Pflichtmodule (SSE)

HPI-SSE-C: Conceptual Foundations

4	Algorithmic folding	
	Vorlesung/4	Baudisch, Patrick
		Abdullah, Muhammad
		Rambold, Lukas
6	Graphenalgorithmen	
	Vorlesung/Übung/	Friedrich, Tobias
	4	Skretas, Georgios

045	Algorithms for Co Vorlesung/Übung/ 4	Ilective Decision Making This module deals with collective decision making, where a group of agents with preferences over alternatives seeks to select a compromise	Boehmer, Niclas
	7	alternative that fairly reflects everyone's preferences. We focus on three types of collective decision making scenarios:	
		Voting: Selecting one or more candidates to represent a population of voters based on their preferences over candidates.	
		Resource Allocation: Fairly and efficiently distributing a set of items among agents.	
		Coalition Formation: Dividing agents into teams based on their	
		preferences for different teams. The course takes a primarily theoretical approach to these problems,	
		rooted in computational social choice, a field at the intersection of theoretical computer science and economics. We study collective	
		decision making problems from four perspectives, which are all also relevant beyond computational social choice:	
		Algorithmic: How efficiently can we find a winning alternative?	
		Axiomatic: Can we design an algorithm that satisfies a set of desirable normative properties?	
		Game-theoretic: Can agents strategically manipulate the algorithm/outcome?	
		Experimental: How do different algorithms behave in practice?	
		The course will consist of three parts: Voting, resource allocation, and coalition formation, where the first part is roughly as long as the other two combined. Covered topics include: Voting	
		 Single Winner Voting & Rank Aggregation: voting rules, 	
		winner determination problem, axiomatic characterizations and impossibility results, manipulation, robustness, other computational problems around elections	
		 Multiwinner Voting & Participatory Budgeting: Voting rules, winner determination problem, proportionality axioms, transparency, real-world instances 	
		 Applications: clustering, proof-of-stake blockchain, deliberation, LLMs / reinforcement learning from human feedback 	
		Resource Allocation	
		 Divisible Goods: fairness axioms, Robertson-Webb model and query complexity, price of proportionality 	
		Indivisible Goods: fairness axioms, computing fair allocations	
		Coalition Formation/ Cooperative Game Theory	
		and its applications	
		 Non-transferable utilities: hedonic games and stable matching, stability concepts, computing stable outcomes 	
		Final Exam: The planned exam mode is a \sim 30-minute oral exam, which will constitute 100% of the course grade. An average grade of at least	
		50% in the exercises is required for students to participate in the final exam but does not contribute towards the course grade.	
		Exercises: Exercises will be assigned on a (bi-)weekly basis and will consist of two types: (1) Traditional problem-solving exercise sheets and (2) Readings of (parts of) research papers, accompanied by comprehension questions.	
		comprementation questions.	
HPI-SSE	-D: Data Founda	tions	
4	Big Data Systeme		

Big Data Systeme Vorlesung/4

Rabl, Tilmann Boissier, Martin Salazar Diaz, Ricardo Strassenburg, Nils

HPI-SSE-S: Systems Foundations

Algorithmic fold	ing	
Vorlesung/4		Baudisch, Patrick Abdullah, Muhammad Rambold, Lukas
Process Mining		
Vorlesung/Übung 2	/	Leopold, Henrik Weske, Mathias
Mobilkommunik		
Vorlesung/Ubung 4	/ For details, please check Moodle.	Karl, Holger
	w and Compliance	
Ethics for Data Blockseminar/2	Engineering and Machine Learning Description	Hagendorff, Thilo
	The compact seminar deals with topics in the context of machine learning technologies, large language models and the associated (ethical and social) ramifications. The seminar will focus on different fields, ranging from behavioral ethics, Al governance, Al alignment, risks of generative Al systems, and many more. Importantly, the seminar focuses less on abstract ethical theories from philosophy, but rather on current, genuinely interdisciplinary research fields and papers, which deal directly with the intersection of ethics and computer science. Learning The purpose of the seminar is to become familiar with issues and methods from the field of ethics and its application to different Al systems. Compact seminar; group discussions; presentations if desired.	Fuerstenberg, Anja
	Exam: Grading is based on the quality of a term paper. The exact criteria according to which the paper will be graded will be discussed in the last session of the seminar.	
Ethics, Al and E	vidence	
Seminar/2	Diese Veranstaltung vermittelt einen Überblick über die ethischen Fragestellungen, welche mit der Vorhersage und Steuerung menschlichen Verhaltens in verschiedenen Lebensbereichen verbunden sind. Die Kennthis ausgewählter technischer Entwicklungen (digitale Informationen für menschliches Entscheiden, prädiktive personalisierte Medizin, Selbstvermessung, datenbasierte Versicherungstarife, Verbraucherscoring, Bürgerscoring) ist für das Verständnis der dahinterliegenden ethischen Fragen erforderlich und vor allem wichtig, um zu verstehen, welche Anspruchsgruppen auf welche Weise bei weiteren Entwicklungen einzubeziehen sind.	Fuerstenberg, Anja Rebitschek, Felix
	Vermittelte Kompetenzen: Methodenkompetenz: Analyse und Bewertung technischer Innovationen unter Gesichtspunkten der Ethik und der gesellschaftlichen Wohlfahrt Fachkompetenzen: Vermittlung von Modellbedeutung und probabilistischen Modellergebnissen gegenüber technischen Laien (Risikokommunikation) Soziale Kompetenz: Gruppendiskurs	
	Goals: Die Studierenden lernen in diesem Kurs (neben den ausgewählten technischen Entwicklungen) die Voraussetzungen des informierten Entscheidens auf Basis digitaler Informationen kennen. Sie sammeln Erfahrung in der Formalisierung und Abstraktion von Problemstellungen und werden zur reflektierten Bewertung zukünftiger datenbasierter Vorhersage- und Steuerungslösungen befähigt. Es wird auf ein erhöhtes Reflexionsvermögen bei Fragestellungen der Diskriminierung und gesellschaftlich-wirtschaftlicher Partizipation abgezielt.	

Die Note wird anhand einer Hausarbeit (6-10 Inhaltsseiten) zu einer vorgegebenen Fragestellung am Semesterende erteilt.

Models and Algorithms (MODA)

HPI-MODA-T: Models and Algorithms - Technologies and Tools

Vorlesung/Übung/ 4	Die Vorlesung gibt eine umfassende Einführung in die moderne Kryptographie und die Grundkonzepte der beweisbaren Sicherheit. Dazu werden formale Angreifermodelle definiert und die Sicherheit der vorgestellten Kryptoverfahren unter wohldefinierten	Lehmann, Anja Dayanikli, Dennis Kenan
	Komplexitätsannahmen in diesem Angreifermodell nachgewiesen. Der Vorlesung dient auch als Grundlage für andere Kurse zur Kryptographie, die vom Lehrstuhl angeboten werden.	
	Content of teaching	
	 Informationstheoretische vs. Komplexitätstheoretische Sicherheit 	
	 Symmetrische Kryptographie Symmetrische Verschlüsselung Pseudozufallsfunktionen Message Authentication Codes (MAC) Hash-Funktionen Authenticated Encryption 	
	 Asymmetrische Kryptographie Diffie-Hellman Schlüsselaustausch Public-Key Verschlüsselung Digitale Signaturen 	
	Die Vorlesung setzt Grundkenntnisse in Mathematik und theoretischer Informatik voraus, insbesondere müssen die formale mathematische Sprache und elementare Beweistechniken (Widerspruchsbeweis) problemlos angewandt werden können. Wenn diese Kenntnisse nicht vorhanden sind, wird empfohlen dieses Wissen vor der Vorlesung selbstständig zu erwerben, z.B. durch die Teilnahme an den Vorlesungen Mathematik I oder II (ITSE-Bachelor). In den ersten Vorlesungswochen wird es voraussichtlich auch zusätzliche Übungstermine und -materialien geben, in denen elementare Grundlagen aufgefrischt werden können.	
		 Komplexitätsannahmen in diesem Angreifermodell nachgewiesen. Der Vorlesung dient auch als Grundlage für andere Kurse zur Kryptographie, die vom Lehrstuhl angeboten werden. Content of teaching Informationstheoretische vs. Komplexitätstheoretische Sicherheit Symmetrische Kryptographie Symmetrische Verschlüsselung Pseudozufallsfunktionen Message Authentication Codes (MAC) Hash-Funktionen Authenticated Encryption Asymmetrische Kryptographie Diffie-Hellman Schlüsselaustausch Public-Key Verschlüsselung Digitale Signaturen Die Vorlesung setzt Grundkenntnisse in Mathematik und theoretischer Informatik voraus, insbesondere müssen die formale mathematische Sprache und elementare Beweistechniken (Widerspruchsbeweis) problemlos angewandt werden können. Wenn diese Kenntnisse nicht vorhanden sind, wird empfohlen diese Wissen vor der Vorlesung selbstständig zu erwerben, z.B. durch die Teilnahme an den Vorlesungswochen wird es voraussichtlich auch zusätzliche Übungstermine und -materialien geben, in denen elementare

005 Advanced Topics in Algorithms and Complexity Vorlesung/4

Friedrich, Tobias Goebel, Andreas Verma, Shaily

045	Algorithms for Co Vorlesung/Übung/ 4	 Increase of the second secon	Boehmer, Niclas
		 deliberation, LLMs / reinforcement learning from human feedback Resource Allocation Divisible Goods: fairness axioms, Robertson-Webb model and query complexity, price of proportionality 	
		allocations Coalition Formation/ Cooperative Game Theory Transferable utilities: stability concepts, Shapely value	
		 Non-transferable utilities: hedonic games and stable matching, stability concepts, computing stable outcomes 	
		Final Exam: The planned exam mode is a ~30-minute oral exam, which will constitute 100% of the course grade. An average grade of at least 50% in the exercises is required for students to participate in the final exam but does not contribute towards the course grade. Exercises: Exercises will be assigned on a (bi-)weekly basis and will consist of two types: (1) Traditional problem-solving exercise sheets and (2) Readings of (parts of) research papers, accompanied by comprehension questions.	
		I Algorithms - Specialization	
005	Advanced Topics Vorlesung/4	in Algorithms and Complexity	Friedrich, Tobias

5

Friedrich, Tobias Goebel, Andreas Verma, Shaily

0.45			
045	Algorithms for Co Vorlesung/Übung/	Ilective Decision Making This module deals with collective decision making, where a group of	Boehmer, Niclas
	4 0 0	agents with preferences over alternatives seeks to select a compromise alternative that fairly reflects everyone's preferences. We focus on three	
		types of collective decision making scenarios:	
		Voting : Selecting one or more candidates to represent a population of voters based on their preferences over candidates.	
		Resource Allocation: Fairly and efficiently distributing a set of items	
		among agents.	
		Coalition Formation: Dividing agents into teams based on their preferences for different teams.	
		The course takes a primarily theoretical approach to these problems,	
		rooted in computational social choice, a field at the intersection of theoretical computer science and economics. We study collective	
		decision making problems from four perspectives, which are all also	
		relevant beyond computational social choice: Algorithmic: How efficiently can we find a winning alternative?	
		Axiomatic: Can we design an algorithm that satisfies a set of desirable	
		normative properties? Game-theoretic: Can agents strategically manipulate the	
		algorithm/outcome?	
		Experimental: How do different algorithms behave in practice?	
		The course will consist of three parts: Voting, resource allocation, and	
		coalition formation, where the first part is roughly as long as the other two combined. Covered topics include:	
		Voting	
		 Single Winner Voting & Rank Aggregation: voting rules, 	
		winner determination problem, axiomatic characterizations	
		and impossibility results, manipulation, robustness, other computational problems around elections	
		 Multiwinner Voting & Participatory Budgeting: Voting rules, winner determination problem, proportionality axioms, transparency, real-world instances 	
		 Applications: clustering, proof-of-stake blockchain, deliberation, LLMs / reinforcement learning from human 	
		feedback Resource Allocation	
		 Divisible Goods: fairness axioms, Robertson-Webb model 	
		and query complexity, price of proportionality	
		 Indivisible Goods: fairness axioms, computing fair allocations 	
		Coalition Formation/ Cooperative Game Theory	
		 Transferable utilities: stability concepts, Shapely value and its applications 	
		 Non-transferable utilities: hedonic games and stable matching, stability concepts, computing stable outcomes 	
		Final Exam: The planned exam mode is a ~30-minute oral exam, which will constitute 100% of the course grade. An average grade of at least	
		50% in the exercises is required for students to participate in the final exam but does not contribute towards the course grade.	
		Exercises: Exercises will be assigned on a (bi-)weekly basis and will	
		consist of two types: (1) Traditional problem-solving exercise sheets	
		and (2) Readings of (parts of) research papers, accompanied by comprehension questions.	
HPI-MO	DA-C: Models and	d Algorithms - Concepts and Methods	

018	Kryptographie		
	Vorlesung/Übung/	Die Vorlesung gibt eine umfassende Einführung in die moderne	Lehmann, Anja
	4	Kryptographie und die Grundkonzepte der beweisbaren Sicherheit. Dazu werden formale Angreifermodelle definiert und die Sicherheit der	Dayanikli, Dennis Kenan
		vorgestellten Kryptoverfahren unter wohldefinierten	
		Komplexitätsannahmen in diesem Angreifermodell nachgewiesen.	
		Der Vorlesung dient auch als Grundlage für andere Kurse zur	
		Kryptographie, die vom Lehrstuhl angeboten werden.	

Content of teaching

- Informationstheoretische vs. Komplexitätstheoretische Sicherheit
 - Symmetrische Kryptographie
 - Symmetrische Verschlüsselung Pseudozufallsfunktionen Message Authentication Codes (MAC) Hash-Funktionen Authenticated Encryption
- Asymmetrische Kryptographie Diffie-Hellman Schlüsselaustausch Public-Key Verschlüsselung Digitale Signaturen

Die Vorlesung setzt Grundkenntnisse in Mathematik und theoretischer Informatik voraus, insbesondere müssen die formale mathematische Sprache und elementare Beweistechniken (Widerspruchsbeweis) problemlos angewandt werden können. Wenn diese Kenntnisse nicht vorhanden sind, wird empfohlen dieses Wissen vor der Vorlesung selbstständig zu erwerben, z.B. durch die Teilnahme an den Vorlesungen Mathematik I oder II (ITSE-Bachelor). In den ersten Vorlesungswochen wird es voraussichtlich auch zusätzliche Übungstermine und -materialien geben, in denen elementare Grundlagen aufgefrischt werden können.

