(port, EV3_COLOR_DUMP);
5 if (!uartsensor_respond_ack(port)) {
6 return 0; // Some Failure occurred
7 }
8 uartsensor_set_middle_bitrate(port);
9 uartsensor_wait_data(port, UARTSENSOR_MODE_DEFAULT);

10 return 1;
11 }

At the end of this function, the initialization part of the EV3 sensor protocol
is done and we are able to read out data from the sensor by using the uartsen-
sor_read_data function.

In most cases it should be enough to change only a few values, to adapt this
function to work with a new sensor. One of these being the EV3_COLOR_ID value,
which holds the ID of the sensor. This ID is sensor specific and is sent by the sensor
itself and can be found out by hexdumping the entire initialization protocol of
the sensor. Another value is the EV3_COLOR_DUMP, which gives the length of the
initialization protocol of a sensor. Lastly one may need to change the bitrate a sensor
uses. This information, again, is sent by the sensor itself during the initialization.

The last thing to note is the uartsensor_send_nack function. Since the EV3 sen-
sor protocol expects a NACK Byte to be send every few milliseconds, it is necessary,
that the user calls this functions often enough. If the function is not called often
enough, the EV3 sensor will reset and a new call to the uartsensor_setup_color
function is necessary.

4 Evaluation

Compared to the original Lego Source Code, our implementation is quite small.
When tested with the EV3 color sensor it worked very well and errors were only
encountered very rarely.

Reading data from the EV3 sensors is also very fast and mainly limited by the
bitrate the sensor uses and not our implementation. Going through the initialization
sequence however is comparatively very slow, with around one to two seconds.

99

M. Lindner: LM-EV3-NS-OS-UART-BS-EP

One reason for this is, that during the initialization sequence the sensor uses the
lowest available bitrate. The main issue however is that when the sensor is plugged
into the EV3, there is a big change of errors occurring during the start of the
communication. When this happens we are unable to detect that a initialization
sequence has just started and need to wait for the next iteration, which consumes a
lot of time. This is really hard to avoid and requires multiple different features, that
are currently not implemented in NinjaStorms, to create a fully working solution
to this problem.

The main drawback of our implementation is the fact, that it is mostly hardcoded.
This is quite a big problem, since the sensor communication protocol is designed
to transmit all relevant data during the initialization sequence, so that even new
sensors can be used without modifying or extending the already existing code. Our
implementation completely ignores this modularity of the protocol and therefore
every new sensor needs to be initialized manually by the programmer. This has the
benefit that the initialization protocol does not need to be parsed and evaluated,
which makes our code faster. The main reason we choose to implement a non mod-
ular approach, was to keep our code small and simple. Implementing a modular
approach is possible, but would drastically increase the code size and complexity.

One big problem with this approach however are communication errors. Com-
munication errors during the initialization sequence are no real problem and are
solved by just waiting for the next initialization sequence. A big problem however
are communication errors that occur during the transmission of data. Our code
has no recovery option implemented, so communication errors are hard to check
for and hard to avoid. This makes our code very unstable, if these errors happen
regularly. In practice, we never encountered these errors and the UART protocol
itself already prevents simple communication errors with the help of a parity bit,
so the significance of this problem is not as high.

One other main downside with our implementation is the non existing handling
of NACK bytes. The sensor expects a NACK byte to be sent by the EV3 at least
every second. This informs the sensor, that it is still connected to the EV3 and
that the data has been received correctly. Optimally the NACK byte would be
transmitted fully automatic by our implementation, completely independent of the
top level application. Since we need to time the transmission of the NACK byte,
we would need some kind of timer based interrupt system. A timer is already
implemented in NinjaStorms, but it is used for the scheduler. Therefore changing
the timer would mess with the scheduler of NinjaStorms, which would lead to
unexpected behavior. A working interrupt system, which makes use of the timer,
first needs to be implemented and the scheduler needs to be changed, to use this
new interrupt system. Another alternative would be to just send a NACK byte as
often as possible in the background. This only requires a basic process scheduler
and not a fully functional interrupt system. Because of other projects on the EV3

that happened at the same time, it was very likely that the scheduler would see
a overhaul, which would mean that our code would need to be rewritten to fit
this new scheduler, once all projects are merged together. Therefore we did not
choose to implement this approach for the time being. At the current state, the

100

5 Conclusion

programmer has to manually send the NACK byte at least every second. Depending
on the application this can be a very easy or a very hard task. Since all projects
have now finished, this would be the problem most worthy reinvestigating.

A working timer based interrupt system would also benefit our code in other
places, for example when detecting the start of a initialization sequence.

5 Conclusion

We could reach our goal of implementing the UART sensor protocol in NinjaStorms.
With this new functionality many new sensor types can be used with the EV3. The
actual effort to implement a new UART Sensor is comparatively small and easy,
requiring only one manual parsing of the initialization sequence of a sensor. This
even enables an easy implementation of many custom made sensors, that follow
the same protocol.

A lot of the base functionality was implemented and only very few features
needed to be cut, mostly because of technical limitations. Excluding some special
details of the EV3, most of the code could also be used for some other hardware,
to enable a basic communication with the EV3 sensors or other UART devices.

