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Decubitus is one of the most relevant diseases in nursing and the most expensive
to treat. It is caused by sustained pressure on tissue, so it particularly affects bed-
bound patients. This work lays a foundation for pressure mattress-based decubitus
prophylaxis by implementing a solution to the single-frame 2D Human Pose Estima-
tion problem. For this, methods of Deep Learning are employed. Two approaches are
examined, a coarse-to-fine Convolutional Neural Network for direct regression of joint
coordinates and a U-Net for the derivation of probability distribution heatmaps.

We conclude that training our models on a combined dataset of the publicly
available Bodies at Rest and SLP data yields the best results. Furthermore, various
preprocessing techniques are investigated, and a hyperparameter optimization is per-
formed to discover an improved model architecture. Another finding indicates that
the heatmap-based approach outperforms direct regression. This model achieves a
mean per-joint position error of 9.11 cm for the Bodies at Rest data and 7.43 cm for
the SLP data. We find that it generalizes well on data from mattresses other than
those seen during training but has difficulties detecting the arms correctly.

Additionally, we give a brief overview of the medical data annotation tool annoto
we developed in the bachelor project and furthermore conclude that the Scrum
framework and agile practices enhanced our development workflow.
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1. Introduction

Despite advances in medical care, bed-bound patients are still a common victim
of pressure ulcers, i.e., skin and tissue damage caused by constant pressure that
may extend down to the bone or muscle [13, 82]. These sores considerably impair
quality of life and can ultimately lead to death [13]. Yet often, the most serious
consequences would be easily preventable with regular movements and repeated,
thorough examinations of the patient [27, 82]. Overburdened or inexperienced
nurses, including ambulatory or family caregivers, often do not have the time, ca-
pacity, or knowledge to manage these extensive and responsible tasks appropriately
[4, 47, 60].

This is where the WiseMat project1, a cooperation between our project partner,
the GETEMED Medical and Information Technology AG2, and Softline Schaum Storkow3,
comes into play: With the help of a mattress with integrated pressure sensors, body
areas with an increased risk of developing pressure ulcers should be identified.
Based on this information, the nursing staff could then examine and treat the
affected patients in a targeted manner, reducing the workload and mitigating the
threat of pressure ulcers.

Such a risk assessment could, among others, be based on exceeding certain
thresholds of duration since the last change of the patient’s posture or of cumulative
pressure applied to a body part over time. To ensure data protection and privacy,
this evaluation should ideally take place on an embedded system on the edge of the
mattress so that only less sensitive warnings and alerts need ever be transmitted.
A continuously running, automated system like the one proposed can monitor the
patient’s health status in a way human caretakers never could [24]. The scope of
application includes hospitals (specifically intensive care units) and ambulatory
care but can be easily adapted to similar use cases like decubitus prophylaxis for
people who use wheelchairs [7].

This work aims to provide a basis for evaluation procedures like the one previ-
ously introduced by presenting a method to estimate the patient’s pose, i.e., the
2D positions of joints and limbs, from single-frame pressure mattress recordings.
For that, we employ, adapt, and compare two approaches (direct regression and
heatmap-based regression) based on well-known Deep Learning architectures (Con-
volutional Neural Network and U-Net [68]). We train and evaluate our models on
openly available datasets as well as data provided by the project partner.

1WiseMat. url: https://www.getemed.de/en/getemed/research/wisemat.
2GETEMED. url: https://www.getemed.de/en/home.
3Softline Schaum Storkow. url: https://www.softline-schaum.de/.
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1. Introduction

This thesis is structured as follows: In chapter 2, we introduce the medical
and technical background, i.e., pressure ulcers, the WiseMat project, the Human
Pose Estimation problem, data procurement, and Machine Learning. Next, chapter 3

presents related applications and work. We introduce annoto in chapter 4, a data
labeling tool we developed during the bachelor project. This section focuses on the
versatile requirements, their implementation, and our agile software development
process with the Scrum framework. After this, we show our solution to the Pose
Estimation problem in chapter 5, that is, the metrics, datasets, and models used as
well as experiments performed, and summarize, compare, and analyze our results
in chapter 6. Finally, chapter 7 concludes and discusses this thesis and identifies
opportunities for future work.
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2. Background

This chapter starts with an overview of the nursing background, mainly a definition
of pressure ulcers and a quick look at the current best practices for its prevention,
followed by an introduction to the WiseMat project. After this, we continue with a
brief overview of the technical background, consisting of the Machine Learning and
Deep Learning methods our work is based upon, and an introduction to the Human
Pose Estimation problem.

2.1. Pressure ulcers

The term pressure ulcers (PUs), also known as pressure sores, bedsores, or decubitus
ulcers, refers to localized areas of skin or tissue damage that develop because of
pressure over a bony prominence [13, 82]. PUs affect not only bed-bound, stationary
inpatients but are also a major risk for ambulant outpatients [82].

The main cause of PUs is pressure on bony protrusions, often in connection with
shear forces and the resulting friction [32]. When the patient is in the supine posi-
tion, the lateral areas of the heel and sacral area are most vulnerable [79]. Properties
mentioned in the context of major risk factors include low mobility or physical
activity, urinary and fecal incontinence or other problems concerning body hygiene,
poor positioning techniques, medication, decreased consciousness, and advanced
age [13, 32, 35, 74]. Additional promoting circumstances cover dehydration, malnu-
trition, and metabolic disorders since these impact blood circulation [32]. Recently,
microclimatic conditions on the body surface have received increasing attention
in PU prevention research [17, 79]. This concerns factors like temperature, skin
moisture, and airflow. Sex, however, is not considered an independent risk factor,
nor are different prevention strategies required [50].

Possible consequences include pain, reduced patient autonomy, increased risk of
infection and sepsis, osteomyelitis, conduction of additional surgical procedures,
long periods of hospital stay, significant physical-social and self-care dysfunction,
depression, and death [13]. PUs are the third most costly disease after cancer and
cardiovascular diseases, making them the nursing disease that is most expensive
to treat [13]. Providing care for one ulcer may already cost between $3, 500 and
$60, 000 [77]. In the US alone, about 2.5 million hospitalizations are due to PUs,
costing an estimated $6.4 billion per year - That is 1.2% of total health care costs in
the US [44, 64].

The state of development of a pressure ulcer is primarily defined by its depth
and often assigned to one of four categories [82]. These differ in the body parts
affected by the ulcer (that is, outer skin down to the muscle or bone, see Figure 2.1)
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2.1. Pressure ulcers

and the resulting identifying characteristics as well as its danger to the patient’s
condition. If preventive measures are not taken, the ulcer progresses to the next,
more risky stage. Ulcers may be unstageable, for instance, if the bottom is not visible
due to thick eschar. In this case, the PU should be treated as if it were in the most
dangerous stage four [27]. It is also typical that an ulcer follows an inside-out
pathway, starting in the deeper, soft tissue under still intact skin [79]. These ulcers
are referred to as deep tissue injury. Figure A.1 visualizes characteristic PUs of all
four stages, an unstageable ulcer, and an example of deep tissue injury. Please note
that these images are rather displeasing.

Figure 2.1.: Visualization of pressure ulcer stages in layers of the human skin [82].
Stage one ulcers affect only the outer skin; The underlying tissue is unaffected.
In stage two, the ulcer reaches the epidermal layer and may extend into the
dermis. A stage three ulcer extends into the subcutaneous tissue; Underlying
bone, tendon, or muscle may be visible. When the ulcer extends into the bone,
tendon, or muscle, it has reached stage four.

The treatment of PUs includes palliative measures that provide adequate pain
relief as well as curative measures like the elimination of pressure on the affected
areas, removal of necrotic and devitalized tissue, preservation of the integrity of
the surrounding healthy skin and tissue, reduction of bacterial load, facilitation of
the body’s mechanism of natural healing, and treatment of risky conditions like
malnutrition and anemia [82]. The European Pressure Ulcer Advisory Panel and
National Pressure Ulcer Advisory Panel published a joint report on guidelines for
prevention and treatment of pressure ulcers [27].

Besides repeated skin assessments that determine whether PUs are present,
clinicians should also regularly re-evaluate each patient’s risk of developing ulcers
[82]. The most common tool for this purpose is the Braden score, which sums
individual risk assessment scores in the categories of sensory, moisture, activity,
mobility, nutrition, friction, and shear [82].

The main preventive measure concerns the regular turning of patients with mo-
bility problems. The frequency depends on several factors, including individual
tissue tolerance, level of activity and mobility, general medical condition, overall
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2. Background

treatment objectives, and assessment of individual skin condition [27, 82]. Clini-
cians should lift and reposition patients rather than slide them across the mattress
because friction and shear forces can lead to a disruption of capillaries and small
vessels, promoting the formation of PUs [82].

As early as 1859, Florence Nightingale realized: “If [the patient] has a bed-sore,
it is generally the fault not of the disease, but of the nursing.” [59] This still applies
today: Overburdened or inexperienced nurses, including ambulatory or family
caregivers, often do not have the time, capacity, or knowledge to appropriately
identify and treat PUs [4, 47, 60]. Thus, in addition to best practices for clinicians,
there are research and commercial solutions that aim to support the work of
nurses using pressure load measurements, accelerometers, or moisture sensors.
Gallinger et al. present DekuProSys, a platform that captures and reports risk factors,
assists in decision-making and documentation, and provides care information and
instructions [32]. The Mobility Monitor of the company Compliant Concepts detects
movements using a pressure sensor and warns clinicians if inactivity lasts too long
[72]. The company Leaf Healthcare offers wearable sensors to monitor movement
[86].

Ongoing research also covers surfaces and materials. As described by Tomova-
Simitchieva et al., the skin microclimate, i.e., temperature, humidity and airflow, is
affected by the support surface, cover, bedsheet, and clothing materials [79]. The
authors compare several factors that promote the development of PUs for three
mattresses (made of gel, air, and foam) and conclude that the gel and air mattresses
are more protective. In general, a distinction is made between active mattresses,
which require electricity to alternate pressure, and reactive mattresses, which adjust
their load distribution in response to the load applied [79].

