
Leveraging Large
Language Models for
the Automated
Migration of Customer
Applications

Context
Thousands of customers leverage Databricks Connect [1] to connect easily to
a remote Databricks cluster and execute their Spark code written locally in an
IDE of their choice. This flexibility makes it possible to integrate with the
Databricks platform in any development environment or other applications.
Databricks Connect is built upon Spark Connect [2] , an open source
communication protocol for Apache Spark that leverages the concept of
unresolved logical plans to communicate with Spark. A very large fraction of
the user surface of Apache Spark is represented using this interface.

[1] What is Databricks Connect? - https://docs.databricks.com/en/dev-
tools/databricks-connect/index.html
[2] Spark Connect - https://spark.apache.org/docs/latest/spark-connect-overview.html

Project partners

What is Databricks connect?
Databricks Connect is a client library for the Databricks Runtime. It allows
you to write code using Spark APIs and run them remotely on a Databricks
cluster instead of in the local Spark session.

For example, when you run the DataFrame command
spark.read.format(...).load(...).groupBy(...).agg(...).show()
using Databricks Connect, the logical representation of the command is sent
to the Spark server running in Databricks for execution on the remote cluster.

Databricks Connect determines where your code runs and debugs, as
shown in the following figure.

Motivation

In the adoption journey of Spark Connect in the context of Databricks and
Open Source we see that frequently, customers try out code that they found
from internet sources or that nowadays is generated by LLMs like ChatGPT.
For the vast majority of the existing code, there are good ways to rewrite this
code using appropriate primitives that are part of Apache Spark and the
DataFrame API.

Project Goals
In this Master’s project, we propose to explore the following avenues to guide
customers in their journey towards migrating code to be Spark Connect
compatible and thus future-proof.
1.Code analysis using LLMs - Can they be leveraged to understand what

code is compatible and how. Can they automatically rewrite code without
executing it first?

2.Exception-based migration - Given a piece of code and an exception
message, can we leverage LLMs to be able to migrate the code
appropriately (and automatically write tests for it)

3.Dynamic migration - Based on the assumption that we know the part of
the application surface that is not working, can we dynamically intercept
the call path in dynamic languages like Python and rewrite the code on the
fly.

4. For all of these approaches, it would be great to explore if a general-
purpose LLM like ChatGPT is good enough or if specific fine-tuning
increases the quality of the proposed changes

Tools and Processes
The team participants will decide together with the project partner the
following:

• the software process (ideally a customization of the Agile Methodology for
software migration)

• the acceptance criteria for “ready” and “done” tasks

• the detailed scope and its prioritization across sprints

• the development tools (IDEs, automated tools, machine learning libraries,
CI/DevOps framework, etc.)

Leveraging Large Language Models for the Automated Migration of Customer Applications
Christian Adriano, Lasse Kohlmeyer, Felix Boelter, Holger Karl, Holger Giese,
System Analysis & Modeling / Network Softwarization

Hasso-Plattner-Institut | Digital Engineering | Universität Potsdam | Prof.-Dr.-Helmert-Str. 2–3 | D-14482 Potsdam | www.hpi.de

For more information contact
Christian Adriano (christian.adriano@hpi.de or Room A-2.7)

For running code: All code runs locally, while all code involving DataFrame operations
runs on the cluster in the remote Databricks workspace and run responses are sent
back to the local caller.
For debugging code: All code is debugged locally, while all Spark code continues to run
on the cluster in the remote Databricks workspace. The core Spark engine code cannot
be debugged directly from the client.

When we introduced Spark Connect [2] for Apache Spark, we knew that there
were certain areas of the application surface that were no longer accessible
because they either required direct access to the driver JVM using Py4J or
required arbitrary code serialization (e.g. RDDs).

https://docs.databricks.com/en/dev-tools/databricks-connect/index.html
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://spark.apache.org/docs/latest/spark-connect-overview.html

	Leveraging Large Language Models for the Automated Migration of Customer Applications