During our research phase we had only a very limited amount of resources
available. Additionally the documentation of the EV3 was very short and contained
not much useful information. Therefore we had to rely on the original EV3 source
code as our main source of information. This proved to be challenging at some
points, because the original source code is very big (with over 4000 lines of code)
and can also be very complicated. Despite all of this, we were able to write our
own implementation in considerably less space, and it still works really well.

Considering all of this, we can only see the project as a great success.

101

M. Lindner: LM-EV3-NS-OS-UART-BS-EP

6 Annex – Initialization sequence of the EV3 color sensor

This is the initialization sequence from the EV3 color sensor. Packages are split
up in multiple lines, to improve readability. After every line, a human readable
interpretation of the package is provided.

// TYPE: Device type
40 1d a2
// MODE: Number of modes
49 05 02 b1 | 6 modes, 3 visible |
// SPEED: Max communication speed
52 00 e1 00 00 4c | bitrate of 57600 |

// Mode 5:
// NAME: Name of mode
9d 00 43 4f 4c 2d 43 41 4c 00 41 | COL-CAL |
// RAW: Raw value span
9d 01 00 00 00 00 00 ff 7f 47 a4 | 0.0 - 65535.0 |
// SI: SI unit value span
9d 03 00 00 00 00 00 ff 7f 47 a6 | 0.0 - 65535.0 |
// FORMAT: Format data
95 80 04 01 05 00 ea | 4 * 16Bit values, 5 decimal places |

// Mode 4:
9c 00 52 47 42 2d 52 41 57 00 5d | RGB-RAW |
9c 01 00 00 00 00 00 0c 7f 44 55 | 0.0 - 1023.0 |
9c 03 00 00 00 00 00 0c 7f 44 57 | 0.0 - 1023.0 |
94 80 03 01 04 00 ed | 3 * 16Bit values, 4 decimal places |

// Mode 3:
9b 00 52 45 46 2d 52 41 57 00 5c | REF-RAW |
9b 01 00 00 00 00 00 0c 7f 44 52 | 0.0 - 1023.0 |
9b 03 00 00 00 00 00 0c 7f 44 50 | 0.0 - 1023.0 |
93 80 02 01 04 00 eb | 2 * 16Bit values, 4 decimal places |

// Mode 2:
a2 00 43 4f 4c 2d 43 4f 4c 4f 52 00 00 00 00 00 00 00 6d | COL-COLOR |
9a 01 00 00 00 00 00 00 00 41 25 | 0.0 - 8.0 |
9a 03 00 00 00 00 00 00 00 41 27 | 0.0 - 8.0 |
// SYMBOL: SI symbol
9a 04 63 6f 6c 00 00 00 00 00 01 | col |
92 80 01 00 02 00 ee | 1 * 8Bit values, 2 decimal places |

// Mode 1:
a1 00 43 4f 4c 2d 41 4d 42 49 45 4e 54 00 00 00 00 00 6b | COL-AMBIENT |
99 01 00 00 00 00 00 00 c8 42 ed | 0.0 - 100.0 |
99 03 00 00 00 00 00 00 c8 42 ef | 0.0 - 100.0 |
99 04 70 63 74 00 00 00 00 00 05 | pct |
91 80 01 00 03 00 ec | 1 * 8Bit values, 3 decimal places |

// Mode 0:

102

6 Annex – Initialization sequence of the EV3 color sensor

a0 00 43 4f 4c 2d 52 45 46 4c 45 43 54 00 00 00 00 00 7d | COL-REFLECT |
98 01 00 00 00 00 00 00 c8 42 ec | 0.0 - 100.0 |
98 03 00 00 00 00 00 00 c8 42 ee | 0.0 - 100.0 |
98 04 70 63 74 00 00 00 00 00 04 | pct |
90 80 01 00 03 00 ed | 1 * 8Bit values, 3 decimal places |

// ACK
04
// SYNC
00

// Repeat

103

Quantum Computing from a
Software Developers Perspective

Selina Raschack

Hasso Plattner Institute for Digital Engineering
selina.raschack@student.hpi.de

As the limits of Moore’s Law lay within the physical limitations in how
small transistors can be created, new ways of computing are needed. Quan-
tum computing is one of them and it is important for software developers
to familiarize themselves with its key concepts. Developers that wish to
integrate quantum computing into their portfolio need to find ways to
come up with algorithms that incorporate the benefits from quantum
mechanics. Well-established principles in software design and implemen-
tation should be preserved to keep the code maintainable and flexible for
further changes. Given a simple puzzle game to implement, in this paper
a hybrid approach is taken to analyze if the SOLID design principles and
Test Driven Development can be applied on quantum programs.

1 Introduction

“The complexity for minimum component costs has increased at a rate
of roughly a factor of two per year. Certainly over the short term this
rate can be expected to continue, if not to increase. Over the longer term,
the rate of increase is a bit more uncertain.”

Gordon E. Moore [5]

In 1965, Gordon E. Moore, co-founder and chairman emeritus of Intel Corporation,
published his observations on the average growth of processing power for com-
puters. Back then, a CPU contained one core whereas today chips usually contain
multiple cores as the underlying components can be designed and produced in
more compact ways. The boundaries of Moore’s Law lay within the physical limi-
tations in how small transistors can be created. [4] Therefore new ways of utilizing
given processing power more efficiently are researched constantly. One way is to
refine the ways in data procession itself to handle big amounts of data efficiently.
Another approach is to design and implement specialized computing units, quan-
tum computers being one of them. A couple of problems that are hard to compute
for classical1 computers are easy or at least feasible problems for quantum comput-

1The term classical refers to computer systems working with bits that represent exactly one out of
two possible states {0, 1}.

