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ABSTRACT 
This thesis addresses real-time non-photorealistic rendering techniques and their applications in 
interactive visualization. Real-time rendering has emerged as an important discipline within 
computer graphics developing a broad variety of rendering and optimization techniques along 
with dramatic advances in computer graphics hardware. While many applications of real-time 
rendering techniques concentrate on achieving photorealistic imagery, non-photorealistic 
computer graphics is investigating concepts and techniques that deliberately abstract from 
reality using expressive, stylized, or illustrative rendering; major goals include visual clarity, 
attractiveness, comprehensibility, and perceptibility in depictions. Non-photorealistic rendering 
techniques often rely on the concepts and principles found in traditional illustrations, graphics 
design, and art. 

The contributions of this thesis include three general-purpose real-time non-photorealistic 
rendering techniques: 
 The edge-enhancement rendering technique accentuates visually important edges of 3D 

models facilitating the effective communication of their shape. The technique takes an 
image-space approach for edge detection and encodes the resulting edge intensities as 
texture, called edge map, to enhance 3D models on a per-object basis.  

 The blueprint rendering technique extends the edge-enhancement technique to the 3D 
models’ occluded parts to accentuate their visible as well as their occluded visually 
important edges. Vivid and expressive depictions of complex aggregate objects become 
possible that facilitate the visual perception of spatial relationships and let viewers obtain 
insights into the models.  

 The sketchy drawing rendering technique stylizes visually important edges of 3D models. 
Depicting 3D models in a sketchy manner allows us to express vagueness and is vitally 
important for communicating ideas and for presenting a preliminary, incomplete state.  

Two applications based on these real-time non-photorealistic rendering techniques in the fields 
of visualization demonstrate their ability to build compelling, interactive visual interfaces: 
 Illustrative 3D city models apply non-photorealism to represent virtual spatial 3D 

environments together with associated thematic information. The abstracted, stylized 
depiction emphasizes components of 3D city models and thereby eases recognition, 
facilitates navigation, exploration, and analysis of spatial information.  

 Illustrative CSG models apply non-photorealism to image-based CSG rendering. They 
enable us to visualize the design and assembly of complex CSG models in a 
comprehensible fashion. It also simplifies the interactive construction of CSG models. 

Finally, the thesis investigates an automated approach to depict dynamics as a complementary, 
important dimension in information contents by means of non-photorealistic rendering:  
 The smart depiction system automatically generates compelling images of a 3D scene’s 

related dynamics following the traditional design principles found in comic books and 
storyboards. The system symbolizes past, ongoing, and future activities and events taking 
place in and related to 3D scenes.  

The non-photorealistic rendering techniques and exemplary applications presented in this thesis 
demonstrate that non-photorealistic rendering serves as a fundamental technology for expressive 
and effective visual communication and facilitates the implementation of user interfaces based 
on illustrating 3D scenes and their related dynamics in an informative and comprehensible way. 
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ZUSAMMENFASSUNG 
Diese Arbeit behandelt echtzeitfähige nichtphotorealistische 3D-Renderingverfahren und darauf 
basierende Anwendungen der interaktiven Visualisierung. 
Das Echtzeit-Rendering hat sich als eine bedeutende Wissenschaftsdisziplin innerhalb der 
Computergraphik etabliert, die in Verbindung mit dem rasanten Fortschritt in der 
Computergraphikhardware vielfältige Rendering- und Optimierungsverfahren hervorgebracht 
hat. Während sich viele computergraphische Anwendungen auf die Erzeugung 
photorealistischer Bilder konzentrieren, erforscht das Gebiet der nichtphotorealistischen 
Computergraphik Konzepte und Prinzipien, die durch den Einsatz von expressiven und 
illustrativen Darstellungstechniken bewusst vom Realismus abweichen. Gegenstand des nicht-
photorealistischen 3D-Renderings ist die Erzeugung von verständlichen, attraktiven und 
aussagekräftigen Abbildungen von 3D-Szenen. Um ausdrucksstarke Bildinhalte zu generieren 
beruhen nichtphotorealistische Renderingverfahren oftmals auf den Erfahrungen und Leitlinien 
der traditionellen Illustration, des Graphikdesigns und der Kunst. 
Der Beitrag dieser Arbeit beinhaltet drei universell nutzbare echtzeitfähige Renderingverfahren: 
 Das Renderingverfahren zum Hervorheben von visuell bedeutsamen Kanten von 3D-

Modellen ermöglicht eine effektive Darstellung der geometrischen Form dieser Modelle. 
Das Verfahren beruht auf einem bildbasierten Ansatz zur Kantendetektion und speichert 
die daraus resultierenden Intensitätswerte in einer Textur, der sogenannten Edge Map, um 
anschließend die Kanten pro Objekt individuell zu betonen. 

 Das Blueprint Renderingverfahren wendet das Verfahren zum Hervorheben von Kanten 
auf die verdeckten Bestandteile eines 3D-Modells an. Auf diese Weise können sowohl die 
sichtbaren als auch die verdeckten visuell bedeutsamen Kanten eines 3D-Modells 
graphisch hervorgehoben werden. Das Verfahren ermöglicht anschauliche und 
ausdrucksstarke Darstellungen von komplex aggregierten Objekten, die deren räumlichen 
Zusammenhänge visuell erfassen lassen und somit eine verständliche Einsicht in deren 
Aufbau bieten. 

 Das Renderingverfahren zur skizzenhaften Darstellung von 3D-Modellen stilisiert die 
visuell bedeutsamen Kanten. Skizzenhafte Darstellungen können Unklarheit und 
Unsicherheit visualisieren und sind daher zur Kommunikation von Ideen und zur 
Präsentation von vorläufigen oder unvollendeten Entwürfen besonders geeignet. 

Zwei Anwendungen auf dem Gebiet der Visualisierung nutzen die vorgestellten echtzeitfähigen 
nichtphotorealistischen Renderingverfahren und veranschaulichen deren Leistungsfähigkeit zur 
Generierung überzeugender interaktiver visueller Schnittstellen: 
 Illustrative 3D-Stadtmodelle visualisieren virtuelle räumliche Umgebungen und der mit 

diesen verknüpften thematischen Informationen. Die abstrahierten und stilisierten 
Darstellungen heben die Komponenten der 3D-Stadtmodelle besonders hervor, 
erleichtern somit deren Identifikation und ermöglichen eine effiziente Navigation, 
Exploration und Analyse der räumlichen Informationen. 

 Illustrative CSG-Modelle kombinieren Nichtphotorealismus mit bildbasiertem CSG-
Rendering. Die illustrativen Darstellungen visualisieren Aufbau und Anordnung von 
komplexen CSG-Modellen in einer verständlichen Art und Weise und vereinfachen somit 
deren interaktive Konstruktion. 

Schließlich untersucht diese Arbeit einen auf dem Nichtphotorealismus basierenden Ansatz zur 
automatischen, bildhaften Darstellung von Dynamik, welche eine komplementäre und 
bedeutende Dimension von Informationsinhalten in 3D-Szenen repräsentiert: 
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 Das System zur bildhaften Darstellung von Dynamik erzeugt verständliche Abbildungen 
der Dynamik in 3D-Szenen automatisch unter Berücksichtigung von Entwurfsrichtlinien, 
die traditionell zum Zeichen von Comics und Storyboards genutzt werden. Das System 
symbolisiert dazu die in einer 3D Szene vergangenen, andauernden und zukünftigen 
Abläufe und Ereignisse. 

Die in dieser Arbeit vorgestellten nichtphotorealistischen Renderingverfahren und deren 
Anwendungen in der interaktiven Visualisierung verdeutlichen, dass nichtphotorealistisches 
Rendering eine grundlegende Methodik zur expressiven und effektiven visuellen 
Kommunikation ist und, basierend auf informativen und verständlichen Illustrationen von 3D-
Szenen und deren Dynamik, die Entwicklung von neuen graphischen Schnittstellen fördert. 
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Chapter 1 
Introduction 

“Depiction is essentially an optimization problem, producing the best picture given goals and 
constraints” [32]. This statement from DURAND points out that a depiction has certain intentions 
besides just portraying scenes. These intentions are typically specified, for instance, by 
cognitive goals (i.e., ease of understanding depicted information), affective goals (i.e., invoking 
emotions), or motivational goals (i.e., motivating to participate in depicted concepts) [115], and, 
in addition, by the context a depiction is used in. Constraints are set by the limitations inherent 
to the 2D medium used, for example in the case of flat images, low-resolution images, and static 
images. The goal produces further constraints. For example, if a depiction needs to 
communicate a message, clarity of representation is essential.  
The way a viewer perceives depictions depends also on her or his cultural, social [86], or 
professional background. Assessing and optimizing the quality of depictions requires principles 
of disciplines not only from graphics but also from cognitive science, perceptual psychology, 
cultural science, and visual arts.  

Conveying Information Effectively 
Choosing an optimal graphical form to achieve a specific goal represents always a challenging 
task. The graphical form has a significant impact on how a viewer interprets and understands a 
depiction.  
Photorealistic depictions are based on techniques “that resemble the output of a photographic 
camera and that even make use of the physical laws being involved in the process of 
photography” [116]. But, a photorealistic depiction is not always the optimal choice for 
presenting visual information. “A simplified, abstract diagram is often preferred when an image 
is required to delineate and explain” [101]. LANSDOWN AND SCHOFIELD, for instance, raise the 
question in the context of maintenance manuals: “How much use is a photograph to mechanics 
when they already have the real thing in front of them?” [70].  
Artists and graphic designers have found principles and techniques for generating pictures and 
diagrams to efficiently visualize information yet for a long time. TUFTE, for instance, describes 
the design strategy of the smallest effective difference, that is, “making visual distinctions as 
subtle as possible, but still clear and effective” [120]. In particular, “presenting a unified single 
idea with nothing complicated, extraneous, or contradictory in its makeup” [119] leads to 
efficient visual communication.  
The field of non-photorealistic computer graphics is concerned with the science and technology 
that deliberately abstract from reality using expressive, stylistic, or illustrative rendering 
techniques. These generate images “that, generally speaking, appear to be made in part ‘by 
hand’” [116]. Non-photorealistic rendering techniques can therefore provide new approaches to 
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computer-generated visualization and exploration based on the concepts of visual art and 
cognitive science to address the human beings’ ability to process visual information. 

Take Advantage of Graphics Technology and Hardware 
The ability of non-photorealistic rendering techniques to operate in real-time is vital for all 
interactive applications. Real-time rendering [5] has emerged as an important discipline within 
computer graphics developing a broad variety of rendering techniques along with the dramatic 
advances in computer graphics hardware. Setting up the real-time rendering process is typically 
managed by software interfaces for graphics hardware (e.g., OpenGL [108]) or, at a higher-
level, by graphics libraries, such as scene graph libraries (e.g., OpenInventor [113], Virtual 
Rendering System VRS [29]). The rendering process itself is accelerated by graphics hardware 
to a significant amount. Non-photorealistic approaches can take advantage of technology and 
hardware available for real-time rendering. 
Many real-time rendering techniques deploy specific features of graphics hardware technology 
to achieve a (near) photorealistic appearance. Such real-time rendering techniques include 
texture mapping, environment mapping, standard and soft shadow mapping [67], and bump 
mapping [62]. These techniques exploit graphic hardware capabilities and take advantage of 
high-level shading languages (e.g., OpenGL Shading Language [104]), which allow developers 
to program the 3D rendering pipeline. Hardware capabilities and shading languages can be 
deployed in a similar way for implementing non-photorealistic rendering techniques to achieve 
illustrative and expressive depictions in real-time. 

Illustrating 3D Scenes and Their Dynamics 
This thesis aims at designing, implementing, and applying real-time non-photorealistic 
rendering techniques for illustrating 3D scenes and their related dynamics. One particular goal is 
to identify general-purpose rendering components for real-time non-photorealistic rendering 
systems. These components should be based on today’s computer graphics hardware, operate on 
arbitrary 3D scene contents, and collaborate with each other. 
A fundamental technique in non-photorealistic rendering is concerned with the enhancement of 
the outlines of 3D models because outlines, particularly edges where the visibility of the surface 
changes (a.k.a. silhouettes), are one of the strongest visual cues [69], important “for figure-to-
background distinction” [57], and essential for recognizing “the essence of shape” [56]. 
Rendering just the 3D models’ outlines can depict them in a way that enables viewers to 
imagine details they might otherwise miss.  
A real-time rendering technique for edge enhancement, therefore, can build a base for and 
extend a large number of illustrative and expressive rendering techniques. Taking this technique 
as a starting point, this thesis investigates to what extend edge enhancement can be applied to 
illustrate transparent 3D models, such as in blueprints, to enable comprehensible insights into 
the models and to make their aggregation easy to perceive. This thesis further investigates 
whether these edges can be used to illustrate 3D models in a sketchy way to enable the 
presentation of ideas and to encourage a viewer’s participation. 
Another goal of this thesis involves two applications based on the developed real-time non-
photorealistic rendering techniques in the fields of visualization to demonstrate their ability to 
build compelling, interactive visual interfaces. The contributions include illustrative 3D city 
models, which apply non-photorealism to represent virtual spatial 3D environments together 
with associated thematic information. The abstracted, stylized depiction aims at emphasizing 
components of 3D city models and thereby improving recognition, facilitates navigation, 
exploration, and analysis of spatial information. The contributions include further illustrative 
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CSG models, which apply non-photorealism to image-based CSG rendering visualizing the 
design and assembly of complex CSG models in a comprehensible fashion.  

Finally, the thesis investigates an automated approach to depict dynamics as a complementary, 
important dimension in information contents by means of non-photorealistic rendering. For it, a 
smart depiction system is presented that automatically generates compelling images of a 3D 
scene’s related dynamics following the traditional design principles found in comic books and 
storyboards. The system symbolizes past, ongoing, and future activities and events taking place 
in and related to 3D scenes.  
The non-photorealistic rendering techniques and exemplary applications presented in this thesis 
demonstrate that non-photorealistic rendering serves as a fundamental technology for 
expressive and effective visual communication and facilitates the implementation of user 
interfaces based on illustrating 3D scenes and their related dynamics in an informative and 
comprehensible way.  

Structure of the Dissertation 
The remainder of this dissertation is structured as follows:  
Chapter 2 outlines the concepts and principles of non-photorealistic rendering. It reviews 
existing rendering algorithms for enhancing and stylizing the silhouettes of 3D geometries. The 
chapter presents applications of non-photorealistic rendering that motivate and illustrate serious 
usages of non-photorealistic rendering, and finally introduces the term smart depiction system. 
Chapter 3 briefly describes the programmable rendering pipeline, a fundamental concept 
available on today’s graphics hardware. The chapter gives an overview of existing hardware-
accelerated rendering techniques that represent ingredients for real-time non-photorealistic 
rendering algorithms relevant to this work.  
Chapter 4 presents a novel real-time edge-enhancement rendering technique that enables a 
distinctive display of 3D models and 3D scenes to increase visual perception. The chapter gives 
a definition of the polygonal 3D geometries’ visually important edges considered for edge 
enhancement. The image-space algorithm is able to enhance models of high geometric 
complexity and large 3D scenes in real time. In a case study, this chapter describes how the 
edge-enhancement algorithm is applied for synthesizing non-photorealistic depictions of 
general, large-scale 3D city models.  
Chapter 5 presents a novel real-time blueprint rendering technique that illustrates the design 
and spatial assembly of 3D models and their aggregated components. The resulting depictions 
provide clear insights into 3D models and enable one to perceive them as a whole. The chapter 
presents as a typical application of blueprint rendering the visualization and exploration of the 
layout and the assembly of mechanical parts and architecture. Since the composition of complex 
CSG models is particularly difficult to perceive, an extension of blueprint rendering to CSG 
rendering is presented as well. In this way, the blueprint rendering technique becomes an 
effective tool that assists the interactive construction of CSG models.  
Chapter 6 presents a novel real-time sketchy drawing rendering technique that generates 
sketchy depictions of 3D models. Sketchy drawing can imply imprecision and vagueness to 
communicate visual ideas and to depict the preliminary states of a draft or concept. For 
example, architects and graphic designers can use sketchy drawing to encourage discussion and 
participation or to “sell” their ideas to their clients. The chapter also presents a combination of 
sketchy drawing and blueprint rendering, because both the interior and exterior features of 3D 
models can be subject for sketchy drawing as well. 
Chapter 7 presents a novel smart depiction system that automatically generates compelling 
depictions of dynamics based on the traditional visual art and graphics design principles found 
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in comic books and storyboards. The system relies on non-photorealistic rendering algorithms to 
generate storyboard-like depictions of 3D scenes and their related dynamics automatically. The 
depiction system demonstrates that non-photorealistic rendering affords novel application areas 
for computer-generated depictions. 
Chapter 8 gives conclusions by summarizing and reviewing the presented depiction strategies. 
Potential future research directions are outlined. 
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Chapter 2 
Non-Photorealistic 
Rendering 

