

Building Machine Learning Macro-Services with

GraalPy and Micronaut
Master Project Proposal, Winter Term 2023/24

Software Architecture Group, Prof. Dr. Robert Hirschfeld

In this project, students will combine the power of Python ML libraries with the Java-

based Micronaut microservice framework to build novel machine learning macro-

services that are easy to deploy to different clouds.

Python is known for its rich ecosystem of data science (DS) and machine learning
(ML) libraries. The GraalPy runtime is a Python implementation with deep

integration into Java and brings first-class Python DS and ML libraries to Java

projects. Powered by the open source Graal just-in-time (JIT) compiler and GraalVM

Native Image ahead-of-time (AOT) compilation, GraalPy is fast and compatible with

many modern Python and Java libraries. Micronaut is a Java microservice framework
that works well with GraalVM. The GraalVM team provides Micronaut tooling for

Visual Studio Code that makes it easy to build and deploy Micronaut applications to

multiple cloud providers via Graal Cloud Native. The tools also make it easy to use

GraalVM Native Image to create single binaries from Micronaut applications. These

are self-contained, do not need Java to run, and have fast startup and low footprint.

Background

State-of-the-art applications mixing languages like this are usually built with

microservices or multiple processes. This incurs a large overhead when dealing with

the amount of data in DS and ML contexts, and the services become bottlenecked by

the I/O pushing the data between Java and Python. GraalVM can fix this by executing
both Java and Python in the same VM. Since this is very new technology, the user

experience and tooling of mixed language projects is still in its infancy. In this

master's project, students will investigate how Java programmers wanting to use

Python libraries for machine learning may integrate these into their projects. How is

the development lifecycle? How are interfaces between Java and Python structured?
Which tools are used to write and execute the unit tests? How does GraalVM Native

Image work in this configuration? How can this be deployed in the cloud? Micronaut

with its first-class GraalVM tooling support and the PyTorch ML library will serve as

a basis for the project. Students can influence the direction of the project and the

concrete use cases to look at. Members of the GraalVM team at Oracle Labs
collaborate with the SWA research group to act as customers and provide technical

assistance.

[1] High-performance Modern Python (https://graalvm.org/python), 2023

[2] GraalVM Native Image (https://www.graalvm.org/native-image/), 2023

[3] Use Python and R in your Java applications with GraalVM
(https://blogs.oracle.com/javamagazine/post/java-graalvm-polyglot-python-r), 2022

[4] A modern, JVM-based, full-stack framework for building modular, easily testable

microservice and serverless applications (https://micronaut.io), 2023

[5] Graal Cloud Native (https://www.graal.cloud/gcn/), 2023

Prof. Dr. Robert Hirschfeld, Dr. Jens Lincke,

Dr. Fabio Niephaus, Dr. Tim Felgentreff

Details

Further Reading

Contact

https://graalvm.org/python
https://www.graalvm.org/native-image/
https://blogs.oracle.com/javamagazine/post/java-graalvm-polyglot-python-r
https://micronaut.io/
https://www.graal.cloud/gcn/