105

mailto:selina.raschack@student.hpi.de

S. Raschack: Quantum Computing from a Software Developers Perspective

ers. To benefit from these strengths it is important for classical software developers
to enhance their tool box with concepts of quantum computing.

In this paper, quantum computing will be approached from the perspective of
a classical software developer with no or very limited knowledge on quantum
computing. An exploratory way would be starting with a couple of basic concepts
in quantum computing and then implement a small demo application to illustrate
how they work. In this paper, a more conservative approach is taken. Instead of
looking for problems themselves that are suitable to be solved with quantum com-
puting an already given classical solution will be analyzed to identify the parts
that can be encapsulated into a quantum computing module. Therefore, in the
subsection 2.1 a simple puzzle game and some related concepts in game design in
general are introduced. Key concepts in quantum computing will be introduced
in subsection 2.2 to be able to understand the differences between classical and
quantum computing. In section 3 two types of problems are highlighted: How
to come up with an algorithm that incorporates the benefits from quantum me-
chanics? How to take well-established principles in software design to keep the
code maintainable and flexible for further changes? Both of them are addressed in
section 4 by providing a hybrid setup between classical and quantum computing
to implement parts of the given puzzle game in section 5. The implications of this
approach and possible takeaways for classical software developers or project teams
who wish to include quantum computing into their portfolio will be evaluated in
section 6. A couple of additional resources will be provided in section 7 after which
the paper concludes.

2 Context

There is already a very active research community working on solutions to provide
quantum proof cryptography algorithms. To raise awareness for other disciplines
and to get businesses interested into features and advantages of quantum com-
puting the IBM researcher Dr. James Wootton has experimented with quantum
based approaches for the computer games industry. In his article “Creating infinite
worlds with quantum computing” he provides a proof of concept in how to ran-
domly generate a terrain and to ensure features that prevent the player from being
trapped.

2.1 Motivation

In this paper a simple puzzle game is considered. The basic setup consists of a
rectangular shaped board with colored tiles on it. Tiles are set up randomly and
the core goal for each move of the player is to line up three or more tiles with the
same color in a column or a row (match). The player can choose freely which tile
they want to move and then change the tile’s position on the board with one of its
neighbored tiles. The move is valid in case one of the two moved tiles is part of a
match. Otherwise the move is invalid and has to be taken back. Mathematically, the

106

2 Context

game board can be represented by a n × m matrix and the colored tiles by natural
numbers. Cells with the same natural number in the matrix imply that the tiles on
the board at the respective position have the same color:

M =

0 1 3
2 1 0
1 2 0
3 0 2

In the given example moving the tiles on position m31 and m32 will result in the
first three cells of the second row containing color 1. Therefore, this would be a
valid move. On the other hand, moving the tiles on position m11 and m12 would be
an invalid move.

From the perspective of good game design the following two aspects are impor-
tant to keep in mind [8]:

Create excitement There are different ways to create excitement for players. Some
of them qualify better for certain type of games than others. The constrains
opposed are that it gives the player a unique entertaining experience. This
does not automatically imply that the content has to be randomly created. If
randomness is chosen on the other hand, the content has to be random enough
without becoming too random.

Be solvable By creating parts of a game randomly a great variety of challenges
for players can be created on runtime. The constrains opposed on randomly
created solutions in game design are that the levels need to be solvable
and created in a way that there are no features that trap the player. These
conditions have to be satisfied in a feasible amount of time or computer
memory to keep the player excited.

In the given puzzle game random enough requires that the applied randomness
has an effect on how to solve the puzzle. In the given example it would not be
enough to randomly assign a different color to a natural number each time the
board is set up. Since the underlying pattern would stay the same and moving
the tiles on position m31 and m32 would always be a valid solution. If we further
assume that not all tiles are movable, always assigning them to a different color
each time the board is set up would be too random. The player has no indication to
distinguish between movable and solid tiles. Therefore, always assigning the same
color to solid tiles keeps players excited as they know which tiles can be used when
searching for a valid move. To be solvable implies that there is at least one valid
move for the player to take each time the board is set up.

There are a couple of edge cases when finding a suitable setup for the board and
a classical computing approach can be time consuming:

• not enough different colors are used

• too many different colors are used

107

S. Raschack: Quantum Computing from a Software Developers Perspective

In the first case it will become difficult to set up the board in such a way that it does
not already contain a solution. When setting up the board randomly this step may
has to be done multiple times before the board is set up in a way that it requires
the players to make a valid move. In the second case it will become difficult to set
up the board in such a way that is is solvable. When setting up the board randomly
this step may has to be done multiple times before the board is set up in a way that
the player can make a valid move at all.