2.2. WiseMat

We saw that pressure ulcers are a major health threat for many patients. The risk
of developing PUs is different for every person, and so are the actions nurses have
to take. At the same time, too much unnecessary movement can even facilitate the
formation. The core goal of the WiseMat project is to mitigate the threat of these
decubitus ulcers. To this end, it aims to support clinicians in their work, thus saving
them valuable time, preventing patient suffering, and reducing healthcare system
costs. This section, co-authored with Berndt [12], briefly introduces the project.

The WiseMat project, which was developed as part of the state of Brandenburg’s
competition digital health for a better life, is part of a collaboration between the
companies GETEMED Medical and Information Technology AG and Softline Schaum
Storkow, funded by the Ministry for Economic and European affairs of the State of
Brandenburg, and aims to build

1. A pressure-sensing mattress that is robust, precise, and comfortable enough
to be used in hospitals and telemedicine, and
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2.3. Human Pose Estimation

2. Software components that preprocess, analyze, and evaluate the data recorded
from the latter with the goal of issuing warnings before pressure ulcers can
form.

This thesis is in the area of the second objective. Ideally, the software would
run as an embedded system on the edge of the mattress. The thesis of Bauknecht
[10] describes our project’s work in this field, studying the feasibility of Machine
Learning in embedded systems. In such a setup, instead of continuous streams of
sensitive raw pressure data, only warnings and recommendations would ever leave
the device, supporting data protection and privacy assurance.

At the time of writing, the mattress hardware is still in a prototypical state.
According to GETEMED, many issues have to be cleared out before a first field test
can be started, such as mechanical dependencies and the resulting geometry shifts,
tolerance of the foam materials used, as well as nonlinearities and other inaccuracies
of the sensors employed. The project partners aim for the final product’s price to be
between d1, 500 and d2, 000. A size of 200× 88× 16 centimeters is targeted with
44× 16 pressure sensors evenly distributed and integrated into the upholstery of
the mattress. Each sensor reports 10-bit values linearized from slightly more precise
raw measurements.

Because the WiseMat hardware was not yet available during our project, we
fell back on targeting our work to a pressure mattress that was already present
at Softline. It has a resolution of 64× 26 pressure elements, each measuring fixed
point numbers between 0 and 128 with one decimal place1.

2.3. Human Pose Estimation

Human Pose Estimation is defined as “the problem of localization of human joints
(also known as key points - elbows, wrists, etc.) in images or videos” [8]. These
key points are often visualized in the form of a skeletal representation where
anatomically adjacent joints are connected, like the one you can for instance see in
Figure 5.1.

The problem of Pose Estimation has been analyzed since the seventies: In 1973,
Fischler et al. proposed an algorithm to match pictorial structures, for example,
human key points like elbows or wrists. They introduce a descriptive scheme and
a metric their algorithm minimizes using dynamic programming in order to find
matches [30].

Pose Estimation can be based on a variety of different criteria. For many common
cases, two-dimensional joint coordinates are sufficient, but some applications, like
assistive robotics, require precise locations in 3D space [8]. In addition, images may
be constrained to single persons, as is the case for the pressure mattress data, or

1XSensor X3 Specification Sheet. url: http://www.nbn.at/fileadmin/user_upload/Vertretunge
n/XSENSOR/Products/PDF/XSENSOR-X3-DISPLAY-Medical-Mattress-System-1.pdf (visited
on 2022-07-17).
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2. Background

allowed to contain multiple. Thus, Pose Estimation algorithms usually follow a top-
down or a bottom-up approach [61]: A top-down algorithm starts by identifying
single persons and continuously refines to skeletal joint positions. On the other
hand, a bottom-up approach first identifies individual key point proposals and
continuously puts those into the context of the bigger picture.

Another essential factor is the consideration of temporal consistency, in other
words, whether we operate on single- or multi-frame data [6]. Many applications
are only possible if the skeleton can be derived in real-time [22]. Thus, execution
speed may be a critical criterion as well.

Just as importantly, we need to make sure that we deal appropriately with
uncertainty [22]: Body parts may be missing in the image because they were hidden
behind another object or lifted from the pressure-sensitive mattress. The input data
is under-constrained; Thus, several equally plausible interpretations may exist. In
such cases, we could either try to perform an educated guess or communicate that
no prediction was possible. Depending on the application, one or the other may be
desirable.

2.4. Machine Learning

Whereas classical algorithms describe data transformations thought of by humans,
Machine Learning (ML) derives transformations or new insights from data. ML algo-
rithms perform these derivations. The resulting algorithm is often referred to as a
model. Using additional preprocessing steps for data cleaning, normalization, trans-
formation, or feature extraction and selection can help machine learning algorithms
and models to achieve better performance [43].

In literature, a distinction is made between supervised ML, where labeled data
supervise the ML algorithm in deriving a model, and unsupervised ML, where some
inherent structure is discovered in unlabeled data [88]. In supervised learning,
we may, for instance, want to compare our input data to all the labeled data
we know and output the label of the closest such data point: This rather basic
procedure is well-known as the 1-nearest neighbors algorithm [23]. A basic example
of unsupervised learning is data clustering [53].

2.4.1. Evaluation

Given a set of data points X with well-known labels Y and a ML model defining
a function m(), we can use loss metrics to objectively evaluate the quality of our
model’s predictions Ŷ = m(X). One common and simple example is the Mean
Squared Error (MSE), also known as || · ||2 or `2-norm, shown in Equation 2.1 [88].

MSE =
1
k

k

∑
i=0

(Yi − Ŷi)
T(Yi − Ŷi) (2.1)
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2.4. Machine Learning

It would be misleading to assume that the loss determined on our data is a
good indicator of the quality of our network: In the worst case, it could simply
memorize all the samples it saw and return incorrect values for every new point
instead of adapting to the actual underlying function. This phenomenon of ML
models performing better on our dataset than on unseen data is called overfitting
[41]. In order to mitigate such misjudgment, we usually randomly shuffle and split
all the labeled data we have into a training set Xtrain, Ytrain and a test set Xtest, Ytest:
Whereas the training set is used to adapt the model, the test set is only used for
evaluation purposes [88].

The method of k-fold cross-validation is strongly related [41]. Here, the dataset is
split into k disjoint sets of roughly equal size. For each of the k sets, we train our
model on the other k− 1 sets and evaluate it on the remaining one. To summarize
the model’s overall quality, the mean of the individual runs is often used [41].
Setting k to the total number of dataset entries is called leave-one-out cross-validation
[14]. Choosing k decides the trade-off between low bias and correspondingly high
confidence (higher k) and few training runs and correspondingly high speed (lower
k) [14]. K-fold cross-validation is especially useful when data is scarce, whereas
train-test-split is sufficient when more data are available than are necessary for a
sufficient training [88].

We usually experiment with several models and see which one fits best, choosing
the one with the lowest test loss. However, in doing so, we can once more no longer
make an objective statement about our model’s quality: We may have decided upon
the one that coincidentally fits our test dataset best, not the one that best matches
the true underlying function. Once more, we solve this problem by splitting our test
data into a test set Xtest, ytest and a validation set Xval, yval: Whereas the validation
set is used to evaluate the model during model experimentation, only the chosen
model will ever see the test data for the final evaluation [88].

Often, our datasets include multiple samples recorded from different subjects.
Since a group leakage, i.e., a distribution of samples recorded for one subject across
training, validation, or test data, can lead to the model overfitting on subjects and
thus make us assume an exaggerated model performance, we should split our data
by subjects instead of purely randomly [63, 85]. It is also vital to ensure that the
split datasets remain representative, i.e., that proportions from the original dataset
will be preserved, because an imbalanced dataset can lead to misjudgments [85].

2.4.2. Deep Learning

Artifical Neural Networks (ANNs) are one of the structures that ML addresses. They
refer to a mathematical model originally designed after neurons in the brains of
animals. You often find visualizations of ANNs in the form of weighted, directed
graphs (Figure 2.3a). In practice, many applications get along well without cycles:
The so-called Feedforward Neural Networks (FNNs) are ANNs restricted to Directed
Acyclic Graphs [88].

An artificial neuron, the core building block of an ANN, is a node that takes a
set of input variables x = (x1, . . . , xn) and transforms them into a single output y.
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2. Background

As can be seen in Equation 2.2, this is done by calculating a linear combination of
x and subsequently applying a nonlinear activation function ϕ [88].

y = ϕ(x1w1 + · · ·+ xnwn + b) = ϕ(x ·w + b) (2.2)

Commonly used activation functions comprise the ones shown in Figure 2.2, i.e.,
ReLU, sigmoid and tanh. We find that ReLU is popular because it achieves good
results and mitigates the vanishing gradient problem [88].

−5 0 5
0

2

4

(a) ReLU(x) = max(x, 0)

−5 0 5
0

0.5

1

(b) sigmoid(x) = 1
1+e−x

−5 0 5
−1

0

1

(c) tanh(x) = ex−e−x

ex+e−x

Figure 2.2.: Visualizations of common activation functions. Whereas the last two are
derivable, ReLU is highly popular because it mitigates the vanishing gradient
problem and achieves good results [88].

A set of interconnected neurons form an ANN. Often, they are additionally
strictly organized in separate consecutive layers. Usually, a set of input variables x =

(x1, . . . , xn) are connected to the first (input) layer and a set of output variables ŷ =

(ŷ1, . . . , ŷm) are connected to the final (output) layer [88]. Various architectures have
been proposed for the intermediate layers (inner layers), e.g. the Fully-Connected
and Convolutional Neuronal Network (CNN) patterns described in more detail in
Figure 2.3.

Given such a network, we can calculate a prediction ŷ for an input x layer by
layer: ŷ = net(x). The arbitrary-width universal approximation theorem proven
by Hornik in 1990 states that an FNN with as little as one hidden layer and a
finite number of neurons is sufficient to approximate any continuous function
with arbitrary precision [37]. Furthermore, it was shown empirically that deeper
networks tend to perform better than shallower networks with the same number
of neurons [65]. Thus, a large part of research in the field of ANNs concentrates on
such deep networks with several hidden layers.