045 Algorithms for Collective Decision Making

Vorlesung/Übung/

4

Ing/ This module deals with collective decision making, where a group of agents with preferences over alternatives seeks to select a compromise alternative that fairly reflects everyone's preferences. We focus on three types of collective decision making scenarios:

Voting: Selecting one or more candidates to represent a population of voters based on their preferences over candidates.

Resource Allocation: Fairly and efficiently distributing a set of items among agents.

Coalition Formation: Dividing agents into teams based on their preferences for different teams.

The course takes a primarily theoretical approach to these problems, rooted in computational social choice, a field at the intersection of theoretical computer science and economics. We study collective decision making problems from four perspectives, which are all also relevant beyond computational social choice:

Algorithmic: How efficiently can we find a winning alternative? Axiomatic: Can we design an algorithm that satisfies a set of desirable normative properties?

Game-theoretic: Can agents strategically manipulate the algorithm/outcome?

Experimental: How do different algorithms behave in practice?

The course will consist of three parts: Voting, resource allocation, and coalition formation, where the first part is roughly as long as the other two combined. Covered topics include: Voting

- Single Winner Voting & Rank Aggregation: voting rules, winner determination problem, axiomatic characterizations and impossibility results, manipulation, robustness, other computational problems around elections
- Multiwinner Voting & Participatory Budgeting: Voting rules, winner determination problem, proportionality axioms, transparency, real-world instances
- Applications: clustering, proof-of-stake blockchain, deliberation, LLMs / reinforcement learning from human feedback

Resource Allocation

- Divisible Goods: fairness axioms, Robertson-Webb model and query complexity, price of proportionality
- Indivisible Goods: fairness axioms, computing fair allocations

Coalition Formation/ Cooperative Game Theory

Boehmer, Niclas

- Transferable utilities: stability concepts, Shapely value and its applications
- Non-transferable utilities: hedonic games and stable matching, stability concepts, computing stable outcomes

Final Exam: The planned exam mode is a ~30-minute oral exam, which will constitute 100% of the course grade. An average grade of at least 50% in the exercises is required for students to participate in the final exam but does not contribute towards the course grade. Exercises: Exercises will be assigned on a (bi-)weekly basis and will consist of two types: (1) Traditional problem-solving exercise sheets and (2) Readings of (parts of) research papers, accompanied by comprehension questions.

Machine Learning and Analytics (MALA)

HPI-MALA-T: Machine Learning and Analytics - Technologies and Tools

024		Iodels and Computer Vision Research Seminar	de Mala Osman
	Projektseminar/4		de Melo, Geraro Zhang, Jingy
025	Computing on End	crypted Data	znang, omgy
025	Computing on Enc Vorlesung/Übung/ 2	 crypted Data This course offers an introduction to cryptographic techniques that enable computation over encrypted data, with a central focus on Homomorphic Encryption. We will follow a practical and engineering- focused approach: while we will touch on essential theoretical concepts, the primary emphasis will be on equipping participants with the skills needed to implement these techniques in real-world applications. The course will comprise a hands-on project where participants will apply what they've learned to develop a functional cryptographic system. Exam: The grading will be based on a final exam (70%) and a practical project evaluation (30%). The final exam will be oral, unless too many participant register Content of teaching: Definitions and model Early constructions Current, lattice-based constructions Multiparty homomorphic encryption & Secure multiparty computations Implementation Prerequisites: Introduction to cryptography: encryption, security property and game-based proofs. Basic discrete mathematics: modular algebra, very basic group and ring theory. Programming: current HE implementation are in C++ and Go. 	Mouchet, Christian Lehmann, Anja

035 Advanced Topics in Software Engineering: Automation and AI

Vorlesung/4

In software engineering, like many other engineering disciplines, we on the one hand want to build solutions with the best possible quality while we on the other hand must adhere to predetermined budget and time constraints. Furthermore, often not enough qualified software engineers are available. Therefore, improving the productivity during software development and operation as well as the quality of the outcomes by automating activities partially or completely using software itself has been a major area for innovations since the early days of programming and software engineering.

Nowadays, many software engineering activities benefit from a high degree of automation and very often we take that automation for granted and are hardly aware of it anymore. Also, often the considered software systems have become so complex that they can only be developed, operated, and evolved by using largely automated approaches for various software engineering activities. Automation in software engineering has the goal to partially or fully execute software engineering activities with minimal human intervention, thereby significantly increasing both quality and productivity. Automation successfully encompasses a broad range of activities, for instance, requirements definition, specification, software architecture, software design and synthesis, implementation, modeling, testing, quality assurance, verification, validation, maintenance, evolution, configuration management, deployment, reengineering,

reuse and visualization. (...) Also artificial intelligence is nowadays used to enhance existing software systems or make new beforehand not feasible software systems possible. Therefore, software engineering activities and outcomes have to be adjusted so that software solutions can benefit from integrated features realized with artificial intelligence. This requires that a clear strategy on how to use artificial intelligence in a software is established and that all aspects of software development and operation are appropriately adjusted to ensure that the employed combination of traditional software and artificial intelligence results in the required quality.

Therefore, we will look in this course at first into the advanced development of systems using automation for software engineering including artificial Intelligence as well as secondly into software engineering for the development of advanced systems that employ artificial intelligence. Furthermore, we will also investigate the operation of systems and how automation and in particular artificial intelligence can help there. Finally, we will discuss the case where automation and in particular artificial intelligence is used for development and operation and employed for the system itself at the same time. We will in addition to the discussions in the lecture explore the key challenges also with small projects in the exercises and will collect at the beginning of the course suggestions for artificial intelligence tools to consider for the small projects or student presentations.

1. https://www.infoworld.com/article/3489925/github-survey-findsnearly-all-developers-using-ai-coding-tools.html 2. https://research.google/blog/ai-in-software-engineering-at-google-

progress-and-the-path-ahead/

Exam:

The grading process takes into account two components: The results of the hands-on projects accompanying the lecture, with each project graded individually.

A final exam at the end of the semester. Depending on the number of course participants, the exam will either be oral or written. Students will be required to pass both graded components. In particular, completing all hands-on projects to an adequate level is

required for admission to the exam. The final grade will either be composed of the average project grade (50%) and the exam grade (50%) OR the exam grade (100%) only, depending on which grading scheme yields a better result for each student individually. Giese, Holger Barkowsky, Matthias Adriano, Christian Ghahremani, Sona

036 Software Engineering with Machine Learning: Tools and Methods

Projektseminar/4

We will grade the group's paper report (80%) and presentations (20%). Note that the report includes documenting the experiments and the obtained results. Therefore, the grading of the report includes the experiments. During the project phase, we will require participation in meetings and other groups' presentations in the form of questions and feedback to their peers.

In the field of software engineering, the need to balance quality, budget constraints, and time limitations are constant drivers for innovation in tools and methods. Because software engineering tasks are extremely labor intensive, automation has become a critical area of focus, aiming to improve productivity during software development and operation while maintaining high-quality code and specificaitons. As a result, many software engineering tasks currently benefit from automation. Meanwhile, artificial intelligence (AI) in general and various specific Machine Learning methods have been bringing new opportunities for automation.. Even before the term "software engineering" was coined. Al was considered a candidate technology. Currently, Al is poised to revolutionize software development. Surveys show that over 97% of developers have used AI coding tools, and companies like Google already produce 50% of their code using AI. AI enhances existing software systems and enables previously unfeasible solutions. However, a clear strategy is essential to integrate AI effectively, adjusting all aspects of software development and operation to ensure the desired quality.

Finally, in this project seminar, we will develop projects that explore how to advance software engineering tasks using automation and specific machine learning methods, from Large Language Models to Reinforcement Learning and Graph Neural Networks. We will also discuss in the context of the projects the particularities of software engineering for Al-driven systems and how automation and Al impact system operation.

This project seminar is a companion of the course "Advanced Topics in Software Engineering: Automation and AI (ASE)", in a sense that the conceptual and theoretical topics will be covered in the lecture, while the project seminar will focus on more in-depth designs and prototypes. For this reason the participants in the project seminar are invited to attend the ASE lectures.

9 Applied Probabilistic Machine Learning Seminar/4 Barkowsky, Matthias Giese, Holger Adriano, Christian

Richard, Hugues Renard, Bernhard Yves

Rapid advances in both biology—through increased data availability Rissom, Francesca and the insights derived from it—and in methods for handling high- Heyne, Henrike dimensional data, such as deep learning architectures and Nowicka, Melania Maria computational resources, have created exciting opportunities for Bartoszewicz, Jakub		ing for Molecular Biology	B / B / ····
 including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by indepth discussions. Biological background is not necessary to participate in the seminar, but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature. In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion illuproving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a bief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. 	Seminar/2	and the insights derived from it—and in methods for handling high- dimensional data, such as deep learning architectures and computational resources, have created exciting opportunities for	Renard, Bernhard Yves Rissom, Francesca Heyne, Henrike Nowicka, Melania Maria Bartoszewicz, Jakub Maciej
but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature. In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific a biology architecture format a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by in-	
<pre>predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. } </pre>		but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current	
Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%)	
introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion	
Max. number of participants: 10		introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed).	
		Max. number of participants: 10	

015 Table Representation Learning

Projektseminar/4

Representation learning (RL) aims to find meaningful representations of given objects to make them easier to process or understand. It finds application in various areas, e.g., cybersecurity, healthcare, time-series analysis, natural language processing, audio processing, and table understanding, and can be used to process data in different modalities, e.g., images, text, audio, or tabular data.

After the rise of foundation models, finding compact and uniform representations of different modalities of data became more important than ever, but while text and images have strong and consolidated representation methods, tabular data have been overlooked until recently. The research area that is trying to fill this gap is called table representation learning (TRL) and aims to extract meaningful information from tabular data to create expressive vectorial representations.

In this seminar, we will introduce you to the field of table representation learning, and explore together how different approaches perform in classic table-related tasks. To achieve that, we have the following plan:

Team activities: each team ideally consists of 2 students and will be assigned a specific TRL archetype, e.g., graph-based, LLM-based, word-embedding-based, etc. Your part is to choose one or more representative models from the ones proposed, implement them, and use them to solve classic table-related tasks, e.g., entity resolution, schema matching, etc. **Deliverable**: The outcome of the seminar is a paper-style technical report that the teams will write collaboratively to present the results of the conducted analysis. In addition to the code, models, and datasets that have been produced. **Bonus**: You will learn how to read/write a research paper and how to conduct scientific experiments and present the results in a paper.

Prerequisites:

- Pvthon
- Basic knowledge of machine learning and deep learning

Organization

The organizational details for this seminar are as follows:

- Project seminar for master students
- Language of instruction: English
- 6 credit points, 4 SWS
- At most 6 participants (ideally, 3 teams of 2 students each)

Grading

In the seminar, each team will develop an approach and write a short report. The final grade consists of the following three parts:

- Approach (35%)
- Written report (35%)
- Midterm and final presentations (30%)

Naumann, Felix Laskowski, Lukas Pugnaloni, Francesco Hoenes, Christoph

2	Reinforcement Learning & Algor		
	ein mächtiges Anwendungsg interessantes Algorithm Dis spezifisches F	Jahren wurde gezeigt, dass Reinforcement Learning (RL) Werkzeug in bisher wenig beachteteten gebieten sein kann. Eine der aus unserer Sicht ten Verwendungen der letzten Jahre ist die Nutzung zur covery. Bei Algorithm Discovery geht es darum für ein Problem automatisiert einen möglichst effizienten oder in pektive optimalen Algorithmus zu finden.	Schlosser, Raine Herbrich, Ralı Kastius, Alexandeı
	Reinforcemen	es Seminars wollen wir eine Einführung sowohl in It Learning, als auch Algorithm Discovery bieten. Iemen werden zum Beispiel sein:	
		Grundlagen des Reinforcement Learning, darunter: Was ist ein Entscheidungsprozess? Aus welchen Komponenten besteht er? Wie kann ich für einen gegebenen Entscheidungsprozess eine optimale Policy finden? Was sind Vor- und Nachteile der uns bekannten Lösungsalgorithmen.	
		Zumindest die Grundlagen der Kombination von Deep Learning und RL: Wie können künstliche neuronale Netze genutzt um zum Beispiel Wertefunktionen und Policies in Entscheidungsprozessen abzubilden.	
	Voraussetzun des maschine zum Verständ relevante Proj Projektstart. V	Einführung in den Anwendungsbereich: Was ist aus unserer Sicht Algorithm Discovery? Wie funktionieren bekannte Systeme? Welche Anwendungsfälle können noch betrachtet werden? gen: Die Teilnehmer kennen idealerweise die Grundlagen illen Lernens und den mathematischen Hintergrund der nis des Themas notwendig ist. Wenn ihr schon eine grammiersprache sicher beherrscht erleichtert das den Vir können aus Zeitgründen keine detaillierte Einführung ing geben, Vorkenntnisse sind also hilfreich.	
	Vorlesung und Themanausw besteht der Zr Vor- und Nacl Nach Abschlu	te des Semesters besteht aus einer Kombination aus d Projektarbeit, wobei der Projektstart langsam mit ahl und Einarbeiten anlaufen wird. Im Rahmen dessen eitaufwand in Anwesenheit bei zwei Terminen pro Woche, nbereitung nach Bedarf und Einarbeiten ins Projektthema. Iss aller Vorlesungstermine besteht der Arbeitsaufwand n auf Projektarbeit und regelmäßigen Treffen mit den	
	und Algorithm an aktuellen T Möglichkeiten	steht darin euch einen Einblick in Reinforcement Learning Discovery zu geben udn euch die Möglichkeit zu geben Themen beispielhaft zu arbeiten und dabei die und Grenzen aktueller Methoden auf einem relevanten tisch herauszufinden.	
8	Advanced Machine Learning Ser	minar	
0	Seminar/4 Explaining and Visualizing Al		Lippert, Christoph
0	Seminar/Praktikum /4		Burmeister, Josafat- Mattias Cech, Tim
			Doellner, Juergen
2	Spatial Data: Processing and Vis Seminar/Praktikum /4	sualization Techniques	Richter, Rico Wegen, Ole Hildebrand, Justus Schulz, Sebastian Burmeister, Josafat- Mattias
HPI-MA	ALA-S: Machine Learning and A	Analytics - Specialization	
024		mputer Vision Research Seminar	
-	Projektseminar/4		de Melo, Gerard Zhana, Jingvi

Applied Probabilistic Machine Learning 9 Seminar/4

Gerard Zhang, Jingyi

Richard, Hugues Renard, Bernhard Yves

Rapid advances in both biology—through increased data availability Rissom, Francesca and the insights derived from it—and in methods for handling high- Heyne, Henrike dimensional data, such as deep learning architectures and Nowicka, Melania Maria computational resources, have created exciting opportunities for Bartoszewicz, Jakub		ing for Molecular Biology	B / B / ····
 including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by indepth discussions. Biological background is not necessary to participate in the seminar, but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature. In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion illuproving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a bief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. 	Seminar/2	and the insights derived from it—and in methods for handling high- dimensional data, such as deep learning architectures and computational resources, have created exciting opportunities for	Renard, Bernhard Yves Rissom, Francesca Heyne, Henrike Nowicka, Melania Maria Bartoszewicz, Jakub Maciej
but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature. In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific a biology architecture format a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by in-	
<pre>predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. } </pre>		but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current	
Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%)	
introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion	
Max. number of participants: 10		introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed).	
		Max. number of participants: 10	

015 Table Representation Learning

Projektseminar/4

Representation learning (RL) aims to find meaningful representations of given objects to make them easier to process or understand. It finds application in various areas, e.g., cybersecurity, healthcare, time-series analysis, natural language processing, audio processing, and table understanding, and can be used to process data in different modalities, e.g., images, text, audio, or tabular data.

