
Quickly Adapting
to Changes

Basic Concepts

Apache Spark [1] is a multi-language unified engine for executing large

scale data engineering, data science, and machine learning on single-node

machines or clusters. Apache Spark became the backbone of 80% of

Fortune 500 companies running A/B Tests and deploying machine learning

models in production.

To integrate with Spark, one relies on Spark Connect [2] = an open-source

communication protocol that leverages the concept of unresolved logical

plans to communicate with Spark. This interface correspond to a very large

fraction of the user surface with Spark.

To facilitate the use of Spark Connect, thousands of customers leverage

Databricks Connect [3] = to connect easily to a remote Databricks cluster

and execute their Spark code written locally in an IDE of their choice. This

flexibility makes it possible to integrate with the Databricks platform in any

development environment or other applications.

Project partners

Detail: How does Databricks
Connect look like?

Databricks Connect is a client library for the Databricks Runtime. It
allows you to write code using Spark APIs and run them remotely on a
Databricks cluster instead of in the local Spark session.

For example, when you run the DataFrame command
spark.read.format(...).load(...).groupBy(...).agg(...).show()

using Databricks Connect, the logical representation of the command is
sent to the Spark server running in Databricks for execution on the
remote cluster.

Databricks Connect determines where your code runs and
debugs, as shown in the following figure.

Context

In the adoption journey of Spark Connect within the context of Databricks

and open-source, customers frequently try out code that they found from

internet sources like StackOverflow or generated by LLMs.

However, for most of the existing code, there are better ways to rewrite it

using appropriate primitives that are part of Apache Spark and the

available APIs. Our general goal is to help engineers find these best ways.

Project Goals & Tasks

We propose to explore the following avenues to guide software engineers to

adapt their system to make Spark Connect compatible and thus future-proof.

1.Map of Pain-Points (requirements) – List the types of API changes that

are more critical to the functioning of the customer code. For each type of

change, estimate the complexity of the adaptation of the customer code.

2.Draft a Roadmap – Prioritize pain points, their interdependencies, effort

and risks.

3.Prototype & Proof-of-Concept – Select a pain-point to ideate, specify,

and implement. Define the evaluation criteria. Deploy and test the prototype

on a realistic setting.

4.Make an Open-Source Contribution! – Depending on the outcome,

submit a pull request to the corresponding open-source project.

5.Write the Paper! - Submit the project report to a conference.

Toolbox - we plan to explore existing tools for code generation, summarization,

and refactoring - both rule-based (static analysis) and machine learning-based

(LLM).

Detail: Tasks

The team will decide together with Databricks the following:

• scope/timing of an introductory tutorial on Spark and Databricks
technology stack, eventually involving a visit to Databricks
headquarters.

• interview software engineers to understand the pain-points
involved in adapting customer code to new API.

• specify the criteria to prioritize the pain-points.

• design the proof-of-concept (scenarios, tasks, tests).

• ideate solutions, prototype and evaluate them via a proof-of-
concept.

Quickly Adapting to Changes

Christian Adriano, Felix Boelter, Lasse Kohlmeyer, Holger Karl, Holger Giese,

System Analysis & Modeling / Network Softwarization

Hasso-Plattner-Institut | Digital Engineering | Universität Potsdam | Prof.-Dr.-Helmert-Str. 2–3 |
D-14482 Potsdam | www.hpi.de

For more information contact

Christian Adriano (christian.adriano@hpi.de or Room A-2.7)

Felix Boelter (felix.boelter@hpi.de)

For running code: All code runs locally, while all code involving DataFrame

operations runs on the cluster in the remote Databricks workspace and run

responses are sent back to the local caller.

For debugging code: All code is debugged locally, while all Spark code

continues to run on the cluster in the remote Databricks workspace. The core

Spark engine code cannot be debugged directly from the client.

With the adoption of Spark Connect [2], we knew that there were

certain areas of the application surface that were no longer accessible

because they either required direct access to the driver JVM using

Py4J or required arbitrary code serialization (called RDD).

[1] What is Spark? - https://spark.apache.org/docs/latest/quick-start.html

[2] Spark Connect - https://spark.apache.org/docs/latest/spark-connect-overview.html

[3] Databricks Connect? - https://docs.databricks.com/en/dev-tools/databricks-connect/index.html

Detail – Example of a Failure

https://spark.apache.org/
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/spark-connect-overview.html
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html

	Slide 1: Quickly Adapting to Changes