The term non-photorealistic basically qualifies pictorial styles that “do not attempt to imitate 
photography and to reach optical accuracy” [32]. In computer graphics, non-photorealistic 
rendering (NPR) [44][116] is concerned with rendering algorithms and techniques for 
synthesizing non-photorealistic visual representations of given scene descriptions. 
Non-photorealistic rendering is difficult to classify in a positive manner. It is typically 
characterized by rendering techniques producing pictorial styles that simulate the “hand made” 
renditions that have a long tradition in art, illustrations, science, etc. Artists and graphic 
designers have found a means of presenting and depicting visual information purposefully with 
respect to specific domains and contexts. These skills are often based on principles derived from 
perceptual psychology or cognitive science. EDWARDS, for instance, proposes five skills of 
drawing a perceived object: perception of edges, perception of space, perception of 
relationships, perception of lights and shadow, and perception of the whole, or gestalt [34]. 
Artists and graphic designers have developed a rich set of well-elaborated techniques for 
producing effective pictures and diagrams to visualize information comprehensibly [120], 
attract visually, or make animations more convincing [119][124]. They use, for instance, line 
drawings in art (such as pen-and-ink drawings [74] or black-and-white illustrations [13]), for 
scientific or operational illustrations (such as medical or technical illustrations, maintenance 
manuals, architectural drafts, and storyboards [8][60]), and in entertainment graphics (such as 
comics [81] and cartoon movies [119]). 
Since the advent of NPR in the last decade [48][70][106][125][126], numerous rendering styles 
have been introduced. There are a wealth of techniques including stylized digital halftoning to 
simulate handcrafted depictions, such as stippling [24], hatching [127], or engraving [25][96] 
which convey illumination, curvature, texture, and tone in an image (see Figure 2-1). 
Furthermore, techniques exist for generating technical illustrations automatically [43][45] or for 
reproducing pencil or pen-and-ink drawings [125][126].  
It has long been understood that just a “few good lines” [112] often suffice to encourage viewers 
to complete a picture themselves by imagining the details that are missing. SOUSA AND 
PRUSINKIEWICZ [112] as well as DECARLO ET AL. [19][20] introduce algorithms for 
synthesizing line drawings from 3D geometries by placing lines purposefully to “suggest 
contours” and so to convey gestalts (see Figure 2-2). In entertainment graphics, TEECE 
introduces Sable for animated film production [117]. Sable is a paint-stroke rendering system 
that renders lines as stylized brush strokes for outlining and separating painterly colors (see 
Figure 2-2). In general, it can be observed that rendering 3D geometries by their outlines 
facilitates or complements most non-photorealistic rendering styles.  
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The remainder of this chapter is structured as follows: Section 2.1 gives an overview of well-
established silhouette determination algorithms. Section 2.2 outlines the applications of non-
photorealistic rendering that illustrate the diversity and the uses of non-photorealistic depictions 
and motivate subsequent work. 

2.1 Determining and Stylizing Silhouettes 
Determining and stylizing silhouettes represents a major research activity in non-photorealistic 
rendering. Developing efficient silhouette detection algorithms, typically using visibility 
determination techniques, is crucial, because silhouettes are particularly view dependent and so 
need to be detected for each single frame. ISENBERG ET AL. [57] provide an exhaustive survey 
of existing silhouette determination algorithms that can be roughly classified as follows: 

Image-Space Silhouette Algorithms 

Image-space silhouette algorithms extract silhouettes by way of image-processing operators that 
detect discontinuities in specific image buffers, called G-Buffers [106] (Sec. 4.1). These buffers 
store the geometric properties of 3D geometries and result from conventional z-buffer 
rendering. Finally, silhouettes are represented in an image by pixels. Since the edge-based 
rendering algorithms introduced in this thesis are based on the G-Buffer concept, Chapter 4 
gives a more detailed treatment. 
The advantage of image-space algorithms is that they can be fully accelerated by today’s 
graphics hardware. For example, MITCHELL ET AL. present a technique that extracts silhouettes 
for enhancing images on a per-scene basis. They render silhouettes and outline regions in 
shadow and texture boundaries with their method (see Figure 2-3) [84].  
Since image-space algorithms represent computed silhouettes merely by pixels, silhouettes lack 
an analytic representation. Hence, artistic stylization is usually difficult to achieve. However, 
CURTIS generates sketches based on image-space silhouettes using a loose and sketchy filter 
[17]. The filter employs a depth map, that is, a 2D image that stores depth values at each pixel, 
as input and converts it into a template image and into a force field image. The template image 
determines the amount of ink needed in the neighborhood of a pixel. To generate sketches of 
various styles, particles are placed randomly in image space and move along the silhouettes, 
adding or erasing ink until they “die”. The force field image thereby affects the movement of 
particles along edges. The results produced by CURTIS’ loose-and-sketchy filter can be used for 
superimposing images. For example, a layered composition of the scene’s sketch, a blurry color 
image of the scene, and a procedural “paper” texture as background can simulate a hand-drawn 

 

[Winkenbach et al. ’94, ’96] 

[Praun et al. 2002] 

[Deussen et al. ’99] 

Figure 2-1: Stylized Digital Halftoning. Stylized digital halftoning provides visual cues in depictions,
letting viewers perceive illumination, curvature, texture, and tone.  
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style sketch on a rough paper (see Figure 2-3). Nevertheless, the loose-and-sketchy filter cannot 
be combined with arbitrary scene contents using z-buffering and is not meant to run in real-
time.  

Hybrid Silhouette Algorithms 

Hybrid silhouette algorithms first apply operations in object space (e.g., to modify the model’s 
polygons) and then render the output using operations in image space that affect the 
composition in the frame buffer (e.g., by marking regions in the stencil buffer for later use). 
Hybrid algorithms usually require several rendering passes for rendering silhouettes. 
ROSSIGNAC AND EMMERIK employ the z-buffer to determine silhouettes [103]. In the first pass, 
they render the 3D model’s polygons in a solid color (e.g., white). In the second pass they 
render the model’s polygonal edges in black using a thick wire-frames style. For this, they shift 
polygons slightly in the z-direction for depth testing, yielding black silhouettes in image space. 
RASKAR AND COHEN present a generalization of the algorithm that also overcomes the problem 
of the z-buffer’s numerical imprecision [101]. They first render all polygons using (enabled) 
back-face culling to fill the contents of the z-buffer with the surface’s depth values. They then 
render all polygons in black using (enabled) front-face culling and the depth test set to “equal”. 
In this way, a pixel wide line gets rendered wherever front-facing and back-facing polygons 
meet. To increase the width of silhouettes they slightly translate polygons towards the camera 
and set the depth test to “less-or-equal” when rendering back-facing polygons. The further 
enlargement of back-facing polygons with respect to the camera position results in a constant 
silhouette width. RASKAR extends this approach by inserting additional geometric primitives, 
such as quads, instead of enlarging back-facing polygons [102]. Furthermore, he uses graphics 
hardware to adjust the size and orientation of the quads. 
Hybrid algorithms are similar to image-space algorithms in that they represent silhouettes by 
pixels in image space. Hence, further artistic stylization is hard to achieve.  

Object-Space Silhouette Algorithms 

Object-space silhouette algorithms compute silhouettes entirely in object space. Because object-
space algorithms determine silhouettes analytically they require additional algorithms that 
resolve the silhouettes’ visibility.  
A naive approach to silhouette detection processes each polygonal edge of a mesh. In this 
approach, edges that are adjacent to a polygon facing towards the camera and to a polygon 

 

[Sousa et al. 2003] [DeCarlo et al. 2004] [Teece 2003]  
Figure 2-2: Computer-generated Line Drawings. Well-placed lines often suffice to encourage

viewers to complete a picture using their imagination. 
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facing away from the camera are considered to be valid silhouettes. BUCHANAN AND SOUSA 
present a data structure, the edge buffer, to reduce the computational complexity of silhouette 
detection [11]. The edge buffer stores two bits per edge to indicate the edge’s adjacent polygons 
as front facing or back facing. The process of first iterating the set of polygons to process their 
orientation, and then updating the associated bits (using the XOR-operator) marks the edges as 
silhouettes for subsequent rendering. However, the computational cost for silhouette detection is 
either linearly dependent on the number of polygonal edges or linearly dependent on the number 
of polygons. This is generally too expensive for rendering high-tessellated 3D geometries in real 
time.  
Alternatively, preprocessing methods for 3D geometries that set up efficient data structures exist 
for reducing the computational costs for silhouette detection at run time. BENICHOU AND ELBER 
[9] and GOOCH ET AL. [45] project the normal vectors of polygons onto a Gauss map, that is, a 
bounding sphere centered at the model’s origin. They represent each polygonal edge by the arc 
on the sphere that connects both normal vectors’ projections of the edge’s adjacent polygons. In 
the case of an orthographic camera model, a plane perpendicular to the viewing direction 
passing through the origin intersects the arcs of those edges that represent silhouettes. To 
determine intersecting arcs efficiently at run time they set up a data structure that hierarchically 
decomposes the sphere. However, preprocessing is not suitable for animated polygonal meshes.  

Based on the observation that virtual )( nO  edges of n polygons are silhouettes [105], 
MARKOSIAN ET AL. present a probabilistic algorithm that randomly selects a small fraction of 
polygonal edges and exploits their spatial coherence [77]. That is, whenever the algorithm 
detects a silhouette it recursively traces adjoining edges until it reaches the end of the entire 
chain of silhouettes. In this way, MARKOSIAN ET AL. can determine most silhouettes, but they 
cannot guarantee to find all of them (see Figure 2-3).  
Silhouette algorithms in the previous categories compute the visibility of silhouettes directly by 
just employing depth testing with the z-buffer contents. This approach is not very helpful in the 
case of objects-space silhouettes, because part of them is likely to be clipped by the model’s 
surface, in particular if the silhouettes have been further stylized. Object-space algorithms that 
analytically determine the visibility of silhouettes usually deploy APPEL’s hidden line removal 
algorithm [7], which is based on the quantitative invisibility (QI) of a point. The QI of a point 
denotes the number of front-facing polygons between the point on the 3D geometry’s surface 
and the camera. APPEL uses ray tests to determine a point’s QI. MARKOSIAN ET AL. minimize 
the number of ray tests by only determining the QI at the vertices along a chain of silhouettes. 
Having observed that the QI only changes at special kinds of vertices, the so-called cusp 

[Curtis ’98] [Mitchell et al. 2002] 

[Markosian et al.’97] 

Figure 2-3: Outlining and Sketching. Rendering the outlines of 3D models demonstrates their 
distinctive display, can attract visually, and can communicate shapes.  
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vertices, they find they can propagate a QI along a chain of silhouettes and implement their 
probabilistic algorithm [77] efficiently. 
NORTHRUP AND MARKOSIAN implement an image-space approach for determining the visibility 
of silhouettes [87]. They render polygons and silhouettes by a unique color for generating an id 
reference image [78] (a.k.a. id buffer, Sec. 4.1) using conventional z-buffer rendering. They 
then iterate on the buffer’s contents to identify those silhouettes that contribute to at least one 
pixel. Next, they scan-convert each visible silhouette to determine its visual portions, called 
segments. Using the segments’ endpoints in image space, they generate an analytic 
representation of the silhouette path. ISENBERG ET AL. introduce a similar algorithm that 
manages visibility testing by sampling the z-buffer instead of the id buffer [58]. To reduce the 
numerical instability caused by the z-buffer’s imprecision, they sample the neighborhood of a 
pixel’s location as well. Furthermore, they consider the underlying mesh’s connectivity 
information given by a winged-edge data structure to connect adjoining silhouette edges. 
Object-space algorithms provide an analytic representation of silhouettes or of a chain of 
adjoining silhouettes. Once computed, silhouettes can be rendered by way of extra inserted 
geometry, such as triangle or quad strips. This allows one to stylize silhouettes using stroke-like 
rendered geometry that loosely aligns to the original 3D geometry in order to simulate artistic 
line drawings (see Figure 2-4). Furthermore, KALNINS ET AL. [59] introduce an algorithm that 
maintains temporal coherence for objects-space artistic silhouettes in interactive environments. 
In conclusion, the analytic representation of silhouettes is essential for a user-defined, artistic 
stroke generation. This makes objects-space algorithms superior to both image-space and hybrid 
approaches. In addition, rendering visible as well as occluded objects-space silhouettes allows 
one to depict a 3D model’s interior layout directly (see Figure 2-3 and Figure 2-4). In contrast, 
current image-space algorithms neither allow one to render occluded silhouettes nor to stylize 
silhouettes in interactive environments. However, image-space silhouette algorithms are 
independent of the number of a 3D model’s polygons, whereas the computational cost of object-
space algorithms reduces their efficiency, making them less practical for depicting 3D models of 
high geometric complexity.  

2.2 Applications of Non-Photorealistic Rendering 
The efficacy and expressiveness of non-photorealistic depictions depend particularly on the 
context they are used in, the intended connotation, and the information to be conveyed. 

 

[Kalnins et al. 2003] [Isenberg et al. 2002] [Northrup and Markosian 2000]

Figure 2-4: Artistically Stylized Silhouettes. Rendering silhouettes in an artistic way can simulate
hand-drawn line drawings. Object-space silhouette rendering algorithms allows one to
render using different line styles.  
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Consequently, specific applications typically require meaningful non-photorealistic rendering 
techniques.  

Architectural Visualizations 
Architects produce architectural drafts by hand in order to present their design decisions, to 
document planning states, and to convey work-in-progress to their clients. 
SCHUMANN ET AL. present a first empirical study about the efficacy of non-photorealistic 
rendering in architectural design [107]. They approve the following hypotheses by interviewing 
architects: 
1. For presentation of early drafts of architecture designs, sketches are preferred to CAD 

plots (i.e., exact line renderings) and shaded images (i.e., realistic renderings). 
2. Sketches perform better in the communication of affective and motivational aspects, 

while exact plots and shaded images perform better for cognitive aspects. 
3. Sketches stimulate viewers more than shaded images to discuss and actively participate in 

design development. 
As a result, artists generally prefer to present sketches as first draft to the client because 
sketches illustrate the preliminary state of a design more effectively than realistic renderings. In 
contrast, exact line renderings and realistic depictions are preferred when persuading clients to 
accept a final design. With respect to hypothesis two, sketches are considered “more interesting, 
lively, imaginative, creative, and individual” and initiate “discussions and active changes” 
whereas exact line renderings are “more comprehensible, more recognizable, and clearer”. 
Finally, both sketches and realistic renderings seem to encourage participants equally actively to 
discuss extensions and developments by way of “verbal descriptions”, “gesturing or pointing to 
the image”, or “drawing on another sheet of paper”. However, sketches encourage more 
“drawing directly onto the image”.  
The study shows the following advantages of NPR: the artist can apply non-photorealistic 
rendering to avoid giving clients a false impression of completeness, to emphasize only certain 
aspects and, therefore, avoid raising discussions on irrelevant details, and to sketch multiple 
variants that help clients to choose the most appropriate one [116]. 
Furthermore, STROTHOTTE ET AL. [114] argue for visualizing uncertainty explicitly by way of 
non-photorealistic rendering techniques (e.g., by sketching line drawings) to avoid 
misinterpreting depicted data. For example, in the case of a virtual reconstruction of ancient or 

 [Strothotte et al. ‘99] [Gooch et al. ‘98] 

Figure 2-5: Architectural and Technical Illustrations. Sketches of medieval architecture can
convey the uncertainty of knowledge. Technical illustrations communicate mechanical
parts efficiently (simple Phong shading (left), cool-to-warm shading (middle), edge-
enhanced cool-to-warm shading (right)). 



2.2 APPLICATIONS OF NON-PHOTOREALISTIC RENDERING 

11 

medieval architecture, a photorealistic rendition might give a false impression of authenticity. 
That is to say, although there is no evidence in the image, the viewer of a realistic depiction 
might possibly assume that the image reveals proven and certain knowledge. Thus, encoding 
additional, non-geometric information, such as uncertainty, using non-photorealistic rendering 
styles can improve the reliability of visualizations. Figure 2-5 illustrates a virtual reconstruction 
in a sketchy style for communicating a possible variant of the building’s layout. 

Technical Illustrations 
Instruction manuals, illustrated textbooks, and encyclopedia show illustrations of industrial and 
mechanical parts as well as technical information. Artists are sophisticated at producing 
illustrations that communicate efficiently.  
GOOCH ET AL. introduce a set of non-photorealistic rendering techniques that use the principles 
of traditional art, such as line character, shading, and shadowing, to generate attractive and 
informative colored, technical illustrations automatically [45]. Amongst other things, they 
provide techniques that address the following two important visual cues for communicating 
shape: distinctive rendering of outer and interior edges, and surface shading ranging far from 
black and white in a cool-to-warm undertone. 
Edges, such as silhouettes, object boundaries, and creases1, are typically enhanced in technical 
illustrations to outline individual parts and to suggest important gestalts. Illustrators usually 
draw edges in black but often switch over to white to accentuate interior edges, such as creases, 
whenever using color shading to illustrate objects. Shading is typically used for communicating 
shape information (e.g., material and curvature) and its orientation. GOOCH ET AL. introduce a 
low dynamic-range lighting technique for technical illustrations [43] that lets viewers perceive 
shape information even in dark areas and at white highlights. Their technique ensures that black 
and white edges remain visually distinct from the shape’s color. GOOCH ET AL. observed that in 
colored illustrations tones, that is, colors resulting from scaling with gray, vary much in hue but 
only a little in luminance. Their technique basically adds not only a subtle luminance variation 
but also a prominent temperature shift to the object’s color. Thus, the varied color ranges from a 
value with a warm undertone, e.g., yellowish undertone, in lit regions to a value with a cool 
undertone, e.g., bluish undertone, in unlit regions (see Figure 2-5).  