After the rise of foundation models, finding compact and uniform representations of different modalities of data became more important than ever, but while text and images have strong and consolidated representation methods, tabular data have been overlooked until recently. The research area that is trying to fill this gap is called table representation learning (TRL) and aims to extract meaningful information from tabular data to create expressive vectorial representations.

In this seminar, we will introduce you to the field of table representation learning, and explore together how different approaches perform in classic table-related tasks. To achieve that, we have the following plan:

Team activities: each team ideally consists of 2 students and will be assigned a specific TRL archetype, e.g., graph-based, LLM-based, word-embedding-based, etc. Your part is to choose one or more representative models from the ones proposed, implement them, and use them to solve classic table-related tasks, e.g., entity resolution, schema matching, etc. **Deliverable**: The outcome of the seminar is a paper-style technical report that the teams will write collaboratively to present the results of the conducted analysis. In addition to the code, models, and datasets that have been produced. **Bonus**: You will learn how to read/write a research paper and how to conduct scientific experiments and present the results in a paper.

Prerequisites:

- Pvthon
- Basic knowledge of machine learning and deep learning

Organization

The organizational details for this seminar are as follows:

- Project seminar for master students
- Language of instruction: English
- 6 credit points, 4 SWS
- At most 6 participants (ideally, 3 teams of 2 students each)

Grading

In the seminar, each team will develop an approach and write a short report. The final grade consists of the following three parts:

- Approach (35%)
- Written report (35%)
- Midterm and final presentations (30%)

Naumann, Felix Laskowski, Lukas Pugnaloni, Francesco Hoenes, Christoph

Projektseminar/4	In den letzten Jahren wurde gezeigt, dass Reinforcement Learning (RL)	Schlosser, Raine
	ein mächtiges Werkzeug in bisher wenig beachteteten Anwendungsgebieten sein kann. Eine der aus unserer Sicht interessantesten Verwendungen der letzten Jahre ist die Nutzung zur Algorithm Discovery. Bei Algorithm Discovery geht es darum für ein spezifisches Problem automatisiert einen möglichst effizienten oder in anderer Perspektive optimalen Algorithmus zu finden. Im Rahmen des Seminars wollen wir eine Einführung sowohl in Reinforcement Learning, als auch Algorithm Discovery bieten. Diskutierte Themen werden zum Beispiel sein:	Herbrich, Ra Kastius, Alexande
	 Grundlagen des Reinforcement Learning, darunter: Was ist ein Entscheidungsprozess? Aus welchen Komponenten besteht er? Wie kann ich für einen gegebenen Entscheidungsprozess eine optimale Policy finden? Was sind Vor- und Nachteile der uns bekannten Lösungsalgorithmen. Zumindest die Grundlagen der Kombination von Deep Learning und RL: Wie können künstliche neuronale Netze genutzt um zum Beispiel Wertefunktionen und Policies in Entscheidungsprozessen abzubilden. 	
	 Einführung in den Anwendungsbereich: Was ist aus unserer Sicht Algorithm Discover?? Wie funktionieren bekannte Systeme? Welche Anwendungsfälle können noch betrachtet werden? Voraussetzungen: Die Teilnehmer kennen idealerweise die Grundlagen des maschinellen Lernens und den mathematischen Hintergrund der zum Verständnis des Themas notwendig ist. Wenn ihr schon eine relevante Programmiersprache sicher beherrscht erleichtert das den Projektstart. Wir können aus Zeitgründen keine detaillierte Einführung in Deep Learning geben, Vorkenntnisse sind also hilfreich. 	
	Die erste Hälfte des Semesters besteht aus einer Kombination aus Vorlesung und Projektarbeit, wobei der Projektstart langsam mit Themanauswahl und Einarbeiten anlaufen wird. Im Rahmen dessen besteht der Zeitaufwand in Anwesenheit bei zwei Terminen pro Woche, Vor- und Nachbereitung nach Bedarf und Einarbeiten ins Projektthema. Nach Abschluss aller Vorlesungstermine besteht der Arbeitsaufwand ausschließlich auf Projektarbeit und regelmäßigen Treffen mit den Betreuern.	
	Unser Ziel besteht darin euch einen Einblick in Reinforcement Learning und Algorithm Discovery zu geben udn euch die Möglichkeit zu geben an aktuellen Themen beispielhaft zu arbeiten und dabei die Möglichkeiten und Grenzen aktueller Methoden auf einem relevanten Problem praktisch herauszufinden.	
Advanced Machin	e Learning Seminar	
Seminar/4		Lippert, Christop
Explaining and Vi Seminar/Praktikum /4		Burmeister, Josafa Mattia Cech, Tir
Spatial Data: Proc Seminar/Praktikum /4	essing and Visualization Techniques	Doellner, Juerge Richter, Ric Wegen, Ol Hildebrand, Justu Schulz. Sebastia

Large Language Models and Computer Vision Research Seminar Projektseminar/4 024

de Melo, Gerard Zhang, Jingyi

Vorlesung/Übung/	Crypted Data This course offers an introduction to cryptographic techniques that	Mouchet. Christian
2	His course of the anti-fit and the activity of the primary emphasis will be on equipping participants with the skills needed to implement these techniques in real-world applications. The course will comprise a hands-on project where participants will apply what they've learned to develop a functional cryptographic system. Exam: The grading will be based on a final exam (70%) and a practical project evaluation (30%). The final exam will be oral, unless too many	Lehmann, Anja
	participant register Content of teaching: Definitions and model Early constructions Current, lattice-based constructions Multiparty homomorphic encryption & Secure multiparty computations	
	Implementation Prerequisites: Introduction to cryptography: encryption, security property and	
	game-based profs. Basic discrete mathematics: modular algebra, very basic group and ring theory.	
	Programming: current HE implementation are in C++ and Go.	

035 Advanced Topics in Software Engineering: Automation and AI

Vorlesung/4

In software engineering, like many other engineering disciplines, we on the one hand want to build solutions with the best possible quality while we on the other hand must adhere to predetermined budget and time constraints. Furthermore, often not enough qualified software engineers are available. Therefore, improving the productivity during software development and operation as well as the quality of the outcomes by automating activities partially or completely using software itself has been a major area for innovations since the early days of programming and software engineering.

Nowadays, many software engineering activities benefit from a high degree of automation and very often we take that automation for granted and are hardly aware of it anymore. Also, often the considered software systems have become so complex that they can only be developed, operated, and evolved by using largely automated approaches for various software engineering activities. Automation in software engineering has the goal to partially or fully execute software engineering activities with minimal human intervention, thereby significantly increasing both quality and productivity. Automation successfully encompasses a broad range of activities, for instance, requirements definition, specification, software architecture, software design and synthesis, implementation, modeling, testing, quality assurance, verification, validation, maintenance, evolution, configuration management, deployment, reengineering, reuse and visualization. (...)

Also artificial intelligence is nowadays used to enhance existing software systems or make new beforehand not feasible software systems possible. Therefore, software engineering activities and outcomes have to be adjusted so that software solutions can benefit from integrated features realized with artificial intelligence. This requires that a clear strategy on how to use artificial intelligence in a software is established and that all aspects of software development and operation are appropriately adjusted to ensure that the employed combination of traditional software and artificial intelligence results in the required quality.

Therefore, we will look in this course at first into the advanced development of systems using automation for software engineering including artificial Intelligence as well as secondly into software engineering for the development of advanced systems that employ artificial intelligence. Furthermore, we will also investigate the operation of systems and how automation and in particular artificial intelligence can help there. Finally, we will discuss the case where automation and in particular artificial intelligence is used for development and operation and employed for the system itself at the same time. We will in addition to the discussions in the lecture explore the key challenges also with small projects in the exercises and will collect at the beginning of the course suggestions for artificial intelligence tools to consider for the small projects or student presentations.

1. https://www.infoworld.com/article/3489925/github-survey-findsnearly-all-developers-using-ai-coding-tools.html 2. https://research.google/blog/ai-in-software-engineering-at-google-

progress-and-the-path-ahead/

Exam:

The grading process takes into account two components: The results of the hands-on projects accompanying the lecture, with each project graded individually.

A final exam at the end of the semester. Depending on the number of course participants, the exam will either be oral or written. Students will be required to pass both graded components. In particular, completing all hands-on projects to an adequate level is

required for admission to the exam. The final grade will either be composed of the average project grade (50%) and the exam grade (50%) OR the exam grade (100%) only, depending on which grading scheme yields a better result for each student individually. Giese, Holger Barkowsky, Matthias Adriano, Christian Ghahremani, Sona

036 Software Engineering with Machine Learning: Tools and Methods

Projektseminar/4

We will grade the group's paper report (80%) and presentations (20%). Note that the report includes documenting the experiments and the obtained results. Therefore, the grading of the report includes the experiments. During the project phase, we will require participation in meetings and other groups' presentations in the form of questions and feedback to their peers.

In the field of software engineering, the need to balance quality, budget constraints, and time limitations are constant drivers for innovation in tools and methods. Because software engineering tasks are extremely labor intensive, automation has become a critical area of focus, aiming to improve productivity during software development and operation while maintaining high-quality code and specificaitons. As a result, many software engineering tasks currently benefit from automation. Meanwhile, artificial intelligence (AI) in general and various specific Machine Learning methods have been bringing new opportunities for automation.. Even before the term "software engineering" was coined. Al was considered a candidate technology. Currently, Al is poised to revolutionize software development. Surveys show that over 97% of developers have used AI coding tools, and companies like Google already produce 50% of their code using AI. AI enhances existing software systems and enables previously unfeasible solutions. However, a clear strategy is essential to integrate AI effectively, adjusting all aspects of software development and operation to ensure the desired quality.

Finally, in this project seminar, we will develop projects that explore how to advance software engineering tasks using automation and specific machine learning methods, from Large Language Models to Reinforcement Learning and Graph Neural Networks. We will also discuss in the context of the projects the particularities of software engineering for Al-driven systems and how automation and Al impact system operation.

This project seminar is a companion of the course "Advanced Topics in Software Engineering: Automation and AI (ASE)", in a sense that the conceptual and theoretical topics will be covered in the lecture, while the project seminar will focus on more in-depth designs and prototypes. For this reason the participants in the project seminar are invited to attend the ASE lectures.

9 Applied Probabilistic Machine Learning Seminar/4 Barkowsky, Matthias Giese, Holger Adriano, Christian

Richard, Hugues Renard, Bernhard Yves

Rapid advances in both biology—through increased data availability Rissom, Francesca and the insights derived from it—and in methods for handling high- Heyne, Henrike dimensional data, such as deep learning architectures and Nowicka, Melania Maria computational resources, have created exciting opportunities for Bartoszewicz, Jakub		ing for Molecular Biology	
 including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by indepth discussions. Biological background is not necessary to participate in the seminar, but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature. In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion illuproving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a bief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. 	Seminar/2	and the insights derived from it—and in methods for handling high- dimensional data, such as deep learning architectures and computational resources, have created exciting opportunities for	Renard, Bernhard Yves Rissom, Francesca Heyne, Henrike Nowicka, Melania Maria Bartoszewicz, Jakub Maciej
but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature. In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific a biology architecture format a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by in-	
<pre>predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. Seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information. } </pre>		but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current	
Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%)	
introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.		Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion	
Max. number of participants: 10		introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed).	
		Max. number of participants: 10	

015 Table Representation Learning

Projektseminar/4

Representation learning (RL) aims to find meaningful representations of given objects to make them easier to process or understand. It finds application in various areas, e.g., cybersecurity, healthcare, time-series analysis, natural language processing, audio processing, and table understanding, and can be used to process data in different modalities, e.g., images, text, audio, or tabular data.

After the rise of foundation models, finding compact and uniform representations of different modalities of data became more important than ever, but while text and images have strong and consolidated representation methods, tabular data have been overlooked until recently. The research area that is trying to fill this gap is called table representation learning (TRL) and aims to extract meaningful information from tabular data to create expressive vectorial representations.

In this seminar, we will introduce you to the field of table representation learning, and explore together how different approaches perform in classic table-related tasks. To achieve that, we have the following plan:

Team activities: each team ideally consists of 2 students and will be assigned a specific TRL archetype, e.g., graph-based, LLM-based, word-embedding-based, etc. Your part is to choose one or more representative models from the ones proposed, implement them, and use them to solve classic table-related tasks, e.g., entity resolution, schema matching, etc. **Deliverable**: The outcome of the seminar is a paper-style technical report that the teams will write collaboratively to present the results of the conducted analysis. In addition to the code, models, and datasets that have been produced. **Bonus**: You will learn how to read/write a research paper and how to conduct scientific experiments and present the results in a paper.

