Research Question: Recent machine learning algorithms are very successful at generating text outputs from text inputs. Can we generate text outputs from database facts instead?

Key Challenge: Some output words (e.g., “Basel”) may not have been observed in training data. Regular models cannot be applied on demand to generate new words that have never been seen before.

Solution: For on-demand generation of new words, we design a new deep neural architecture that can flexibly incorporate arbitrary items from the fact representations into the output.

Goal

Swiss Tennis Player born in Basel

Model

Facts

- Spouse: Mirka Federer
- Height: 185 cm
- Country of Citizenship: Switzerland
- Date of Birth: 8 August 1981
- Place of Birth: Basel
- Occupation: Tennis Player

Fact Encoder

- **Input:** set of N facts \(\{f_1, f_2, \ldots, f_N\} \)
- **Output:** concatenation of Fact Embeddings \(\{f_1, f_2, \ldots, f_N\} \)
- **Learn Fact Embeddings using Word Embeddings**
- **Positional Encoder:**
 \[
 f_i = \sum_{j=1}^{N} w_j \cdot \omega(i) \cdot \delta(j)
 \]
- **Mean Fact:** \(f_{N+1} = \frac{1}{N} \sum_{i=1}^{N} f_i \)

Sequence Decoder

- **We use Gated Recurrent Unit (GRU) as a sequence decoder**
- **Fact selection:** At each timestep \(t \), the decoder chooses a fact from the set of \(N + 1 \) facts
 \[
 e_t = W_2 \tanh(W_1 [f_t, h_{t-1}]) \\
 f_t = \arg \max_{i \in \{1, N + 1\}} P(f_t | f_i, h_{t-1}) \\
 P(f_t | f_i, h_{t-1}) = \frac{\exp(e_t)}{\sum_{j \in \{1, N + 1\}} \exp(e_j)} \\
 P(f_t | f_i, h_{t-1})
 \]
- **Generating vocabulary words:** If the selected fact is the Mean Fact, the model generates a non-factual vocabulary word
 \[
 o_t = W_e \max(W_e [c_t, h_{t-1}]) \\
 P(w_t | o_t, h_t) = \text{Softmax}(o_t) \\
 w_t = \arg \max_{w \in \mathbb{V}} P(w_t | o_t, h_t)
 \]
- **Copying factual words:** If a fact other than the Mean Fact is selected, the decoder copies a word from the corresponding fact to the output sequence. The position of the word to copy is determined as follows:
 \[
 r_t = W_e \max(W_e [c_t, h_t]) \\
 P(n_t | f_t, h_t) = \text{Softmax}(r_t) \\
 n_t = \arg \max_{n \in \{1, \ldots, |f_t|\}} P(n_t | f_t, h_t)
 \]

Results

Examples of generated descriptions for Wikidata entities with missing descriptions

Code and Data

https://github.com/kingsaint/Wikidata-Descriptions