Smart Depiction Systems 
Smart depiction systems are computer algorithms and computer interfaces that use principles 
and techniques adopted from graphics design, visual art, perceptual psychology, and cognitive 
science to automatically generate visual displays for communicating information efficiently. In 
many domain-specific areas, smart depictions systems have been investigated that aim at 
reducing the time and effort required to generate rich and effective visual contents significantly 
[1]. Non-photorealistic rendering represents an enabling technology for implementing such 
systems that produce sophisticated depictions and diagrams. 
In the domain of assembly instructions, AGRAWALA ET AL. [2] present a system that plans 
assembly operations and produces compelling step-by-step illustrations for assembling everyday 
objects. The algorithmic techniques are based on design principles derived from cognitive 
psychology research. In addition, they follow the conventions of technical illustrations for 
rendering the final assembly diagrams, e.g., using distinctive outlines for single parts (see 
Figure 2-6).  
LI ET AL. implement a semi-automatic authoring tool to create interactive exploded view 
diagrams derived from 2D images [73] (see Figure 2-6). Their system enables one to annotate 

                                                      
1 These edges are classified as a 3D model’s visually important edges in Chapter 4. 
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individual parts and to specify how parts of the assembly expand and collapse. The 
accompanying presenter allows one to browse the exploded view diagram, e.g., when searching 
for and identifying single parts. 
Route maps are one of the most common graphic interfaces that depict paths and directions. 
AGRAWALA AND STOLTE introduce a system that designs and renders route maps in a hand 
drawn style automatically [3][4] (see Figure 2-6). They present cartographic generalization 
techniques based on the principles of mapmaking and the abstraction techniques found in hand 
drawn route maps.  
 

[Agrawala et al. 2003] [Li et al. 2004] [Agrawala and Stolte 2001] 

Figure 2-6: Smart Depiction Systems. Smart depiction systems automatically generate effective
pictures and diagrams for assisting people: systems for generating assembly
instructions, exploded view diagrams of assemblies, or route maps can reduce time and
cost. 



 

13 

Chapter 3 
Hardware-Accelerated 
Computer Graphics 

During the last few years, an important trend in computer graphics hardware design has been the 
increase in programmability and performance of graphics accelerators (a.k.a. Graphics 
Processing Units (GPUs)) [37]. Today’s graphics hardware features a partially programmable 
rendering pipeline and offers efficient parallel computing power. In addition, software interface 
for graphics hardware, such as OpenGL, offer high-level shading languages, which utilize the 
GPU’s flexibility, making real-time computer graphics a rapidly evolving field. This advance 
inspires researchers and graphics engineers to invent novel real-time rendering techniques: 
ideas-turned rather than capability-bound rendering algorithms are being developed. In a sense, 
graphics hardware evolution is influencing, or even reshaping image-synthesis algorithms and, 
in consequence, real-time computer graphics. So, the exploitation of today’s graphics hardware 
capabilities is a prerequisite for real-time rendering algorithms in both the field of photorealism 
and the field of non-photorealism. 
This chapter presents GPU programming concepts as well as the advanced real-time rendering 
techniques established in the last few years. These are essential for implementing the edge-
enhancement algorithm, the blueprint rendering technique, and the sketchy drawings rendering 
technique presented in the remainder of this thesis. Section 3.1 outlines the “programmable 
rendering pipeline” and Section 3.2 outlines the OpenGL Shading Language. The chapter then 
proceeds with an overview of rendering techniques: Section 3.3 introduces the render-to-texture 
concept, Section 3.4 introduces image processing on graphics hardware, Section 3.5 introduces 
dependent-texture access, Section 3.6 introduces deferred shading, and Section 3.7 introduces 
depth-sprite rendering.  

3.1 Programmable Rendering Pipeline 
The graphics rendering pipeline represents a model for the synthesis process of 2D images 
based on general 3D scene descriptions. The rendering pipeline is conceptually divided into the 
following stages: (1) the application stage concerned with modeling the 3D scene and setting up 
the rendering process, i.e., by initializing the synthesis process and submitting 3D geometries as 
geometric primitives (such as polygons, triangles, or quads) to the next stage, (2) the geometry 
stage concerned with operating on a per-primitive and per-vertex basis, and (3) the rasterization 
stage concerned with breaking down primitives to fragments, assigning colors to them, and 
forwarding them to the frame buffer, so that they possibly constitute pixels in the final image. 
The application stage is generally managed on the CPU, whereas the actual image-synthesis 
process is typically implemented on graphics hardware to achieve real-time frame rates, that is, 
generating at least 6 images per second, or, frames per second (fps) [5]. 
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The term programmable rendering pipeline is somewhat misleading because only part of the 
rendering pipeline on graphics hardware is essentially programmable today. The term denotes 
that both the vertex processing stage and the fragment processing stage of the rendering pipeline 
are programmable. That is, computer programs, a.k.a. shaders, can be written for each stage, 
facilitating a user-defined processing of either vertices or fragments. However, shaders offer 
great flexibility for implementing rendering algorithms on graphics hardware.  
Figure 3-1 provides an overview of the programmable rendering pipeline and the instances it 
processes. The pipeline is a sequence of stages that operate in a fixed order. Each stage receives 
its input from the preceding stage and then directs its output to the subsequent stage. Since the 
operations performed on each input datum of a stage remain identical throughout a single 
rendering pass and access across individual instances is not possible, both vertex and fragment 
processing stages are capable of operating on their data in parallel. Hence, a hardware 
implementation can, for instance, have multiple processors that operate in parallel. For example, 
the GeForce 6800 GT has 16 pixel-pipelines for processing fragments. 

Vertex Shading 
When using OpenGL, an application generally submits geometric primitives, such as triangles, 
polygons, or lines, to the GPU by defining their vertices explicitly together with their associated 
attributes within a glBegin/glEnd-statement [111].  
A vertex shader is a GPU-program that operates on incoming vertices and their associated 
vertex attributes, such as normal vectors, color values, texture coordinates, or any kind of user-
defined attributes such as binormal vectors or tangent vectors. The vertex shader is primarily 
responsible for transforming the vertex’s position to clipping coordinates. Moreover, a vertex 
shader performs any optional operation to manipulate vertex attributes or to generate additional 
vertex attributes. A vertex shader typically determines the vertex’s color value based on a given 
lighting model as well as its texture coordinates. In the end, a vertex shader must at least output 
the vertex’s clipping space position. Optionally, it can output additional vertex attributes for the 
next stage.  
When primitive assembling has been performed, that is, assembling vertices into geometric 
primitives using the primitives’ connectivity information, the rasterizer splits the geometric 
primitives of continuous space into a set of fragments of discrete window space based on the 
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Figure 3-1: Programmable Rendering Pipeline. Vertex and fragment shaders replace the vertex
processing stage and the fragment processing stage.  
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frame buffer’s resolution. The rasterizer thereby interpolates vertex attributes using barycentric 
coordinates [38] and provides these attributes along with the associated fragments.  

Fragment Shading 
A fragment shader is a GPU-program that operates on each fragment produced by the rasterizer. 
A fragment provides its own raster position, its projective depth, and associated interpolated 
vertex attributes as input. Operations on fragments include, for instance, lookups into textures 
by way of texture coordinates for computing the fragment’s final R, G, B, A color. A fragment 
shader then directs the fragment’s final color value to the next state and can optionally submit 
the fragment’s depth value too.  
In contrast to a vertex shader, a fragment shader can discard fragments from further processing. 
If a fragment passes the shader regularly, its output values, that is, the fragment’s final color and 
depth value, proceed to the per-fragment operations. These include, for instance, the alpha test, 
the stencil test, the depth test, and the blending operations. Finally, the fragment possibly emits 
the pixel at the fragment’s raster position in the frame buffer. Occlusion queries can determine 
the number of fragments that effectively end up in the frame buffer by counting those fragments 
passing both the stencil test and the depth test [61][108].  
As common functionality, both vertex and fragment shaders can request the current rendering 
context to retrieve information about the current OpenGL state, such as the modelview or 
projection matrices or active light sources. They can also access constant user-defined data 
provided along with the shaders as input. Furthermore, a set of mathematical and logical 
operations and functions are provided for computation. 
Since vertex and fragment shaders replace the fixed functionality of the rendering pipeline 
stages, the computer graphics researcher or developer has to implement the elementary 
operations, such as vertex transformations, lighting calculations, or texture coordinate 
generations. Nevertheless, vertex and fragment shaders enable one to implement user-defined 
effects. 

 
Figure 3-2: Gooch Lighting Model for Technical Illustrations. White edges outline inner forms 

while black edges outline the profiles of the crank. The image has been rendered with 
the edge-enhancement algorithm (see Chapter 4). 
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Until the advent of high-level shading languages such as Cg [37][76], and the OpenGL Shading 
Language [104], which started in 2003, vertex and fragment shaders were exclusively 
programmed using an assembly language [61].  

3.2 The OpenGL Shading Language 
The OpenGL Shading Language [104] is a C-like high-level shading language specifically 
designed for the OpenGL Architecture [108][111]. Its functionality has been inspired by the 
RenderMan Shading Language [6][121]. Unlike the RenderMan Shading Language, which lets 
one implement various shaders for surface shading, light sources, or atmosphere effects, the 
OpenGL Shading Language merely allows one to implement a single shader program that is in 
charge of considering all the interacting effects at once. Shader programs are then made part of 
the current rendering state of the rendering context of OpenGL [104]. Consequently, only one 
program can be active at any one time.  
Shader programs consist of shaders that implement either a vertex or a fragment shader (Sec. 
3.1). A typical OpenGL shading program contains one of both kinds each of which defines the 
function main() as the entry point into the shader. Listing 3-1 illustrates the vertex shader and 
Listing 3-2 illustrates the fragment shader for implementing the Gooch lighting model (see 
Chapter 2, [43]) using the Phong shading model [5] (see Figure 3-2). The remainder of this 
section gives an overview of the OpenGL Shading Language needed for upcoming code 
snippets.  
The language defines built-in data types, such as float, vec3, or mat3, to support scalars, 
vectors, and matrices and handler types, such as sampler2D, that usually indicate textures.  
It provides built-in functions, e.g., geometric functions; such as normalize() for normalizing 
vectors, or texture access functions, such as texture2D() for looking up into a sampler, or 
texture. For convenience, the function ftransform() (see Listing 3-1) returns the clipping 
coordinates of a vertex for output.  

Listing 3-1:  Vertex Shader for Implementing the Gooch Lighting Model. The 
shader directs eye-space vertex positions, normal vectors, and surface 
color values to the rasterizer for the fragment as input. 

varying vec3 eyePos;         // Eye-space position of a vertex 

varying vec3 eyeNormal;      // Eye-space normal vector of a vertex 

 

void main(void) { 

    eyeNormal     = normalize(gl_NormalMatrix * gl_Normal); 

    eyePos        = normalize(vec3(gl_ModelViewMatrix * gl_Vertex)); 

    gl_FrontColor = gl_Color; 

    gl_Position   = ftransform(); 

} 

The shading language provides the following qualifiers for declaring variables that can 
communicate with shaders: 
The attribute qualifier denotes vertex attributes provided together with a vertex when 
specifying geometric primitives. They thus represent input data for a vertex shader. Special 
built-in input variables exist for accessing the vertex’s attributes in a vertex shader (e.g., 
gl_Vertex for accessing the vertex’s position, gl_Normal or gl_Color for accessing its normal 
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vector and color, which are usually specified by glNormal or glColor within the 
glBegin/glEnd-statement).  
The uniform qualifier denotes user-defined variables that serve as input data for vertex or 
fragment shaders. These variables remain constant during shader execution, that is, they can 
only change per primitive. The material properties of 3D geometry, such as the warm color for 
the Gooch lighting model, represent commonly used uniform variables. Built-in uniform 
variables let shaders access the settings of the OpenGL state (e.g., gl_ModelViewMatrix and 
gl_TextureMatrix provide the current modelview matrix or texture matrices and 
gl_LightSource provide information about the light source.)  
The varying qualifier denotes variables that communicate results form a vertex shader to a 
fragment shader. That is, these variables form the output of a vertex shader, then get 
interpolated by the rasterizer, and finally serve as input for the fragment shader. Built-in 
varying variables exist for directing vertex attributes to fragment shaders, (e.g., 
gl_FrontColor submits a vertex’s front-facing color and gl_TexCoord its texture coordinates). 
A vertex shader can write to special output variables; it must write at least to gl_Position to 
submit the vertex’s clipping coordinates. A fragment shader uses built-in variables to access 
interpolated varying variables (e.g., gl_Color or gl_TexCoord for accessing the fragment’s 
color or texture coordinate). In addition, special input variables exist (e.g., gl_FragCoord 
provides a fragment’s window relative x and y coordinates and perspective depth). A fragment 
shader merely supports the following two (special) output variables used for submitting 
fragments to the next stage: a well-defined fragment shader must write to gl_FragColor for 
passing a fragment’s color, whereas, it can write to gl_FragDepth to replace the a fragment’s 
projective depth value for depth testing. In addition, the keyword discard allows the shader to 
reject fragments during fragment shader execution. 

Listing 3-2: Fragment Shader for Implementing the Gooch Lighting Model. The 
shader enhances inner edges and profile edges differently by considering 
edge intensities provided as 2D texture, the edge map (see Chapter 4). 

varying vec3 eyePos;         // Eye-space position of a vertex 

varying vec3 eyeNormal;      // Eye-space normal vector of a vertex 

uniform vec3 warmColor; 

uniform vec3 coolColor; 

uniform float diffuseWarm; 

uniform float diffuseCool; 

uniform sampler2D edgeMap;   // 2D texture with edge intensities 

uniform vec2 windowDimension;// Canvas resolution 

 

void main (void) { 

    // Sampling the edge map to access edge intensities 

    vec4 tex = vec4(gl_FragCoord.x / windowDimension.x, 

                    gl_FragCoord.y / windowDimension.y, 1.0, 1.0); 

    tex = gl_TextureMatrix[0] * tex; 

    vec3 edgeIntensity = texture2D(edgeMap, tex.xy).xyz; 

 

    // Use the position of the first light source for Gooch Lighting 

    vec3 L      = normalize(vec3(gl_LightSource[0].position.xyz)); 

    vec3 V      = normalize(eyePos); 

    vec3 N      = normalize(eyeNormal); 
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    vec3 R      = normalize(reflect(L,N)); 

    float NdotL = (dot(N,L) + 1.0) * 0.5; 

 

    // Calculate cool and warm colors 

    vec3 kcool  = min(coolColor + diffuseCool*vec3(gl_Color), 1.0); 

    vec3 kwarm  = min(warmColor + diffuseWarm*vec3(gl_Color), 1.0); 

    vec3 kfinal = mix(kcool, kwarm, NdotL); 

    float spec  = max(dot(R,V), 0.0); 

    spec        = pow(spec, 32.0); 

    vec4 goochColor = vec4(min(kfinal+spec, 1.0), 1.0); 

 

    // Enhance inner edges and profile edges differently 

    vec4 white = vec4(1.0,1.0,1.0,1.0); // Whitened inner edges 

    goochColor = mix(white, goochColor, edgeIntensity.x); 

    goochColor = goochColor * edgeIntensity.y; // Darkend profiles 

    gl_FragColor = goochColor; 

} 

Once vertex and fragment shaders have been written in the OpenGL Shading Language, they 
can be linked to a single shader program and compiled for the targeted graphics hardware. That 
is, the assembly code for both vertex and fragment processing stages will be generated and can 
then be transferred to the GPU. 
The real-time rendering techniques presented in this work operate mostly on fragments. In 
particular, blueprint rendering and sketchy drawing are based on a user-defined processing of 
fragments.  