The weights w and the bias b of the various neurons determine the function
described by the network and thus highly impact the quality of results. How-
ever, choosing appropriate weights is a complex matter. One of the most common
heuristic procedures uses known data points Xtrain, Ytrain to train (that is, iteratively
improve) the network to reduce a loss metric and essentially works as follows [88]:
Start by randomly initializing all weights. Now, in each iteration, calculate the
predictions for a subset B ⊂ Xtrain (a so-called minibatch) and store the gradients.
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2.4. Machine Learning

x0

x1

x2

y00

y01

y02

y03

y10

y11

y12

y0

y1

input layer 1st hidden layer 2nd hidden layer output layer

(a) Exemplary Fully-Connected Neural Network with two hidden layers. Each neuron in layer i is
connected to every neuron in layer i + 1. The value of one neuron is calculated as the activation
function applied to the weighted sum of its predecessor’s values. For instance, when using the ReLU
activation function, y10 = ReLU(wy00→y10 · y00 + wy01→y10 · y01 + wy02→y10 · y02 + wy03→y10 · y03).
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(b) Exemplary Convolutional Neural Network (CNN) for image processing. In a convolutional layer
(blue), each neuron is connected to only a few spatially close neurons of the previous layer. Being
a specialization of the fully-connected pattern with many weights set to zero, this approach reduces
training effort. We call the set of incoming weights of one neuron a kernel. Each convolutional layer
consists of various kernels of one fixed size. Convolution is applied across all input channels, and
by using parallel kernels, we can generate multiple output channels. The spatial step between two
kernels is called stride. In the figure, (kernel size, stride) is above the arrows. It is a common pattern
to combine convolution with pooling layers (red), which are very similar except that convolutional
filters have learnable weights, while pooling filters always calculate a fixed function (e.g., the
maximum). In a coarse-to-fine CNN architecture, alternating convolutional and pooling layers are
used to reduce spatial resolution while increasing dimensionality (the number of channels).

Figure 2.3.: Visualization of two common Feedforward Neural Network (FNN) archi-
tectures. The value of each neuron in an inner layer i is determined by neurons
solely from the previous layer i− 1 [88]. It is not uncommon to combine these
architectures. For instance, in (b), although the network follows a convolutional
architecture, the final layer is fully-connected.
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2. Background

Then calculate the loss and use backpropagation [69] together with optimization
algorithms like Stochastic Gradient Descent [67] (SGD) or Adam [42] to adapt the
weights and biases of all neurons slightly, step by step from the final to the first
layer. We can tune this process by parameters like batch size and learning rate. One
training epoch refers to repeating iterations until all data points from Xtrain, Ytrain

have once passed the network. We usually run multiple training epochs on our
networks.

Because of their high-dimensional hypothesis space, ANNs often tend to overfit
[41]. In order to mitigate these effects, we can procure more training data or ar-
tificially augment the dataset, add regularization terms to the loss metric, or apply
dropout. The core idea behind the last two points is the same: No single neuron
should become too important. A single connection with disproportionately high
weight is a good indicator of overfitting and should thus be prevented. Instead
of one omniscient neuron, we want the knowledge to spread across multiple neu-
rons. For this, regularization suggests adding the absolute sum of all weights
(L1-regularization) or the sum of the squares of all weights (L2-regularization),
multiplied by a weighting factor, to the loss [88]. In doing so, networks with lower
weights will be preferred during training. Dropout takes a different approach to
achieve the same goal: In each training step, we randomly disable a small pro-
portion of the neurons in one layer, and because each neuron will be occasionally
unavailable, no single neuron can become too important [57]. However, both tech-
niques can slow down convergence [46].

We summarize all parameters defined before the training process begins under
the term hyperparameters. These include, among many others, the learning rate,
optimization algorithm, number of epochs or criteria for early stopping, whether
to use dropout, and kernel sizes. Deciding on a particular network architecture can
also be seen as a first step in defining a number of parameters. The choice of hy-
perparameters can substantially impact the quality of the trained model. Therefore,
a large part of the development of deep learning models is devoted to experimen-
tation with hyperparameter values [3]. This concerns manual experiments as well
as automated optimization.

2.5. Data Procurement

We saw that supervised ML algorithms require sample data points, in the case
of Human Pose Estimation pressure recordings and labels in the form of skeletal
annotations, from which to extract patterns. This section gives an overview of
openly available datasets that can be used as a basis for implementing a solution to
the Human Pose Estimation problem and presents means to collect and label new,
custom data.

Several openly available datasets that include pressure mattress recordings exist;
Some even include skeleton annotations. A first candidate is the hrl-ros dataset [22]:
With 67, 177 samples of 18 patients, it is sufficient for many procedures. A mattress
with a resolution of 64× 27 sensors was used, which is very similar to our target
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hardware. However, many samples are oversaturated, and the skeletal annotations
comprise only ten joints, which is just enough to get a rough idea of the patient’s
pose but not very detailed. Furthermore, many samples are pretty similar since
whole motion sequences were recorded. On the other hand, this makes the dataset
well suited to train a model that considers temporal consistency.

The SLP dataset [52] contains 13, 770 single samples of 102 patients in various
prescribed postures. In addition to pressure mattress recordings and skeletal an-
notations, the dataset provides camera, infrared, and depth images. With 14 joints,
the skeletal annotations provide a sufficient level of detail, and their mattress has a
very high resolution of 192× 84 sensors.

Many datasets only provide labels for the posture, i.e., supine, prone, etc. This
includes the data provided by Clever et al. [18] as well as pyhsionet’s Pressure Map
Dataset [9]. Although their recordings are of very high quality, we cannot readily
benefit from their work as the skeleton annotation process is considerably time-
consuming.

On the other hand, custom data gives control over the representativeness of
the dataset (for example, range of body types and variance of postures) and can
assist the model in learning hardware specifics (like its resolution and pressure
sensitivity distribution). A common approach to generating a new dataset is to
first record the data and then manually label it. However, this process is time-
consuming and may be error-prone, depending on the labeler’s experience and
attention. Therefore, Clever et al. propose using motion capture to annotate data on
the fly [22]. As motion capture equipment is expensive, with the cheapest OptiTrack2

system offered at the time of writing starting at $9, 745, another approach worth
considering might be to utilize a well-known Pose Estimation algorithm trained on
camera images to generate labels from video recorded in parallel with the pressure
measurements. Since these models are usually not optimized for lying postures,
we are uncertain about the quality to be expected. It should be expected that at
least some manual adjustments will still be necessary.

A completely different approach concerns the use of synthetic data. Clever et al.
used a physics simulation to generate the large Bodies at Rest database with a wide
range of body types and highly varying postures [19]. This dataset comprises a
total of 206, 000 samples and is the largest of the ones presented in this section.
Their mattress resolution of 64× 27 is also very close to our target hardware, and
it is in the nature of the approach that the images are clear and noise-free.

Finally, data augmentation could be applied to provide the big datasets many
machine learning algorithms require in order to avoid overfitting [73]. This includes
simple content preserving transformations like mirroring, translating, and adding
noise. However, some popular transformations like scaling could be problematic
for pressure mattress data since the pressure distribution does not grow linearly
with the human’s size [22].

2OptiTrack. url: https://optitrack.com/systems (visited on 2022-07-18).
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3. Related Work

In this chapter, we will first look at applications that could be enhanced or improved
by using pressure-sensing mattresses for Human Pose Estimation. The rest of this
chapter gives a rough overview of techniques that have been explored previously,
either from our own domain or from related fields.

3.1. Applications

The Oxford Dictionary defines human posture as “the position and carriage of the
limbs or the body as a whole” [66]. Thus, Human Posture Classification is defined as
the problem of mapping images or videos to a set of well-known body positions
(like supine, prone, etc.). Although not part of this work, the problem is closely
related and has been investigated by Berndt [12] of our bachelor project team.

Several applications based on Human Pose Estimation from pressure data have
been explored previously. Firstly, an estimated pose can be used as the basis for
some highly precise and efficient Posture Classification algorithms, as shown by
LeViet et al. [48]. The work of Achilles et al. proposes a method for detecting
epileptic seizures [2]. Metsis et al. recognize and evaluate sleep patterns [56]. Clever
et al. derive a 3D human model for control of an assistive robot [20, 22]. And Grimm
et al. use human pose for the automatic setup of CT scanners [34].

3.2. Human Pose Estimation from pressure images

For Human Pose Estimation from data recorded using pressure-sensing mattresses,
Liu et al. propose a classically algorithmic procedure that uses the pictorial structures
model [51]. This algorithm does not derive skeletal joints but only certain body parts
and may thus not be considered a real solution to the Pose Estimation problem.
Farshbaf et al. explore a method that uses the k-nearest neighbors algorithm on
the output of a Principal Components Analysis for posture classification and then
labels limbs accordingly [28]. This algorithm will, however, not work for new
or uncommon postures. The algorithm of Casas et al. uses hashing to accelerate
a k-nearest neighbors search, predicting the average of the most similar known
datapoint’s joints [16]. Additionally, they implement a 7-layer coarse-to-fine CNN
that directly regresses joint coordinates.

Clever et al. use a 6-layer CNN to compare direct regression of joint coordinates
with regression of a prameterization of a kinematics body model that ensures certain
anatomical constraints and from which the actual joint positions can then be calcu-
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lated [22]. In addition, they use multiple forward passes with dropout enabled to
obtain a confidence score for each joint. In their subsequent work from 2020, they
refine their approach to regress a parameterization of the more advanced Skinned
Multi-Person Linear Model (SMPL) [20]. Using representation learning, Davoodnia
et al. train an hourglass model that converts pressure recordings into images that can
be understood by standard pose estimators designed for RGB camera images [26].

3.3. Human Pose Estimation from other data sources

Whereas Pose Estimation from pressure recordings is a niche area in active research,
many approaches have been implemented and evaluated for the more familiar
RGB or depth camera images. We can strongly benefit from their findings and
well-established techniques.

The classical approach to Human Pose Estimation is the pictorial structures
model [30], introducing descriptive schemes and metrics the algorithm minimizes
using dynamic programming in order to find matches. Other common approaches
include Hierarchical and Non-Tree models. Hierarchical models [76] recursively rep-
resent objects as collections of parts at different levels of detail, where parts at each
level are connected to the respective coarser level by a parent-child relationship.
Non-Tree models [25] employ nonlinear, multi-layered joint regressors which pre-
dict joint locations by modeling interdependence and co-occurrence of parts, thus
circumventing typical ambiguities.

DeepPose was one of the first papers to apply Deep Learning to the Pose Estima-
tion problem by training a CNN-based model to directly regress Cartesian joint
coordinates [81]. Additionally, they propose to incrementally evaluate the model
on a reduced region of interest depending on the prediction for the previous one.