Prerequisites:

- Pvthon
- Basic knowledge of machine learning and deep learning

Organization

The organizational details for this seminar are as follows:

- Project seminar for master students
- Language of instruction: English
- 6 credit points, 4 SWS
- At most 6 participants (ideally, 3 teams of 2 students each)

Grading

In the seminar, each team will develop an approach and write a short report. The final grade consists of the following three parts:

- Approach (35%)
- Written report (35%)
- Midterm and final presentations (30%)

Naumann, Felix Laskowski, Lukas Pugnaloni, Francesco Hoenes, Christoph

2	Painforcomont Lo	arning & Algorithm Discovery	
2	Projektseminar/4	In den letzten Jahren wurde gezeigt, dass Reinforcement Learning (RL) ein mächtiges Werkzeug in bisher wenig beachteteten Anwendungsgebieten sein kann. Eine der aus unserer Sicht interessantesten Verwendungen der letzten Jahre ist die Nutzung zur Algorithm Discovery. Bei Algorithm Discovery geht es darum für ein spezifisches Problem automatisiert einen möglichst effizienten oder in anderer Perspektive optimalen Algorithmus zu finden.	Schlosser, Rainer Herbrich, Ralf Kastius, Alexander
		Im Rahmen des Seminars wollen wir eine Einführung sowohl in Reinforcement Learning, als auch Algorithm Discovery bieten. Diskutierte Themen werden zum Beispiel sein:	
		 Grundlagen des Reinforcement Learning, darunter: Was ist ein Entscheidungsprozess? Aus welchen Komponenten besteht er? Wie kann ich für einen gegebenen Entscheidungsprozess eine optimale Policy finden? Was sind Vor- und Nachteile der uns bekannten Lösungsalgorithmen. 	
		 Zumindest die Grundlagen der Kombination von Deep Learning und RL: Wie können künstliche neuronale Netze genutzt um zum Beispiel Wertefunktionen und Policies in Entscheidungsprozessen abzubilden. 	
		 Einführung in den Anwendungsbereich: Was ist aus unserer Sicht Algorithm Discovery? Wie funktionieren bekannte Systeme? Welche Anwendungsfälle können noch betrachtet werden? Voraussetzungen: Die Teilnehmer kennen idealerweise die Grundlagen des maschinellen Lernens und den mathematischen Hintergrund der zum Verständnis des Themas notwendig ist. Wenn ihr schon eine relevante Programmiersprache sicher beherrscht erleichtert das den Projektstart. Wir können aus Zeitgründen keine detaillierte Einführung in Deep Learning geben, Vorkenntnisse sind also hilfreich. 	
		Die erste Hälfte des Semesters besteht aus einer Kombination aus Vorlesung und Projektarbeit, wobei der Projektstart langsam mit Themanauswahl und Einarbeiten anlaufen wird. Im Rahmen dessen besteht der Zeitaufwand in Anwesenheit bei zwei Terminen pro Woche, Vor- und Nachbereitung nach Bedarf und Einarbeiten ins Projektthema. Nach Abschluss aller Vorlesungstermine besteht der Arbeitsaufwand ausschließlich auf Projektarbeit und regelmäßigen Treffen mit den Betreuern.	
		Unser Ziel besteht darin euch einen Einblick in Reinforcement Learning und Algorithm Discovery zu geben udn euch die Möglichkeit zu geben an aktuellen Themen beispielhaft zu arbeiten und dabei die Möglichkeiten und Grenzen aktueller Methoden auf einem relevanten Problem praktisch herauszufinden.	
8	Advanced Machin Seminar/4	e Learning Seminar	Lippert, Christoph
Softwa	ire Systems (SS	SYS)	Lippon, ennicioph
HPI-SS	YS-T: Software Sy	stems - Technologies and Tools	
9	HCI Project Semir Seminar/Praktikum	nar on Virtual Reality and Personal Fabrication	Baudisch, Patrick
3	/4 Creating Interactiv	ve 3D Web Apps with TypeScript	
4	Projektseminar/4 Algorithmic foldin		Baudisch, Patrick
2	Vorlesung/4	1. Burstin	Baudisch, Patrick Abdullah, Muhammad Rambold, Lukas
3	Network Security Seminar/Praktikum		Najafi, Peyman
027	/4 Process Mining		Cheng, Feng
	Vorlesung/Übung/ 2		Leopold, Henrik Weske, Mathias

5	Global Team-Base	ed Innovation I	
5	Giobal Team-Base Projektseminar/4	d Innovation I Global Team-based Innovation (GTI) is a course designated for master students of the Hasso Plattner Institute (HPI) and the University of Potsdam (UP). In our course, students apply IT knowledge to engineer digital solutions for real business challenges provided by prominent global companies. We follow the Design Thinking methodology to innovate on wicked problems given by our project partners. Within GTI, HPI students collaborate with students from other leading global universities: HPI is a part of the SUGAR Network for Design Innovation (for projects with other global universities). https://bni.de/uebernickel/teaching/global-team-based-innovation-gti- design-thinking.html This class is exclusively available to students who have been accepted through our application process. Exam Project work (20%) Individual participation during lectures, group meetings and in project work Stakeholder management Project more (20%) GTI 1: Fall & winter presentation GTI 2: Final presentation GTI 2: Final presentation Tangible outcomes (20%) Milestone presentations (20%) GTI 1: Fall & winter presentation GTI 2: Final documentation GTI	Uebernickel, Falk Beermann, Vincent Enkmann, Jan Rolfes, Theresa Maria Cauderay, Virginie Wuttke, Tobias
		are real prototypes that have a user-centric design, are economically viable and technically feasible.	
021	Machine Learning Projektseminar/4		Rabl, Tilmann Salazar Diaz, Ricardo Strassenburg, Nils
000	Dete Dresses 's s	n Madaua Haudurana	Tolovski, Ilin
020	Projektseminar/4	n Modern Hardware	Rabl, Tilmann Weisgut, Marcel
019	Modern and Secur	re Internet: Design and Operations	weisgut, wareer
	Vorlesung/4		Bajpai, Vaibhav Ververis, Vasileios
HPI-SS	YS-S: Software Sy	stems - Specialization	
9	-	ar on Virtual Reality and Personal Fabrication	
-	Seminar/Praktikum		Baudisch, Patrick
3	Creating Interactiv	ve 3D Web Apps with TypeScript	
	Projektseminar/4		Baudisch, Patrick

4	Algorithmic folding	
	Vorlesung/4	Baudisch, Patrick
		Abdullah, Muhammad
		Rambold, Lukas
3	Network Security in Practice	
	Seminar/Praktikum	Najafi, Peyman
004	/4	Cheng, Feng
021	Machine Learning Systems	D // T"
	Projektseminar/4	Rabl, Tilmann Seleser Dies Dieserde
		Salazar Diaz, Ricardo Strassenburg, Nils
		Tolovski, Ilin
020	Data Processing on Modern Hardware	TOIOVSKI, IIIT
020	Projektseminar/4	Rabl, Tilmann
	i rejekteeninali i	Weisgut, Marcel
019	Modern and Secure Internet: Design and Operations	riologal, maroor
	Vorlesung/4	Bajpai, Vaibhav
	-	Ververis, Vasileios
	SYS-C: Software Systems - Concepts and Method	e
9	HCI Project Seminar on Virtual Reality and Personal F	
	Seminar/Praktikum	Baudisch, Patrick
•		
3	Creating Interactive 3D Web Apps with TypeScript	Deutieth Detrict
4	Projektseminar/4 Algorithmic folding	Baudisch, Patrick
4	Vorlesung/4	Baudisch, Patrick
	Vollesulig/4	Abdullah, Muhammad
		Rambold. Lukas
3	Network Security in Practice	Nambola, Editas
U	Seminar/Praktikum	Najafi, Peyman
	/4	Cheng, Feng
027	Process Mining	
	Vorlesung/Übung/	Leopold, Henrik
	2	Weske, Mathias

_			
5	Global Team-Base Projektseminar/4	ad Innovation I Global Team-based Innovation (GTI) is a course designated for master students of the Hasso Plattner Institute (HPI) and the University of Potsdam (UP). In our course, students apply IT knowledge to engineer digital solutions for real business challenges provided by prominent global companies. We follow the Design Thinking methodology to innovate on wicked problems given by our project partners. Within GTI, HPI students collaborate with students from other leading global universities: HPI is a partner in ME310 (for projects with the Stanford University) as well as part of the SUGAR Network for Design Innovation (for projects with other global universities). https://hpi.de/uebernickel/teaching/global-team-based-innovation-gli-design-thinking.html This class is exclusively available to students who have been accepted through our application process. Exam Project work (20%) Individual participation during lectures, group meetings and in project work Stakeholder management Project management Project management (sticking to deadlines, etc.) Milestone presentations (20%) GT1 1: Fall & winter presentation GT1 2: Final presentation GT1 2: Final presentation (GT1 2: Final breatments) Tangible outcomes (20%) GT1 1: Fall & winter documentation & videos The estimated workload is 2-3 days per week. Goals: Students from Potsdam and leading global partner universities tackle design innovation challenges posed by global corporations. The 9 months (2 semesters) course forcuses on th	Uebernickel, Falk Beermann, Vincent Enkmann, Jan Rolfes, Theresa Maria Cauderay, Virginie Wuttke, Tobias
021	Machine Learning Projektseminar/4	Systems	Rabl, Tilmann Salazar Diaz, Ricardo Strassenburg, Nils Tolovski, Ilin
020	Data Processing of Projektseminar/4	on Modern Hardware	Rabl, Tilmann Weisgut, Marcel
019	Modern and Secu Vorlesung/4	re Internet: Design and Operations	Bajpai, Vaibhav Ververis, Vasileios
Data-D	riven Systems	(DSYS)	
HPI-DSY	S-T: Data-Driver	Systems - Technologies and Tools	
024	Large Language	Iodels and Computer Vision Research Seminar	
	Projektseminar/4		de Melo, Gerard

		Zhang, Jingyi
027	Process Mining	
	Vorlesung/Übung/	Leopold, Henrik
	2	Weske, Mathias

9		stic Machine Learning	
	Seminar/4		Richard, Hugues Renard, Bernhard Yves
028	Deep Learning fo	r Molecular Biology	
	Seminar/2	Rapid advances in both biology—through increased data availability and the insights derived from it—and in methods for handling high- dimensional data, such as deep learning architectures and computational resources, have created exciting opportunities for integrating these fields.	Renard, Bernhard Yves Rissom, Francesca Heyne, Henrike Nowicka, Melania Maria Bartoszewicz, Jakub Maciej
		This seminar will examine how state-of-the-art deep learning models, including CNNs , GNNs , Transformers , and Diffusion models , are applied to genome , RNA , and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by indepth discussions .	
		Biological background is not necessary to participate in the seminar, but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature.	
		In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%)	
		Goals:	
		Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills	
		The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.	
		Max. number of participants: 10	

7 Advanced Data Profiling

Projektseminar/4 Data Profiling for Dynamic Data

https://hpi.de/naumann/teaching/current-courses/ws-24-25/advanced-data-profiling.html Data profiling is the process of extracting metadata from datasets [1]. Researchers have proposed plenty of profiling algorithms for all different kinds of data dependencies, such as Unique Column Combinations (UCCs), Functional Dependencies (FDs), Inclusion Dependencies (INDs), or Order Dependencies (ODs), on static data in a batch process. However, many real-world datasets are constantly changing. These changes, which are inserts, updates, and deletes, also change the datasets' metadata, making it necessary to frequently reprofile the data. Unfortunately, executing the static profiling algorithms on every dataset change is excessively expense - even infeasible because the static approaches do not leverage the knowledge about an earlier state of the dataset and its dependencies. This calls for novel incremental discovery algorithms that re-use existing profiling results to efficiently maintain data dependencies for dynamic datasets. We will start with existing solutions to this problem for the following dependency types (depending on the number of students) and then improve upon them:

- UCCs: SWAN [2]
- FDs: DynFD [3], DHSFD [4]
- INDs: Shaabani's algorithm [5]
- ODs: list-based: IncOD [6], pointwise: IncPOD [7]

Seminar Organization

We will form teams of two students each. Every team works on one kind of data dependency. First, the teams become familiar with related work as an inspiration. Afterward, each student team develops their own ideas to profile their dependency type.

The students turn their ideas into working algorithms. There are two main goals for each algorithm:

1) The complete set of minimal or maximal dependencies must be maintained.

2) The runtime of the algorithm is to be optimized.

Datasets for benchmarking are provided to the students. Finally, the students present their approaches and write a short report.

Prior knowledge in data profiling (preferably completed Data Profiling lecture) Good programming skills in a major programming language

013 **DQ4AI: Data Quality Assessment** Projektseminar/4

Naumann, Felix Ehrlinger, Lisa Mohammed, Sedir

Naumann, Felix Kaminsky, Youri Lindner, Daniel Schmidl, Sebastian

015 Table Representation Learning

Projektseminar/4

Representation learning (RL) aims to find meaningful representations of given objects to make them easier to process or understand. It finds application in various areas, e.g., cybersecurity, healthcare, time-series analysis, natural language processing, audio processing, and table understanding, and can be used to process data in different modalities, e.g., images, text, audio, or tabular data.

After the rise of foundation models, finding compact and uniform representations of different modalities of data became more important than ever, but while text and images have strong and consolidated representation methods, tabular data have been overlooked until recently. The research area that is trying to fill this gap is called table representation learning (TRL) and aims to extract meaningful information from tabular data to create expressive vectorial representations.

In this seminar, we will introduce you to the field of table representation learning, and explore together how different approaches perform in classic table-related tasks. To achieve that, we have the following plan:

Team activities: each team ideally consists of 2 students and will be assigned a specific TRL archetype, e.g., graph-based, LLM-based, word-embedding-based, etc. Your part is to choose one or more representative models from the ones proposed, implement them, and use them to solve classic table-related tasks, e.g., entity resolution, schema matching, etc. **Deliverable**: The outcome of the seminar is a paper-style technical report that the teams will write collaboratively to present the results of the conducted analysis. In addition to the code, models, and datasets that have been produced. **Bonus**: You will learn how to read/write a research paper and how to conduct scientific experiments and present the results in a paper.

