On the virtualization overhead in consolidated servers for different hypervisors

Prof. Dr. Carlos Juiz and MSc. Belen Bermejo
{cjuiz, belen.bermejo}@uib.es
Computer Science Department, University of the Balearic Islands. Ctra. Valldemossa km 7.5, Palma, E07122, Spain.

Introduction

- The virtualization technology has an inherent performance overhead (extra workload to manage virtualization).
- The server consolidation allows to manage datacenters in a more flexible way.
- The virtualization overhead depends on the hypervisor implementation (type-I, type-II and container-based) and the number of consolidated virtual machines.
- There are two sources of overhead [3]:
  - Due to hypervisor ($O_{HV}$)
  - Due to the co-allocation of virtual machines ($O_{C}$)
- It is crucial to minimize the performance degradation due to virtualization overhead.

Objective

To determine how the virtualization overheads are affected by the hypervisor implementation.

Methodology

Two overhead sources:
- $O_{HV}$: overhead due to hypervisor.
- $O_{C}$: overhead due to consolidation management

To determine $O_{HV}$ and $O_{C}$ → Comparison between scenarios

Conclusions

- We identified two sources of overhead: from the hypervisor ($O_{HV}$) and the consolidation management ($O_{C}$).
- We determined $O_{HV}$ and $O_{C}$ through scenarios comparison (S1, S2 and S3).
- The portion of useful work time is higher when consolidating with type-I hypervisor.
  - It spends less time managing the virtual instances.
  - $O_{HV}$ value is lower when we consolidate thought type-I hypervisor (it remains constant).
  - This is due to the proximity with physical hardware.
  - $O_{C}$ value is lower when we consolidate thought type-II.
- Type-II virtual machines are considered as a system process.
- The CPU-intensive workload is not suitable for containers consolidation.
- Type-I hypervisor allows consolidating more virtual instances than type-II and container-based hypervisors.
  - $O_{HV}$ and $O_{C}$ depend on hypervisor type, the number of consolidated instances and the workload nature.
  - For CPU-intensive workload in the HPI server, the best option to consolidate is type-I hypervisor.

References


S1: physical machines. Black box composed by N servers which executes a whole workload in a balanced manner.
S2: virtual machines. Black box composed by N servers, each one hosting a single virtual instance, which executes the N workload fraction.
S3: consolidated physical machine. Black box composed by a single server, which has N consolidated virtual instances. Each VM executes the N workload fraction.

SUT: tx600s5-1 (HPI)
Workload: Sysbench CPU under CPU saturation conditions