Tompson et al. suggest proceeding in two stages: First, use a CNN to generate
coarse belief belief heatmaps for each joint’s position from a gaussian pyramid of
the input image, and then use a Siamese network to refine the heatmaps based on a
cropped portion of the input image [80]. Cartesian joint coordinates can be derived
from these heatmaps via the argmax function.

Convolutional Pose Machines use a CNN to predict belief values for each joint for a
single pixel of the image and obtain full belief maps by sliding this network across
the image [84]. In order to refine this first coarse estimate, additional stages can be
added: For stage t > 1, a CNN processes not only the input image itself but also
the belief map produced in stage t− 1.

Ronneberger et al. presented the U-Net architecture, which consists of two stages:
The first stage is once more a coarse-to-fine CNN that derives some high-level
features. These are then input to the second stage, which in each of its layers
upsamples its previous values and stacks them together with the outputs of the
respective layer from the first stage. In each of these steps, some additional con-
volutions are applied. Finally, the output of the penultimate layer of the second
stage is stacked on the original input image, and some final convolutions produce a
transformed image. The stacked hourglass network suggested by Newell et al. consists
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of a series of hourglass networks [58]. The hourglass architecture is similar to that
of the U-Net, and stacking multiple of these hourglasses together helps the network
to generalize better.

Clever et al. developed a model that infers human body pose as well as pressure
distribution images from depth camera images [21]. Building on their previous
work [20], this procedure bypasses the need for expensive mattresses at the expense
of privacy.
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4. Annoto

During the second half of the bachelor project phase, annoto, a tool for annotating
medical data was developed in addition to the work on the topics of the bache-
lor thesis. The requirements were given by GETEMED, our project partner and
customer. The tool was designed and implemented in cooperation with Berndt
[12], König [45], and Sauer [70]. Unlike the rest of the thesis, this chapter is in the
different domain of Software Architecture, Requirements Engineering, and Social
Processes. It was written in collaboration with the developers mentioned above
and presents the motivation and requirements given for building this tool as well
as some implementation details. The development team used the Scrum framework
to structure their work; The experiences with it are covered in the final section of
this chapter.

4.1. Motivation and Requirements

One decisive factor of ML applications is the amount and quality of data for
training and validation. In order to enable supervised learning techniques, the data
have to consist of pairs of samples and associated labels. However, especially for
very specific tasks, labeled data are often rare. Therefore, a standardized annotation
process for generating labeled data can help to improve the quality of machine
learning applications.

User Requirements The annotation tool should be as simple as possible to access
and use while only requiring domain knowledge for the specific labeling task. For
this, the customer required the annotation tool to be a web-based application with
an easily accessible manual that explains how to operate the different parts of
the application. Furthermore, it should be possible to include multiple persons as
annotators in order to divide the workload and allow for faster results.

Medical Requirements In order to authorize machine learning applications for
medical purposes, detailed information about the data that will be utilized for
training and testing has to be stored and submitted to the authorities.

The Guideline for AI for medical products by Johner et al., for instance, lists 60
requirements related to the topic of data management [40]. These requirements are
further divided into the four categories Data collection, Data annotation, Procedure
for (pre-)processing of data, and Documentation and version control. Most of these
requirements apply equally to training, testing, and validation data. The high
number of different requirements in this guideline emphasizes that data utilization
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for machine learning applications in medical contexts must be well documented,
especially when a custom annotation process is used for retrieving labeled data.

Annotation Metadata To fulfill the requirements given by the project partner as
well as those extracted from the guideline that apply to the annotation procedure,
the team decides on certain metadata information that must be stored along with
each annotation:

• A link to the data sample

• The timestamp of the creation of the annotation

• The name of the annotator

• A proof of competency of the annotator for the specific labeling task

• A confirmation that the annotator was attentive and capable of annotating a
data sample at the time the annotation was created

• The actual label that is associated with the data sample

Requirements Checking While some of this metadata information, e.g., the ac-
tual label and the data sample link, can simply be retrieved and stored at the time
of annotation creation, others require more sophisticated procedures, the imple-
mentations of which are further explained in section 4.2. Sauer [70] presents more
details about our project’s work on the confirmation of attentiveness.

4.2. The Tool

A login form is displayed to the user when opening the annotation tool in a web
browser. Having signed in, an overview of the available labeling tasks is shown.
This overview is structured as a grid of cards (Figure 4.1a). Each card contains
the task title, a short description, and the type of the task. Task types may, among
others, comprise classification of heartbeats, annotation of skeletons on pressure
data, and measurement of electrocardiograms (ECGs). A task can be opened by
clicking on the button on the respective card.

Every time users open a task, they are presented with a dialog (Figure 4.1b) ask-
ing them to confirm that they have read the manual and are attentive and capable
of annotating the data. To ensure that annotators gives the required confirmation,
the dialog is non-dismissible until the checkbox is selected. Once this precondition
is met and the dialog is closed, a labelling view that is specific to the task is shown
(figures 4.1c, 4.1d). More details about the implementation of different types of
labeling tasks can be found in subsection 4.3.2.
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(a) Overview of available tasks (b) Dialog confirming attentiveness and
training

(c) View for WiseMat posture classification (d) View for measurement of ECGs

Figure 4.1.: Selection of important views of the annoto annotation tool. (a) When
users log in, they are presented with an overview of available tasks. (b) Before
the annotation process can start, users have to confirm their condition, i.e., atten-
tiveness and training. The labeling view depends on the type of task, for instance,
(c) picture classification or (d) ECG measurement.

4.3. Implementation Details

This section presents technical details of the implementation of the annotation
tool. This includes the work on the application itself just as well as the technical
processes we employ to ensure high stability, good code quality, and early feedback
loops.
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4.3.1. Tech Stack

For the front end, we use VueJS, a progressive JavaScript framework for building
web user interfaces1. We utilize the default package manager npm2. To benefit from
static typing, we employ TypeScript in conjunction with VueJS. We perform unit and
end-to-end testing with Cypress3, static code analysis with eslint4, and opinionated
code formatting with Prettier5.

We also need a back end that manages the data to be annotated. It should likewise
be capable of saving the annotations and administering different user accounts so
the person that created an annotation can be identified. This back end is built using
FastAPI6, a modern Python web framework for writing RESTful [29] Application
Programming Interfaces (APIs). The API tests are implemented with pytest7, and we
also enable optional static type checking with mypy8. As a formatting standard, we
agree on black9, and use pylint10 for static code analysis. We decide to employ an
SQL-based relational database for storing data. Locally, this is handled by SQLite,
a small, fast, self-contained, open-source SQL database11, whereas PostgreSQL,
an advanced, powerful, open-source database12, is used within the production
environment. Additionally, we set up a Docker container [55] for local development
that creates an isolated environment, installs all dependencies, loads the test data,
and launches the application’s back and front end.

4.3.2. Plugin System

As mentioned in section 4.2, one core requirement for the application is the ability
to support a wide range of labeling tasks. To fulfill this requirement while keeping
the codebase easily readable, maintainable, and expandable, we decide to introduce
a plugin system. Each task is assigned a task type that identifies the responsible
plugin. The plugin is then used to load the data to be annotated, choose the
annotation view for the front end, and save the annotations created.

1Vue.js - The Progressive JavaScript Framework. url: https://vuejs.org/ (visited on 2022-06-27).
2npm. url: https://www.npmjs.com/package/npm (visited on 2022-06-27).
3Cypress - JavaScript End to End Testing Framework. url: https://www.cypress.io/ (visited on

2022-06-27).
4ESLint - Pluggable JavaScript Linter - Find and fix problems in your JavaScript code. url: https:
//eslint.org/ (visited on 2022-06-27).

5Prettier - Opinionated Code Formatter. url: https://prettier.io/index.html (visited on 2022-06-
27).

6FastAPI. url: https://fastapi.tiangolo.com/ (visited on 2022-06-27).
7H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, and F. Bruhin. pytest 7.1.1.

2004. url: https://github.com/pytest-dev/pytest (visited on 2022-06-27).
8mypy - Optional Static Typing for Python. url: http://mypy-lang.org/ (visited on 2022-06-27).
9Black - The Uncompromising Code Formatter. url: https://github.com/psf/black (visited on

2022-06-27).
10Pylint 2.14.4. url: https://github.com/PyCQA/pylint (visited on 2022-07-08).
11SQLite Home Page. url: https://www.sqlite.org/index.html (visited on 2022-06-27).
12PostgreSQL Global Development Group. PostgreSQL. url: https://www.postgresql.org/

(visited on 2022-06-27).
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We implement two exemplary plugins. For classification of images, the im-
age_classification plugin loads the pictures from a folder on disk according to the
name of the task, implements a view that displays them in the front end along
with buttons for the classes specified in the task description, and stores annotations
next to the image file in JSON format. The fhir_ecg_annotation plugin loads IDs of
ECGs that have not yet been annotated from a FHIR13 server, embeds the project
partner’s HeartX viewer via an iframe in the front end, and, after saving, fetches the
annotation made from the FHIR server to validate the presence of fields required
by this task and to store a reference to the annotation locally.

4.3.3. Type safety across the client-server boundary

The code that connects the back end to the front end is generated automatically
and can be continuously regenerated when the back end changes. This process
is done in two steps: First, FastAPI provides our back end with the possibility to
export a completely machine-readable self-documentation following the OpenAPI
standard14. Based on this, openapi-typescript-codegen15 generates TypeScript classes
for the described objects, as well as properly typed and documented functions that
call the respective REST endpoints.

The two steps were summarized in an npm script. Using the CI pipeline (see
subsection 4.3.4) to automatically execute this script ensures that the API and the
front end code calling it will hardly ever become incompatible.

4.3.4. Continuous Integration

Continuous Integration (CI) “is a software development practice where members
of a team integrate their work frequently [. . . ] Each integration is verified by an
automated build.” [31] Because we already use GitHub16 for version control and
to host our codebase, we implement our automated builds using GitHub Action
workflows17. We decide to run our CI pipeline on every push to a feature branch
that we were planning to merge into the development or main branches. To ensure
that invalid code never enters the latter, we make the CI checks a prerequisite for
merging. In addition, at least one approving code review from a team member
other than the author is required before any pull request can be merged.