Prerequisites:

- Pvthon
- Basic knowledge of machine learning and deep learning

Organization

The organizational details for this seminar are as follows:

- Project seminar for master students
- Language of instruction: English
- 6 credit points, 4 SWS
- At most 6 participants (ideally, 3 teams of 2 students each)

Grading

In the seminar, each team will develop an approach and write a short report. The final grade consists of the following three parts:

- Approach (35%)
- Written report (35%)
- Midterm and final presentations (30%)

Naumann, Felix Laskowski, Lukas Pugnaloni, Francesco Hoenes, Christoph

2	Reinforcement Le Projektseminar/4	 Arring & Algorithm Discovery In den letzten Jahren wurde gezeigt, dass Reinforcement Learning (RL) ein mächtiges Werkzeug in bisher wenig beachteteten Anwendungsgebieten sein kann. Eine der aus unserer Sicht interessantesten Verwendungen der letzten Jahre ist die Nutzung zur Algorithm Discovery. Bei Algorithm Discovery geht es darum für ein spezifisches Problem automatisier einen möglichst effizienten oder in anderer Perspektive optimalen Algorithmus zu finden. Im Rahmen des Seminars wollen wir eine Einführung sowohl in Reinforcement Learning, als auch Algorithm Discovery bieten. Diskutierte Themen werden zum Beispiel sein: Grundlagen des Reinforcement Learning, darunter: Was ist ein Entscheidungsprozess? Aus welchen Komponenten besteht er? Wie kann ich für einen gegebenen Entscheidungsprozess eine optimale Policy finden? Was sind Vor- und Nachteile der uns bekannten Lösungsalgorithmen. Zumindest die Grundlagen der Kombination von Deep Learning und RL: Wie können künstliche neuronale Netze genutzt um zum Beispiel Wertefunktioner und Policies in Entscheidungsprozessen abzubilden. Einführung in den Anwendungsbereich: Was ist aus unserer Sicht Algorithm Discovery? Wie funktionieren bekannte Systeme? Welche Anwendungsfälle können noch betrachtet werden? Voraussetzungen: Die Teilnehmer kennen idealerweise die Grundlagen des maschinellen Lernens und den mathematischen Hintergrund der zum Verständnis des Themas notwendig ist. Wenn ihr schon eine relevante Programmiersprache sicher beherrscht erleichtert das den Projektstart. Wir können aus Zeigründen keine detaillierte Einführung in Deep Learning geben, Vorkennthisse sind also hilfreich. Die erste Hälfte des Semesters besteht aus einer Kombination aus Vorlesung und Projektarbeit, wobei der Projektstart langsam mit Themanauswahl und Einarbeiten anlaufen wird. Im Rahmen dessen besteht der Zeitaufwand in Anwesenheit bei zwei Terminen pro Woche, Vor- und Nachbereitung n	Schlosser, Rainer Herbrich, Ralf Kastius, Alexander
		an aktuellen Themen beispielhaft zu arbeiten und dabei die Möglichkeiten und Grenzen aktueller Methoden auf einem relevanten	
		Problem praktisch herauszufinden.	
5	Biostatistics & Ep Vorlesung/4	pidemiological data analysis using R	Konigorski, Stefan
021	Machine Learning	g Systems	
	Projektseminar/4		Rabl, Tilmann Salazar Diaz, Ricardo Strassenburg, Nils Tolovski, Ilin
020		on Modern Hardware	Rabl, Tilmann
	Projektseminar/4		Rabi, Tilmann Weisgut, Marcel
0	Explaining and Vi Seminar/Praktikum		Burmeister, Josafat-
	/4		Mattias
			Cech, Tim Doellner, Juergen
2		cessing and Visualization Techniques	
	Seminar/Praktikum /4	1	Richter, Rico Wegen, Ole
			Hildebrand, Justus Schulz, Sebastian
			Burmeister, Josafat-
023	Computational M	ethods: Getting Data from the Internet (APIs and web scraping)	Mattias
	Seminar/2		Bolsover, Gillian

HPI-DSYS-S: Data-Driven Systems - Specialization

024		Iodels and Computer Vision Research Seminar	
	Projektseminar/4		de Melo, Gerard Zhang, Jingyi
9		stic Machine Learning	
	Seminar/4		Richard, Hugues Renard, Bernhard Yves
028	Deep Learning for	Molecular Biology	
	Seminar/2	Rapid advances in both biology—through increased data availability and the insights derived from it—and in methods for handling high- dimensional data, such as deep learning architectures and computational resources, have created exciting opportunities for integrating these fields.	Renard, Bernhard Yves Rissom, Francesca Heyne, Henrike Nowicka, Melania Maria Bartoszewicz, Jakub Maciej
		This seminar will examine how state-of-the-art deep learning models, including CNNs, GNNs, Transformers, and Diffusion models , are applied to genome, RNA , and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by indepth discussions .	
		Biological background is not necessary to participate in the seminar, but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature.	
		In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%)	
		Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed).	
		Please register on the course's Moodle page for further information. Max. number of participants: 10	

7 Advanced Data Profiling

Projektseminar/4 Data Profiling for Dynamic Data

https://hpi.de/naumann/teaching/current-courses/ws-24-25/advanced-data-profiling.html Data profiling is the process of extracting metadata from datasets [1]. Researchers have proposed plenty of profiling algorithms for all different kinds of data dependencies, such as Unique Column Combinations (UCCs), Functional Dependencies (FDs), Inclusion Dependencies (INDs), or Order Dependencies (ODs), on static data in a batch process. However, many real-world datasets are constantly changing. These changes, which are inserts, updates, and deletes, also change the datasets' metadata, making it necessary to frequently reprofile the data. Unfortunately, executing the static profiling algorithms on every dataset change is excessively expense - even infeasible because the static approaches do not leverage the knowledge about an earlier state of the dataset and its dependencies. This calls for novel incremental discovery algorithms that re-use existing profiling results to efficiently maintain data dependencies for dynamic datasets. We will start with existing solutions to this problem for the following dependency types (depending on the number of students) and then improve upon them:

- UCCs: SWAN [2]
- FDs: DynFD [3], DHSFD [4]
- INDs: Shaabani's algorithm [5]
- ODs: list-based: IncOD [6], pointwise: IncPOD [7]

Seminar Organization

We will form teams of two students each. Every team works on one kind of data dependency. First, the teams become familiar with related work as an inspiration. Afterward, each student team develops their own ideas to profile their dependency type.

The students turn their ideas into working algorithms. There are two main goals for each algorithm:

1) The complete set of minimal or maximal dependencies must be maintained.

2) The runtime of the algorithm is to be optimized.

Datasets for benchmarking are provided to the students. Finally, the students present their approaches and write a short report.

Prior knowledge in data profiling (preferably completed Data Profiling lecture)

Good programming skills in a major programming language

013 DQ4AI: Data Quality Assessment Projektseminar/4

Naumann, Felix Ehrlinger, Lisa Mohammed, Sedir

Naumann, Felix Kaminsky, Youri Lindner, Daniel Schmidl, Sebastian

015 Table Representation Learning Projektseminar/4 Representation learning (RL) aims to find meaningful representations of given objects to make them easier to process or understand. It finds application in various areas, e.g., cybersecurity, healthcare, time-series analysis, natural language processing, audio processing, and table understanding, and can be used to process data in different modalities, e.g., images, text, audio, or tabular data. After the rise of foundation models, finding compact and uniform representations of different modalities of data became more important than ever, but while text and images have strong and consolidated representation methods, tabular data have been overlooked until recently. The research area that is trying to fill this gap is called table representation learning (TRL) and aims to extract meaningful information from tabular data to create expressive vectorial representations. In this seminar, we will introduce you to the field of table representation learning, and explore together how different approaches perform in classic table-related tasks. To achieve that, we have the following plan: Team activities: each team ideally consists of 2 students and will be assigned a specific TRL archetype, e.g., graph-based, LLM-based, word-embedding-based, etc. Your part is to choose one or more representative models from the ones proposed, implement them, and use them to solve classic table-related tasks, e.g., entity resolution, schema matching, etc. Deliverable: The outcome of the seminar is a paper-style technical report that the teams will write collaboratively to present the results of the conducted analysis. In addition to the code, models, and datasets that have been produced. Bonus: You will learn how to read/write a research paper and how to conduct scientific experiments and present the results in a paper. Prerequisites: . Pvthon Basic knowledge of machine learning and deep learning Organization The organizational details for this seminar are as follows: Project seminar for master students Language of instruction: English 6 credit points, 4 SWS At most 6 participants (ideally, 3 teams of 2 students each) Grading In the seminar, each team will develop an approach and write a short report. The final grade consists of the following three parts: Approach (35%)

- Written report (35%)
- Midterm and final presentations (30%)

5	Biostatistics & Epidemiological data analysis using R	
	Vorlesung/4	Konigorski, Stefan
021	Machine Learning Systems	
	Projektseminar/4	Rabl, Tilmann
		Salazar Diaz, Ricardo
		Strassenburg, Nils
		Tolovski, Ilin
020	Data Processing on Modern Hardware	
	Projektseminar/4	Rabl, Tilmann
		Weisgut, Marcel
0	Explaining and Visualizing AI	
	Seminar/Praktikum	Burmeister, Josafat-
	/4	Mattias
		Cech, Tim
		Doellner, Juergen

Naumann, Felix Laskowski, Lukas Pugnaloni, Francesco Hoenes, Christoph

2

9

Spatial Data: Processing and Visualization Techniques Seminar/Praktikum

14 Wegen, Ole Hildebrand, Justus Schulz, Sebastian Burmeister, Josafat-Mattias HPI-DSYS-C: Data-Driven Systems - Concepts and Methods 024 Large Language Models and Computer Vision Research Seminar Projektseminar/4 de Melo, Gerard Zhang, Jingyi 027 Process Mining Vorlesung/Übung/ Leopold, Henrik Weske, Mathias Applied Probabilistic Machine Learning Seminar/4 Richard, Hugues Renard, Bernhard Yves 028 Deep Learning for Molecular Biology Seminar/2 Renard, Bernhard Yves Rapid advances in both biology-through increased data availability Rissom. Francesca and the insights derived from it-and in methods for handling high-Hevne, Henrike dimensional data, such as deep learning architectures and Nowicka, Melania Maria computational resources, have created exciting opportunities for Bartoszewicz, Jakub integrating these fields. Maciei This seminar will examine how state-of-the-art deep learning models, including CNNs, GNNs, Transformers, and Diffusion models, are applied to genome, RNA, and protein sequence analysis. We will explore how these advances are used to address key questions such as the effects of genetic mutations, protein structure and function prediction, and the design of new molecules for therapeutic purposes. The course will primarily consist of student presentations on recent, preselected publications in these areas, followed by indepth discussions. Biological background is not necessary to participate in the seminar, but you will need a basic understanding of deep learning. Good English skills are required to understand and discuss current literature In the seminar, each participant will give a presentation about a predefined topic within the research area and a short report. The final grade consists of the following parts: Oral presentation (60%) Written report (30%) Participation (10%) Goals: Identify current topics and open challenges in the field of artificial intelligence for molecular biology Improve your understanding of best practices in scientific research Effectively communicate complex scientific topics in this field and lead a discussion Improving presentation and writing skills The first three sessions will be in lecture format, providing an introduction to key biological concepts and a refresher on deep learning architectures. Following these sessions, students will give oral presentations on select scientific articles including a brief introduction to specific topics. These articles can be chosen from a list that will be presented during the initial meetings. The seminar will be conducted on-site (with a hybrid option if needed). Please register on the course's Moodle page for further information.

Max. number of participants: 10

Richter, Rico

7 Advanced Data Profiling

Projektseminar/4 Data Profiling for Dynamic Data

https://hpi.de/naumann/teaching/current-courses/ws-24-25/advanced-data-profiling.html Data profiling is the process of extracting metadata from datasets [1]. Researchers have proposed plenty of profiling algorithms for all different kinds of data dependencies, such as Unique Column Combinations (UCCs), Functional Dependencies (FDs), Inclusion Dependencies (INDs), or Order Dependencies (ODs), on static data in a batch process. However, many real-world datasets are constantly changing. These changes, which are inserts, updates, and deletes, also change the datasets' metadata, making it necessary to frequently reprofile the data. Unfortunately, executing the static profiling algorithms on every dataset change is excessively expense - even infeasible because the static approaches do not leverage the knowledge about an earlier state of the dataset and its dependencies. This calls for novel incremental discovery algorithms that re-use existing profiling results to efficiently maintain data dependencies for dynamic datasets. We will start with existing solutions to this problem for the following dependency types (depending on the number of students) and then improve upon them:

- UCCs: SWAN [2]
- FDs: DynFD [3], DHSFD [4]
- INDs: Shaabani's algorithm [5]
- ODs: list-based: IncOD [6], pointwise: IncPOD [7]

Seminar Organization

We will form teams of two students each. Every team works on one kind of data dependency. First, the teams become familiar with related work as an inspiration. Afterward, each student team develops their own ideas to profile their dependency type.

The students turn their ideas into working algorithms. There are two main goals for each algorithm:

1) The complete set of minimal or maximal dependencies must be maintained.

2) The runtime of the algorithm is to be optimized.

Datasets for benchmarking are provided to the students. Finally, the students present their approaches and write a short report.

Prior knowledge in data profiling (preferably completed Data Profiling lecture)

Good programming skills in a major programming language

013 DQ4AI: Data Quality Assessment Projektseminar/4

Naumann, Felix Ehrlinger, Lisa Mohammed, Sedir

Naumann, Felix Kaminsky, Youri Lindner, Daniel Schmidl, Sebastian

015 Table Representation Learning Projektseminar/4 Representation learning (RL) aims to find meaningful representations of given objects to make them easier to process or understand. It finds application in various areas, e.g., cybersecurity, healthcare, time-series analysis, natural language processing, audio processing, and table understanding, and can be used to process data in different modalities, e.g., images, text, audio, or tabular data. After the rise of foundation models, finding compact and uniform representations of different modalities of data became more important than ever, but while text and images have strong and consolidated representation methods, tabular data have been overlooked until recently. The research area that is trying to fill this gap is called table representation learning (TRL) and aims to extract meaningful information from tabular data to create expressive vectorial representations. In this seminar, we will introduce you to the field of table representation learning, and explore together how different approaches perform in classic table-related tasks. To achieve that, we have the following plan: Team activities: each team ideally consists of 2 students and will be assigned a specific TRL archetype, e.g., graph-based, LLM-based, word-embedding-based, etc. Your part is to choose one or more representative models from the ones proposed, implement them, and use them to solve classic table-related tasks, e.g., entity resolution, schema matching, etc. Deliverable: The outcome of the seminar is a paper-style technical report that the teams will write collaboratively to present the results of the conducted analysis. In addition to the code, models, and datasets that have been produced. Bonus: You will learn how to read/write a research paper and how to conduct scientific experiments and present the results in a paper. Prerequisites: Pvthon Basic knowledge of machine learning and deep learning Organization The organizational details for this seminar are as follows: Project seminar for master students Language of instruction: English 6 credit points, 4 SWS At most 6 participants (ideally, 3 teams of 2 students each) Grading In the seminar, each team will develop an approach and write a short report. The final grade consists of the following three parts: Approach (35%) Written report (35%) Midterm and final presentations (30%) Biostatistics & Epidemiological data analysis using R Vorlesuna/4 021 **Machine Learning Systems** Projektseminar/4 020 **Data Processing on Modern Hardware** Projektseminar/4 023 Computational Methods: Getting Data from the Internet (APIs and web scraping) Seminar/2 Online and Interactive Systems (OISY)

