

Informationssysteme Prof. Dr. Felix Naumann Masterprojekt Wintersemester 2012/13

## **Global Relevance Scores for DBpedia Facts**

Knowledge bases with facts about real-world entities (e.g., people, locations, products, dates, etc.) have inspired much of the recent research on semantic technologies. The hope is that knowledge bases may constitute the basis for machine-to-machine interoperability and improve semantic search [1, 2, 3, 4]. However, so far, there has been no ground-breaking key application showing the indispensability of knowledge bases.

The hypothesis underlying this proposal is that in order to boost the usefulness of knowledge bases, there is a need for a general notion of relevance for facts. For example, when asking for the classes to which Albert Einstein belongs, many well-known knowledge bases return correct, but rather impractical facts, e.g., that he is a person, an academic, a humanitarian, etc. (see Fig. 1).

|    | ld       | Subject         | Property | Object                                |
|----|----------|-----------------|----------|---------------------------------------|
| 1  | #2126808 | Albert Einstein | type     | 19th-century German people            |
| 2  | #2125460 | Albert Einstein | type     | Academics of the Charles University   |
| 3  | #2123400 | Albert Einstein | type     | American humanitarians                |
| 4  | #2125900 | Albert Einstein | type     | American pacifists                    |
| 5  | #2125652 | Albert Einstein | type     | American people of Swiss descent      |
| 6  | #2124020 | Albert Einstein | type     | American philosophers                 |
| 7  | #2124060 | Albert Einstein | type     | American physicists                   |
| 8  | #2123828 | Albert Einstein | type     | American scientists of German descent |
| 9  | #2125384 | Albert Einstein | type     | American socialists                   |
| 10 | #2125608 | Albert Einstein | type     | American vegetarians                  |

## Fig. 1: YAGO answers to the query asking for the classes to which Albert Einstein belongs

For the above query, it would be more practical to rank facts stating that Albert Einstein was a theoretical physicist, philosopher, etc., first in the result list. Similarly, when asking about people who are physicist we would expect to have Albert Einstein, Newton, Niels Bohr, etc., ranking higher in the result list than generally less known physicists (e.g., see Fig. 2). Previous work [6, 7] has coined this notion of general relevance for facts as *informativeness* and has suggested its computation by means of web-based co-occurrence statistics for the entity pairs in the facts. For example: *Albert Einstein* and *physicist* co-occur more frequently on the web than *Albert Einstein* and *academic*. Consequently, *physicist* is a more relevant class for Albert Einstein than *academic*.

There exists no work that computes the above co-occurrence statistics at web-scale. Hence the goal of this project is twofold: (1) derive global relevance scores for all DBpedia facts by computing co-occurrence statistics for entity pairs from a web-scale corpus and (2) provide a



ranking mechanism that combines these scores to produce top-*k* results for an important fraction of SPARQL [8].

We plan to provide a web-based query interface (for the DBpedia corpus with global relevance scores) and to publish the results in a top-tier international conference.

|   | ld         | Subject               | Property | Object           |
|---|------------|-----------------------|----------|------------------|
| 1 | #624248315 | Aage Bohr             | type     | <u>physicist</u> |
|   | #931072    | physicist             | means    | <u>physicist</u> |
| 2 | #625180219 | Aaldert Wapstra       | type     | physicist        |
|   | #931072    | <u>physicist</u>      | means    | <u>physicist</u> |
| 3 | #586255639 | Aarne Arvonen         | type     | <u>physicist</u> |
|   | #931072    | <u>physicist</u>      | means    | <u>physicist</u> |
| 4 | #625134271 | Aaron Klug            | type     | physicist        |
|   | #931072    | <u>physicist</u>      | means    | <u>physicist</u> |
| 5 | #649086659 | Aaron Lemonick        | type     | <u>physicist</u> |
|   | #931072    | physicist             | means    | <u>physicist</u> |
| 6 | #651400215 | Abd al-Rahman al-Sufi | type     | <u>physicist</u> |
|   | #931072    | physicist             | means    | <u>physicist</u> |
| 7 | #570749595 | Abd as-Salam al-Alami | type     | <u>physicist</u> |
|   | #931072    | physicist             | means    | <u>physicist</u> |

Fig. 2: YAGO answers to the query that asks about physicists

- [1] http://linkeddata.org/
- [2] http://de.dbpedia.org/
- [3] http://www.wolframalpha.com/
- [4] http://www.trueknowledge.com/
- [5] https://d5gate.ag5.mpi-sb.mpg.de/webyagospotlx/WebInterface

[6] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, G. Weikum: *NAGA: Searching and Ranking Knowledge*, ICDE 2008.

[7] Gjergji Kasneci, Shady Elbassuoni, Gerhard Weikum: *MING: mining informative entity relationship subgraphs*, CIKM 2009

[8] <u>http://www.w3.org/TR/rdf-sparql-query/</u>