For both the back and front end, we create workflows that build the application,
i.e., set up the environment and install all dependencies, check syntactic correctness
and type annotations, run the linter, execute all tests, and upload the coverage

13FHIR v4.3.0. url: https://www.hl7.org/fhir/ (visited on 2022-06-27).
14SmartBear Software. OpenAPI Specification - Version 3.0.3 | Swagger. url: https://swagger.io/

specification/ (visited on 2022-06-27).
15openapi-typescript-codegen. npm. url: https://www.npmjs.com/package/openapi-typescript-

codegen (visited on 2022-06-24).
16GitHub - Build software better, together. url: https://github.com (visited on 2022-07-01).
17GitHub Actions Documentation. GitHub Docs. url: https://ghdocs-prod.azurewebsites.net/

en/actions (visited on 2022-06-27).
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report. Additionally, workflows for automatic formatting are added, which format
the back and front end code with black and Prettier respectively, and which add
the resulting changes, if they exist, as a new commit to the branch. Similarly, we
implement a workflow that regenerates the front end’s REST client and, should
changes exist, adds a new commit for them.

4.3.5. Continuous Deployment

Continuous Deployment (CD) is a DevOps method that automates the process of re-
leasing new versions of a software [15]. After the CI pipeline has passed successfully,
CD automatically integrates the new software into the production environment
without requiring manual tasks. We host our production environment on Heroku, a
cloud platform that focuses on simplifying deploying, configuring, scaling, tuning,
and managing web apps18, providing Python and VueJS environments as well as
a PostgreSQL database out of the box. In addition to that, it also makes CD very
easy by connecting the GitHub repository to the Heroku app. We set up two en-
vironments for staging and development, serving the latest state of the main and
development branches respectively.

4.4. Scrum

Finally, we want to briefly introduce the Scrum framework, a project management
technique employed to manage our development process, and present our experi-
ences with this technique.

4.4.1. Agile software development powered by Scrum

“Scrum is a lightweight framework that helps people, teams, and organizations
generate value through adaptive solutions for complex problems” that is becoming
increasingly popular in the industry, research, and other fields [71]. Having its
roots in software development, it employs an iterative-incremental approach and
is highly related to extreme programming and other agile practices.

Every Scrum team is self-organizing and consists of one Product Owner, one
Scrum Master, and the Developers, together working towards achieving the Product
Goal. The Scrum Guide establishes five Scrum Events that each offer the opportunity
to inspect and adapt Scrum Artifacts. These events comprise Sprint, Sprint Planning,
Daily Scrum, Sprint Review, and Sprint Retrospective. Note that the term Scrum
artifact refers not only to increments but also to the Product and Sprint Backlogs.
More details about the Scrum process are described in the Scrum Guide [71].

18What is Heroku | Heroku. url: https://www.heroku.com/what (visited on 2022-06-27).
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4.4.2. Personal experiences

We employed Scrum to manage the development process of the annoto tool. Thanks
to GETEMED and our project supervisors, we had the opportunity to experience
Scrum the way the project partner uses it in their real projects. Within three scrum
sprints, each lasting three weeks, we incrementally improved not only our software
but also our understanding of the problem domain and the development process
itself. Due to its simplicity, we found it quick and efficient to implement Scrum.

We started each sprint with a planning meeting where user stories were defined,
estimated, and selected together with the Product Owner, followed by internal team
meetings where they were further refined into atomic development tasks. Subse-
quently, the sprint focused on the implementation of these tasks. Daily stand-up
meetings allowed for a constant overview of the current progress and for solving
impediments as soon as possible. Each sprint ended with a review meeting where
the sprint results were presented and discussed with together GETEMED. This al-
lowed us to generate new insights and receive suggestions for the upcoming sprints.
Furthermore, each sprint was followed by a retrospective meeting focusing on im-
proving the various processes, enabling us to reduce irritations, misunderstandings,
and inefficiencies steadily.

Our team experienced that the Scrum framework enabled us to produce code of
higher quality while reducing development time. Timeboxing the meetings made
sure they did not become time wasters, while subsequent follow-up meetings allowed
to discuss highly specific topics with the subset of people to whom they really
matter.

Nevertheless, we also discovered some downsides. Most of the time, we found
it challenging to estimate user stories well. In one planning meeting, for instance,
we were presented four user stories, all of which we estimated to the exact same
amount of story points, just to make them fit into our sprint budget. Additionally,
we tended to overestimate stories because it was then easier for us to achieve our
sprint goal. This was also related to the fact that the project partner implemented
Scrum in such a way that additional task refinement meetings were held to elaborate
new and existing user stories. These meetings could then also be used to add
additional items to the Sprint Backlog, which does not strictly adhere to the Scrum
Guide but has its own advantages and disadvantages. Furthermore, especially in
the beginning, we had some severe timeboxing issues, which we were, however,
able to solve by setting a dedicated time keeper for each meeting. We also found that
the team’s prior experience with Scrum plays an important role. Because two of
our four developers, but most importantly also the Product Owner and the Scrum
Master themselves, have applied Scrum for the first time, many things were a little
more difficult. This, however, improved noticeably as the project progressed and
people became more accustomed to their roles. Still, the project could have been a
bit more productive with more initial experience. Overall, our negative experiences
widely match the findings of many Scrum-critical articles [5, 33].
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As stated in section 2.2, this work focuses on software components that process data
recorded from pressure-sensing mattresses. More precisely, we want to develop a
Deep Learning-based solution to the 2D Human Pose Estimation problem from
single-frame pressure mattress recordings. This chapter provides a summary of the
models used, experiments performed, and decisions made.

5.1. Technical details

This section gives a brief overview of the frameworks, libraries, and hardware on
which we base our work.

Frameworks and Libraries PyTorch [62] is an open-source end-to-end machine
learning framework that “enables fast, flexible experimentation and efficient pro-
duction through a user-friendly programming front end, distributed training, and
an ecosystem of tools and libraries”. For our work, we use PyTorch Lightning [87],
a framework that builds upon PyTorch. It provides a front end that reduces boil-
erplate, takes care of running code on any hardware, supports logging, profiling,
and much more, and is thus well-suited for research.

Additionally, we integrate TensorBoard [1] to track, visualize and compare our
metrics across train runs. Optuna [3] is an open-source optimization framework to
automate hyperparameter searches that we employ to optimize our models. Similar
to TensorBoard, we use the Optuna Dashboard to visualize and compare the current
progress as well as the insights from individual trials.

Pandas [54, 78] data frames and Numpy [36] arrays are employed to store data
and serialize it to disk. In order to visualize pressure images and skeletons as well
as metrics and distributions, Matplotlib [38] and Seaborn [83] are utilized.

Hardware The experiments are run on a desktop computer with the specifica-
tion given in Table 5.1. An exception to this is the hyperparameter optimization,
which is executed on the HPI’s Data Engineering Lab1 (DE-Lab), an experimental
platform for HPI scientists that provides a wide selection of powerful and modern
computer architectures. Of the resources available at the time of writing, we use
those listed in Table 5.2. The entry host summon is used to schedule and manage

1HPI Data Engineering Lab. url: https://hpi.de/forschung/hpi-data-engineering-lab.html
(visited on 2022-07-10).
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jobs through SLURM2. The NVIDIA Pyxis3 plugin allows for running containerized
tasks, enabling us to base our work on the official Docker container for PyTorch
Lightning4.

Table 5.1.: Specification of the desktop computer used to perform all experiments
except for the hyperparameter optimization

GPU NVIDIA RTX 2070 SUPER (8 GB GDDR6)
Driver NVIDIA CUDA Toolkit v11.7
CPU AMD Ryzen 9 3900X (12 cores, 3.8 GHz)
RAM 2× 16 GB DDR4, 3200 MHz
SSD Crucial MX500 (SATA)
Operating System Windows 10

Table 5.2.: Resources the HPI’s Data Engineering Lab provides access to at the time
of writing

2× IBM AC922 1× NVIDIA DGX A100 1× HPE Apollo 6500

512 GB RAM 1 TB RAM 256 GB RAM
4× NVIDIA Tesla V100-SXM2 8× NVIDIA A100-SXM4-40GB 8× NVIDIA A100-SXM4-80GB
2× IBM POWER9 3.3 GHz

(16 Cores)

5.2. Metrics for Human Pose Estimation

The evaluation of a Human Pose Estimation algorithm is not an ordinary question
of right or wrong, so we cannot use established metrics like accuracy or F1 score.
Instead, we need a metric that defines how close the predicted skeleton is to the
real one. In the following, we describe four metrics that are commonly used to
assess the performance of a Pose Estimation model.

Percentage of Correct Parts
For the Percentage of Correct Parts (PCP), “a limb is considered correctly detected
if the distance between the two predicted joint locations and the correct limb joint

2Slurm Workload Manager - Overview. url: https://slurm.schedmd.com/overview.html (visited
on 2022-06-15).

3Pyxis. url: https://github.com/NVIDIA/pyxis (visited on 2022-06-15).
4pytorchlightning/pytorch_lightning - Docker Image | Docker Hub. url: https://hub.docker.com/r/
pytorchlightning/pytorch_lightning (visited on 2022-06-15).
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locations is less than half of the limb length” [8]. We consider the left and right
limbs upper arm, forearm, upper leg, and lower leg.

Percentage of Correct Key-points
For the Percentage of Correct Key-points (PCK), “a detected joint is considered correct
if the distance between the predicted and the true joint is within a certain threshold”
[8]. This threshold is usually chosen relative to the head bone link or torso diameter.
In our work, we use PCK@0.2, meaning we set the threshold to 20% of the torso
diameter.

Mean Per Joint Position Error
The Mean Per Joint Position Error (MPJPE) describes the average Euclidean distance
in centimeters between all actually visible and predicted joints [39]. It is calculated
as shown in Equation 5.1, where pi are the positions of detected joints, ti the
corresponding ground truths, and vi the corresponding ground truth’s visibilities.

MPJPE =
∑i ||pi − ti||2 · vi

∑i vi
(5.1)

In our MPJPE calculation, we assume that all joints are always visible, i.e., set all
visibilities to one. Additionally, we refer to the MPJPE with the arms omitted, i.e.,
that leaves out the joints for elbows and wrists, as MPJPEao.