HPI-OISY-T: Online and Interactive Systems - Technologies and Tools

HCI Project Seminar on Virtual Reality and Personal Fabrication Seminar/Praktikum /4

35

Konigorski, Stefan

Rabl. Tilmann Salazar Diaz, Ricardo Strassenburg, Nils Tolovski, Ilin

Rabl, Tilmann

Weisgut, Marcel

Bolsover, Gillian

5

9

Creating Interactiv Projektseminar/4	ve 3D Web Apps with TypeScript	Baudisch, Patric
Algorithmic foldin	a	Dauuiscii, Paulo
Vorlesung/4	0	Baudisch, Patric Abdullah, Muhamma Rambold, Luka
Computing on En		,
Vorlesung/Übung/ 2	This course offers an introduction to cryptographic techniques that enable computation over encrypted data, with a central focus on Homomorphic Encryption. We will follow a practical and engineering- focused approach: while we will touch on essential theoretical concepts, the primary emphasis will be on equipping participants with the skills needed to implement these techniques in real-world applications. The course will comprise a hands-on project where participants will apply what they've learned to develop a functional cryptographic system.	Mouchet, Christia Lehmann, An
	Exam: The grading will be based on a final exam (70%) and a practical project evaluation (30%). The final exam will be oral, unless too many participant register	
	Content of teaching: Definitions and model Early constructions Current, lattice-based constructions Multiparty homomorphic encryption & Secure multiparty	
	computations Implementation Prerequisites: Introduction to cryptography: encryption, security property and	
	game-based proofs. Basic discrete mathematics: modular algebra, very basic group and ring theory.	
Mobile Security		
Vorlesung/Übung/ 4	This lecture covers mobile security on an application and system level, with many hands-on exercises. Students will learn state-of-the-art security concepts for both, iOS and Android, and will be able to perform security testing of mobile apps, mobile malware analysis, as well as testing security-critical components within mobile operating systems.	Classen, Jisk
	https://moodle.hpi.de/course/view.php?id=798 This lecture covers mobile security on an application and system level, with many hands-on exercises. Students will learn state-of-the-art security concepts for both iOS and Android. They will be able to perform security testing of mobile apps, mobile malware analysis, and	
	testing security-critical components within mobile operating systems. Course contents include:	
	Threat modeling for mobile devices and apps, building mobile applications with Xcode and Android Studio, application security and testing, mobile malware capabilities and detection,	
	operating system internals, such as inter-process communication, threads,, kernel and firmware security, mobile forensics, and wireless security.	
	Grading is based on practical exercises and the final exam. Assignments (50%) Written exam, 90 minutes (50%)	
Kryptographie	Die Vedeeung eint eine umfessende Fisfikrung in die mederer	Laborana Ar
Vorlesung/Übung/ 4	Die Vorlesung gibt eine umfassende Einführung in die moderne Kryptographie und die Grundkonzepte der beweisbaren Sicherheit. Dazu werden formale Angreifermodelle definiert und die Sicherheit der vorgestellten Kryptoverfahren unter wohldefinierten Komplexitätsannahmen in diesem Angreifermodell nachgewiesen.	Lehmann, Anj Dayanikli, Dennis Kena

Komplexitätsannahmen in diesem Angreifermodell nachgewiesen. Der Vorlesung dient auch als Grundlage für andere Kurse zur Kryptographie, die vom Lehrstuhl angeboten werden. Content of teaching

- Informationstheoretische vs. Komplexitätstheoretische Sicherheit
- Symmetrische Kryptographie
 - Symmetrische Verschlüsselung Pseudozufallsfunktionen Message Authentication Codes (MAC) Hash-Funktionen Authenticated Encryption
- Asymmetrische Kryptographie Diffie-Heilman Schlüsselaustausch Public-Key Verschlüsselung Digitale Signaturen

Die Vorlesung setzt Grundkenntnisse in Mathematik und theoretischer Informatik voraus, insbesondere müssen die formale mathematische Sprache und elementare Beweistechniken (Widerspruchsbeweis) problemlos angewandt werden können. Wenn diese Kenntnisse nicht vorhanden sind, wird empfohlen dieses Wissen vor der Vorlesung selbstständig zu erwerben, z.B. durch die Teilnahme an den Vorlesungen Mathematik I oder II (ITSE-Bachelor). In den ersten Vorlesungswochen wird es voraussichtlich auch zusätzliche Übungstermine und -materialien geben, in denen elementare Grundlagen aufgefrischt werden können.

017 Digital Entomology: Tracking and Tackling Cyber Bugs

5

Seminar/3

Cybersecurity attacks happen frequently and have severe impact. Bugs in digital systems make these attacks possible. In this seminar, we'll take a look into these bugs, why they happen, how they can be exploited, and what could be done to mitigate them. We're collecting and studying cyber bugs – and you'll all be digital entomologists! <u>https://moodle.hpi.de/course/edit.php?id=799</u>

The seminar follows a weekly schedule. Each week, we'll talk about recent, impactful bugs. The research talks will be split into bugs presented by the lecturer as well as bugs presented by students. We aim at covering highly diverse and recent bugs and bug classes, such as:

- web and browser security,
- internet-facing services including firewalls, mail, ...,
- binary exploitation,
- real-world bugs in cryptographic implementations,
- hardware bugs,
- ... 🔧 🕷 😽

Students can pick the bugs they present on their own, but there'll be some moderation to ensure no duplicate bugs and a high variety.

Some experience in the area of cyber security is recommended. You should be able to follow technical writeups about bugs and how they were exploited in order to give presentations about these bugs.

Exam

- 70% Presentations (two 30 minute presentations per student – that means two bugs being presented; each presentation is 20 minutes talk + 10 minutes Q&A)
- 30% Creating quizzes (create multiple choice quizzes for two pressentations)
- Passing all multiple choice quizzes during the semester with at least 75% is mandatory, multiple attempts are allowed.

for real business challenges provided by prominent global companies.

Global Team-Based Innovation I

Projektseminar/4 Global Team-based Innovation (GTI) is a course designated for master students of the Hasso Plattner Institute (HPI) and the University of Potsdam (UP). In our course, students apply IT knowledge to engineer digital solutions Uebernickel, Falk Beermann, Vincent Enkmann, Jan Rolfes, Theresa Maria Cauderay, Virginie

Classen, Jiska

We follow the Design Thinking methodology to innovate on wicked problems given by our project partners. Within GTI, HPI students collaborate with students from other leading global universities; HPI is a partner in ME310 (for projects with the Stanford University) as well as part of the SUGAR Network for Design Innovation (for projects with other global universities).

https://hpi.de/uebernickel/teaching/global-team-based-innovation-atidesign-thinking.html

This class is exclusively available to students who have been accepted through our application process.

Exam
Project work (20%)
Individual participation during lectures, group
meetings and in project work
Stakeholder management
Project management (sticking to deadlines, etc.)
Milestone presentations (20%)
GTI 1: Fall & winter presentation
GTI 2: Final presentation
Tangible outcomes (20%)
One-Pagers for corporate partners
Intermediate prototypes
Milestone documentations (40%)
GTI 1: Fall & winter documentation
GTI 2: Final documentation & videos
The estimated workload is 2-3 days per week.

Goals

Students from Potsdam and leading global partner universities tackle design innovation challenges posed by global corporations. The 9 months (2 semesters) course focuses on the application of IT knowledge for engineering solutions to real business challenges. Further, we put emphasis on teaching students human-centered innovation methods and processes required for designers, engineers, and project managers of the future.

Within the projects, students go through an intense and iterative process of need finding, ideation, and rapid prototyping to create and evaluate new concepts. Company involvement provides the reality check necessary for teams to improve their innovation abilities. The team is supported by a professional coach, corporate liaisons, and faculty advisors.

Projects typically involve systems integration and include a mix of mechanical, electronic and software design. The results of all projects are real prototypes that have a user-centric design, are economically viable and technically feasible.

1	Mobilkommunikatio	on	
	Vorlesung/Übung/ 4	For details, please check Moodle.	Karl, Holger
019	Modern and Secure	e Internet: Design and Operations	
	Vorlesung/4		Bajpai, Vaibhav Ververis, Vasileios
0	Explaining and Vis	ualizing Al	
	Seminar/Praktikum /4		Burmeister, Josafat- Mattias Cech, Tim Doellner, Juergen
2	Spatial Data: Proce	ssing and Visualization Techniques	
	Seminar/Praktikum /4		Richter, Rico Wegen, Ole Hildebrand, Justus Schulz, Sebastian Burmeister, Josafat- Mattias
023	Computational Met	hods: Getting Data from the Internet (APIs and web scrap	ping)
	Seminar/2		Bolsover, Gillian
HPI-OIS	Y-S: Online and I	nteractive Systems - Specialization	
0	UCI Brainet Semin	ar on Virtual Baality and Baraanal Eabrication	

9	HCI Project Seminar on Virtual Reality and Personal Fabrication			
	Seminar/Praktikum	Ba		
	/4			

38

udisch, Patrick

Creating Interactiv	re 3D Web Apps with TypeScript	
Projektseminar/4		Baudisch, Patrick
Algorithmic foldin	g	
Vorlesung/4		Baudisch, Patrick Abdullah, Muhammad Rambold, Lukas
Mobile Security		
Vorlesung/Übung/ 4	This lecture covers mobile security on an application and system level, with many hands-on exercises. Students will learn state-of-the-art security concepts for both, iOS and Android, and will be able to perform security testing of mobile apps, mobile malware analysis, as well as testing security-critical components within mobile operating systems. <u>https://moodle.hpi.de/course/view.php?id=798</u> This lecture covers mobile security on an application and system level, with many hands-on exercises. Students will learn state-of-the-art security concepts for both iOS and Android. They will be able to perform security testing of mobile apps, mobile malware analysis, and testing security-critical components within mobile operating systems. Course contents include: Threat modeling for mobile devices and apps, building mobile applications with Xcode and Android Studio, application security and testing, mobile malware capabilities and detection, operating system internals, such as inter-process communication, threads,, kernel and firmware security, mobile forensics, and wireless security. Grading is based on practical exercises and the final exam. Assignments (50%) Written exam, 90 minutes (50%)	Classen, Jiska

017 Digital Entomology: Tracking and Tackling Cyber Bugs Seminar/3 Cybersecurity attacks happen frequently and have severe impact. Bugs Classen, Jiska in digital systems make these attacks possible. In this seminar, we'll take a look into these bugs, why they happen, how they can be exploited, and what could be done to mitigate them. We're collecting and studying cyber bugs - and you'll all be digital entomologists! https://moodle.hpi.de/course/edit.php?id=799 The seminar follows a weekly schedule. Each week, we'll talk about recent, impactful bugs. The research talks will be split into bugs presented by the lecturer as well as bugs presented by students. We aim at covering highly diverse and recent bugs and bug classes, such as: web and browser security, internet-facing services including firewalls, mail, binary exploitation, real-world bugs in cryptographic implementations, hardware bugs. ... 🔧 🕷 😽 Students can pick the bugs they present on their own, but there'll be some moderation to ensure no duplicate bugs and a high variety. Some experience in the area of cyber security is recommended. You should be able to follow technical writeups about bugs and how they were exploited in order to give presentations about these bugs. Exam 70% Presentations (two 30 minute presentations per student - that means two bugs being presented; each presentation is 20 minutes talk + 10 minutes Q&A) 30% Creating guizzes (create multiple choice guizzes for two pressentations) Passing all multiple choice quizzes during the semester with at least 75% is mandatory, multiple attempts are allowed. 1 Mobilkommunikation Vorlesung/Übung/ For details, please check Moodle. Karl, Holger 019 Modern and Secure Internet: Design and Operations Bajpai, Vaibhav Vorlesung/4 Ververis, Vasileios **Explaining and Visualizing AI** Seminar/Praktikum Burmeister, Josafat-[Δ Mattias Cech, Tim Doellner, Juergen 2 Spatial Data: Processing and Visualization Techniques Seminar/Praktikum Richter, Rico /4 Wegen, Ole Hildebrand, Justus Schulz, Sebastian Burmeister, Josafat-Mattias HPI-OISY-C: Online and Interactive Systems - Concepts and Methods HCI Project Seminar on Virtual Reality and Personal Fabrication 9 Seminar/Praktikum Baudisch, Patrick 14 Creating Interactive 3D Web Apps with TypeScript 3 Projektseminar/4 Baudisch, Patrick 4

Algorithmic folding Vorlesung/4

Baudisch, Patrick Abdullah, Muhammad Rambold, Lukas

Computing on En		Maushat Obrietie
Vorlesung/Übung/ 2	enable computation over encrypted data, with a central focus on	Mouchet, Christia Lehmann, Anj
	Homomorphic Encryption. We will follow a practical and engineering- focused approach: while we will touch on essential theoretical concepts,	
	the primary emphasis will be on equipping participants with the skills	
	needed to implement these techniques in real-world applications. The course will comprise a hands-on project where participants will apply	
	what they've learned to develop a functional cryptographic system.	
	Exam: The grading will be based on a final exam (70%) and a practical project evaluation (30%). The final exam will be oral, unless too many	
	participant register	
	Content of teaching: Definitions and model	
	Early constructions	
	Current, lattice-based constructions	
	Multiparty homomorphic encryption & Secure multiparty computations	
	Implementation Prerequisites:	
	Introduction to cryptography: encryption, security property and	
	game-based proofs. Basic discrete mathematics: modular algebra, very basic group and ring theory.	
	Programming: current HE implementation are in C++ and Go.	
Makila Osawita		
Mobile Security Vorlesung/Übung/	This lecture covers mobile security on an application and system level,	Classen, Jisl
4	with many hands-on exercises. Students will learn state-of-the-art	
	security concepts for both, iOS and Android, and will be able to perform security testing of mobile apps, mobile malware analysis, as well as	
	testing security-critical components within mobile operating systems.	
	https://moodle.hpi.de/course/view.php?id=798	
	This lecture covers mobile security on an application and system level, with many hands-on exercises. Students will learn state-of-the-art	
	security concepts for both iOS and Android. They will be able to	
	perform security testing of mobile apps, mobile malware analysis, and	
	testing security-critical components within mobile operating systems.	
	Course contents include:	
	Threat modeling for mobile devices and apps, building mobile applications with Xcode and Android Studio,	
	application security and testing,	
	mobile malware capabilities and detection,	
	operating system internals, such as inter-process	
	communication, threads,, kernel and firmware security,	
	mobile forensics, and wireless security.	
	Grading is based on practical exercises and the final exam.	
	Assignments (50%)	
	Written exam, 90 minutes (50%)	

018	Kryptographie		
	Vorlesung/Übung/ 4	Die Vorlesung gibt eine umfassende Einführung in die moderne Kryptographie und die Grundkonzepte der beweisbaren Sicherheit. Dazu werden formale Angreifermodelle definiert und die Sicherheit der vorgestellten Kryptoverfahren unter wohldefinierten Komplexitätsannahmen in diesem Angreifermodell nachgewiesen. Der Vorlesung dient auch als Grundlage für andere Kurse zur Kryptographie, die vom Lehrstuhl angeboten werden.	Lehmann, Anja Dayanikli, Dennis Kenan
		Content of teaching	
		 Informationstheoretische vs. Komplexitätstheoretische Sicherheit 	
		 Symmetrische Kryptographie Symmetrische Verschlüsselung Pseudozufallsfunktionen Message Authentication Codes (MAC) Hash-Funktionen Authenticated Encryption 	
		 Asymmetrische Kryptographie Diffie-Hellman Schlüsselaustausch Public-Key Verschlüsselung Digitale Signaturen 	
		Die Vorlesung setzt Grundkenntnisse in Mathematik und theoretischer Informatik voraus, insbesondere müssen die formale mathematische Sprache und elementare Beweistechniken (Widerspruchsbeweis)	

Informatik voraus, insbesondere müssen die formale mathematische Sprache und elementare Beweistechniken (Widerspruchsbeweis) problemlos angewandt werden können. Wenn diese Kenntnisse nicht vorhanden sind, wird empfohlen dieses Wissen vor der Vorlesung selbstständig zu erwerben, z.B. durch die Teilnahme an den Vorlesungen Mathematik I oder II (ITSE-Bachelor). In den ersten Vorlesungswochen wird es voraussichtlich auch zusätzliche Übungstermine und -materialien geben, in denen elementare Grundlagen aufgefrischt werden können.