2.2 Background

In 1948 Claude E. Shannon published his paper “A Mathematical Theory of Com-
munication” leading into the fields of Information Theory. In a general communi-
cation system an information source produces a message to be communicated. But it
is not the message itself that is transmitted to the destination over the underlying
channel but a suitable signal. No matter what the chosen medium for the channel is,
it comes with a source for noise. In their paper “Information Theory and the Digital
Age” Aftab et. al. summarized a couple of Shannon’s key concepts. The following
three concepts illustrate the difference in discrete and continuous communication
[1]:

Channel capacity Every communication channel has a speed limit within which
it is possible to transmit information with zero error.

Digital Representation By distinguishing between a message and its representa-
tion as a signal that is transmitted over the channel, text message, same as
images, sound or video messages can be represent digitally.

Entropy is the information content of a message. It measures the amount of uncer-
tainty involved that the received message is the one originally transmitted.

In classical computing a discrete communication is utilized whereas in quantum
computing it is a continuous communication. From a developers perspective it
therefore is important to understand that quantum computing relies on probabili-
ties rather than deterministic states.

A very in-depth introduction to quantum computing and the mechanics and
differences in classical deterministic systems, classical probabilistic systems and
quantum systems was published by Noson S. Yanofsky [9]:

System A system contains a finite set of states and a finite set of transitions to
change from one state into another. As an example graphs can be used to
visualize a system with states. The states are represented by the nodes of the
graph and transitions by its edges.

Classical deterministic system A classical deterministic system is a system with
its state and transitions being deterministic.

Classical probabilistic system A classical probabilistic system is a system with its
state and transitions not being deterministic. The probabilities of states and
transitions are given as real numbers between 0 and 1.

108

2 Context

Quantum system A quantum system is a system with its state and transitions not
being deterministic. Furthermore, the probabilities of states and transitions
are given as complex numbers c such that |c|2 is a real number between 0
and 1.

After giving an overview of the underlying mathematical concepts and how
problems are solved within these systems, he introduces classical and quantum
generalizations of bits to qubits and logical gates to quantum gates [9]:

Bits In classical computing bits are the atomic parts each information can be
broken down to. A bit represents one of the two disjoint states |0⟩ (zero) and
|1⟩ (one). Mathematically, a bit can be represented by two 2 × 1 matrices:

|0⟩ = 0
1

[
1
0

]
and |1⟩ = 0

1

[
0
1

]
The first matrix contains all possible values, zero and one. The second matrix
contains two discrete values, zero and one, to tell both states apart from each
other.

By using this type of notation the whole concept of bits can be easily enhanced
to qubits. Instead of having two concrete values the second matrix contains two
complex elements c0 and c1. Therefore, the classical bit can be seen as a special
type of qubit:

Qubits In quantum computing the concept of bits is extended to the so called
quantum bits or qubits. A qubit can be any state that can be represented as:

0
1

[
c0

c1

]
, where |c0|2 + |c1|2 = 1 and c0, c1 ∈ C

Note that from the previous introduced definition of a quantum system the proba-
bilities of states and transitions are complex numbers that should comply to the
constrain that their square product leads to real number between 0 and 1.

Classical Gates In classical computing logical gates like or, and, or not are used to
manipulate bits. Mathematically, they can be represent as a 2m × 2n matrix
with n being the number of input bits and m being the number of output bits
of the logical gate. To give an example:

NOT =

[
0 1
1 0

]
NOT of |0⟩ equals |1⟩ and vise versa.

Quantum Gates A quantum gate is any unitary matrix that manipulates qubits. It
turned out that one of the most important matrices in quantum computing is
the Hadamard matrix:

H =
1√
2

[
1 1
1 −1

]

109

S. Raschack: Quantum Computing from a Software Developers Perspective

as it is also its own inverse. In this paper the rotation operator Ry-Gate is
used:

Ry =

[
cos (θ

2) − sin (θ
2)

sin (θ
2) cos (θ

2)

]
It is a single-qubit rotation around the y-axis where θ is a radian.

In the lecture “Quantum Computing – How does this work?” The IBM researcher
Dr. Johannes Greiner discusses a couple of practical implications when working on
quantum computers [2]:

Superposition With the given representation of a qubit it is possible to create a
quantum state that is a combination of |0⟩ and |1⟩:[

c1

c2

]
= c1|0⟩+ c2|1⟩

If c1 and c2 are non-zero, the qubit’s state contains both |0⟩ and |1⟩ at the
same time which is called superposition.

Entanglement With two qubits a quantum state can be represented as a combina-
tion of:

c1|00⟩+ c2|01⟩+ c3|10⟩+ c4|11⟩

where |c1|2 + |c2|2 + |c3|2 + |c4|2 = 1, c1, c2, c3, c4 ∈ C and where |01⟩ means
the first qubit is in state |0⟩ and the second qubit is in state |1⟩. If two or more
of the complex factors are non-zero it is not possible to separate the qubits.
This phenomenon is called entanglement.

Measurement A qubit’s state cannot be determined exactly but it can be measured.
A measurement will force a qubit’s state c1|0⟩+ c2|1⟩ to be either |0⟩ or |1⟩
with |c1|2 probability to be |0⟩ and |c2|2 probability to be |1⟩. It is important
to highlight that the result of a measurement is only valid for the given
measurement. Therefore, it is mandatory to measure more than once.

Interference To increase the probability of getting the right answer during mea-
surements the concept of interference is used. As discussed earlier, in quan-
tum computing signals are transmitted continuously and therefore noise
handling is an important factor to keep in mind.