Object Keypoint Similarity
The idea behind Object Keypoint Similarity (OKS) is similar to that behind MPJPE:
We want to add up the similarities of corresponding detected and ground truth
joints [75]. As shown in Equation 5.2 and in contrast to MPJPE, OKS weighs each
joint’s distance according to specific so-called fall-off constants given in Figure 5.1.
Additionally, it includes the Euclidean distance exponentially.

OKS =
∑i exp(− d2

i
2s2k2

i
)(1− vi)

∑i 1− vi
(5.2)

In this equation, di represents the Euclidean distances between the detected key
points and the corresponding ground truths, vi the ground truth’s visibilities, ki
the key point specific fall-off constants, and s the scale of the person. We decide
against calculating the OKS in our experiments because its constants were designed
explicitly for RGB camera images and because we do not regress necessary key
points like eyes, ears, and nose.

5CONSORTIUM CoCO2: Prototype system for a Copernicus CO2 service. url: https://coco2-projec
t.eu/consortium (visited on 2022-05-22)
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Key point ki

j1, j2 hips 0.107
j3, j4 ankles 0.089
j5, j6 knees 0.087
j7, j8 shoulders 0.079
j9, j10 elbows 0.072
j11, j12 wrists 0.062
j13, j14 ears 0.035
j15 nose 0.026
j16, j17 eyes 0.025

Figure 5.1.: Fall-off constants used as joint-specific weights in Object Keypoint
Similarity (OKS) calculation [75]. The values presented here were proposed by the
group of researchers from CoCo project consortium5. Smaller weights mean lower
fault tolerance. We see that the nose and eyes, the finest key points, have the
lowest weights, thus lowest fault tolerance and highest precision. Because we do
not regress necessary key points like eyes, ears, and nose and because the OKS
constants were designed explicitly for RGB camera images, we decide against
calculating OKS in our experiments.

5.3. Datasets

Based on our research in section 2.5, we decide to use the Bodies at Rest syn-
thetic dataset [18] as well as the SLP dataset [52] to train and evaluate our model.
Additionally, we label some self-recorded samples to further evaluate how well
our model can be expected to function on the actual target hardware. This sec-
tion covers the preparation and splitting of the data and introduces our labeling
procedure.

5.3.1. Data Preparation and Splitting

We start by preparing a single table for each of the datasets Bodies at Rest and SLP
that includes for each sample a link to the 64× 27 pressure image (8-bit unsigned
precision), normalized skeletal joint annotations, sex, height, and mass. A Pandas
data frame is used to store this table, which we write to disk as a pickle file. Each
pressure recording is stored as a Numpy array file.

In order to extract the 24 joint coordinates from one sample of the Bodies at Rest
dataset, we apply the provided SMPL parametrization to the sex-specific SMPL
base model, transform it by the provided offsets, and normalize the resulting
coordinates by dividing them by the size of the mattress. The resulting data frame
has 116, 000 entries. In Figure 5.2a, we can see that mass and height follow a normal
distribution and that the ratio of women to men is balanced.
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(a) Histograms of the Bodies at Rest dataset.
Mass and height follow a normal distribu-
tion, with a mean mass of 76 kilograms
(values range from 17 to 222 kilograms)
and a mean height of 1.73 meters (val-
ues range from 1.38 to 2.10 meters). The
male/female distribution is 50%/50%.

(b) Histograms of the SLP dataset. The mean
mass is 66 kilograms (values range from
47 to 104 kilograms) and the mean height
1.71 meters (values range from 1.51 to 1.84
meters). The male/female distribution is
64%/36%.

Figure 5.2.: Histograms for mass, height, and sex of the Bodies at Rest and SLP
datasets

For the samples of the SLP dataset, we scale the provided 192× 84 pressure
recordings down to the target resolution of 64× 27. The coordinates of the 14 anno-
tated joints need to be aligned according to the calibration given as a homogenous
transformation matrix. Furthermore, we need to normalize them by dividing them
by the number of sensors in each dimension and flipping the result around the
y-axis. The resulting data frame contains 13, 770 rows. In Figure 5.2b, we can see
that the distributions of mass and height do not follow standard distributions and
that men are slightly overrepresented.

We proceed to randomly divide each of the two datasets into disjoint 80% train-
ing, 10% validation, and 10% test data; The Bodies at Rest set is split by samples,
and the SLP set by patients. We then merge the two training sets. For that, we first
need to convert the skeletons to a common format and, for this, decide to use the
13 joints present in both the 24-joint Bodies at Rest format and the 14-joint SLP
format. In Figure 5.3, we can see that there are noticeable differences concerning
intensity and noise in the Bodies at Rest and SLP datasets, which pose additional
challenges to the model but also help it in generalizing (a topic further evaluated
in chapter 6). We choose an oversampling factor of 9 for the SLP set to ensure that
there are approximately the same amount of synthetic and real data points in the
combined training set. For each set, the distribution of mass, height, and sex has
been plotted and compared in order to ensure representativeness. Since synthetic
data are not suitable for evaluation purposes, the validation and test samples from
SLP will be in focus for this.

5.3.2. Annotation of self-recorded data

We want to use some self-recorded samples to quantify how well our model can
be expected to function on the actual target hardware. Since the WiseMat mattress
itself is still in a very prototypical state, we had to fall back on using the pressure
mattress that was already present at Softline (see section 2.2). Pressure recordings
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(a) Bodies at Rest (b) SLP (c) Softline

Figure 5.3.: Exemplary pressure recordings from the datasets Bodies at Rest, SLP,
and Softline. We can see that the Bodies at Rest images are clearer, have a more
balanced intensity distribution and include less noise than the SLP samples. The
Softline samples actually look more similar to the Bodies at Rest data than to
SLP.
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of eight measurements with three people as well as video material recorded in
parallel have been made available to our team. On randomly selected samples of
these data, we annotated the 13 joint coordinates.

The recordings are given as CSV files. A sample can be found in Figure 5.3.
Because they only have a resolution of 64× 26, we pad them with a column of
zeros. To annotate joint positions on these images, we implemented a Matplotlib-
based labeling application, which you can see in Figure 5.4. We use this to label
50 samples and divide them evenly into validation and test sets. Because the
video recordings are not always clear, the annotated joints may contain certain
inaccuracies or mistakes. This applies in particular to the joints comprising the arm.
It is also important to note that the amount of labeled data is too small to derive
statistically reliable statements.

Figure 5.4.: Tools used to generate skeletal annotations for the Softline data: Basic
Matplotlib-based labelling application (left) and the provided video recordings
(right)

5.4. Baseline

In order to be able to assess the results better, we implement a simple baseline that,
ignoring the input, always predicts a fixed placeholder skeleton. The position of
each joint of this placeholder is calculated as the mean location of all the respective
joints from the training dataset. The resulting skeleton can be seen in Figure A.2.
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5.5. Direct regression approach using a CNN architecture

5.5. Direct regression approach using a CNN architecture

We start with the model architecture presented by Clever et al. [22], adapting the
first layer to take a single pressure image of resolution 64× 27 as input, and the
final layer to regress the thirteen 2D joint coordinates of our dataset instead. The
resulting detailed architecture diagram can be found in Figure 5.5.
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Figure 5.5.: Architecture used by Clever et al. [22], adapted to our input and output
formats. Above the arrows are the convolutional kernel sizes. To mitigate the
effects of overfitting, 10% dropout is applied before each convolution. We use
this model as the starting point for our own experiments.

We found reading pressure images from the disk to be a bottleneck during train-
ing, even when increasing the number of worker threads. Therefore, we decided to
evaluate a different approach, i.e., a new data frame was created that contains all
pressure recordings. Since this file completely fits into our testing machine’s main
memory, we achieved a substantial speedup.

The Adam [42] algorithm is applied to perform the optimization of the MPJPE
criterion. We use PyTorch Lightning’s tuner functionality to determine an ade-
quate learning rate automatically. Additionally, the ReduceLROnPlateau learning
rate scheduler reduces the learning rate by a factor of 10 whenever the model no
longer shows any improvements in validation loss for two epochs. Instead of a
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fixed number of epochs, early stopping is employed to train the model until the
validation loss no longer improves by more than 0.2 mm for ten epochs. The batch
size is set to 256. Across all epochs, the model that achieved the lowest validation
loss is stored. This way, we protect ourselves from heavy overfitting that worsens
the generalizability of our model.

We continue to conduct a series of experiments, iteratively building upon the
result of the previous ones. Each experiment is evaluated in terms of several metrics
on the SLP, Bodies at Rest and Softline validation datasets.

Experiment I: Training data

In a first experiment, the network is trained once each on the SLP training data,
the Bodies at Rest training data, and the combined training data generated in
subsection 5.3.1. Because the tuner did not work properly for both experiments
based on only a single dataset, suggesting an extremely high learning rate on
the order of 10−1, we perform all three executions with the initial learning rate
manually set to 2 · 10−4.

Experiment II: Preprocessing

Next, the impact of various preprocessing techniques on the model quality is evalu-
ated. This includes no preprocessing, min-max normalization, std-mean normalization,
a boolean filter, histogram equalization, and a Sobel filter. Figure 5.6 illustrates each of
them with an example. For this experiment, we adapt the model to accept a stack
of input images instead of just a single one. We start by training our model for
each single preprocessing output and select the best-performing one. After this, we
train our model adapted to take two inputs: The previously selected preprocessing
output and each remaining one. We proceed analogously for three and more model
inputs and repeat this process until we no longer find a subset of preprocessing
methods that improves the model performance considerably.

Experiment III(A): Hyperparameter Optimization

Finally, we conduct a hyperparameter optimization using Optuna. The Tree-structured
Parzen Estimator [11] sampling algorithm is employed for parameter selection. In
350 trials, various varying network architectures are trained and evaluated with
the objective of minimizing the MPJPE. The search space comprises the following
parameters:

• Size of the pooling applied in the first layer, varying between 1 (effectively
no pooling) and 7

• Number of layers, sampled from the range 3 to 5

• For each of these layers:

– A floating-point dropout probability, from the range 0% to 25%
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(a) Original
image

(b) Min-max
normalization

(c) Std-mean
normalization

(d) Boolean
filter

(e) Histogram
equalization

(f) Sobel
filter

Figure 5.6.: Exemplary illustrations of the preprocessing methods employed in
experiment II. Brighter colors represent higher values. We can see that the nor-
malizations and the histogram equalization help us to capture the content of the
image, whereas the boolean filter generates a flat silhouette and the Sobel filter
highlights edges.