017 Digital Entomology: Tracking and Tackling Cyber Bugs

```
Seminar/3
```

Cybersecurity attacks happen frequently and have severe impact. Bugs in digital systems make these attacks possible. In this seminar, we'll take a look into these bugs, why they happen, how they can be exploited, and what could be done to mitigate them. We're collecting and studying cyber bugs – and you'll all be digital entomologists! https://moodle.hpi.de/course/edit.php?id=799

The seminar follows a weekly schedule. Each week, we'll talk about recent, impactful bugs. The research talks will be split into bugs presented by the lecturer as well as bugs presented by students. We aim at covering highly diverse and recent bugs and bug classes, such as:

- web and browser security,
- internet-facing services including firewalls, mail, ...,
- binary exploitation,
- real-world bugs in cryptographic implementations,
- hardware bugs,
- ...*\&\V

Students can pick the bugs they present on their own, but there'll be some moderation to ensure no duplicate bugs and a high variety.

Some experience in the area of cyber security is recommended. You should be able to follow technical writeups about bugs and how they were exploited in order to give presentations about these bugs.

Exam

- 70% Presentations (two 30 minute presentations per student – that means two bugs being presented; each presentation is 20 minutes talk + 10 minutes Q&A)
- 30% Creating quizzes (create multiple choice quizzes for two pressentations)
- Passing all multiple choice quizzes during the semester with at least 75% is mandatory, multiple attempts are allowed.

Classen, Jiska

5	Global Team-Base	ad Innovation I	
5	Global Team-Base Projektseminar/4	Global Team-based Innovation (GTI) is a course designated for master students of the Hasso Plattner Institute (HPI) and the University of Potsdam (UP). In our course, students apply IT knowledge to engineer digital solutions for real business challenges provided by prominent global companies. We follow the Design Thinking methodology to innovate on wicked problems given by our project partners. Within GTI, HPI students collaborate with students from other leading global universities: HPI is a partner in ME310 (for projects with the Stanford University) as well as partner in ME310 (for projects with the Stanford University) as well as partner in ME310 (for projects with the Stanford University) as well as part of the SUGAR Network for Design Innovation (for projects with other global universities). https://nj.ed/uebernickel/teaching/global-team-based-innovation-gtidesign-thinking.html This class is exclusively available to students who have been accepted through our application process. Exam Project work (20%) Individual participation during lectures, group meetings and in project work (Stakeholder management Project management Project management (sticking to deadlines, etc.) Milestone presentations (20%) GTI 1: Fall & winter presentation GTI 2: Final presentation GTI 2: Final presentation GTI 1: Fall & winter focumentation GTI 2: Final documentation f GTI 2: Final documentation f C 1 1: Fall & winter focumentation GTI 2: Final documentation f T knowledge for engineering solutions to real business challenges. Further, we put emphasis on teaching slobal partner universities tackle design innovation challenges posed by global corporations. The 9 months (2 semesters) course focuses on the application of IT knowledge for engineering solutions to real business challenges. Further, we put emphasis on teaching slotents human-centered	Uebernickel, Falk Beermann, Vincent Enkmann, Jan Rolfes, Theresa Maria Cauderay, Virginie Wuttke, Tobias
		Projects typically involve systems integration and include a mix of mechanical, electronic and software design. The results of all projects are real prototypes that have a user-centric design, are economically viable and technically feasible.	
		•	
1	Mobilkommunikat Vorlesung/Übung/ 4	ion For details, please check Moodle.	Karl, Holger
019		re Internet: Design and Operations	
019	Vorlesung/4		Bajpai, Vaibhav Ververis, Vasileios
023	Computational Me Seminar/2	thods: Getting Data from the Internet (APIs and web scraping)	Bolsover, Gillian

Professional Skills (PSK)

Seminar/2

HPI-PSK-KT: Technologie-Kommunikation und -Transfer

5 Academic Writing for Science

"Scientific writing is not a science. It does not contain laws obtained through derivations and experiments. Scientific writing is a craft. It consists of skills that are developed through study and practice. Moreover, scientific writing is not mystical. In fact, scientific writing is straightforward. Unlike other forms of writing ... scientific writing has two specific goals: to inform readers and to persuade readers."

- Michael Alley, "The Craft of Scientific Writing"

"Things should be made as simple as possible, but not any simpler."

- Albert Einstein

The course, "Academic Writing for Science" aims to take the mystery out of scientific writing by providing knowledge and practice in the skills necessary to produce a well-written scientific paper in English. Our focus is on those qualities crucial to the positive reception of written work within the scientific community.

Class members are required to give a short presentation based on their assessment of a writing excerpt (maximum 2 pages) from a scientific text of their choice.

Participants learn what comprises clear, concise, and effective written expression. We practice identifying and resolving problems in areas that are often obstacles to good writing. In this sense, we target language and punctuation.

In new course content, participants also learn how to structure and design sentences and paragraphs for the most effective presentation of written work. The principles we learn will help improve *all* professional and academic writting.

Performance Measurement:

In-class participation, performance, and progress. A mid-term test and a final test, based on points covered in the course and writing exercises. The final grade is based on the average of the midterm and final exams points. The oral presentation is a pre-requisite to completion of the course.

Participation in class discussions plays an important role in this course, as does holding the oral presentation and completing writing activities.

Fuerstenberg, Anja Nemeth, Sharon

039 Communicating technology successfully – Developing Content and Formats Blockseminar/2 The seminar is aimed at students of the five master's program

The seminar is aimed at students of the five master's programs in the field of digital engineering who want to communicate their research topics in a structured way and present them successfully. The focus is on developing successful formats and comprehensible content for communication with different target groups. The seminar is designed to enable the participants to

- communicate complex topics from science, research and development in a way that is appropriate for the target group and pass on knowledge in a comprehensible way
- apply methods for format development and
- to coach each other and to support each other in communication tasks in collegial exchange during conception and implementation.

The block seminar can be taken either as a supplement to the seminar "Communicating Technology Successfully - Developing Communication Strategies" or independently.

Day 1 - Basic knowledge of format development for science and technology communication

Input on the topic of science and technology communication; overview of typical characteristics and problem areas, best and worst practice examples

Input & exercise: understanding audiences and target groups Exercise: text formats - comprehensible language, tips and tricks for writing

Input & exercises: Trends in research communication - social media, websites, community participation & citizen science Input & exercise: hands-on research - Visitor centers, science centers, fairs, events & co.

Day 2 - Communicating science and technologies

Input & exercises: Media and public relations Easy listening: Audio formats, radio & podcasts

Visualizing research: Image formats, clips and documentaries

Discussing science: Interview situations and public dialogues

Input & presentation training: My (research) project in 120 seconds; input on composition and structure (individual and partner exercise)

Input & exercise: oral presentations, body language, preparing scripts; feedback from trainer and peers

Day 3 – Developing formats for digital Science and Technology Communication

Input on format development in science and technology communication

Input & exercise: Digital storytelling for the communication of own projects (group work), storyboards & conception Presentation of format ideas (group work, part 1 of graded exam) Reality check and feedback from trainer and peers Wrapup and briefing for the written assignment

Exam

- Presentation "My (research) project in 120 seconds", development and presentation of a digital (storytelling) format for own research and/or technology communication (group work) (50%)
- Written paper (max. 12 pages), elaboration of the ideas for technology communication presented in the seminar (50%)

Lux, Nadine Fuerstenberg, Anja

. Thinki

5	Global Team-Bas	ed Innovation I	
	SK-DT: Design Thi Global Team-Bas Projektseminar/4	ed Innovation 1 Global Team-based Innovation (GTI) is a course designated for master students of the Hasso Plattner Institute (HPI) and the University of Potsdam (UP). In our course, students apply IT knowledge to engineer digital solutions for real business challenges provided by prominent global companies. We follow the Design Thinking methodology to innovate on wicked problems given by our project partners. Within GTI, HPI students collaborate with students from other leading global universities: HPI is a partner in ME310 (for projects with the Stanford University) as well as part of the SUGAR Network for Design Innovation (for projects with other global universities). https://hpi.de/uebernickel/teaching/global-team-based-innovation-gti- design-thinking.html This class is exclusively available to students who have been accepted through our application process. Exam Project work (20%) Individual participation during lectures, group meetings and in project work Stakeholder management Project management (sticking to deadlines, etc.) Milestone presentations (20%) GTI 1: Fall & winter presentation GTI 2: Final presentation Tangible outcomes (20%) One-Pagers for corporate partners Intermediate protypes Milestone documentations (40%) GTI 1: Fall & winter documentation GTI 2: Final documentation & videos The estimated workload is 2-3 days per week. Goals: Students from Potsdam and leading global partner universities tackle design innovation challenges posed by global corporations. The 9 months (2 semesters) course focuses on the application of IT knowledge for engineering solutions to real business challenges. Further, we put emphasis on teaching students human-centered innovation methods and processes required for designers, engineers, and project managers of the future. Within the projects, students go through an intense and iterative process of need finding, ideation, and rapid protypying to create and evaluate new concepts. Company involvement provides the reality check	Uebernickel, Falk Beermann, Vincent Enkmann, Jan Rolfes, Theresa Maria Cauderay, Virginie Wuttke, Tobias
		team is supported by a professional coach, corporate liaisons, and faculty advisors. Projects typically involve systems integration and include a mix of mechanical, electronic and software design. The results of all projects are real prototypes that have a user-centric design, are economically viable and technically feasible.	
0	Design Thinking Projekt/Seminar/6	Studio: Sustainability	Nicolai, Claudia
	Frojekt/Seminar/6		
_			Grundnigg, Thomas

Design Thinking Studio: Open Innovation Projektseminar/6 7

Nicolai, Claudia Juarez Rodriguez, Maria-Jose Osman, Sherif Hussein Ibrahim

0 Foundations for Design Thinking

Projekt/Seminar/6

Foundations for Design Thinking ist ein 16-wöchiges Programm, in dem die Teilnehmer grundlegende Kenntnisse, Fähigkeiten und Fertigkeiten erwerben, um die Prinzipien des Design Thinking anzuwenden und so kreatives Selbstvertrauen aufzubauen. Während des Programms, das von April bis Juli und von Oktober bis Januar läuft, arbeitest du in verschiedenen Teams unter der Leitung unserer erfahrenen Design Thinking Coaches. Wir streben ein unterstützendes und integratives Umfeld an, das Geschlechtsidentitäten, kulturellen Hintergrund und Berufserfahrung berücksichtigt. Das Programm gibt Einblick in verschiedene Aspekte des Design

Das r togramm gint Linbitet mit vorschieden a raporte des besign Thinking und bietet die Möglichkeit, grundlegende Werkzeuge, Methoden und Denkweisen zu erlernen, die erfolgreiche, lebenszentrierte Innovationen fördern. Du tauchst in einen experimentellen Lernansatz ein, der auf Teamarbeit basiert. Da unser Programm auf verschiedenen Perspektiven aufbaut, suchen wir Studierende und Absolvent:innen aller Disziplinen und Fachrichtungen – von Architektur, Pädagogik, IT Systems Engineering und BWL bis hin zu Zukunftsforschung.

Foundations findet ausschließlich vor Ort an der HPI School of Design Thinking und wird im Wintersemester 2024-2025 mit 6 ECTS bewertet. Die Teilnehmeranzahl ist begrenzt auf maximal 60 Personen. Das Programm ist ein 100%iges Vor-Ort-Programm. Um das Abschlusszertifikat und ECTS-Punkte zu erhalten, ist eine regelmäßige, pünktliche und physische Teilnahme an allen Programmtagen erforderlich.

Das Programm beginnt am 20.09.2024 mit dem "Experience Day". Im Wintersemester 2024-2025 finden vom 15.10.2024 bis 28.01.2025 insgesamt 20 Programmtage (meist dienstags und freitags) vor Ort an der HPI School of Design Thinking statt. Alle Programmtage sind von 9:00 Uhr bis 17:00 Uhr. Im Februar arbeiten die Studenten an ihren Projektdokumentationen.

Englisch version:

Foundations for Design Thinking is a 16-week program where participants get the basic knowledge, skills, and capabilities to apply the principles of Design Thinking to build creative confidence. During the program, which runs from April – July and October – January you will work in different teams led by our experienced Design Thinking Coaches. We aim for a supportive and inclusive environment that considers gender identities, cultural background, and professional experience.

The program gives insight into different aspects of Design Thinking and provides the opportunity to learn basic tools, methods, and mindsets that foster successful human-centered innovations. You will dive into an experimental learning approach that is based on teamwork.