3 Problem

In classical computing a variety of well researched and established tools and tech-
niques exists already. To give an example, in a classical business application a three
layered architecture consisting of a data layer, business logic layer, and presentation
layer is canonical. From the perspective of a software developer it does not matter
whether the task is to build a classical business application, to build an applica-
tion that utilizes machine learning algorithms to work on big data or to build an

110

4 Solution

application that utilizes quantum computers to efficiently work on factorization
problems. The concrete algorithm might be new or the way how to access the
computing hardware is, but the well established base architecture should not be
undermined. Therefore, from a developers perspective it is desirable to add the
quantum computing concepts without compromising tools and techniques that are
invariant to the type of computing.

In this paper the following two principles will be evaluated:

SOLID principles The SOLID principles are five design principles, mainly in
object-oriented programming, to ensure software remains verifiable, main-
tainable and flexible.[3, 7]

• A class [a function] should only have a single responsibility

• A software entity should be open for extension but closed for modifica-
tion

• Objects in a program should be replaceable with instances of their sub-
types without altering the correctness of that programming

• many client-specific interfaces are more effective than a generic multi-
purpose one

• dependency should rely on abstraction

Testing Test Driven Development covers a programming principle to ensure code
is verifiable and correct.

To make full use of the benefits of quantum computing software developers
have to consider the previous discussed fundamentals in information theory and
quantum mechanics. Therefore, choosing a suitable quantum algorithm or coming
up with one for themselves will be necessary.

4 Solution

To abstract some of the implementation details and make quantum computing
more accessible to different type of projects various tools and frameworks are
published and refined constantly. IBM’s “Quantum Experience”2 and the Python
library “Qiskit”3 being some of them and both tools will be used the following
implementation part. This supports a hybrid setup in which quantum computing
modules can be integrated along with classical computing modules. With such a
hybrid approach it is also easier to preserve suitable well-established principles in
classical software design.

To identify the parts that should be solved with quantum computing a given
problem will be broken down into multiple steps. In the given puzzle game setting
up the board with classical computing could be broken down as follows:

2https://quantum-computing.ibm.com/docs/.
3https://qiskit.org/textbook/preface.html.

111

https://quantum-computing.ibm.com/docs/
https://qiskit.org/textbook/preface.html

S. Raschack: Quantum Computing from a Software Developers Perspective

• Randomly assign a color to each tile on the board

• Check, if the board is solved

• Move a tile

With step one the board is randomly set up. With the second step the random setup
can be checked, if it already is solved. To check if the board is solvable, step three
can be used to move two tiles and then step two can check if the board would be
solved.

In a hybrid scenario those steps have to be identified that are suitable to approach
with quantum computing. Therefore, setting up the board will be broken down
into slightly different steps:

• Randomly assign a color to a predefined set of tiles on the board

• Find a solution that most likely solves the board

• Assign a color to those tiles that have been left out in the first step based on
the found solution in step two

In the first step classical computing will be used to create a board setup where a
couple of tiles already have a color assigned. This setup will be used as a seed in
step two to determine a solution that most likely solves the board. This step will
be solved with quantum computing. In the final step the remaining tiles will get a
color assigned with a classical computing approach. Due to the computed solution
from step two for each tile the color that most likely creates an instant solution is
known. Therefore, this color should not be assigned. On the other hand, a color
that will most likely create a solution on one of the neighboring positions can be
desirable as it makes the board to be solvable.

5 Implementation

In this chapter the quantum computing part of finding a solution that most likely
solves a given board in the puzzle game is briefly discussed. In this example the
algorithm from [8] is reused.4 This is not a perfect solution for the puzzle game
but gives a first idea in how setting up a board in such a way that tiles with the
same color are clustered. The goal is to keep the algorithm itself encapsulated and
testable. The following Listing 1 contains the steps within a basic quantum module
to solve a given board5 Figure 1 shows how the solve board circuit looks like.

4In the original paper one of the core ideas is to randomly create a terrain by using a heightmap.
Therefore, for each cell on a grid a value is calculated in a way that neighbored cells only contain
values that are relatively close to each other.[8] In the original paper the idea behind this function
and how it works is discussed in more detail. For this paper it will only be applied.

5It should be clearly stated that most of these steps are done in the quantum_tartan function in [8].
The code is slightly rearranged to make it more suitable for testing.

112

6 Evaluation

Listing 1: Basic solve board quantum module in qiskit

1 state = pre_quantum_steps(board)
2 circuit, reqister = init_circuit(state, amount_of_registers)
3 circuit = solve_board_circuit(circuit, reqister)
4 backend = get_backend()
5 job = run(backend, circuit, amount_of_shots)
6 solution = post_quantum_steps(job)

1 n = 10
2 theta = 4
3 circuit.ry(2*pi*theta,reqister)
4 c = ClassicalRegister(n)
5 circuit.add_register(c)
6 circuit.measure(reqister,c)
7 circuit.draw()

Figure 1: Quantum circuit with ten registers representing the solve board algorithm

6 Evaluation

After breaking down this task into multiple steps it can be seen that for quantum
computing modules different software principles can be applied as well. For a
TDD approach building the concrete circuit needs to be tested as well. By using
the command pattern6 building the concrete quantum circuit is encapsulated. To
actually test the circuit the TDD approach could not fully be applied. The circuit
can be tested on a functional level and with the modular design of the rest of
the quantum module a small test environment can be set up. The outcome can
than be evaluated and the circuit can be easily enhanced or replaced if needed. By
designing these type of functional tests developers have to keep in mind that in
quantum computing states are measured in probabilities. The qiskit library also
offers a package to represent a circuit as a directed acyclic graph. This may be

6The command pattern is a behavioral design pattern in which an object is used to encapsulate all
information needed to perform an action or trigger an event at a later time.[6] In this example it
is used to encapsulate the “solve board” behavior.

