
System Analysis and Modeling Group
Prof. Dr. Holger Giese
Masterprojekt WiSe `20-`21

Monitoring Large Dynamic Systems at Runtime

Large, Dynamic Systems
Software has become an integral part of our everyday lives. Societies rely on software for an
astoundingly large number of services: from making bank transactions or ordering a taxi to
making scientific discoveries. This vast array of capabilities is made possible by systems
where legacy as well as current technology is bundled and made available as a service, and
subsequently where services interoperate with each other to achieve a common goal. In
modern systems, service tend to be self-contained, implement a single capability, and
deployed according to demand, a paradigm also known as microservices (cf. [1]). The focus
of this project is large microservices systems with a dynamic structure, that is, where new or
existing microservices can be massively deployed to cater for changing demands.

Monitoring at Runtime
In this project we assume that each service logs its actions in the form of event streams.
Scalable deployment of microservices make for a highly dynamic architecture that can
potentially generate numerous and voluminous streams. Although there are highly efficient
tools and frameworks to aggregate and visualize such streams, the challenge of efficiently
monitoring them to verify at runtime whether they satisfy complex conditions remains
mostly open. By complex conditions, we refer not only to simple operations, e.g. filter or
aggregate, but instead to data contained in the events or an event’s relationship to other
events. An example of such a condition is: “For every query from component A, there is a
response (for that same query) from component B within the next 20 seconds.”.

Project Outline
The project entails the creation of a pipeline that
can monitor large streams of data. The pipeline will
consist of components and each component will be
implemented by a web-service. A mandatory
component will be for monitoring, where we will
apply a technique known as Runtime Verification
(RV) [2] and use existing RV tools. For the rest of
components, students can choose to focus on one
of the following two Focus Points (FP):

FP1: Generating the stream data using an existing experimental microservices setup
FP2: Using existing real-world data and instead focus on inspecting and processing this
data, as well as visualize the monitoring results.

The choice of tools and frameworks, as well as the pipeline structure, is up to the students.

Project Goal and Acquired Skills
The project overall goal is two-fold: a) familiarize with an innovative and powerful testing
technique and b) use this technique together with state-of-the-art technologies to tackle the
challenge of efficiently monitoring complex conditions for very large streams of data. In the
course of the project, the students will a) learn to formulate complex, real-world conditions
in a precise (logical) language, b) familiarize with Runtime Verification tools, and c) practice
their skills in state-of-the-art technologies in real-world application scenarios.

Typical event processing pipeline [3]

System Analysis and Modeling Group
Prof. Dr. Holger Giese
Masterprojekt WiSe `20-`21
Prerequisites
There are no explicit prerequisites for the project but an interest in one or more of the
following topics might be helpful:

• Testing
• Temporal Logics and Formal Specification
• For FP1: Familiarity with tools like Kubernetes, Docker, ActiveMQ, Spring Boot 2.0,

etc.
• For FP2: Familiarity with data stream processing and presentation tools like Jupyter,

awk, etc.

Contact
The project is designed for up to 4 students that will be supervised by Prof. Dr. Holger Giese
and Lucas Sakizloglou (lucas.sakizloglou@hpi.de).

References
[1] Microsoft Azure, Microservices architecture style, https://docs.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices . Accessed on: 2020-01-06.
[2] Falcone, Ylies, Klaus Havelund, and Giles Reger. “A Tutorial on Runtime
Verification.”Engineering Dependable Software Systems 34 (2013): 141–175.
[3] Steramlio, Event-driven Architecture using Steamlio, https://streaml.io/blog/event-
driven-architecture. Accessed on: 2020-01-06.