– Size of the convolutional kernel, varying between 1 (effectively a linear
transformation) and 7

– Number of channels this layer outputs, selected as a power of two be-
tween 24 and 28

5.6. Heatmap-based approach using the U-Net architecture

Related work found that direct regression of coordinates is not the optimal format
for neural networks to learn. Instead, many scientific papers suggest that the
prediction of heatmaps for each joint outperforms the direct regression [58, 80, 84].

In order to evaluate this solution for our problem, we start with the U-Net
model architecture presented by Ronneberger et al. The architecture diagram of
this network is given in Figure 5.7.

For this approach, we need to convert the thirteen 2D joint coordinates of the
ground truth skeletons into 13 heatmap images with a resolution of 64× 27 pixels,
each showing a Gaussian peak at the ground truth joint location. We compute all
the heatmaps in advance and serialize them to disk because we found this to be
quicker than doing the conversion just-in-time. It is impossible to hold all the data
with all its heatmap images simultaneously in the main memory of our testing
machine. However, because the training of the much bigger U-Net architecture
is slower than that of our direct regression approach, data loading becomes no
bottleneck.
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Figure 5.7.: U-Net architecture presented by Ronneberger et al. [68]. The first stage
is a coarse-to-fine Convolutional Neural Network (CNN) that derives some high-
level features. For this, each layer consists of two 3× 3 convolutions plus ReLU
followed by a 2× 2 max pooling layer. In each second stage layer, additional
double convolutions are applied to the upsampled output of the previous layer
stacked on the respective output from the first stage’s layer. Here, bilinear up-
sampling is employed to double the spatial resolution while maintaining the
number of channels until the next convolution. Alternatively, deconvolutions, the
inverse of convolutions, can be employed to perform the increase in resolution
and reduction of channels all at once.

To obtain a skeletal prediction from a list of heatmaps returned by the network,
we determine the pixel with the highest value, i.e. the argmax, for each joint’s
heatmap. Interestingly, this approach enables us to easily assign to each predicted
joint a confidence score.

We train the model using the MSE optimization criterion introduced in Equa-
tion 2.1. That is, for each pixel of each heatmap, the squared difference between
the predicted and the ground truth pixel values is summed up and the mean is
calculated. Similar to the direct regression approach, the Adam [42] algorithm is
applied to perform the optimization, and the batch size is kept at 256. We also
continue to use PyTorch Lightning’s learning rate tuner functionality and the Re-
duceLROnPlateau learning rate scheduler monitoring MPJPE with patience set
to two epochs. Likewise, early stopping is employed to train the model until the
MPJPE no longer improves by more than 0.2 mm for ten epochs. Once more, the
intermediate model that achieved the lowest MPJPE is stored.

We continue to conduct another series of experiments, with each experiment
building upon the previous findings. Whereas the procedures for experiments I
and II remain as before (see section 5.5), the configuration of the hyperparameter
optimization is different.
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Experiment III(B): Hyperparameter Optimization

Here, 50 trials with the objective of minimizing the MPJPE are conducted over the
search space comprising the following parameters:

• Whether to use bilinear upsampling or deconvolutions in the second stage

• Number of layers, sampled from the range 3 to 5

• For each of these layers: The number of output channels, selected as a power
of two between 25 and 211

5.7. Hybrid approach

As evaluated in chapter 6, the direct regression approach suffers from a higher
MPJPE, while the heatmap-based approach makes more mistakes that are not
anatomically conclusive. Therefore, we decided to experiment with a hybrid ap-
proach, training a CNN to post-process the pressure image in combination with
the heatmaps generated by the pre-trained U-Net into joint coordinates. This way,
the post-processing network acts as a substitute for the argmax function.
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This chapter gives an overview of the results obtained from the experiments ex-
plained in chapter 5, and summarizes the test performance of our final model. The
detailed documentation of all experiment results can be found in the appendix
(Tables A.1, A.2, A.3).

6.1. Baseline

Our baseline achieves an MPJPE of 28.99 cm for the Bodies at Rest data set and
19.08 cm for the SLP data set. The worst results are obtained for the extremities,
especially for the arms, i.e., elbows and wrists.

6.2. Direct regression approach

From the results of experiment I summarized in Figure 6.1, we can see that the
models trained on only a single set perform poorly on the other. In contrast, the
model trained on the combined set makes practicable predictions on all validation
sets.

We conclude that the model trained on the combined dataset generalizes better
because it achieves the best performance on the SLP and Softline data. Training
the model based on the Bodies at Rest data takes more than ten times as long as
training based on the SLP dataset, but using the combined set increases the training
time only by another 15%.

From the various preprocessing methods examined in experiment II, we conclude
that the best performance is achieved by the network that works on the images
obtained from min-max normalization and the boolean filter stacked together.
Overall, this improved our MPJPE by 4 mm on the Bodies at Rest and by 1 mm
on the SLP dataset compared to employing no preprocessing at all. We could
not identify considerable implications of the preprocessing methods employed on
the duration of the training. Also, they do not have a considerable impact on the
number of trainable parameters and model size: Using two input channels instead
of just one added 3K new trainable parameters to the model and 13 KB to the
model size (plus 1%).

Lastly, experiment III(A) suggested an alternative architecture that outperforms
the original one. This adds 251K new trainable parameters to the model and 1.00
MB to the model size (plus 81%), but the training time remains in the same range
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Figure 6.1.: Mean Per Joint Position Error (MPJPE) in centimeters of the direct re-
gression models trained in experiment I on the SLP, Bodies at Rest, and Softline
validation sets. We find that whereas the models trained on only a single set
perform poorly on the others, the model trained on the combined set makes
not only practicable predictions on all validation sets, but even achieves the best
MPJPE for SLP and Softline data.

as the original architecture. This final architecture shown in Figure 6.2 consists of
five convolutional layers, but already reaches its minimal spatial resolution after
the third.

Figure 6.3 summarizes the quality of this model for the Bodies at Rest, SLP and
Softline test datasets in terms of the metrics introduced in section 5.2. Training its
558K parameters took 11m 22s, resulting in a model that is 2.23 MB large. PyTorch
Lightning determined an initial learning rate of 5 · 10−4.

It is common practice for many regression problems to optimize the mean
squared error instead of the mean absolute error in order to penalize higher errors
more heavily. However, we experienced that this worsens our metrics. On the con-
trary, we found that already omitting arms during training can help improve the
model’s MPJPE by another 8 mm for “Bodies at rest” and 2 mm for SLP validation
data.

6.3. Heatmap-based approach

Similar to the direct regression approach, the first experiment shows that training
using the combined dataset leads to a higher model generalization, resulting in
practicable metrics on all three validation datasets. However, it no longer achieves
the very best performance on SLP and Softline data. Training with the Bodies at
Rest dataset took once again longer than with the SLP set, but now only approxi-
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Figure 6.2.: Final architecture for the direct regression approach that evolved from
the three experiments conducted. Above the arrow is the convolutional kernel
size. Dropout is applied before each convolution, with approximately 20% before
the first layer and only between 2 and 4% before each other.
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Figure 6.3.: Metrics of the final network for the direct regression approach on vari-
ous test datasets. Mean Per Joint Position Error (MPJPE) in centimeters, Percentage
of Correct Keypoints (PCK) and Percentage of Correct Parts (PCP) in percent. Tables
A.4, A.5 and A.6 show the detailed numbers.

mately three times as long. Interestingly, the model trained on the combined data
converged about 17% quicker than the one trained on Bodies at Rest exclusively.
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Figure 6.4.: Metrics of the final network for the heatmap-based approach on various
test datasets. Mean Per Joint Position Error (MPJPE) in centimeters, Percentage of
Correct Keypoints (PCK) and Percentage of Correct Parts (PCP) in percent. Tables
A.4, A.5 and A.6 show the detailed numbers.

Experiment II leads us to use the three images obtained from standard-mean
normalization, the boolean filter, and the histogram equalization. Overall, this
improved our MPJPE by 11 mm on the Bodies at Rest and by 27 mm on the SLP
dataset compared to employing no preprocessing at all. Even more so than for the
analog experiment performed for the direct regression approach, we conclude that
preprocessing methods have no considerable impact on the number of trainable
parameters and model size (plus 0.005% for one additional input channel). For the
duration of the training, on the other hand, we do see a trend towards an increase
with the number of helpful inputs supplied.

For this approach, the hyperparameter search could not discover an architecture
that outperformed the original one. We also found that the architecture based on
deconvolutions is inferior to that based on upsampling, and that omitting arms
during training actually worsens the metrics. Figure 6.4 summarizes the quality
of the final model for the Bodies at Rest, SLP and Softline test datasets in terms
of the metrics introduced in section 5.2. Training its 17.3M parameters took 1h
32m, resulting in a model that is 69.1 MB large. PyTorch Lightning determined a
learning rate of 5 · 10−4.

6.4. Hybrid approach

The complete model for this approach had a total size of 71.6 MB. Overall, we were
able to lower the MPJPE on the Bodies at Rest data, but this in turn increased the
MPJPE on the SLP data. Neither training only the 558K parameters of the coarse-
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to-fine CNN nor subsequently training the 17.8M parameters of the whole model
led to a considerable improvement for both datasets. This is also due to severe
overfitting; However, increasing the dropout probability of each layer of the CNN
to 20% did not lead to an improvement either.

6.5. Comparison

In Table A.4, we can see that both the direct regression and the heatmap-based
approach were able to outperform the baseline on every single joint in terms of
mean error. Furthermore, it shows that the heatmap-based approach achieves better
overall results than the direct regression. This applies in particular to the thorax,
shoulders, hips, and knees. For ankles, elbows, and wrists, the standard deviation
of the direct regression is lower, although the heatmap-based model remains largely
superior in terms of MPJPE.

From the difference between MPJPEao and MPJPE in all results, as well as from
the large standard deviation circles in Figure 6.6 and flat curves in figures A.9
and A.10, we conclude that the detection of the extremities, especially the arms,
is particularly difficult. This is reasonable because the arms and especially the
wrists are quite light. Because of this, however, they are also less prone to develop
pressure ulcers in the first place [79]. One may therefore consider leaving them out
entirely.