113

S. Raschack: Quantum Computing from a Software Developers Perspective

used to then design test cases around the graph representation. Apart from that
the principle is invariant from the applied way of computing.

The general idea of breaking down complex steps into a set of simple steps is
invariant to the applied computing. By applying further iterations of breaking
down steps, a point can be reached when each step covers a single responsibility.
This applies to quantum computing as well. Keeping the steps classical that are
not suitable for quantum computing, preserves the full support of the already
established principles.

On the other hand, choosing a suitable quantum algorithm or coming up with
one is not easily applied. Knowing and understanding concepts from the quan-
tum mechanics background is a first essential step. Applying the knowledge into
problem solving is a different one. In the given paper this has not been achieved. In-
stead, it has been shown a way on how to utilize solutions already created by other
developers that are more experienced in quantum computing. Especially in project
teams this leads to the question whether each software developer has to have a
deeper understanding of quantum computing or whether it is sufficient enough to
bring together a diverse team. One of the developers can have a deep knowledge
in quantum computing whereas the other one is specialized on other aspects of
software design. Both of them only need a basic understanding of each others
expertise so they can understand each other’s needs when it comes to actually
designing a software component.

Finally, it should be acknowledged that the mathematical background that will
be part of the education for next generation software developers will adapt in case
quantum computers become more accessible. Coming up with quantum algorithms
will become more natural for developers with a deeper understanding of these
underlying mathematical concepts.

7 Related Works

The referenced paper by Yanofsky ([9]) was written as an excerpt for the book
“Quantum Computing for Computer Scientists” by Yanofsky and Dr. Mirco Man-
nucci. The reader that wishes to approach quantum computing fundamentals in
a structured way, including different theoretical topics, may take their next steps
by reading this book. The book starts with complex numbers, discusses variety of
quantum algorithms or protocols relevant in cryptography. But also topics in theo-
retical computer sciences, information theory, or quantum hardware are covered.

To approach quantum computing through practically applying it, the IBM Quan-
tum Experience and the Qiskit textbook can be consulted as next steps. The text-
book gives a couple of short challenges to solidify basic quantum computing
concepts. On a more advanced level software developers can participate in the
ICPC Quantum Computing Challenge powered by IBM Quantum. 7 In these chal-

7https://challenges.quantum-computing.ibm.com/icpc.

114

https://challenges.quantum-computing.ibm.com/icpc

8 Conclusion

lenges quantum computing is applied to solve problems in the fields of physics,
finance, chemistry and more. To have a deeper look into current topics of game
development with quantum computing Dr. Wotton’s blog8 might be a good start.
It also should be mentioned that there is python support for the open source game
engine Godot. 9

There are quantum computing libraries and simulators for other programming
languages than Python as well. Oracle gives a brief introduction into quantum com-
puting with Java and Strange. 10 Developers specialized in developing Microsoft
applications can try out Microsoft Q#. 11

8 Conclusion

In this paper quantum computing was approached by looking into the development
of a small puzzle game. The two major questions raised were “How to come
up with an algorithm that incorporates the benefits from quantum mechanics?”
and “How to take well-established principles in software design to keep the code
maintainable and flexible for further changes?” The general concept throughout
the whole paper is to start at point well known. The given problem is one that
has been implemented with classical computing multiple times already. When
setting the required theoretical background, concepts in quantum computing have
been presented as generalizations of the equivalent concepts in classical computing.
When implementing a small quantum module an algorithm was reused that has
been designed by a more experienced quantum software developer and researcher.
By taking this approach well established tools and techniques in that are invariant
to the underlying computing concept could be naturally applied on the quantum
module as well. To apply quantum computing when working on a solution for a
given problem, the perspective has to include an understanding on how quantum
computers work. To solve the board setup for the given puzzle game the steps
of the algorithm have been rephrased and during implementation it has been
shown that the understanding is required when it comes to design test cases for
pure quantum functions. To come up with own unique solutions that fully benefit
from the advantages of quantum computing software developers have to deepen
their theoretical background in this area as well. The mathematical foundation
and understanding the implications that come with concepts like probability or
interference is essential. By starting with single steps and keeping modules small
well-established principles in software design and development can be preserved
and help to keep quantum modules and the applications around them maintainable
and open for future changes.

8https://decodoku.medium.com/.
9godot...https://godotengine.org/ https://github.com/touilleMan/godot-python.

10https://developer.oracle.com/java/quantum-computing.html.
11https://docs.microsoft.com/en-us/azure/quantum/?view=qsharp-preview.