3.3 Render-to-Texture  
When synthesising the image of a 3D scene the result is typically rendered into the frame buffer 
that will be displayed. Advanced rendering algorithms frequently require the rendering results 
of a preceding rendering passes as textures to implement complex effects (e.g., shadow mapping 
requires the construction of a depth texture [109]). For this, a copy-to-texture can be used, that 
is, the scene gets rendered into a non-visible frame buffer, such as a pbuffer [61], and copied to 
a 2D texture. Although a copy-to-texture is efficient because the frame-buffer contents remain 
on the GPU, a render-to-texture operation accelerates the creation of texture contents on current 
graphics hardware. For render-to-texture, a texture serves as a render target so that the GPU can 
write directly to it. A render target is loosely defined as the destination for synthesising the 
image of the 3D scene. Both a pbuffer and a 2D texture represent valid render targets. 
Furthermore, multiple render targets allow one to render the same 3D scene to several render 
targets simultaneously using different fragment color values for synthesizing individual images. 
For this, all render targets must be of identical dimensions but can be of different formats. For 
example, one can think of a render target storing three 8-bit scalars for R, G, B color values 
(e.g., for providing material properties as color values) and an additional render target storing 
32-bit floating-point scalar values (e.g., for providing high-precision linearized depth values as 
texture). Textures that can have up to 32-bit floating-point precision per color channel are 
referred to as high-precision textures (a.k.a. float textures) [61]. In conclusion, multiple textures 
storing different information about the 3D scene can be computed simultaneously. 
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Render-to-texture and multiple render targets represent fundamental concepts for implementing 
a variety of real-time rendering techniques today. In particular, deferred shading (Sec. 3.6) 
becomes feasible in real-time.  
In the emerging research area General-Purpose Computations Using Graphics Hardware (a.k.a. 
GPGPU) the GPU gets exploited not for the image-synthesis process but for general-purpose 
computations [46][51]. The techniques introduced in this field employ the render-to-texture 
capabilities and multiple render targets to store the computed data as textures, and to reuse them 
as input for subsequent calculations. GPGPU techniques exist, for instance, for implementing 
physically based simulations [50] or for numerical calculations [68].  
The rendering techniques introduced in this thesis employ the render-to-texture concept and 
multiple render targets to capture rendering results efficiently for subsequent use. 

3.4 Image Processing on Graphics Hardware 
Image-processing operations process the pixels of a 2D image, the source image, to implement 
an image operation resulting in a destination image. A single source pixel can determine the 
color of the destination pixel (point operation), or multiple (often neighboring) pixels of the 
source image can determine the color of the destination pixel (local operation) [42]. Performing 
image processing using the CPU is typically time consuming and hardly possible in real-time. 
Image processing on graphics hardware represents the mapping of 2D image operations to the 
process of synthesizing images of 3D scenes, and seamlessly integrates into the programmable 
rendering pipeline. As a result, image processing can now operate in real-time [82][83]. 
2D textures that either represent 2D images or result from first rendering 3D scenes to a render 
target (Sec. 3.3) form the basis for performing image-processing operations. Mapping a texture 
to a screen-aligned quad, that is sized so that the image will render onto the screen mapping 
texels to pixels, facilitates image processing. A fragment shader that then operates on each 
fragment resulting from rasterizing the quad, samples the texture to implement image 

 

Render Target 

Screen Aligned Quad

4. Texture Access 

3. Texture Access 

2. Texture Access 

1. Texture Access 

Figure 3-3: Sampling Neighboring Texture Values. (a) A 3×3-filter kernel defines an area around a 
pixel covering its neighboring pixels. (b) Shifting texture coordinates of a fragment
diagonally allows one to sample neighboring texels for implementing image processing
on graphics hardware. (c) A texture lookup using linear filtering returns a weighted
average of four neighboring texels’ values.  

a) b) c) 
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operations. The fragment shader calculates a fragment’s texture coordinates and then samples 
the texture, possibly multiple times, to compute the fragment’s final color. The results are then 
directed to the render target that finally stores the processed image.  
In the case of a point operation, a fragment shader uses the texture coordinates determined by 
the fragment’s screen-space position multiplied by the reciprocal of the texture size to access the 
associated texel. In this way, nearest filtering ensures a virtual 1-to-1 mapping between pixels 
and texels. That is, the value of the texel nearest to the sample position, or, to the texture 
coordinates serves as the texture lookup’s result. The fragment shader then operates on the 
resulting color value to implement, for instance, contrast enhancements, color space 
transformations [122], or sepia tones.  

Neighbor sampling 
Local operations require the values of a texel’s neighboring texels for computation. A fragment 
shader thus needs to sample one and the same texture multiple times. The texture coordinates 
that correspond to the adjacent texels’ locations result from shifting the previous texture 
coordinates by a multiple of a texel’s size in the x and y directions in screen space.  
Filter kernels usually define the region around a pixel’s location. The surrounding pixels are 
considered for computation. In addition, filter kernels define weights to specify the contribution 
of each pixel value to the entire result. For example, a 3×3 filter for blurring an image’s contents 
uses a ninth part of the original pixel’s value and the values of its eight adjacent pixels. The grid 
in Figure 3-3a illustrates the layout of a 3×3 filter kernel where pixels A-H represent 
neighboring pixels adjacent to pixel X.  
Shifting texture coordinates diagonally and then sampling one and the same texture four times 
allows one to access the texture values of texels A, C, F, and H that are adjacent to X (see Figure 
3-3b). It should be noted that these four samples are sufficient to implement a 3×3 blur-filter 
when using bilinear filtering [5]. 

Listing 3-3:  Fragment Shader for Implementing Image Blur. Sampling a texture at 
only four neighboring positions suffices to implement a 3×3 blur-filter.  

uniform sampler2D image;  // Image texture 

uniform vec2 dim;         // Image’s width and height 

 

void main (void) { 

    // Texture Center and Offset 

    vec2 ctr = vec2(gl_FragCoord.x/dim.x,gl_FragCoord.y/dim.y); 

    vec2 off = vec2((1.0/dim.x)*2/3,(1.0/dim.y)*2/3); 

 

    // Access in direction A  

    vec4 tex = gl_TextureMatrix[0]*vec4(ctr.x-off.x,ctr.y+off.y,1.0,1.0); 

    vec4 A = texture2D(image, tex.xy); 

 

    // Access in direction C  

    tex = gl_TextureMatrix[0] * vec4(ctr.x+off.x, ctr.y+off.y, 1.0, 1.0); 

    vec4 C = texture2D(image, tex.xy); 
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    // Access in direction F  

    tex = gl_TextureMatrix[0] * vec4(ctr.x+off.x, ctr.y-off.y, 1.0, 1.0); 

    vec4 F = texture2D(image, tex.xy); 

 

    // Access in direction H  

    tex = gl_TextureMatrix[0] * vec4(ctr.x+off.x, ctr.y-off.y, 1.0, 1.0); 

    vec4 H = texture2D(image, tex.xy); 

 

    // Output blurred destination image pixels 

    gl_FragColor = vec4(0.25*(A+B+C+D)); 

} 

Bilinear Texture Filtering 
For each texture sample bilinear filtering finds the four closest neighboring texels around the 
sample position and then linearly interpolates their values to determine a weighted average. 
Assume (s,t) to be the texture coordinates for accessing a texture (e.g., the center of the red box 
marked by the cross in Figure 3-3c). Let (u,v) be the decimal parts of the texture coordinates 
computed by    ttvssu −=−= ;  and let a0, a1, a2, and a3 be the neighboring texels’ values. 
Bilinear filtering determines the interpolated average value a for the texture lookup as follows:  

3210 )1()1()1()1( avuavuavuavua ⋅⋅+⋅⋅−+⋅−⋅+⋅−⋅−=  

Listing 3-3 illustrates the fragment shader for implementing image blur by sampling just four 
adjacent texture positions in A, C, F, and H direction. Here, shifting texture coordinates 
diagonally for sampling the texture provides interpolated texture values whose scaled sum 
constitutes the average of the values of the nine texels of the 3×3 grid. 
Sampling neighboring texture positions for implementing image processing on graphics 
hardware enables image-space edge detection (see Chapter 4). 

3.5 Dependent Texture Access 
A dependent texture access (a.k.a. dependent texture read), denotes a texture access that uses 
texture coordinates that do not result from interpolating vertex attributes but from a user-defined 
calculation, e.g., within a fragment program [5]. For example, the result of a first texture access 
can form the basis for performing another texture access. A typical dependent texture access is 
to alter texture coordinates by way of an offset texture. That is, texture coordinates provided by 
the rasterizer first access the offset texture. The resulting texture value then offsets a second 
texture lookup into another texture. As one application, dependent texture accesses can be used 
to implement soft shadow algorithms [67].  
In this thesis, a dependent texture access is basically used to perturb texture coordinates in 
image space to implement sketchy drawing (see Chapter 6). 

3.6 Deferred Shading  
In general, rendering techniques perform surface shading calculations directly on a per-fragment 
basis after rasterizing 3D geometry. However, complex shading effects typically require 
multiple rendering passes in order to accumulate the final colors in the frame buffer. For this, 
they render 3D geometry multiple times, which can be particularly time consuming. 
Furthermore, fragments of the 3D geometry’s occluded faces get shaded as well. So, unneeded 
shading calculations are performed. 



CHAPTER 3 HARDWARE-ACCELERATED COMPUTER GRAPHICS 

22 

Deferred shading [49] represents a rendering technique that performs shading calculations only 
to a 3D geometry’s visible parts in a post-process. That is, shading calculations are applied to 
only the relevant pixels in the frame buffer after synthesizing the 3D geometry’s image. For the 
technique to work, it requires the geometric properties (e.g., position, normal vector, light 
direction vector, and material parameter) at each pixel (e.g., to implement lighting calculations).  
DEERING ET AL. introduce deferred shading for the PixelFlow Architecture [23] and PEERCY ET 
AL. uses deferred shading to implement interactive multi-pass programmable shading [98]. To 
implement deferred shading on today’s graphics hardware, the geometric properties are first 
encoded on a per-fragment basis as color values. The resulting color values then populate 2D 
textures possibly using multiple render targets. Finally, the 2D textures serve as input for 
texturing a screen-aligned, screen-sized quad and a fragment shader can process the geometric 
properties provided for fragments of the quad [110]. In this way, complex shading calculations 
can be performed by rendering just a single quad (possibly multiple times).  
Screen-aligned quads, for instance, represent lit spheres in Figure 3-4. Lighting calculations are 
performed based on the positions, normal vectors, and light direction vectors encoded in 
textures. In this thesis, preserving geometric properties in textures allows the edge-enhancement 
algorithm to extract a 3D model’s edges in image space (see Chapter 4). 

3.7 Depth Sprite Rendering 
Depth sprites are, from a conceptual point of view, 2D images with an additional depth 
component at each pixel for depth testing. Depth sprite rendering fills the contents of the color 
buffer with the pixels’ color values of the depth sprite whose associated depth value passes the 
depth test. In this case, the pixels’ depth value will generally be written to the z-buffer as well. 
With respect to depth, depth sprite rendering behaves in a similar way to ordinary 3D scene 
rendering.  
Based on high-precision textures (Sec. 3.3) and fragment shading, depth sprite rendering can be 
implemented as follows:  
1. A high-precision texture containing depth values, called depth map, maps onto a screen-

aligned quad, whereas a 1-to-1 relationship between pixels and texels is ensured. 
2. A fragment shader then replaces the fragments’ z-values of the quad (produced by the 

rasterizer) with the corresponding depth values derived from accessing the depth map. 
For optimizing fill rate, the fragment shader additionally discards fragments whose depth 
value equals 1, which denotes the depth of the back clipping plane. Otherwise, the 
fragment shader calculates the R, G, B, and A color values of the fragments. 

 

[NVIDIA Corporation 2002]  
Figure 3-4:  Depth Sprites Substituting Lit Spheres. A single depth sprite textured with geometric

properties for lighting calculations represents each of the lit spheres.  
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3. Rendering then proceeds with the ordinary depth test. If fragments pass the test, the frame 
buffer will be populated with the color and depth values of the depth sprite. 

It should be noted that depth sprite rendering requires nearest texture filtering for accessing the 
depth map to avoid low-pass filtering of depth values.  
As one application, depth-sprite rendering allow one to resolve the visibility of image-based 
renderings, for instance, to implement impostors [5]. Furthermore, rendering 2D image data as 
depth sprites and employing deferred shading allow one to substitute 3D geometry while still 
providing dynamic lighting calculations (see Figure 3-4).  
In this thesis, depth sprite rendering has been used to combine blueprints (see Chapter 5) and 
sketchy drawings (see Chapter 6) with arbitrary 3D scene contents. 
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Chapter 4 
Real-Time 
Edge-Enhancement 
Rendering Algorithm 

Outlining 3D models and their distinct features in depictions plays a major role for visual 
perception, it facilitates the communication of shape effectively. Non-photorealistic rendering 
algorithms often rely on edge-enhancement strategies, such as for silhouettes, border edges, and 
crease edges, for synthesizing comprehensible depictions, such as scientific, technical, or 
expressive illustrations (see Chapter 2). Thus, detecting the 3D models’ visually important 
edges and enhancing them are fundamental tasks we have to address in real-time rendering.  
For this reason, this work provides a rendering algorithm that encapsulates edge detection for 
edge enhancement as a generic component for real-time algorithms. Such a component 
simplifies the implementation of a wealth of rendering algorithms, such as non-photorealistic 
rendering algorithms. As a fundamental requirement, the edge detection for the edge 
enhancement component must be integrated into the 3D rendering pipeline and operate in real-
time. Exploiting graphics hardware to implement an efficient, accelerated edge-enhancement 
algorithm is thus the primary goal. 
Image-space algorithms for edge detection exploit discontinuities in the image buffers that 
result from ordinary 3D rendering. They extract edges by way of image-processing operators. 
Although image-space algorithms generally inhibit the stylization of edges and the detection of 
the 3D models’ occluded edges, they offer the following advantages:  
 They are stable and robust with respect to errors in the models’ underlying polygonal 

meshes. 
 They do not depend on the requirements of the meshes’ topology. 
 Their performance is independent of the models’ geometric complexity (Sec. 2.1, [57]).  

The use of image-space edges for image-synthesis results in homogenous and generalized visual 
depictions and facilitates the distinctive display of 3D models in 3D scenes. In addition, image 
processing using graphics hardware allows one to implement a real-time capable edge-detection 
technique. 
This chapter introduces a real-time edge-enhancement rendering algorithm that extracts and 
preserves the 3D models’ visually important edges and enhances these edges further [95]. The 
multipass-rendering algorithm utilizes graphics hardware to implement edge-detection 
operations in image space and to encode visually important edges as intensity values in an 
image texture. In this way, the algorithm can serve as a single rendering component, that is, it 



CHAPTER 4 REAL-TIME EDGE-ENHANCEMENT RENDERING ALGORITHM  

26 

seamlessly integrates both edge detection and edge enhancement into the programmable 
rendering pipeline in order to enable general use in real-time applications.  
The remainder of this chapter is structured as follows: Section 4.1 describes the G-Buffer 
concept and related operators for enhancing the edges in images of 3D scenes. Section 4.2 
classifies visually important edges of 3D models considered for subsequent enhancement. The 
algorithm itself is conceptually divided into two parts: Section 4.3 presents the part for detecting 
visually important edges and for preserving them as an image texture; Section 4.4 then 
illustrates how the texture can be reused for enhancing 3D models. Section 4.5 reviews the types 
and number of rendering passes that occur in the multipass-rendering algorithm. Section 4.6 
presents applications illustrating the algorithm’s applicability. Section 4.7 discusses 
optimization strategies and visual results and Section 4.8, finally, presents its application to the 
illustrative visualization of 3D city models. Illustrative 3D city models benefit directly from the 
edge-enhancement algorithm. 

4.1 G-Buffer Concept 
SAITO AND TAKAHASHI introduce Geometric Buffers, a.k.a. G-Buffers, as 2-dimensional data 
structures that store the geometric properties of 3D geometries [106]. Each G-Buffer of an 
extensible set of G-Buffers represents one category of geometric property such as normal 
vectors or depth values. In order to synthesize the G-Buffers’ contents, the geometric properties 
of the 3D geometries’ visible surface are rendered instead of surface colors, that is, geometric 
properties are directed to the pixels of the associated buffers. A G-Buffer can thus be considered 
as a 3D geometries’ 2D image or as an intermediate rendering result. It can be seen that a single 
pixel of a G-Buffer represents one geometric property as a fraction of a 3D geometry’s visible 
surface. Among many possible categories, frequently used G-Buffers are the following:  
 The depth buffer2 stores the depth values of visible surface fragments measured from the 

camera position. 
 The normal buffer stores the normal vectors of visible surface fragments. 
 The id buffer either stores the object identifiers that mark each single visible object of the 

3D scene, or the surface patch identifiers that mark each single patch (e.g., a triangle or a 
polygon) of a surface’s visible mesh.  