The heatmap-based approach regularly makes suggestions like the one visualized
in Figure 6.5 that are not anatomically coherent, leading us to conclude that the
U-Net finds it difficult to learn the interdependencies of human joints. We have not
been able to observe such behavior for the direct regression. Rather, the arms poses
predicted by it look quite reasonable, and we conclude that it must have learned
some sort of geometric constraint model of the human body.

Concerning the fact that both models have never seen a single pressure im-
age recorded using the Softline mattress during training, the results both models
achieve on this dataset are decent. From the fact that the heatmap-based model’s
MPJPEao on Softline data is less than 30% worse than that achieved on Bodies at
Rest and SLP, we conclude that the model generalizes well.

Overall, we can, in contrast to Li et al.’s findings, conclude that a heatmap-based
approach is actually more suited for our problem [49]. Still, there are situations
when the simpler direct regression would be preferable, for instance, when target-
ing embedded hardware with limited computing capabilities.

Our heatmap-based approach achieves a lower MPJPE on the SLP dataset than
the model of Clever et al. (2018) on the “hrl-ros” dataset [22]. However, note that
this comparison is of little significance not just because the underlying datasets
differ but also because they perform 3D-joint regression where we only consider
two dimensions, we use a 13-joint model where they use only ten joints, and we
trained a model that aims to work well on various mattresses and not just a single
one.
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Figure 6.5.: The heatmap-based model occasionally produces output like the one
visualized here, i.e., where predictions for one joint are very far off. Left: Pressure
recording with the ground truth (white) and predicted (green) skeletons. Right:
Heatmap predicted for the right wrist. For the direct regression approach, some-
thing like this hardly ever happens. We conclude that the U-Net finds it more
difficult to learn generic anatomical constraints of the human body.

Similarly, we outperformed the work of Clever et al. (2020) in terms of MPJPE
on the Bodies at Rest synthetic dataset. However, they predicted entire 3D model
parameterizations and based their MPJPE calculation on 24 joints. We can not
be certain whether this worsens their performance (because more joints in more
dimensions bear the potential for more errors) or even rather improves it (because
most of the additional joints lay within the torso area, which we found the easiest
to predict).
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(a) Direct regression approach evaluated
on Bodies at Rest

(b) Heatmap-based approach evaluated
on Bodies at Rest

(c) Direct regression approach evaluated
on SLP

(d) Heatmap-based approach evaluated
on SLP

Figure 6.6.: Visualization of mean and standard deviation of per-joint position
errors for the direct regression and heatmap-based approaches on Bodies at Rest
and SLP test data. One circle is drawn around each joint with a radius set to
the mean error, and another circle is filled around the latter in the range of the
standard deviation. We can see that the heatmap-based approach achieves better
results for hips, shoulders, thorax, knees, and ankles, but suffers from a high
variance of the arm predictions, especially on the Bodies at Rest dataset.
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7. Conclusion

This thesis aimed to investigate the problem of 2D Human Pose Estimation, i.e.,
the derivation of skeletal joints, from single-frame pressure recordings. A solid
solution to this is a basis for a pressure mattress-supported decubitus prophylaxis
and can thus, in the future, help improve the quality of life for many bed-bound
patients.

We explored two Deep Learning-based approaches, namely the direct regression
using a coarse-to-fine CNN and the heatmap-based approximation using a U-Net,
and found that these Machine Learning techniques are well-suited to solve the
problem at hand, exceeding our baseline by far. The final direct regression model
achieves an MPJPE of 10.65 cm for the Bodies at Rest data and 8.70 cm for the SLP
data. The heatmap-based method outperforms the direct regression in all metrics,
achieving an overall MPJPE of 9.11 cm for the Bodies at Rest data and 7.43 cm for
the SLP data. This led us to draw the conclusion that this approach is the better
option.

We found that it is often hardly possible to reconstruct arms and, most specifi-
cally, wrists. Because they are also less prone to pressure sores anyways [79], we
recommend omitting them. By evaluating our model on self-recorded and self-
labeled data, we showed that especially the heatmap-based approach generalizes
well on different pressure mattresses, achieving an MPJPEao that is only 30% worse
than that achieved on the mattresses seen during training.

We conducted three sets of experiments for both models to improve our results
by using different training datasets, employing several preprocessing techniques,
and performing a hyperparameter optimization. We concluded that training data
created by combining different individual datasets could help to build a more
generalizing model. Furthermore, it is beneficial to explore image preprocessing
methods, and hyperparameter optimizers can help discover enhanced architectures.

We found it difficult to compare our results to previous work because there is
not one common dataset, skeleton format, or evaluation metric. Nevertheless, if we
did so to the best of our ability, we found that we achieved state-of-the-art results
and outperformed the work of Clever et al.

At the beginning of our work, we used TensorDatasets to load all our training
data into the main memory in advance. With the introduction of the heatmap-
based approach and various preprocessing methods, this approach was no longer
feasible due to excessive memory requirements, and we had to switch to custom
datasets based on an index referencing pressure recordings and heatmaps stored
sample-wise in separate files. This, however, worsened the training time of the
direct regression by a factor of five, presumably primarily due to a lot of random
disk access. We, therefore, decided also to implement a preloading option for our
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custom dataset, which achieves a similar performance. We also faced several GPU-
related issues during our work, which we solved by upgrading to the latest versions
of PyTorch and the CUDA driver. Because our containers became incompatible
after an update of the DE-Lab, we could not execute additional hyperparameter
optimization runs without disproportionate effort.

We also gave an overview of annoto, a web-based medical data labeling tool
we created during the bachelor project phase. We experienced that the Scrum
framework and agile practices employed to manage our development workflow
supported us in efficiently building robust, well-documented, easily maintainable,
and expandable software. Following the open-source movement, we published our
work (that is, the annotation tool as well as the Pose Estimation models) under the
MIT license on Github.12

Models like the ones presented in this thesis could be combined with the annota-
tion tool to simplify and accelerate the labeling process. Future work may explore
other approaches, e.g., Convolutional Pose Machines or Stacked Hourglass models,
which also come from the domain of RGB camera images, or simply a coarse-to-fine
CNN with a higher number of trainable parameters or layers. Data augmentation
can be employed, and other metrics can be examined, for example, introducing
a joint weighting similar to OKS. Additionally, confidence scores may be used to
omit joints our network is so uncertain about that it is tantamount to guessing.

Further important steps towards the practical use of pressure mattresses for de-
cubitus prophylaxis concern the consideration of temporal consistency, pressure
accumulation, and, based on this, the risk assessment itself. When the target hard-
ware is ready, we suggest generating a complete dataset with a wide variety of
subjects in various poses and including this data in training and validation.

1Annoto. url: https://github.com/team-folivora/annoto.
2WiseMat Pose Estimation. url: https://github.com/bewee/wisemat-pose-estimation.
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(a) Stage 1 pressure ul-
cer: Redness of a local-
ized area, which may be
painful, firm, soft, warmer
or cooler. Skin remains in-
tact.

(b) Stage 2 pressure ulcer:
Shiny or dry shallow open
ulcer with a red pink
wound bed or serum-filled
blister. The dermis suffers
a partial thickness loss.

(c) Stage 3 pressure ul-
cer: Subcutaneous fat may
be visible. Depth varies
greatly by anatomical loca-
tion. May include under-
mining or tunneling. Full
thickness tissue loss.

(d) Stage 4 pressure ulcer:
Exposed bone, tendon or
muscle is visible. Depth
varies greatly by anatom-
ical location. Often include
undermining or tunneling.

(e) Unstageable pressure ul-
cer: Base of the ulcer is
covered by slough or es-
char, thus true depth and
thus stage cannot be deter-
mined.

(f) Deep tissue injury: Purple
or maroon localized area
of discolored intact skin or
blood-filled blister. Dam-
age to underlying soft tis-
sue.

Figure A.1.: Pressure ulcers of the four stages as well as examples of an unstagable
ulcer and a deep tissue injury, with characteristics used for their classification.
[27]
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A. Appendix

Figure A.2.: Mean skeleton calculated from the training data. Our baseline algo-
rithm ignores the input and always predicts this. In doing so, it achieves an
MPJPE of 28.99 cm for the Bodies at Rest dataset and 19.08 cm for the SLP dataset.
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A. Appendix

Figure A.3.: Exemplary results of the direct regression approach for the Bodies at
Rest data. Ground truth in white, prediction in green
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A. Appendix

Figure A.4.: Exemplary results of the direct regression approach for the SLP data.
Ground truth in white, prediction in green
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A. Appendix

Figure A.5.: Exemplary results of the direct regression approach for the Softline
data. Ground truth in white, prediction in green
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A. Appendix

Figure A.6.: Exemplary results of the heatmap-based approach for the Bodies at
Rest data. Ground truth in white, prediction in green
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A. Appendix

Figure A.7.: Exemplary results of the heatmap-based approach for the SLP data.
Ground truth in white, prediction in green
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A. Appendix

Figure A.8.: Exemplary results of the heatmap-based approach for the Softline data.
Ground truth in white, prediction in green
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Table A.4.: Mean and standard deviation of per-joint position errors in centimeters
of the final models on the test datasets in centimeters
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Table A.5.: Percentage of Correct Parts of the final models on the test dataset
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Table A.6.: Percentage of Correct Keypoints of the final models on the test datasets
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(a) Bodies at Rest test data

(b) SLP test data

(c) Softline test data

Figure A.9.: Density function of the distribution of the per-joint and overall errors
for the final direct regression model. The x-axis represents the absolute error
ranging from 0 to 50 centimeters, and the y-axis shows the associated value of
the density function between 0 and 0.25. We can see that the model performs
well for the thorax, hips and shoulders, but has difficulties when it comes to the
extremities, especially the arms.
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(a) Bodies at Rest test data

(b) SLP test data

(c) Softline test data

Figure A.10.: Density function of the distribution of the per-joint and overall errors
for the final heatmap-based model. The x-axis represents the absolute error
ranging from 0 to 50 centimeters, and the y-axis shows the associated value of
the density function between 0 and 0.4. We can see that the model performs
well for the thorax, hips and shoulders, but has difficulties when it comes to the
extremities, especially the arms.
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