115

https://decodoku.medium.com/
https://godotengine.org/
https://github.com/touilleMan/godot-python
https://developer.oracle.com/java/quantum-computing.html
https://docs.microsoft.com/en-us/azure/quantum/?view=qsharp-preview

S. Raschack: Quantum Computing from a Software Developers Perspective

References

[1] Aftab, Cheung, Kim, Thakkar, and Yeddanapudi. Information Theory and the
digital Revolution. 6.933 Project History, Massachusetts Institute of Technology,
2001.

[2] HPI and IBM. On the Road to Quantum Computing. Online; accessed 30-
October-2020. Oct. 2020. url: https://open.hpi.de/courses/ibmpow
er2020.

[3] R. c. Martin. Design Principles and Design Patterns. 2000. url: www.objectme
ntor.com.

[4] MemeBridge. Moore’s Law or how overall processing power for computers will
double every two years. Mar. 2021. url: http://www.mooreslaw.org.

[5] G. E. Moore. “Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE
Solid-State Circuits Society Newsletter 11.3 (2006), pages 33–35. doi: 10.1109/
N-SSC.2006.4785860.

[6] Wikipedia. Command pattern. Online; accessed 30-October-2020. Feb. 24, 2021.
url: https://en.wikipedia.org/wiki/Command_pattern.

[7] Wikipedia. SOLID. Online; accessed 30-October-2020. Feb. 24, 2021. url:
https://en.wikipedia.org/wiki/SOLID.

[8] D. J. Wootton. Creating infinite worlds with quantum computing. Online; accessed
30-October-2020. Apr. 2019. url: https://medium.com/qiskit/creating-
infinite-worlds-with-quantum-computing-5e998e6d21c2.

[9] N. S. Yanofsky. An Introduction to Quantum Computing. 2007. arXiv: 0708.
0261 [quant-ph].

116

https://open.hpi.de/courses/ibmpower2020
https://open.hpi.de/courses/ibmpower2020
www.objectmentor.com
www.objectmentor.com
http://www.mooreslaw.org
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/SOLID
https://medium.com/qiskit/creating-infinite-worlds-with-quantum-computing-5e998e6d21c2
https://medium.com/qiskit/creating-infinite-worlds-with-quantum-computing-5e998e6d21c2
https://arxiv.org/abs/0708.0261
https://arxiv.org/abs/0708.0261

Current Technical Reports
of the Hasso-Plattner-Institut

Vol. ISBN Title Authors/Editors

141 978-3-86956-521-7 Tool support for
collaborative creation of
interactive storytelling
media

Paula Klinke, Silvan Verhoeven,
Felix Roth, Linus Hagemann,
Tarik Alnawa, Jens Lincke, Patrick
Rein, Robert Hirschfeld

140 978-3-86956-517-0 Probabilistic metric
temporal graph logic

Sven Schneider, Maria Maximova,
Holger Giese

139 978-3-86956-514-9 Deep learning for
computer vision in the
art domain : proceedings
of the master seminar on
practical introduction to
deep learning for
computer vision, HPI
WS 20/21

Christian Bartz, Ralf Krestel

138 978-3-86956-513-2 Proceedings of the HPI
research school on
service-oriented systems
engineering 2020 Fall
RetreatChristoph

Christoph Meinel, Jürgen Döllner,
Mathias Weske, Andreas Polze,
Robert Hirschfeld, Felix Naumann,
Holger Giese, Patrick Baudisch,
Tobias Friedrich, Erwin Böttinger,
Christoph Lippert, Christian Dörr,
Anja Lehmann, Bernhard Renard,
Tilmann Rabl, Falk Uebernickel,
Bert Arnrich, Katharina Hölzle

137 978-3-86956-505-7 Language and tool
support for 3D crochet
patterns : virtual crochet
with a graph structure

Klara Seitz, Jens Lincke, Patrick
Rein, Robert Hirschfeld

136 978-3-86956-504-0 An individual-centered
approach to visualize
people’s opinions and
demographic
information

Wanda Baltzer, Theresa Hradilak,
Lara Pfennigschmidt, Luc Maurice
Prestin, Moritz Spranger, Simon
Stadlinger, Leo Wendt, Jens
Lincke, Patrick Rein, Luke Church,
Robert Hirschfeld

135 978-3-86956-503-3 Fast packrat parsing in a
live programming
environment : improving
left-recursion in parsing
expression grammars

Friedrich Schöne, Patrick Rein,
Robert Hirschfeld

134 978-3-86956-502-6 Interval probabilistic
timed graph
transformation systems

Maria Maximova, Sven Schneider,
Holger Giese

ISBN 978-3-86956-524-8
ISSN 1613-5652

	Title
	Imprint

	Preface
	Contents
	Implementing Memory Management in the NinjaStorms Operating System
	1 Overview & Scope
	2 Development Process: Problems & Design Decisions
	3 Analysis
	3.1 Limitations
	3.2 Next Steps
	3.3 Comparison to existing works

	4 Conclusion & Outlook
	References

	Creating Linux kernel modules in Rust
	1 Introduction
	2 Contribution
	3 Theory
	3.1 File Systems in Linux and ramfs
	3.1.1 Introduction to ramfs and the VFS

	3.2 A short primer on the Rust language
	3.2.1 Memory safety in Rust

	3.3 Running Rust code in kernel space
	3.3.1 Build process and access to kernel interfaces

	4 Porting C to unsafe Rust
	4.1 Rewriting in safe Rust

	5 Possible future work
	5.1 Future work on rsramfs
	5.2 Opportunities for improved tooling
	5.2.1 Performance considerations