Foundations take place on site at the HPI School of Design Thinking and will be graded with 6 ECTS in the winter semester 2024-2025. The number of participants is limited to a maximum of 60 people. The program is a 100% on-site program. Regular, on-time, physical class attendance is required on all program days to be awarded Completion Certificate and ECTS points

Since our program is based on different perspectives, we are looking for students and graduates from all disciplines - from Architecture, Pedagogy, IT systems Engineering or Business to Futurology.

The program starts on 20.09.2024 with the "Experience Day". In the winter semester 2024-2025, a total of 20 program days (mostly Tuesday and Friday) will take place on site at the HPI School of Design Thinking from 15.10.2024 to 28.01.2025. All program days are from 9:00 and to 5:00 pm. In February the students are working on their project documentations. Nicolai, Claudia Lata, Lukasz

3	Clahal Design Thi	nking Warkshan (D. Sahaal)	
3	Projekt/Seminar/2	nking-Workshop (D-School) Die Global Design Thinking Workshops sind ein Programm, das über die reine Einführung in Design Thinking als Prozess hinausgeht. In diesem Programm erleben die Teilnehmer:innen Design Thinking als einen lebenszentrierten Ansatz und arbeiten in verschiedenen Teams an komplexen Innovationsproblemen, unterstützt von internationalen Design Thinking-Coaches. Wir kombinieren diese Arbeit an einem konkreten Innovationsprojekt mit Reflexionen zu einem spezifischen Fokusthema.	Nicolai, Claudia Osman, Sherif Hussein Ibrahim Juarez Rodriguez, Maria- Jose Klonower, Janet
		Der nächste Global Design Thinking Workshop findet im März 2025 statt	
		Our Global Design Thinking Workshops are a education concept that goes beyond the mere introduction to Design Thinking as a process. In this program participants experience Design Thinking as a life-centered approach by dealing with complex innovation problems in diverse teams and supported by international Design Thinking coaches. We combine the work on a concrete innovation project with reflections on a specific focus topic.	
		The next Global Design Thinking Workshop will take place in March	
2	Wavfinder: Self- a	2025! nd Leadership Development (D-School)	
-	Projekt/Seminar/2	Wayfinder is a newly developed program by HPI D-School that adds an essential perspective to the other program offerings in the area of Design Thinking: for self-leading and designing your own well-lived life and career. https://hoi.de/en/school-of-design-thinking/for-students/wayfinder.html Working in innovation teams requires flexibility, agility and, above all, empathy. Empathy, and thus empathic leadership, requires skills in self- awareness and self-leadership, and shaping one's own life as well as one's own career. We believe that a structured design process can help people to develop and grow. Such a process allows them to find out what they want and how to design a satisfying and successful life. By applying and developing the methods of Design Thinking combined with fundamentals from systemic coaching and self-leadership, this program aims to learm and apply tools and techniques to improve self- awareness, recognize one's own behavioral patterns and values, reflect on and expand one's context of experience to make self-efficacy a reality in the future; building on this, to explore, prototype and test new options for a successful future. The program is based on the "Designing Your Life" Concept and has been extended and further developed by the HPI School of Design Thinking.	Schwemmle, Martin Thal, Klaudia Klonower, Janet Nicolai, Claudia
		Wayfinder has four major focus areas : 1. Empathy and Self-Awareness: Understanding one's own values and attitudes. 2. Exploring: Shaping career and personal life with purpose and energy. 3. Prototyping: Making good choices and exploring options. 4. Iterate: Learning forward in a strong network.	
		Session 1: 15. November 2024 (D-School, House D) Session 2: 6. December 2024 (remote) Session 3: 10. January 2025 (remote) Session 4: 31. January 2025 (D-School, House D)	
		The Wayfinder program is aimed at HPI students as well as participants of the Design Thinking Studios of the HPI School of Design Thinking. The course is limited to 18 participants to allow for intensive exchange and reflection in small groups.	
HPI-PSK	-ML: Managemer	nt und Leadership	
•			

2 Founder Fundamentals I Vorlesung/2

Pawlitschek, Frank Hahn, David

043	Leading Yourself	and Others in a Virtual World	
043	Leading Yourself Blockseminar/2	 and Others in a Virtual World 1. Leading Self Leading Self Leading Self How does Resilience work? Risk- and Protective Factors Victim- or Shaper mode Interview "Leaders Talk" My development plan 2. Leading Others Management vs. Leadership Six Leadership Styles by Daniel Goleman Self Assessment: W leadership signature How leaders grow Interview "Leaders Talk" My development plan 3. Leading Virtually Leading Virtually Leading virtual teams Success factors Self-Assessment Leading Virtually Interview "Leaders Talk" Virtual Inspiration Challenge My development plan Exam: COURSE HOMEWORK Due 14 days after end of course: Hand in individual reflection journal (structured course handout with guiding questions) Structured essay: "My Development Plan" GRADING Reflection Journal (50%) 	Drath, Karsten Fuerstenberg, Anja
106	Management Ess Blockseminar/2	 My Development Plan (50%) entials The students learn about the most important aspects of managing organizations and of managing people in organizations and how to apply this knowledge to concrete challenges. This course offers an overview of the main topics of management. We will first cover the basics of management of organizations (strategic leadership) and will then turn to management in organizations (people management). With regard to the latter, the topics include leadership and motivation, employee satisfaction, personnel selection, training and development, and employee evaluation and compensation. Management knowledge is essential for all those who at some point wish to start their own companies or strive to occupy leadership positions in organizations. Conveyed competencies: Knowledge-related competencies: strategic management; methods in management research; personnel selection; job and work design; training and development; motivation; satisfaction; leadership; personnel evaluation; personnel compensation. Methodological competencies; case study analysis; presentation techniques. Social competencies; group work and discussions. 	Kearney, Eric Fuerstenberg, Anja

Exam: The grade will be calculated on the basis of a group presentation (30%) and a written assignment (70%). Both the group presentation and the written assignment will focus on management aspects in organizations that the students select themselves. Further details will be provided at the beginning of the course.

049

Managing stakeholders - The psychology and neuroscience of successfully influencing others

Blockseminar/2

This seminar focuses on influencing skills and humility to measurably increase the likelihood for getting stakeholders on board - without having to pull the outdated hierarchy card (real or borrowed). The first two classroom days will focus on the needs of those that are to be influenced. We will look at two types of rules: those that follow from our social needs and those that stem from the automatisms of our brain. Understanding and practicing them gives participants a set of tools, which they can employ in any work or life situation. We will look at the science behind the rules, use case examples that demonstrate their effectiveness and allow time to apply the rules to own situations. The third classroom day looks at the person of the influencer and how their humility has measurable positive effects on employees, the organisation and themselves. We will visit concepts such as psychological safety, empowerment, error management, collaboration, accountability - all of which are fostered by a humble leader. Research has defined humility in such a way that 97 percent of leaders and employees find this a desirable virtue and wish to learn the ego-free view from the balcony. Yet there are stumbling blocks on the path to humility. We will look at how these can be avoided and how the benefits. of humility be reaped across any nationality, age and gender. The course will aim at the following learning objectives:

Students familiarize themselves with both the psychology and neuroscience of influencing and learn to apply the concepts to different situations. The ability to navigate different stakeholder needs and achieve synergy with their own needs is fostered. Students develop an understanding of the value of humility. They grasp how the concept has nothing to do with weakness, being overly modest or hiding one's light under the bushel but that it is a chosen strength for every role that they have consciously taken on. They see where they stand and learn how to strengthen humility in themselves and others.

Students receive tools, a set of influencing cards for own use as well as numerous concepts that allow them to prosper as leaders while at the same time increasing their understanding of their own patterns of reactivity.

Core themes addressed are:

Rules of influencing that stem from basic human needs and how disregarding them explain many of the negative emotions that arise in every day interactions Rules of influencing that stem from the automatisms of our brains and how these can be utilized to get people on board

Cognitive biases and elements of individual mindsets that hinder influencing success

Humility as a trainable virtue and vital tor leadership in the age o self-managing organisations, agility and New Work Measurable benefits of humility for employees, the organisation and the humble persons themselves

Avoiding stumbling blocks and making humility habitual

Exam: Preparation of classroom sessions

Do pre-work on Qualtrics

Follow-up on classroom sessions / group presentation Work on own situation

Interact with peer coach Test rules of influencing and each of the four sub-

elements of humility in real life

Presentation of each peer group (15 minutes)

Written documentation (minimum 3 pages)

Gewichtung der Leistungen / weighting

Group presentations (in person half a day): 50% Individual written documentation: 50%

050 Power and Power Misuse in Organizations Blockseminar/2 Part 1: Power in Organization

- Part 1: Power in Organizations. What is it? (0.75 days) Part 2: Destructive Leaders – Born or made? (0.75 days)
- Part 3: Power Misuse in Organizations (0.75 days)
- Part 4: Managing Power in Organizations (0.75 day)

Exam:

Class presentation (50%) Written exam (50%) Frank, Franziska Fuerstenberg, Anja

Unternehmenssin	nulation Strategisches Management	
Blockseminar/2	In dieser Veranstaltung erarbeiten sich die Teilnehmer zunächst im Selbststudium die Grundlagen strategischen Managements, festigen diese Kenntnisse im Rahmen eines Fallstudienseminars (Diskussion von Praxisfällen) und transferieren sie schließlich im Rahmen einer zweitätigen interaktiven Unternehmenssimulation ("Berlinsim - digitale Transformation") in die (simulierte) Führungspraxis. Schwerpunktthemen Strategisches Entscheiden unter Unsicherheit, strategische Umweltanalyse, Unternehmensanalyse, Wettbewerbsstrategie (Kostenschwerpunkt, Differenzierung, Stuck-in-the-middle, Hybridposition), Gesamtunternehmensstrategie (Parenting Advantage; Portfolio-Management), Strategieimplementation, Strategische Kontrolle Exam Leistung in der Unternehmenssimulation (50%; Kriterien werden zu Beginn der Veranstaltung bekannt gegeben), Hausarbeit (Reflexion der eigenen Entscheidungspraxis aus der Simulation vor dem Hintergrund der Modelle und Methoden des strategischen Managements; 50%; ggf. als Gruppenhausarbeit) Entwicklung und Verankerung eines branchenunabhängigen robusten mentalen Modells strategischer Unternehmensführung Fallstudiendiskussion, Unternehmenssimulation (Gruppenetratesheitungen, Eineath etertorienkers deklenatede	E E Fuers
	(Gruppenentscheidungen, Einsatz strategischer Analysetools, Coaching), Erfahrungsbasiertes Lernen, Selbststudium.	
Wayfinder: Self- a Projekt/Seminar/2	nd Leadership Development (D-School) Wayfinder is a newly developed program by HPI D-School that	Schwe
Flojeki/Selfilital/2	adds an essential perspective to the other program offerings in the area of Design Thinking: for self-leading and designing your own	Klo
	well-lived life and career. https://hpi.de/en/school-of-design-thinking/for-students/wavfinder.html Working in innovation teams requires flexibility, agility and, above all, empathy. Empathy, and thus empathic leadership, requires skills in self- awareness and self-leadership, and shaping one's own life as well as one's own career. We believe that a structured design process can help people to develop and grow. Such a process allows them to find out what they want and how to design a satisfying and successful life. By applying and developing the methods of Design Thinking combined with fundamentals from systemic coaching and self-leadership, this program aims to learn and apply tools and techniques to improve self- awareness, recognize one's own behavioral patterns and values, reflect on and expand one's context of experience to make self-efficacy a reality in the future; building on this, to explore, prototype and test new options for a successful future. The program is based on the "Designing Your Life" Concept and has been extended and further developed by the HPI School of Design Thinking. Wayfinder has four major focus areas :	Ni
	 Empathy and Self-Awareness: Understanding one's own values and attitudes. Exploring: Shaping career and personal life with purpose and energy. Prototyping: Making good choices and exploring options. Iterate: Learning forward in a strong network. 	
	Session 1: 15. November 2024 (D-School, House D) Session 2: 6. December 2024 (remote) Session 3: 10. January 2025 (remote) Session 4: 31. January 2025 (D-School, House D)	
	The Wayfinder program is aimed at HPI students as well as participants of the Design Thinking Studios of the HPI School of Design Thinking. The course is limited to 18 participants to allow for intensive exchange and reflection in small groups.	
Product Builder		

Braun, Tobias Dabitz, Robert rstenberg, Anja

emmle, Martin Thal, Klaudia Klonower, Janet Nicolai, Claudia

litschek, Frank Hahn, David

HPI-PSK-EI: Entrepreneurship und Innovation			
5	Global Team-Base Projektseminar/4	<pre>dl Innovation 1 Global Team-based Innovation (GTI) is a course designated for master students of the Hasso Plattner Institute (HPI) and the University of Potsdam (UP). In our course, students apply IT knowledge to engineer digital solutions for real business challenges provided by prominent global companies. We follow the Design Thinking methodology to innovate on wicked problems given by our project partners. Within GTI, HPI students collaborate with students from other leading global universities: HPI is a partner in ME310 (for projects with the Stanford University) as well as part of the SUGAR Network for Design Innovation (for projects with other global universities). https://npi.de/uebernickel/teaching/global-team-based-innovation-gti- design-thinking.html This class is exclusively available to students who have been accepted through our application process. Exam Project work (20%) Individual participation during lectures, group meetings and in project work Stakeholder management Project management Project management (sticking to deadlines, etc.) Milestone presentations (20%) GTI 1: Fall & winter presentation GTI 2: Final presentation GTI 2: Final presentation GTI 2: Final winter documentation & videos The estimated workload is 2-3 days per week.</pre>	Uebernickel, Falk Beermann, Vincent Enkmann, Jan Rolfes, Theresa Maria Cauderay, Virginie Wuttke, Tobias
		Goals: Students from Potsdam and leading global partner universities tackle design innovation challenges posed by global corporations. The 9 months (2 semesters) course focuses on the application of IT knowledge for engineering solutions to real business challenges. Further, we put emphasis on teaching students human-centered innovation methods and processes required for designers, engineers, and project managers of the future. Within the projects, students go through an intense and iterative process of need finding, ideation, and rapid prototyping to create and evaluate new concepts. Company involvement provides the reality check necessary for teams to improve their innovation abilities. The team is supported by a professional coach, corporate liaisons, and faculty advisors. Projects typically involve systems integration and include a mix of mechanical, electronic and software design. The results of all projects are real prototypes that have a user-centric design, are economically viable and technically feasible.	

2 Founder Fundamentals I Vorlesung/2

8 Product Builder Seminar/4 Pawlitschek, Frank Hahn, David

Pawlitschek, Frank Hahn, David