Color images allow one to implement G-Buffers. For this, the R, G, B, A color channels store 
the scalar values of the geometric properties. Because a color image’s color channel is typically 

                                                      
2 We use the term depth buffer when referring to the concept of G-Buffers. If we refer to the visible surface 
determination algorithm we use the term z-buffer. 

 a) b) c) d) 

Figure 4-1: Enhancing the Edges of 3D Models. (a) The model of the nut rendered using 
traditional lighting and shading and (b) rendered using depth values. (c) 0th order 
discontinuities (black) and 1st order discontinuities (white) in the depth buffer show the 
profiles and internal edges. (d) Enhancing the nut’s original shaded image produces a
Comprehensible Rendering of the 3-D Shape [106]. (Images by SAITO AND TAKAHASHI 
[106]) 
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limited with respect to precision and usually unsigned, geometric properties need to be encoded 
appropriately for later use.  
The fundamental idea underlying the G-Buffer concept is their use as input for enhancement 
operators to derive artificial enhancements from 3D geometry. Operators exist, for instance, to 
extract discontinuity edges, contour lines, and curved hatches. Image-processing operators can 
implement these enhancement operators by processing each of the G-Buffers’ pixels.  
The discontinuity edges of 3D geometries, that is, the profiles and internal edges, outline the 3D 
geometries’ outer boundary and enhance those edges that fall within the boundary as viewed 
from a certain viewpoint. Here, profiles correspond to 0th order discontinuities and internal 
edges correspond to 1st order discontinuities in the depth buffer. Applying 1st and 2nd order 
differential operators to the depth buffer allows one to detect them. As 1st differential operator 
SAITO AND TAKAHASHI recommend the following linear filter, the Sobel Filter [97]:  

( )|22||22|
8
1 0 FDAHECHGFCBAI −−−+++−−−++=  

and as 2nd differential operator they suggest the following linear filter: 

( )HGFEDCBAXI −−−−−−−−= 8
3
1 1  

Both operators process each pixel value (X) of the G-Buffer by further taking into account its 
neighboring pixel values (A–H) (see Figure 3-3a). In this way, they extract gradient values I0 
and I1 for each pixel, forming discontinuity edges in the destination image. In order to correct 
“undesirable artifacts” in the destination image, e.g., large discontinuity changes and double line 
artifacts, SAITO AND TAKAHASHI implement a non-linear normalization operator that processes 
the minimum and maximum neighboring differential values [106]. 
Finally, the results in the destination image are combined with the 3D model’s image to yield 
artistic enhancements. That is, superimposing the discontinuity edges on the model’s original 
shaded image enrich it and generate “comprehensible” depictions of 3D geometries. Figure 4-1 
illustrates the original shaded image, the depth buffer, the profiles and internal edges, and the 
resulting enhanced depiction. 
DECAUDIN [21][22] extends SAITO AND TAKAHASHI‘s work to avoid visual inaccuracies, such 
as double line artifacts, produced by the 2nd order differential operator applied to the depth 
buffer. He and later HERTZMANN [53] suggest detecting 0th order discontinuities in the normal 
buffer instead of 1st order discontinuities in the depth buffer. For this, they apply a 1st order 
differential operator to the normal buffer to detect internal edges. In conclusion, processing the 
depth and the normal buffer enables one to detect both profiles and internal edges to enhance the 
image of a 3D model (see Figure 4-2). 

 a) b) c) d) e) 
Figure 4-2: Discontinuities in Depth and Normal Buffers. The depth buffer (a) allows one to

detect discontinuities (b) and the normal buffer (c) allows one to detect discontinuities
(d). Combining the discontinuities of both G-Buffers results in a depiction of the model’s
edges (e). (Image by HERTZMANN [53]) 
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4.2 Edge Classification 
The edge-enhancement technique presented in this work enhances the visually important edges 
of 3D models in order to convey shape. For this, it considers silhouette edges, border edges, and 
crease edges as visually important edges of the 3D models.  
Assuming that polygonal meshes constitute a 3D model’s geometry without intersecting one 
another and without being clipped (see Figure 4-3a), their polygonal edges, that is, the edges 
connecting two vertices, can be classified as visually important edges as follows: 
 A silhouette edge is an edge adjacent to one polygon facing towards the camera (front 

facing) and to one polygon facing away from the camera (back facing).  
 A border edge is an edge adjacent to exactly one polygon.  
 A crease edge is an edge between either two front facing polygons, or two back facing 

polygons whose dihedral angle is above some threshold.  
Object-space algorithms exist for detecting visually important edges and determining their 
visibility (Sec. 2.1). Here, crease edges and border edges can even be detected in a pre-process 
as long as the mesh’s triangulation remains unchanged. In contrast, silhouette must be computed 
for each frame when interacting with the scene, because they depend on the position and 
orientation of both the camera and the model. In general, the computational cost and complexity 
of object-space algorithms depends on the number of polygons or of the edges that connect 
vertices. Since hardware capabilities are still evolving, the geometric complexity of 3D models 
and 3D scenes is likely to increase as well. Thus, object-space edge-detection algorithms may 
become less appropriate for the real-time rendering of high-tessellated 3D models and 3D 
scenes of high geometric complexity. 
3D models typically consist of multiple meshes that may possibly intersect one another. For 
example, the bangle in Figure 4-3b intersects the corpus of the Ogre. Furthermore, part of the 
surface may be clipped, e.g., by clipping planes or auxiliary geometry for the purposes of 
modeling (Sec. 5.6). In either case, additional polygonal edges are generally not added to the 
polygonal representations of the 3D models. So, edges that are visually important to perceive 
shape can occur without in any way corresponding to the meshes’ polygonal edges. The 
previous classification is thus not sufficient to define visually important edges ambiguously, and 
it needs to be adjusted as follows:  
 A junction where two polygons adjoin, whereas one polygon is visible and the other one 

is occluded along the junction (i.e., the visibility of the surface changes), represents a 
silhouette edge.  

 A boundary of a polygon where no polygon adjoins represents a border edge.  
 A junction where two polygons adjoin, whereas both polygons are visible along the 

junction (i.e., the visibility of the surface remains unchanged), and form a certain angle 
above some threshold represents a crease edge.  

Figure 4-3a illustrates the visually important edges of a crank model consisting of multiple 
meshes linked to one another without any intersections. In contrast, Figure 4-3b illustrates the 
model of the ogre where meshes intersect one another producing visually important edges. 
These edges are not modeled explicitly and do not necessarily correspond to polygonal edges; 
most object-space edge-detection algorithms can hardly determine them efficiently without re-
meshing the model’s geometry. 
Based on SAITO AND TAKAHASHI, a more descriptive classification considered by the edge-
enhancement algorithm can be given: both silhouette and border edges represent profile edges 
that outline the (inner and outer) contours of 3D models; whereas crease edges represent inner 
edges that show inner features, such as changes of their surfaces’ orientation. In a typical 3D 
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scene, abrupt changes in the depth buffer occur at silhouette edges and border edges, that is, 0th 
order discontinuities of the depth buffer indicate profile edges. A 1st order differential operator 
applied to the depth buffer detects them. Abrupt changes in the normal buffer typically occur at 
crease edges. Thus, 0th order discontinuities of the normal buffer indicate inner edges. 1st order 
differential operators applied to normal buffers detect them. In addition, 0th order discontinuities 
of the normal buffer can also indicate profile edges produced by polygons that partially occlude 
another polygon as long as both the occluding polygon’s and the occluded polygon’s normal 
vectors are different. In this way, even profile edges producing small discontinuities in depth 
that are hardly detectable in the depth buffer can potentially be detected in the normal buffer. 
Figure 4-4 illustrates silhouette edges, border edges, and crease edges accentuating the profiles 
and the inner edges of the crank model.  

4.3 Edge Map Construction 
The edge map represents a 2D texture that preserves the visually important edges of 3D models 
as intensity values stored as texels. The process of detecting edge intensities and of constructing 
the edge map is based on the G-Buffer concept and the previous classification of edges. 

Generation and Storage of G-Buffers 
The edge-enhancement algorithm implements G-Buffers as 2D textures. To do this, it encodes 
the geometric properties of 3D geometries as color values using the texture’s R, G, B, and A 
color channels. That is, after rasterizing 3D geometries, the algorithm computes the resulting 
fragments’ geometric properties and stores the geometric properties as color values. Directing 
the color of each fragment to the associated texture then sets up the G-Buffer contents. To 
ensure a 1-to-1 relationship between pixels and texels for subsequent use of G-Buffers, both the 
original frame buffer and the texture are of equal size3. Furthermore, the algorithm exploits the 

                                                      
3 Current graphics hardware supports non-power-of-two textures. Otherwise, resizing the texture to fit the next power 
of two for G-Buffer generation and setting up its texture matrix for accessing it later on applies as well. 

 

a) b)  
Figure 4-3: Polygonal Edges and Visually Important Edges. (a) The meshes that constitute the 

polygonal model of the crank do not intersect one another. Visually important edges 
(yellow) align to polygonal edges (black). (b) The mesh that sets up the bangle intersects 
the polygonal model of the ogre. Here, visually important edges (red) do not correspond 
to polygonal edges (black). 
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graphics hardware’s render-to-texture capabilities (Sec. 3.3) to generate the G-Buffer’s contents 
efficiently.  
Both the normal buffer and the depth buffer are required for edge detection. So, the algorithm 
must compute the fragments’ normal vectors and depth values to generate these buffers. A 
texture’s color channel generally ranges in the interval [0,1] but each component of a 
normalized normal vector lies within the interval [-1,1]. Thus, normal vectors must be encoded 
appropriately before storing them as texture values. Accordingly, the depth values that denote 
the fragments’ distance from the camera must match the interval [0,1]. Compared to the 
projective depth, the depth values resulting from a linearized space ensure that the accuracy of 
discontinuities in the depth buffer remains independent of the 3D geometry’s position and 
orientation in 3D space. So, it is meaningful to linearize the space defined by the 3D scene’s 
front and the back clipping plane for calculating depth values.  
To determine normal vectors and depth values on a per-fragment basis, the algorithm can either 
texture 3D geometry with a normalization cube map and a 1D gradient texture aligned to the 
viewing direction [52][95], or it can employ vertex and fragment shaders to compute them. The 
fragment’s normal vector then populates its R, G, B color components and the depth value 
populates the A component of the fragment’s color. As a result, a single texture can implement 
both G-Buffers by storing the four scalar values of the geometric properties in its R, G, B, and A 
channels; we refer to that texture as TG-Buffer.  
Listing 4-1 illustrates the fragment shader that computes the fragments’ encoded normal and 
depth values for populating texture TG-Buffer.  

Listing 4-1:  Fragment Shader for Generating G-Buffers. Encoded normal vectors 
and linearized depth values form the texture TG-Buffer. 

varying vec3 perVertexNormals;    // Interpolated per-vertex normals 

varying float depth;       // Interpolated linearized depth in [0,1] 

 

void main (void) { 

    // Normalized per fragment normals 

    vec3 normal = normalize(perVertexNormals); 

    // Encoding normals [-1,1] => [0,1] 

    normal = (normal+1.0)*0.5; 

 

    // Output color and depth  

    gl_FragColor = vec4(normal, depth); 

    gl_FragDepth = gl_FragCoord.z; 

} 

Detecting Edge Intensities 
The edge-enhancement algorithm detects 0th order discontinuities in each G-Buffer to obtain 
intensity values that constitute the 3D geometries’ visually important edges. The algorithm 
applies two 1st order discontinuity operators in image space: one operating on the normal buffer 
and the other operating on the depth buffer.  
For this, the algorithm renders to texture a screen-aligned quad covering the whole viewport of 
the canvas using texture TG-Buffer as input (Sec. 3.4). Each fragment resulting from rasterizing the 
quad gets assigned texture coordinates that correspond to the fragment’s targeted pixel position. 
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In this way, fragments can access the geometric properties that have previously been generated 
at their pixel locations.  
In a similar approach to that suggested by SAITO AND TAKAHASHI, the algorithm presented here 
samples neighboring texture positions to detect discontinuities in image space. But here the 
edge-enhancement algorithm employs image-processing operations on graphics hardware (Sec. 
3.4). Furthermore, the algorithm accesses just four neighboring texture positions of TG-Buffer by 
shifting the fragments’ texture coordinates slightly in A, C, F, and H direction (see Figure 3-3b). 
Bilinear filtering is used to access adjacent texture samples (see Figure 3-3c) in order to 
determine texture values as a weighted average of the four neighboring texels’ values. The 
edge-detection operators then compare the results of two diagonally opposing texture sample 
pairs (A, H) and (C, F) to determine abrupt changes in the G-Buffers’ contents and then 
accumulate the amount of discontinuity. For detecting abrupt changes in the depth buffer the 
algorithm evaluates the texture samples’ alpha values as follows: 

22

2
11

2
11 






 −−⋅






 −−= FCHAIZ  

Here, IZ denotes the intensity of the discontinuity in the depth buffer. Thus, IZ basically indicates 
the intenseness of the 3D model’s profile edge. For detecting abrupt changes in the normal 
buffer the R, G, B color values are compared as follows: 

( ) ( )( ) ( ) ( )( )( ) normal dot normal normal dot normal
2
1 FCHAI N +⋅=  

Here, the function normal decodes a texture sample’s color value to obtain the normal vector 
expanded to the interval [-1,1]. Since a texture value results from bilinear filtering, normalizing 
the interpolated normal vector is required as well. The dot product then corresponds to the 
cosines of the angles between two opposing normal vectors. The resulting average IN denotes 
the intensity of the discontinuity in the normal buffer and thus indicates the intenseness of the 
3D model’s inner edges. 
Finally, the algorithm directs the intensity value IZ to the R-channel, the intensity value IN to the 
G-channel, and the product (IZIN), that is, the combination of profile and inner edges, to the B-
channel of the targeted texture. As a result, the assembly of edge intensities forms a single 
texture, called the edge map.  

 

Silhouette Edge 

Crease Edge 

Depth Buffer 

Normal Buffer 

Border Edge 

Figure 4-4: Discontinuities in the G-Buffers Constitute Visually Important Edges. Extracting 
discontinuities in the depth buffer and normal buffer result in intensity values that
represent silhouette edges, crease edges, and border edges and that constitute the edge 
map.  
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Figure 4-4 illustrates the depth buffer, the normal buffer, and the resulting edge map. Once 
constructed, the edge map serves as a rendering component for augmenting various rendering 
techniques. Furthermore, both the 3D model’s profile and inner edges can be handled 
differently. 
Listing 4-2 illustrates the fragment program for implementing edge detection and consequently 
edge map construction. 

Listing 4-2:  Fragment Shader for Edge Map Construction. Sampling neighboring 
positions in TG-Buffer enables one to detect discontinuities in both G-
Buffers. 

uniform sampler2D gBuffers; // 2D texture T
G-Buffer

 

uniform vec2 texOff;        // Texture offset for neighbor access  

uniform vec2 dim;           // Texture’s/canvas’s width and height 

 

void main (void) { 

    // Center and offset 

    vec2 ctr = vec2(gl_FragCoord.x/dim.x,gl_FragCoord.y/dim.y); 

    vec2 off = vec2((1.0/dim.x)*texOff.x,(1.0/dim.y)*texOff.y); 

 

    // Access in direction A  

    vec4 tex = gl_TextureMatrix[0]*vec4(ctr.x-off.x,ctr.y+off.y,1.0,1.0);

    vec4 A = texture2D(gBuffers, tex.xy); 

    A.xyz = normalize((A.xyz*2.0)-1.0); 

    // Access in direction C  

    tex = gl_TextureMatrix[0] * vec4(ctr.x+off.x, ctr.y+off.y, 1.0, 1.0);

    vec4 C = texture2D(gBuffers, tex.xy); 

    C.xyz = normalize((C.xyz*2.0)-1.0); 

    // Access in direction F  

    tex = gl_TextureMatrix[0] * vec4(ctr.x-off.x, ctr.y-off.y, 1.0, 1.0);

    vec4 F = texture2D(gBuffers, tex.xy); 

    F.xyz = normalize((F.xyz*2.0)-1.0); 

    // Access in direction H  

    tex = gl_TextureMatrix[0] * vec4(ctr.x+off.x, ctr.y-off.y, 1.0, 1.0);

    vec4 H = texture2D(gBuffers, tex.xy); 

    H.xyz = normalize((H.xyz*2.0)-1.0); 

 

    // Calculate discontinuities 

    vec3 discontinuity = vec3(0.0, 0.0, 0.0); 

    discontinuity.x = 0.5 * (dot(A.xyz, H.xyz) + dot(C.xyz, F.xyz)); 

    discontinuity.y = (1.0-0.5*abs(A.w-H.w)) * (1.0-0.5*abs(C.w-F.w)); 

    discontinuity.z = discontinuity.x*discontinuity.y; 

    // Output edge intensities to the edge map 

    gl_FragColor = vec4(discontinuity, 1.0); 

} 
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4.4 Applying the Edge Map 
The edge map can be used to enhance the 3D model’s visually important edges in a subsequent 
rendering pass. For this, the intensity values of the edge map are superimposed on the 3D 
geometry’s surface in the fragment processing stage. That is, the edge-enhancement algorithm 
makes the edge map, which represents a 2D rendering result produced by image-processing 
operations performed on graphics hardware, available in the rendering pipeline by projecting it 
onto 3D geometry. A fragment shader determines the texture coordinates of each of the 3D 
geometry’s fragments in such a way that they correspond to the canvas coordinates of their 
targeted pixel position. The shader samples the edge map to access edge intensities and then 
considers the intenseness of the edges for blending between a certain edge color and, for 
instance, the 3D geometry’s surface color. Figure 4-5a illustrates a simple shaded crank model 
with edges enhanced by the color black. Alternatively, the fragment shader can choose different 
edge colors based on the distinct edge intensities IZ and IN contained in the edge map. Figure 4-
5b illustrates the edge enhanced crank model with black profile edges and white inner edges. 

