Competitive Multi-Agent Reinforcement Learning for Robust Self-Adaptive Systems

Christian Adriano (Chris)
Prof. Dr. Holger Giese
System Analysis and Modeling Group

Our contact: first-name.last-name@hpi.de
Context: The Progress of Multi-Agent Reinforcement Learning

AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players [Deepmind 2019]

Three pools of agents, each initialized by supervised learning, were subsequently trained with reinforcement learning. As they train, these agents intermittently add copies of themselves and play against previous version.

OpenAI Five Five became the first AI system to defeat the world champions at an esports game [OpenAI 2019]

Self-play reinforcement learning can achieve superhuman performance on a difficult multi-agent task, e.g., extremely long time dependencies,

However
AI systems are not being deployed

- **55%** of companies surveyed haven't deployed a machine learning model [*Algorithmia 2020*]

- **72%** that began AI pilots before 2019 haven’t deployed a single system yet [*Capgemini 2020*]

Why? Current models cannot **adapt** to more complex and evolving realities - adversarial environment

Problem? Lack of Robustness in AI Systems

[*Jordan 2019*, *D’Amour et al. 2020*]
Multi-Agent Architectures make strong Assumptions that make Robustness even more Challenging

Architecture [Nguyen et al. 2020]

- Emergent patterns of Agent behavior
- Communication
- Coordination
- Scaling

Environment
- State 1
 - Reward 1
- State 2
 - Reward 2

Agent 1
- Action 1

Agent 2
- Action 2
- Joint Action

Patterns of behavior [Leibo et al. 2017]

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Agent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>Cooperate</td>
</tr>
<tr>
<td>R_1, R_2</td>
<td>R_1, R_2</td>
</tr>
<tr>
<td>Defect</td>
<td>Defect</td>
</tr>
<tr>
<td>S_1, T_2</td>
<td>T_1, S_2</td>
</tr>
<tr>
<td>P_1, P_2</td>
<td>P_1, P_2</td>
</tr>
</tbody>
</table>

$R = \text{Reward for Cooperating, } T = \text{Temptation (betrayal), } P = \text{Penalty, } S = \text{Sucker (betrayed)}$

Behaviors (equilibria)
- $R>P$ cooperate instead of mutual defection
- $T>S$ exploit cooperator instead of cooperating (Greed)
- $P>S$ mutual defection instead of being exploited (Fear)

However, in real systems
- Patterns are temporally determined
- Behaviors are categories of policies
- Cooperation may happen at different degrees
- Actions quasi-simultaneously and partial observable states

Roadmap and Technology

<table>
<thead>
<tr>
<th>Activity</th>
<th>Effort</th>
<th>Month-1</th>
<th>Month-2</th>
<th>Month-3</th>
<th>Month-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lectures to equalize knowledge*</td>
<td>2 weeks</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>2. Environment setup</td>
<td>1 week</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Brief survey state-of-the-art</td>
<td>2 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Consolidate requirements in working packages</td>
<td>2 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>5. Plan Iterations for minimum viable products</td>
<td>1 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>6. Intermediary presentation</td>
<td>1 day</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>7. Coding & Experiments</td>
<td>7 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>1. Iter-1 (infrastructure support)</td>
<td>2 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>2. Iter-2 (competitive constraints)</td>
<td>2 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>3. Iter-3 (robustness capability)</td>
<td>2 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>4. Iter-4 (evaluation tests)</td>
<td>1 week</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>8. Write final report</td>
<td>3 weeks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>9. Final presentation</td>
<td>1 day</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Case Study

Platform: E-Commerce for online shops
Observations: Failure propagation graphs
States: Component failure modes
Actions: Restart, fix, or replace

Technology stack: PyTorch, Open AI Gym, Multi-Agent RL Architecture, Failure Injection Simulator.

[Vogel et al. 2018]