	5.3 Future work on other kernel modules
	5.3.1 Testing Rust kernel modules

	5.4 Possible official Rust support in the Linux kernel
	5.5 Conclusion

	References

	Discovering Grant Searle's Multicomp
	1 Introduction
	2 Technologies behind Multicomp
	3 Discovering Multicomp
	3.1 The Goal
	3.2 The Setup
	3.3 The Challenges

	4 What we achieved
	4.1 Which enhancement potentials are there ?
	4.2 What will the future bring for similar FPGA Projects ?
	4.3 Related Work

	5 Conclusion
	References

	Portable Executables
	1 Context and Motivation
	2 Related Work
	2.1 Fat Binaries
	2.1.1 Apple’s Universal Binaries
	2.1.2 FatELF

	2.2 Binary Translation
	2.3 Comparison to this project

	3 Requirements and Goals
	4 Implemented Prototype
	4.1 LLVM Intermediate Representation
	4.2 PEX Format
	4.3 Workflow
	4.4 Managing PEX Files
	4.5 Summary

	5 Proof of Concept
	6 Limitations
	6.1 Replicating clang Behavior
	6.2 Performance Implications
	6.3 Complex Build Processes
	6.4 LLVM IR
	6.4.1 clang Version Differences
	6.4.2 Non-trivial ISA Differences and Dependent Code

	7 Future Work
	7.1 Operating System Integration
	7.2 Additional Language Support
	7.3 Support for More Build Processes
	7.3.1 Enhancement of the Presented Implementation
	7.3.2 Integration into clang
	7.3.3 How Portable is the LLVM IR?

	8 Conclusion
	References

	Project Kraken
	1 How it all began
	2 Context
	2.1 TCP/IP Stack
	2.2 QEMU
	2.3 Tap device
	2.4 Peripheral Component Interconnect
	2.5 ARM926EJ-S
	2.6 Intel 82540EM

	3 Virtual Machine Setup
	3.1 Basic networking
	3.2 Tap networking

	4 PCI bus driver
	4.1 Configuration Space
	4.2 Self-configuration
	4.3 Device configuration

	5 E1000 driver
	5.1 Configuration of the E1000
	5.2 Transmitting a packet
	5.3 Receiving a packet

	6 Ethernet
	6.1 Receiving Ethernet frames
	6.2 Sending Ethernet frames
	6.3 Little and Big Endianness

	7 Address Resolution Protocol
	7.1 ARP Table Implementation
	7.2 Receiving ARP Requests
	7.3 Sending ARP Requests

	8 Evaluation
	9 Related Work
	References

	NinjaStorms kernel architecture
	1 Initial Situation
	1.1 Tasks
	1.2 Interrupts
	1.3 Scheduler and Dispatcher

	2 Goals
	2.1 Kernel- and Usermode
	2.2 Processes
	2.2.1 Inter-process communication

	2.3 Further Goals

	3 Progress
	3.1 Processes
	3.2 Syscalls
	3.2.1 create_process
	3.2.2 fork and exec
	3.2.3 exit
	3.2.4 wait_on_pid
	3.2.5 Cooperative Multitasking

	3.3 Inter-process communication
	3.3.1 Buffer
	3.3.2 Security in shared memory with mutexes

	4 Conclusion
	4.1 Next steps

	References

	Tool based analysis of the Windows Research Kernel
	1 Introduction
	1.1 Contributions

	2 Context
	2.1 Background

	3 Problem
	3.1 Specific Problem

	4 Solution
	4.1 Specific Solution

	5 Implementation
	5.1 Minor Detail

	6 Evaluation
	6.1 Threats to Validity

	7 Related Work
	8 Conclusion
	9 Annex A – Comments analyzed
	10 Annex B – Exploit description terms
	11 Annex C – Abbreviations

	Performing Deep Packet Inspection in User Space
	1 Introduction
	2 Development Process
	2.1 Creating a Loadable Kernel Module
	2.2 The Netfilter API
	2.3 Moving the Filter to User Space
	2.4 IPC via Sockets
	2.5 Implementing a Queue Handler
	2.6 Orchestrating User Space Packet Filter with Pipes

	3 Analysis
	3.1 Limits
	3.2 Related Work and Alternatives
	3.3 Next Steps

	4 Conclusion
	References

	LM-EV3-NS-OS-UART-BS-EP
	1 Introduction
	1.1 Motivation
	1.2 The development plan

	2 Research Summary
	2.1 UART
	2.2 Protocol used for sensor communication

	3 Implementation Phase
	3.1 getchar function
	3.2 GPIO pins and UART register setup
	3.3 UART implementation summary
	3.4 EV3 sensor example code

	4 Evaluation
	5 Conclusion
	6 Annex – Initialization sequence of the EV3 color sensor

	Quantum Computing from a Software Developers Perspective
	1 Introduction
	2 Context
	2.1 Motivation
	2.2 Background

	3 Problem
	4 Solution
	5 Implementation
	6 Evaluation
	7 Related Works
	8 Conclusion
	References

	Current Technical Reports of the Hasso-Plattner-Institut