4.5 Intermediate Rendering Passes  
The edge-enhancement multipass-rendering algorithm can process a set of 3D models to 
enhance their visually important edges. An ordinary rendering pass denotes a rendering pass 
that renders the 3D models’ polygonal representation, and an intermediate rendering pass 
denotes a rendering pass that renders a single screen-aligned quad. The results of either 
rendering pass can be captured in 2D textures, called intermediate rendering results, for further 
use. Intermediate rendering passes perform efficiently at approximately constant cost. That is, 
the computational cost of an intermediate rendering pass is both independent of the number of 
3D models considered for enhancement, and independent of the 3D models’ tessellation. The 
quantity of operations processed by a fragment shader on a per-fragment basis and their 
individual costs as well as the canvas resolution, which affects the performance of both the 
render-to-texture implementation and the fill rate, are the limiting factors for intermediate 
rendering passes. These factors are bound to a graphics hardware performance, which is 

a) b) 

Figure 4-5: Enhancing Edges of the Crank Model. (a) Edge intensities of the edge map allow one
to enhance the model’s profile and inner edges using black. (b) Considering the edge
map’s edge intensities differently allows one to enhance the model’s profile edges in
black and inner edge in white. 
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continuously increasing [63]. Thus, the constant costs of intermediate rendering passes will 
decrease further in the future. In conclusion, the edge-detection scheme presented here runs at a 
constant cost and thus will evolve along with graphics hardware evolution.  
The edge-enhancement algorithm can be conceptually divided into the following three rendering 
passes: 
1. An ordinary rendering pass is required to derive the normal buffer and the depth buffer 

from the 3D models. 
2. An intermediate rendering pass is required to process the G-Buffers’ contents and, 

consequently, to construct the edge map.  
3. A second ordinary rendering pass is required to superimpose the edge map’s edge 

intensities using surface shading to enhance 3D models and thus to implement the 
desired, e.g., non-photorealistic, style. 

4.6 Applications of Real-Time Edge-Enhancement Rendering 
This section presents diverse applications of the edge-enhancement algorithm. 

Edge-Enhanced Technical Illustrations 
GOOCH ET AL. introduce technical illustrations to demonstrate the structural as well as the 
material compositions of mechanical parts [45]. The enhancement of profile edges and inner 
edges by different edge colors is a method commonly used to increase perception in technical 
illustrations (Sec. 2.2). 
The fragment shader in Listing 3-2 (Sec. 3.2) implements the lighting model for technical 
illustrations based on the Phong shading model. In addition, the fragment shader accesses the 
edge map to handle profile edges and inner edges differently: for inner edges, the shader linearly 
interpolates between the surface color determined by the lighting model and white using the 
edge map’s intensity value IN as weight. Then, it linearly interpolates between the color value 
that results from the previous weighting and a black edge color using the intensity value IZ as 
weight to enhance the profile edges. Figure 3-2 depicts the resulting edge-enhanced technical 
illustration of the crank model. 

Edge-Enhanced Cartoon Shading 
Cartoon shading (a.k.a. cel shading) represents a typical application of edge enhancement in 
real-time non-photorealistic rendering [21][22]. Traditionally, cartoon style depictions feature 
3D models using a reduced amount of visual detail [119]. A limited number of cartoon shades 
(about two or three) are used to depict a model’s material color. In contrast to the method of 
interpolating shades smoothly across a model’s surface, cartoon shades form solid, distinct color 
patches with respect to an incident light direction vector: a darkened version of the original 
material color typically depicts shadowed regions and a lightened version depicts lit regions. 
Sometimes a third cartoon shade depicts specular highlights using an even more lightened 
version.  
Cartoon-shading techniques usually implement color palettes that contain cartoon shades based 
on the ambient, diffuse, and specular coefficients of both the model’s material properties and the 
properties of a single light source. LAKE ET AL. [72] implement cartoon shading by utilizing a 
single 1D texture that produces solid color patches with sharp color transitions across the 
model’s surface. The dot product between the normal vector at a point on the model’s surface 
and the incident light direction vector at that position indexes the cartoon shades in the 1D 
texture using nearest texture filtering. On the one hand, nearest filtering facilitates the sharp 
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color gradients needed for cartoon shading. On the other hand, nearest filtering produces a 
jagged transition between consecutive color transitions [15]. 
Enriching cartoon shading by visually important edges is a straightforward task. Slightly 
modifying the algorithm presented here also allows one to reduce the visual artifacts that occur 
between consecutive color patches. The variation is based on multiple render targets (Sec. 3.3) 
and depth-sprite rendering (Sec. 3.7). In addition to normal vectors and depth values the G-
Buffer generation procedure directs the cartoon-shaded color values of the model’s fragments to 
an additional texture, called the cartoon map. The modified algorithm then renders a depth 
sprite with both the cartoon map and TG-Buffer as inputs. Besides constructing the edge map, it 
samples the cartoon map multiple times in order to blur its contents. Combining both the edge 
intensities and the blurred color values then gives a cartoon-shaded depiction of the 3D model 
that doesn’t show jaggies at the color transitions (see Figure 4-6a). 

Edge-Enhanced Real-Time Hatching 
Stylized digital halftoning using hatching strokes represents a common technique in non-
photorealistic rendering (see Chapter 2). PRAUN ET AL. and FREUDENBERG ET AL. both 
introduce real-time rendering algorithms for hatching arbitrary 3D models. The resulting images 
appear “hand made” but still provide visual cues, for instance, by conveying illumination and 
curvature, that let viewers perceive the surface of a 3D model. PRAUN ET AL. provide hatching 
strokes as textures called tonal art maps (TAMs) and apply them when shading the model’s 
surfaces [100] (see Figure 2-1). In a similar way, FREUDENBERG ET AL. [40] blend prioritized 
stroke textures [126] with the model’s surface using a smooth threshold scheme to implement 
digital halftoning facilitating various real-time NPR styles. Their approach operates on a per-
fragment basis as well. Both techniques can benefit from the edge map as texture when shading 
the model’s surface. In conclusion, a variety of edge-enhanced NPR styles can be enriched. 
Figure 4-6b illustrates real-time edge-enhanced hatching based on prioritized stroke textures and 
the smooth threshold scheme. 

a) b) 
 

Figure 4-6: Augmenting Non-Photorealistic Rendering Algorithms. The edge-enhancement 
technique allows one to augment various non-photorealistic rendering algorithms, such 
as (a) cartoon-shading techniques and (b) real-time hatching techniques. 
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Applications to “Advanced Read-Time Rendering” 
The term Advanced Real-Time Rendering Techniques [10] denotes commonly used real-time 
rendering techniques, such as shadowing, mirroring, and bump mapping, which are used to 
generate realistic depictions of 3D scenes. These techniques usually render a 3D scene or parts 
of it multiple times, and often exploit the graphics hardware frame-buffer resources. As a result, 
the implementation of these techniques tends to be complex and it is even more complex to 
combine them efficiently [64].  
The edge-enhancement technique can be easily combined with many advanced, multipass real-
time rendering algorithms. For example, the mirroring rendering technique utilizes the stencil 
buffer to mask a planar mirror surface in screen space. Two rendering passes are then required 
for scene composition: one rendering pass to render the non-mirrored view of the 3D scene and 
one rendering pass to render the mirrored view to fill in the stenciled region. In order to apply 
visually important edges in both parts of the scene, the edge-enhancement algorithm needs to be 
processed twice: once for the non-mirrored view and once for the mirrored view. In this way, 
the profile and inner edges can be extracted and enhanced correctly for both views. Figure 4-6b 
depicts a mirrored, edge-enhanced scene.  
In general, edge map construction and edge map application are orthogonal to manifold real-
time rendering techniques because only a single texture needs to be created and applied 
thereafter. This entire process is fully mapped to the programmable rendering pipeline. 
Furthermore, graphics resources, such as the stencil buffer, remain unused and thus can still be 
shared among advanced real-time rendering techniques.  
In conclusion, the edge-enhancement algorithm can serve as a rendering component for 
implementations of real-time rendering algorithms even in a multipass scene graph environment 
[29]. For this, a multipass evaluation strategy has been implemented that applies to just a single 
sub graph of the scene graph [64]. In this way, manifold rendering techniques can directly 
benefit form the edge-enhancement algorithm.  

4.7 Conclusions 
The edge-enhancement algorithm is stable and robust because it can extract visually important 
edges in image space and only requires minor requisites, such as per-vertex normal vectors to 
generate the normal buffer. The algorithm does not depend on any pre-calculated information 
about the topology or the geometry of the 3D models. The edge-enhancement algorithm runs in 
real-time by exploiting current graphics hardware capabilities; it is fully integrated into the 
programmable rendering pipeline and scales well with hardware evolution.  
The model of the crank in Figure 4-4 consists of 100.000 triangles and runs at 69.2 frames per 
second at a window resolution of 512×512, and at 39.4 fps at a resolution of 1024×1024 on a 
GeForce 6800GT graphics card. The same model consisting of 25.000 triangles takes 171.9 fps 
or 59.9 fps respectively. 
A couple of similar real-time rendering techniques now exist that can detect edges by operating 
on the G-Buffer contents. Most of these techniques operate on a per-scene basis in a post-
process [84]. A significant benefit of the algorithm presented here is that it preserves the edges 
of a designated set of 3D models as an edge map for subsequent enhancements on a per-object 
basis. This has the following advantages: (1) The per-object approach allows one to compose 
scenes that contain both edge-enhanced and non-edge-enhanced 3D models (e.g., for 
highlighting 3D models by accentuating just their profile edges). (2) The edge map allows one 
to handle edges of different 3D models individually. (3) Edge detection and preservation of 
edges using textures is orthogonal to most real-time rendering techniques. So, the edge-
enhancement algorithm allows one to incorporate visually important edges without overusing 
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the limited rendering resources of graphics hardware. (4) The edge map allows one to operate 
subsequently on the 3D models’ visually important edges, e.g., to implement sketchy drawing 
(see Chapter 6).  
A significant shortcoming of the per-object approach occurs if both edge-enhanced and non-
edge-enhanced 3D models intersect one another in a single scene composition. In this case 
visually important edges for their distinctive display cannot be extracted directly. A solution is 
to take the complementary set of 3D models into account for G-Buffer generation. A scene 
graph [29] can explicitly declare both kinds of scene objects to configure the G-Buffer 
generation procedure. In this way, discontinuities can be extracted to display these 3D models 
distinctly. 

Optimization Strategies 
The color channels of a 2D texture generally have limited resolution. It can be observed that the 
R, G, B color components are sufficient to detect discontinuities in the normal buffer. In 
contrast, the resolution of the alpha channel is sometimes less adequate to detect discontinuities 
in the depth buffer, in particular if only minor changes in depth are present. To cope with the 
low precision, the near and far clipping planes of the 3D scene can be adjusted to match the 
bounding volumes of the set of 3D models. Additionally, either a high-precision texture (Sec. 
3.3) can be used or one can capture and use the first ordinary rendering pass’ z-buffer contents 
as a high-precision depth texture (depth map). In the case of the z-buffer’s z-values, a fragment 
shader can compute the depth values of a linearized space. Capturing a render target’s high-
precision contents in a high-precision texture slightly decreases the performance of the 
algorithm presented here because more data needs to be processed. 
The edge map can be considered just as a conceptual element for edge enhancement. The 
intermediate rendering pass for constructing the edge map can generally be substituted. The 
edge intensities can be determined in the second ordinary rendering pass while processing the 
3D models’ fragments. For this, the texture coordinates of the 3D models’ fragments can be 
calculated and shifted in a similar way in order to sample the neighboring texture positions in 
the texture TG-Buffer. So, a screen-aligned quad is not essential. An early z-reject can restrict edge-
detection operations to only those fragments that contribute to the final image. That is, capturing 
the first ordinary rendering pass’ z-buffer contents as texture allows one to test and probably 
reject fragments of the second pass prior to shading them. For this, the fragment shader of the 
second rendering pass tests the fragment’s z-value with the associated z-value of the texture and 
possibly rejects the fragment. In conclusion, both edge detection and edge enhancement can be 
merged to just a single rendering pass. Nevertheless, encapsulating the edge-map construction 
procedure by a self-contained rendering pass reduces the complexity of the shading calculations 
that needs to be performed in the second pass. Constructing the edge map and reusing it as a 
single component thus allows one to concentrate on the implementation of the individual 
surface shading.  
As already illustrated by the cartoon-shading example, depth sprite rendering can replace the 
second ordinary rendering pass 
 if just the 3D models’ visually important edges are to be depicted or 
 if intermediate rendering results have already been produced and suffice to generate an 

edge-enhanced depiction, e.g., by using deferred shading based on the G-Buffer contents 
(Sec. 3.6).  

For this, the z-buffer is once more required as texture. A depth sprite (Sec. 3.7) uses the edge 
map and optional auxiliary rendering results as input. In this way, one can avoid rendering the 
3D models twice by simply rendering a screen-aligned quad. This can increase the performance 
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of the edge-enhancement algorithm significantly if the 3D models’ geometric complexities are 
excessive. 

Discussing Visual Results 
The edge-enhancement algorithm samples the G-Buffers’ contents at only four diagonally 
opposing locations around the center X (see Figure 3-3b) to determine texture values for 
detecting discontinuities. Other implementations consider all its neighboring texels [21][39] and 
apply the Soble Filter. It has already been observed that sampling four times is sufficient to 
generate visually pleasing results (see Figure 4-7). For comparison, NIENHAUS AND DÖLLNER 
[95] implement the Sobel Filter to detect discontinuities in the depth buffer. They sample 
texture values A through H using three intermediate rendering passes. Each of these passes 
samples the texture TG-Buffer a maximum of four times (due to the restrictions of graphics 
hardware at that time) using nearest texture filtering. They then apply a per-fragment blending 
operation to accumulate the intermediate results of a filter kernel’s computation and to store the 
final edge intensities in the frame buffer4. The edge-enhancement algorithm presented here 
produces even more anti-aliased edge intensities compared to the result produced by the Sobel 
filter. The reason is that bilinear filtering is used to sample the texture TG-Buffer resulting in a 
weighted average value for the samples A, C, F, and H (see Figure 3-3). A subsequent 
comparison of the diagonally opposite values generates more softened edge intensity values for 
the edge map. 
Image-space edges are approximately a few pixels wide regardless of the canvas resolution that 
is used. The range in which discontinuities can be detected around a texel’s position can be 
adjusted by scaling an image-space offset for shifting texture coordinates appropriately. In this 
way, the edge-enhancement algorithm can increase or decrease the width of visually important 
edges slightly. Again, bilinear filtering preserves the visual quality of edges having an adjusted 
width for lower or even higher resolution canvases. 
A drawback of the per-object approach presented here is that visual artifacts occur at the model-
to-background boundary when the edge map is mapped onto the 3D models. The reason is that 
only those fragments produced for the 3D models can be used as a basis for accessing the edge 

                                                      
4 FREUDENBERG, comes up with a technique for implementing either the horizontal or vertical part of the Sobel Filter 
on graphics hardware using just four texture samples [39]. 

 

Missing 
Edge Intensities 

Figure 4-7: Missing Edge Intensities. The depth and normal buffers are not sufficient to extract the 
edge intensities of all visually important edges.  
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intensities, but discontinuity operators produce edge intensities near the model’s boundary in 
image space as well. So, approximately half the width of the edges at the boundary of the 3D 
models gets clipped. As a result, sharp edges occur at the transition between the 3D models’ 
image and the background. Implementing edge-enhancement as depth sprites and considering 
the neighboring z-values of the high-precision depth texture beyond the 3D models’ boundary 
can avoid clipping artifacts. 

Necessity for Considering the ID Buffer 
Sometimes neither the depth buffer nor the normal buffer are sufficient to extract visually 
important edges because their contents do not show any notable changes of geometric properties 
although edges are present (see Figure 4-7). Usually, normal buffers show hardly any 
discontinuities if most of the faces in the scene are parallel to one another, e.g., when rendering 
artificial objects such as mechanical parts. The depth buffer barely shows abrupt changes if the 
scene produces a smooth depth gradient, e.g., when rendering a terrain model or an urban 
environment in a birds-eye-view up to the horizon. In these cases, detecting discontinuities in 
the id buffer (Sec. 4.1) allows one to complement profile edges by edges that indicate a model-
to-model or model-to-background boundary. This allows a distinctive display of individual 3D 
models in images of 3D scenes. It should be noted that the id buffer cannot replace the depth 
buffer, because those silhouette and border edges that fall inside the 3D model’s image viewed 
from a certain camera viewpoint cannot be detected in the id buffer. 
Figure 4-8 depicts a simple scene. Here, the woman and the child are visually well-defined 
using the discontinuity edges of the id buffer. Abstracting from the underlying 3D model by 
reducing the visual complexity this way still allows one to perceive each person clearly and 
separately. In addition, the image shows the profile and the inner edges of the background 
arches. Since the depiction is visually attractive as well, graphics design decisions can be a 
reason for enhancing part of a 3D scene using the id buffer’s discontinuity edges only, e.g., in 
advertisings or art.  

 Normal Buffer ID Buffer 

 
Figure 4-8: Detecting Edges using the ID Buffer. Detecting discontinuities in the id buffer allows 

one to enhance the model-to-mode or model-to-background boundary, and to display 
individual 3D models in a visually distinct way. The final depiction illustrates a 3D scene 
in which the couple is enhanced by edge intensities that have been detected in the id
buffer only. 
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4.8 Application to Illustrative 3D City Models 
The edge-enhancement algorithm has been applied to implement Illustrative 3D City Models 
[28], which is an illustrative real-time visualization of 3D city models complementary to Virtual 
Reality visualizations. Illustrative 3D city models aim to accomplish the following:  
 Concentrate on illustrative, expressive visualizations emphasizing high perceptual and 

cognitive quality that effectively communicates the contents, structure, and relationships 
of urban objects as well as related thematic information. 

 Enable meaningful visualizations even in the case of scarce urban spatial information 
since high-quality and complete data is rarely available for large-scale urban areas.  

 Enable the fully automated generation of visualizations while offering flexibility in 
controlling its graphic design. 

 Achieve real-time rendering and thereby allow interactive manipulation, exploration, 
analysis, and editing of 3D city models.  

Applications of illustrative 3D city models are primarily all of the various visual interfaces to 
urban spatial information required, for instance, in architectural drawings and sketches, city 
development planning and city information systems, the visualization of demographic 
development data, interactive gaming environments, and comic worlds and atmospheric 
environments for narratives using storyboard-like depictions (see Chapter 7). 

Compositional Aspects of 3D City Environments 
Buildings are the basic components of 3D city models. In general, the digital data of buildings 
can be acquired based on administrative data (e.g., cadastre records), laser scanning, and aerial 
photography. In practice, for large areas of 3D city models no explicitly modeled buildings are 
available. For this reason, a building’s geometry has to be generated automatically. Buildings 
can be constructed as simplified block models by extruding 2D ground polygons to certain 
heights.  
Environmental components include all kinds of spatial objects that set up the environmental 
space of a 3D city model. Examples are the following: 
 Transportation networks (roads, rail, etc.) 
 City furniture (street lights, advertising boards, etc.)  
 Vegetation objects (trees, lawns, etc.) 
 Population and traffic objects (people, cars, etc.) 

Most environmental components can be modeled and handled as additional 3D scene geometry. 
For geometric modeling 2D polygons define the basement on top of a terrain model that 
represents roads, sidewalks, lawns, streets, etc. Extruding these 2D polygons generates the 
relevant 3D geometry. 
Thematic information, e.g., demographic or building information, associated with components is 
defined and required by applications of 3D city models. Building information include, for 
instance, occupancy, industrial/residential usage, year of construction, state of restoration etc. 
The visualization technique supports the mapping of thematic information to appearance 
parameters, that is, it “maps invisible properties onto visible attributes” [115]. The technique 
aims to communicate visually significant parameters of buildings and the inherent properties of 
buildings specified by thematic information, such as the number of floors, planning state, 
architectural style, etc. 
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Rendering Aspects for Illustrative 3D City Models 
Illustrative 3D city models apply the following depictions strategies to give a meaningful 
visualization.  

Shadowing  
Shadows in 3D city models are important cues that facilitate the perception of spatial coherence 
through the image. In order to calculate shadows, the real-time implementation [35] of the 
shadow volume technique [16] is used. Shadow volume geometry can be computed for given 

Depth Buffer Normal Buffer ID Buffer 
G-Buffer 

Edge  
Intensities 

Illustrative 
3D City 
Model 

 
Figure 4-9: Edge Enhancement of 3D City Models. Discontinuities in the depth buffer, the normal 

buffer, and the id buffer constitute the edges intensities for enhancing 3D city models.
These edges assist a homogenous and a generalized display of the 3D city model
(captured from a slightly different viewpoint). 
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3D building geometries in a pre-processing step. The shadow volume geometry is then rendered 
together with the 3D scene geometry to generate the stencil value zero for lit areas and non-zero 
for shadowed areas. Finally, the shadow information is captured in the stencil buffer as an 
intermediate rendering result by copying it into an alpha texture for later shadow application. 

Shading of Building Geometry  
Cartographic city maps and other hand drawings of cities use a reduced color scheme for 
shading. In colored drawings the illustrator usually simplifies the realistic colors of the urban 
objects and greatly reduces the number of colors used. In general, only two or three colors and 
only two or three tints for each color are used. The choice of the colors is based on aesthetic 
grounds as well as on the actual colors of the city. The visualization technique applies the n-tone 
shading introduced by DÖLLNER AND WALTHER [31] for all parts of buildings. In a similar way 
to cartoon-shading, the angle between the polygon’s normal and the incident light direction 
vector provides an intensity that is used to index a color palette of n tones to determine the 
appropriate tone for shading. For this, each building is associated with a color palette defined by 
thematic information.  

Depth Cueing 
The visualization technique incorporates a depth-cueing scheme to enhance depth perception in 
the computer-generated depictions of 3D city models. For this, the linear transformation in tri-
stimulus color space as described by WEISKOPF AND ERTL [122] is used. The saturation of a 
color is changed according to the viewer’s distance from it: more distant objects are rendered in 
more de-saturated colors whereas the intensities of colors remain constant. In contrast to 
intensity depth cueing, their saturation-based depth-cueing scheme lets viewers perceive even 
objects in the background because their intensity contrast remains unaffected.  

Facades of Buildings 
Facades can encode thematic information about buildings as visual elements. To cope with 
large-scale 3D city models, individual textures for each building are not created. Instead, the 
visualization technique combines the texture elements of the facades using multi-texturing. 
Multiple sets of texture coordinates for each building can be created in a preprocessing step, to 
be used by a fragment shader that then composes the facade texture for each building 
procedurally.  

Object-Space Edge Stylization 
For object-space edge stylization the algorithm introduced by DÖLLNER AND WALTHER [31] is 
used. It generates quads and aligns them to visually important edges, which can easily be 
detected for building geometries. Texturing the quads with a stroke texture that can be partially 
transparent and orienting their faces towards the camera generate artistically looking stylized 
edges. Their shape and appearance can be individually defined to assign a characteristic 
appearance to visualizations and to depict specific thematic information, such as planning state 
or renovation state. The visualization technique can apply edge stylization to a collection of 
buildings at interactive frame rates. 

Edge Enhancement 
Image-space edge enhancement produces homogenous and generalized visual depictions of 3D 
building geometry while emphasizing its principle composition (see Figure 4-9 and Figure 4-
10a). Since the edge map algorithm is virtually independent of the number of polygons it is 
capable of handling 3D scenes, which have a huge geometric complexity. Thus, image-space 
edge enhancement is particularly suitable for large-scale 3D city models but also applies well to 
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the ground geometry, which generally contains a high number of curved shapes leading to a 
large number of short edges. 
A typical characteristic of 3D city models is that a lot of faces are parallel to one another, e.g., 
buildings, roofs, and basement geometry. Furthermore, the scene measured from the front-most 
buildings to the buildings far away near the horizon is typically large with respect to depth, 
especially if viewed from a birds-eye-view. As a result, the normal buffer contains identical 
normal values for different faces, and the depth buffer just shows a smooth depth gradient 
producing only minor changes in depth. These buffers are therefore not sufficient to produce 
adequate profile edges. For this reason, the id buffer is required. It allows one to encode each 
single building as well as the basement geometries by an individual color value, the object 
identifier. In this way, profiles can be extracted that display both building-to-building and 
building-to-ground distinctions and accentuate the outlines of roads, sidewalks, lawns, etc. [12]. 
Figure 4-9 depicts the depth buffer, the normal buffer, and the id buffer as well as the 
corresponding edge intensities needed for enhancing 3D city models. 

Hybrid Rendering 
The visualization technique for illustrative 3D city models applies a hybrid-rendering algorithm 
that combines the advantages of both edge-rendering approaches, that is, stylizing the buildings’ 
edges to communicate thematic information, such as planning states, and accentuating the 
image-space edges to generalize principle compositions. When shading the 3D city model 
geometry using the shadow-alpha-texture, n-tone shading, and depth cue calculations one can 
also apply the edge map to accentuate image-space edges. Note that restricting image-space 
edge-enhancement to a designated set of buildings avoids interference with the objects-space 
stylization typically applied for the complementary set of buildings (see Figure 4-10b). Since 
the edge-enhancement preserves a correct z-buffer behavior, objects-space edges and any 
additional 3D scene geometry can easily be combined.  
Figure 4-11 illustrates a part of a 3D city model. The 3D representations of people and facade 
textures help one perceive measuring units, i.e., one can estimate the height of the depicted 
buildings. Procedural facade texturing lets one also perceive the industrial or residential usage 
of a building, and its occupancy.  

a) b)

Figure 4-10: Image-Space and Object-Space Edges for Illustrative 3D City Models. (a) The 
depiction illustrates the 3D city model using image-space edges only, whereas (b) the 
other depiction shows additional stylized object-space edges applied to a subset of 
buildings 
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The assembly of all rendering techniques provides a high degree of freedom for graphic design 
to illustrate 3D city models expressively and to visualize their related thematic information, e.g., 
in order to design city information systems. Figure 4-9, for instance, depicts a 3D city model 
from a bird’s eye view using references that provide textual information for buildings. 
 
 
 
 

a) b) 

Figure 4-11: Conveying Thematic Information in Illustrative 3D City Models. (a) Procedurally 
generated facades and people encode non-geometric information about in illustrative 3D 
city models. (b) One building represents a modern office building; the other building 
represents a residential building. 
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Chapter 5 
Blueprint 
Rendering Technique 

Outlining and enhancing visible and occluded features in drafts of architecture and mechanical 
parts are essential techniques for visualizing complex aggregate objects and for illustrating the 
position, layout, and relations of their components. This chapter introduces blueprint rendering 
that enhances the visible as well as the occluded visually important edges of arbitrary 3D 
geometries [92].  
The word blueprint in its original sense is defined by Merriam-Webster as “a photographic print 
in white on a bright blue ground or blue on a white ground used especially for copying maps, 
mechanical drawings, and architects' plans”. Blueprints consist of transparently rendered 
features, represented by their outlines. Thus, blueprints make it easy to understand the structure 
of complex, hierarchical object assemblies such as those found in architectural drafts, technical 
illustrations, and designs. 
In a naive approach to blueprints, a wire-framed depiction could be used, but would not allow 
one to distinguish between polygonal edges and true outlines, such as silhouettes. This depiction 
even complicates the visual perception of complex object assemblies (see Figure 5-1b). One 
could also use transparency rendering, but outlines would hardly be visible, in particular in 
regions of high depth complexity (see Figure 5-1c). Image-space non-photorealistic algorithms 
operate only on visible features and cannot be directly extended to transparent rendering.  
The blueprint rendering technique presented in this thesis extends the edge-enhancement 
rendering algorithm for accentuating visually important edges of 3D models (see Chapter 4) to 
their occluded parts [89][92]. For this, the edge map construction is combined with depth 
peeling, a technique that extracts disjunctive layers from the 3D geometry which represent its 
graphical decomposition, in order to cope with its depth complexity. Vivid and expressive 
depictions of complex aggregate objects become possible and facilitate visual perception (see 
Figure 5-1d).  
Blueprint rendering serves as an effective tool for interactively exploring, visualizing, and 
communicating spatial relationships. Among the many application areas, blueprints can be used 
for visualizing and illustrating ancient architecture of cultural heritage [90]. For instance, they 
can help to guide viewers through dungeon-like environments, and can highlight hidden 
chambers and other components found in archeology, such as tombs. Furthermore, blueprint 
rendering makes it easy for artists and design engineers to obtain insights into complex 
aggregate objects and thus to ease their construction.  
Constructive Solid Geometry (CSG), which is used to model complex, aggregate objects, 
represents a typical field of application of blueprint rendering. Blueprint rendering can be 
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seamlessly integrated into image-based CSG rendering to ease the interactive composition of 
CSG shapes. 
The remainder of this chapter is structured as follows. Section 5.1 describes depth peeling and 
its adaptation to blueprint rendering. Section 5.2 presents the blueprint rendering technique. 
Section 5.3 presents an extension of blueprint rendering that generates edge-enhanced order-
independent transparent depictions. Section 5.4 gives details of depth masking. Section 5.5 
outlines applications to architectural drafts. Section 5.6 presents the extension of blueprint 
rendering to image-based CSG rendering. Section 5.7 draws conclusions.  

5.1 Depth Peeling Technique 
Depth peeling is a multipass rendering technique that operates on a per-fragment basis and 
extracts 2D layers from 3D geometries; these layers have a depth-sorted ordering. Generally 
speaking, depth peeling successively “peels away” layers of unique depth complexity. 

Previous Work 
Based on the Virtual Pixel Maps architecture, MAMMEN [75] introduces an approach to 
processing pixels in depth-sorted order when rendering 3D geometries. As one application, he 
generates an ordering of transparent pixels suitable for implementing high-quality antialiased 
transparency rendering. DIEFENBACH extends this approach to general hardware using the dual 
z-buffer concept. The dual z-buffer allows him to implement two depth tests on a per-fragment 
basis [26]. When rendering 3D geometries multiple times, the second depth test lets him process 
fragments in depth-sorted order to implement transparency rendering as well. Finally, EVERITT 
[36] introduces a hardware-accelerated solution for the dual z-buffer on common graphics cards 
using shadow maps [109]. He implements depth peeling by extracting layers of ordered depth to 
facilitate order-independent transparency rendering in real-time.  

Depth Peeling Implementation 
In general, the fragments that pass an ordinary depth test define the minimal z-value at each 
pixel. But one cannot directly determine the fragment that comes second (or third, etc.) with 
respect to its depth complexity. Thus, an additional depth test to extract those fragments that 
form a layer of a given ordinal number (with respect to depth complexity) is required. In order 
to eliminate fragments that have a lower depth complexity than those of a certain layer, the 
second depth test requires the z-values of the preceding layer. Depth peeling provides them with 
a texture. With depth peeling, one can thus extract the first n layers using n rendering passes.  

a) b) c) d) 

Figure 5-1: Illustrating the Layout of a Mechanical Part. (a) A rendering of the model of the crank. 
(b) A wire-framed depiction complicates our perception of the shape. (b) A transparency
rendering can show its occluded parts. (d) A blueprint depiction of the model makes it
easier to see layout. 
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A depth layer denotes a layer of unique depth complexity and a depth layer map denotes a high-
precision texture received by capturing the associated z-buffer contents. Accordingly, a color 
layer map denotes an additional texture that captures the contents of the associated color buffer. 
Thus, both maps serve as intermediate rendering results that can be reused subsequently. In 
particular, color layer maps can later be used in depth-sorted order to compose the final 
rendition, e.g., for implementing order-independent transparency. 
The pseudocode in Listing 5-1 outlines the implementation of depth peeling for blueprint 
rendering. It operates on a set G of 3D geometries. Here, G is rendered multiple times, whereby 
the rasterizer produces a set F of fragments. The loop terminates if no fragment gets rendered 
(termination condition); otherwise, the technique continues with the next depth layer. That is, if 
the number of rendering passes has reached the maximum depth complexity, the condition is 
satisfied. 

Listing 5-1: Depth Peeling for Blueprint Rendering. The pseudocode illustrates the 
combination of both depth peeling and edge-map construction for 
implementing blueprint rendering. 

procedure depthPeeling(G ← 3DGeometry) begin 

  int i=0 

  do 

    F ← rasterize(G)  

    if(i==0) begin  

      /* Perform ordinary depth test in the first rendering pass */ 

      for all fragment ∈ F begin 

        bool test ← performDepthTest(fragment) 

        if(test) begin  

          fragment.depth → z-buffer  

          fragment.color → color buffer  

        end 

        else reject fragment  

      end 

    end 

    else begin  

      /* Perform two depth test */  

      for all fragment ∈ F begin  

        /* First depth test */  

        if(fragment.depth > fragment.value
depthLayerMap(i-1)

) begin   

          /* Second depth test */  

          bool test ← performDepthTest(fragment) 

          if(test) begin  

            fragment.depth → z-buffer 

            fragment.color → color buffer 

          end 

          else reject fragment 

        end 

        else reject fragment 

      end 
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    end 

    depthLayerMap
(i)
 ← capture(z-buffer)  

    colorLayerMap
(i)
 ← capture(color buffer) 

    /* Edge intensities */ 

    edgeMap
(i)
 ← edges(depthLayerMap

(i)
,colorLayerMap

(i)
)   

    i++ 

  while(occlusionQuery() ≠ ∅ )  /* Termination condition */ 

end  

Performing Two Depth Tests 
In the first rendering pass (i = 0), depth peeling performs an ordinary depth test on each 
fragment. The contents of the z-buffer and the color buffer are then captured in either the depth 
layer map or the color layer map for further use. 
In consecutive rendering passes (i > 0), depth peeling performs an additional depth test on each 
fragment. For this test, it applies the depth layer map of the previous rendering pass (i-1). Depth 
peeling determines the fragment’s texture coordinates in such a way that they correspond to the 
canvas coordinates of the targeted pixel position. In this way, a texture access provides a 
fragment with the z-value stored at that pixel position in the z-buffer of the previous rendering 
pass.  
Now, the two depth tests work as follows: 
 If the current z-value of a fragment is greater than the texture value that results from 

accessing the depth layer map, the fragment proceeds and the second ordinary depth test 
is performed. 

 Otherwise, if the test fails, the fragment gets rejected. 
When all the fragments have been processed, the contents of the z-buffer and the color buffer 
form the next depth layer map and color layer map. A fragment shader can implement the 

 
Figure 5-2: G-Buffers and Edge Maps of Consecutive Depth Layers. The depth buffer (first row) 

and the normal buffer (second row) of each depth layer (column) form the basis for 
constructing the edge map (third row) for each layer. 
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additional depth test efficiently, and occlusion queries (Sec. 3.1, [61][108]) can implement the 
termination condition efficiently. 

5.2 Blueprint Rendering 
Blueprint rendering extracts both the visible and non-visible edges of 3D geometry. Visible 
edges denote visually important edges that are directly seen by the virtual camera, whereas non-
visible edges denote visually important edges that are occluded by faces of 3D geometry, that is, 
they are not directly seen. The blueprint rendering technique combines the edge-enhancement 
algorithm with the depth-peeling technique to extract these edges. Once they have been 
generated, visible and non-visible edges can be composed as the final blueprint depiction in the 
frame buffer. 

Extracting Visible and Non-Visible Edges 
The depth-peeling technique invokes the edge-map construction for each depth layer. Since 
discontinuities in the normal buffer and depth buffer constitute the visible edges, both are 
required for each rendering pass. For this, the blueprint rendering technique encodes the 
fragments’ normal vectors as color values to generate the normal buffer as the color layer map. 
The edge map can then be constructed directly because the depth layer map already forms a 
valid depth buffer (Sec. 4.7) and thus can be used.  
Non-visible edges become visible when successive depth layers are peeled away. Consequently, 
the modified depth-peeling technique can also extract non-visible edges (already shown in 
Listing 5-1). 
As a result, the blueprint rendering technique preserves visible and non-visible edges as edge 
maps for further processing. Figure 5-2 shows the depth buffers, the normal buffers, and the 
resulting edge maps of successive depth layers.  
It should be noted that visually important edges in the edge maps of consecutive depth layers 
appear repeatedly because local discontinuities can remain when peeling away faces of 3D 
geometry. Consider the following cases:  
1. Two connected polygons share the same edge. One polygon occludes the other one. The 

discontinuity in the z-buffer that is produced along the shared edge will remain when 
peeling away the occluding polygon. 

Camera 

Occluded Faces Visible faces 

Peeled away 

First Pass Second Pass 

Visible faces 

Camera 

2 

1 

a) b)  
Figure 5-3: Two Possibilities When Peeling Away 3D Geometry. Rays are cast to discontinuities 

produced by the composition of polygons. They are visible from the camera position. (a)
The composition of upright polygons illustrates the visible faces of the first rendering
pass and (b) the system with faces peeled away in the second rendering pass. Here, the 
solid orange rays indicate edges that exist in both edge maps. 
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2. A polygon that partially occludes another polygon produces discontinuities in the depth 
buffer at the transition. When peeling away the occluding polygon and non-occluded 
portions, a discontinuity in the depth buffer will be produced at the same location. 

Figure 5-3 illustrates both cases. However, the performance of edge-map construction is 
virtually independent of the number of discontinuities. 

Composing Blueprints 
The blueprint rendering technique composes blueprints using visible and non-visible edges 
stored in edge maps in depth-sorted order. For each edge map, blueprint rendering proceeds as 
follows: 
 It textures a screen-aligned quad that fills in the viewport with the edge map and its 

associated depth layer map as input. 
 Blueprint rendering then applies a fragment program that (1) implements depth sprite 

rendering using the associated depth layer map; (2) calculates the fragment’s R, G, and B 
color values using the edge intensity value derived from accessing the edge map and, for 
instance, a bluish color; and (3) sets the fragment’s alpha value to the edge intensity. 

 Finally, the technique uses color blending by considering the edge intensity values as 
blending factors to provide depth complexity cues while keeping edges enhanced.  

Note that the edges that appear repeatedly in edge maps of consecutive depth layers 
superimpose on one another without disturbing artifacts. Figure 5-4a shows the resulting 
blueprint of the mechanical part. Alternatively, we can depict 3D models in a wire-frame style 
that is based on visually important edges only (see Figure 5-4b). For this, a threshold value is 
defined that rejects fragments on the basis of their associated edge intensity. Fragments that pass 
the threshold test then form a wire-framed depiction of the 3D geometries. In either case, 
composing blueprints using depth sprite rendering enables one to combine the 3D geometries’ 
blueprint depictions with further 3D scene contents.  

a) b) 

Figure 5-4: Blueprint Rendering Provides Insights into 3D Models. Blueprint rendering enables 
one to depict 3D models (a) by their visible and occluded edges and by depth complexity
cues or (b) by a wire-frame like style based on visually important edges only.  
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Performance Considerations 
It can be observed that it is sufficient to blend just the first few layer maps in order to compose 
blueprints. The remaining layer maps have less visual impact on the overall composition 
because only a few (often isolated) pixels get colored. To alter the termination conditions for 
blueprint rendering and thus to optimize rendering performance, a desired minimal fraction of 
fragments (depending on the window resolution) can be specified to pass the depth test. In this 
way, the number of rendering passes can be decreased while maintaining a desired visual 
quality of the blueprints. To implement the trade-off between speed and quality, one can 
configure the occlusion query appropriately.  
When considering five depth layers, the model of the crank in Figure 5-4a (100.000 triangles) 
takes 15.8 fps at a window resolution of 512×512 and 8.9 fps at a window resolution of 
1024×1024 on a GeForce 6800GT graphics card. The same model with a reduced geometric 
complexity (25.000 triangles) takes 24.9 fps and 11.8 fps respectively. 

5.3 Edge-Enhanced Order-Independent Transparency 
Although blueprint depictions communicate layouts and relations efficiently by outlining the 
visible and occluded features of 3D geometries and by providing depth complexity cues, they do 
not illustrate the spatial orientation of single features very well. In contrast, the 3D geometries’ 
surface shading, which allows one to perceive the orientation of their faces in 3D space, 
provides a particularly important spatial cue for vivid visualizations. Transparency rendering 
provides these spatial cues even for the occluded faces of 3D geometries. Thus, the combination 
of both blueprint rendering and transparency rendering seems to be a meaningful extension to 
the visualization of complex aggregate objects. 
Since depth peeling was originally developed for order-independent transparency rendering, we 
can benefit directly from the implementation presented here. For this, two color layer maps for 

 
Figure 5-5: Edge-Enhanced Order-Independent Transparency Rendering. Blueprint rendering

can be used to synthesize edge-enhanced order-independent transparency renderings
of 3D models. The depictions let one perceive individual parts and sections of the
architectural building, a residential building.  
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each depth layer have to be synthesized: one color layer map to preserve the 3D geometries’ 
surface shading and one color layer map to preserve the normal buffer. Both textures can be 
generated simultaneously by means of multiple render targets (Sec. 3.3). As before, each 
rendering pass constructs the edge map for its depth layer. The edge map and the color layer 
map can then be combined when rendering each depth layer as a depth sprite. The intensity 
values of the edge maps multiplied by the color values of the color layer map that contains 
surface colors form the finals colors. The rendering technique then blends each layer with the 
frame buffer contents using the alpha values of the color layer map as blend factors. Figure 5-5 
illustrates the resulting edge-enhanced transparent depiction of an architectural building. A 
transparently textured model can, of course, be depicted in a similar way if this kind of effect is 
desired and is a reasonable way of communicating the assemblies. 
Furthermore, DIEPSTRATEN ET AL. suggest applying the Gooch lighting model (Sec. 2.2 and 
4.6) to generate technical illustrations for view-dependent transparency rendering [27] at least 
to some parts of an aggregation. Since visualizing the design of mechanical parts is one of the 
major application areas for which blueprint rendering has been developed, the Gooch lighting 
model can certainly be applied as well instead of a simple lighting model (see Figure 5-6).  

5.4 Depth-Masking 
Depth masking is a technique that peels away a minimal number of depth layers until a specified 
fraction of an assembly’s designated occluded components, such as the row of statues in Figure 
5-7, becomes visible. In fact, depth masking provides a termination condition for blueprint 
rendering to adapt the number of rendering passes dynamically. Depth masking proceeds as 
follows: 
1. It captures a high-precision depth texture, called a depth mask, derived from rendering 

only the designated components in a first rendering pass. 

 
Figure 5-6: Blueprint Rendering for Technical Illustrations. Blueprint rendering using the Gooch

lighting model for technical illustrations depicts the mechanical part, the crank.  
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2. In successive rendering passes, the depth-masking technique renders the depth mask as a 
depth sprite whenever a depth layer has been peeled away. If a specified fraction of the 
number of fragments passes the ordinary depth test (based on the z-buffer contents just 
produced), the technique terminates. Otherwise, more depth layers must be peeled away. 

3. Finally, the designated components can be simply integrated when composing blueprints. 
The modifications to the blueprint rendering technique are shown in pseudocode in Listing 5-2. 
Again, occlusion queries implement the adjusted termination condition.  

Listing 5-2: Implementing the Depth Masking Technique. The pseudocode 
illustrates the modified termination condition for implementing depth 
masking. 

procedure depthPeeling(G ← 3Dgeometry, 

                       C ← geometryOfOccludedComponents) begin 

  /* Render components and caputer z-buffer as depth mask */ 

  depthMask ← depthTexture(C) 

  quad ← createTexturedScreenAlignedQuad(depthMask) 

  renderDepthSprite(quad) 

  int Q = occlusionQuery() 

  int i=0 

  do 

    ... /* Rasterize geometry, perform depth tests, capture 

           layer maps, and construct edge maps (see Listing 5-1) */ 

    renderDepthSprite(quad) 

    int R = occlusionQuery()   /* Number of visible fragments of 

                                  the component */ 

  while(R<fraction(Q) )        /* Termination condition */ 

end 

 Peeling away layers of unique depth complexity 

Composing edges of each layer in depth-sorted order

Statues as depth mask 

Figure 5-7: Concept of Depth Masking. Depth masking allows one to reduce the visual complexity 
in blueprints by considering just a minimal number of depth layers with respect to a depth 
mask. 
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In conclusion, depth masking can reduce the visual complexity in a blueprint depiction by 
considering just a minimal number of depth layers with respect to a depth mask.  
Figure 5-7 illustrates the process of depth masking considering the row of occluded statues, 
which are part of a temple whose structural complexity is excessive.  

5.5 Applications to Illustrations of Ancient Architecture 
Besides illustrating mechanical parts, visualizing the architecture of building in order to explore 
and communicate them represents another application area for blueprint rendering [90].  

Architectural Drafts as Plan Views 
With blueprint rendering, one can generate architectural plan views automatically in order to 
provide comprehensible architectural outlines. Composing plan views using an orthographic 
camera for rendering is a straightforward task. Here, edges and depth complexity cueing are 
sufficient to differentiate single components in the overall composition. In the plan views of the 
Temple of Ramses II in Figure 5-8, chambers, pillars, and statues can be clearly identified. Thus, 
blueprints increase visual perception. Orthographic views are even more appropriate than 
perspective views if an overview is needed and if the structural complexity of the architecture is 
more than can be reasonably displayed. 

Highlighting Occluded Components in Architectural Drafts 
In contrast, a perspective view still provides better spatial orientation and conceptual insight in 
blueprints of architecture than orthographic views. Highlighting certain occluded components in 
a perspective view of an architectural composition allows one to focus on them and to 
understand their relation to the entire composition. Figure 5-7 illustrates the design of the 
entrance and the inner yard of the temple with its surrounding walls and statues. These are in 
front of the highlighted statues that guard the doorway to the rear part of the temple. Here, depth 

Sideview

Topview

 
Figure 5-8: Plan Views of the Temple of Ramses II in Abydos. Top and side views illustrating the 

layout of the temple allow one to clearly identify its chambers, pillars, statues, etc. 
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masking is used to peel away a minimum number of depth layers so that the occluded statues 
become entirely visible. Furthermore, depth masking reduces the visual complexity: in contrast 
to the depiction shown in Figure 5-9a, the entire complexity of the temple, in particular in the 
rear part, is not outlined in Figure 5-7. 

Relations and Locations in Architectural Drafts 
Enhancing blueprints of architecture using glyphs assists one to communicate hidden details, 
locations, and relations, and to guide one through the composition. For this, general 3D 
geometry can be integrated in blueprints to provide additional knowledge in depictions of 
architecture. The illustrations in Figure 5-9 mark a hidden chamber (red box) in the rear part of 
the temple and the pathways to guide one to the chamber (red arrows). 

5.6 Applications to Illustrations of CSG Models 
In interactive applications for constructing CSG models, the user requires both: a constant 
visual feedback to facilitate the interactive composition of various transient CSG components as 
well as a comprehensible visualization of the CSG models’ design and spatial assembly. 
CSG modeling means defining 3D geometry as a result of set operations (∪,∩,−), applied to 
basic, closed 3D primitives or to other CSG geometry defined in this way. The CSG tree 
represents the fundamental structure for specifying a CSG shape (see Figure 5-10a and Figure 
5-10b).  
Generating a 3D polygonal representation of a CSG shape’s surface is computationally 
expensive, and hardly possible in real-time for complex models. Hence, in interactive 
applications for modeling CSG geometry, rendering CSG models using an object-space 
approach, e.g., by determining their boundary representation [38], is less appropriate. Today’s 
image-based CSG rendering algorithms synthesize a graphical representation of CSG models in 
real-time without calculating the triangulation of their final 3D geometric mesh explicitly. 
GOLDFEATHER ET AL. present an algorithm for image-based rendering of CSG [41]. An 
important part of their work is the normalization of arbitrary CSG trees into an equivalent 
union-of-partial-product form. Visibility of partial products (a.k.a. CSG products) can be 

 

a) b) 
 

Figure 5-9: Illustrating Locations and Directions. Enhancing (b) a perspective and (c) an 
orthographic view of the Temple of Ramses II in Abydos using glyphs illustrates locations 
and directions and thus provides guidance in these depictions. 
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effectively determined by image-space graphics hardware operations. WIEGAND describes a 
rendering technique that implements the algorithm of GOLDFEATHER ET AL. using OpenGL 
[123]. KIRSCH AND DÖLLNER improve this approach by a real-time capable rendering technique 
that transfers visibility information using color textures [66]. 
Depictions produced by image-based CSG rendering algorithms generally illustrate CSG 
models by simple shaded geometries represented only by the outer surface of their solids (see 
Figure 5-10b). So, the entire assembly is difficult to understand, which makes comprehension 
even more difficult when modeling them. The application of blueprint rendering to image-based 
CSG rendering aims to produce depictions that will allow one to perceive the visible and 
occluded parts as a whole, in order to understand the position and orientation of the aggregated 
components of the CSG models. Depth peeling is thus required, but does not map directly to 
image-based CSG rendering due to the visibility transfer necessary for generating the CSG 
models’ image. GUHA ET AL. [47] implement depth peeling for image-based CSG rendering up 
to the second depth layer. In contrast, KIRSCH presents a solution for depth peeling of CSG 
models that can even cope with their entire depth complexities and can extract depth layers in 
real-time [64]. Using a method based on his approach blueprint rendering for visualizing the 
design and spatial assembly of interactive CSG models can be implemented [65].  

Depth Layers of CSG Models 
A front surface denotes those surfaces of a CSG model that face towards the viewer and a back 
surface denote the surfaces that face away from the viewer. Both front and back surfaces form 
the closed surface of a CSG model. In common depictions of CSG models, only the nearest 
front surface of a CSG model (with respect to depth complexity) is visible and thus forms the 
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Figure 5-10: Disjunctive Depth Layers of CSG Models. (a) The CSG tree shows a partial-product of 
a sphere and a box from which we subtract cylinders. (b) This results in the CSG model
of a widget. (c) The color buffer (first row) of each depth layer (column) can be used for
the order-independent transparency rendering of CSG shapes. Discontinuities in the 
depth (second row) and the normal buffers (third row) form the edge maps (fourth row) of
each depth layer. 
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first depth layer. In contrast, inner depth layers of a CSG model, that is, layers that become 
visible when using depth peeling, can consist of both front and back surfaces.  
When extracting the depth layers of CSG models, the z-buffer gets captured as the depth layer 
map and thus can be reused as a depth buffer. While rendering visibility information, which 
flags visible and non-visible parts of the CSG model, multiple color layer maps can be 
constructed simultaneously (using multiple render targets) [64]. In this way, rendering the 
surface’s color values can construct a color buffer for each depth layer; rendering encoded 
normal vectors can construct the normal buffer for each depth layer. Figure 5-10c illustrates the 
color buffer, depth buffer, and the normal buffer of consecutive depth layers. 

Edge Classification for CSG Models 
Set operations applied to CSG primitives for composing CSG models produce surfaces whose 
edges generally do not correspond to the edges of the original polygonal meshes. As already 
announced in Section 4.2, image-based CSG algorithms clip part of the mesh without adding 
new polygons. It can be seen that visually important edges of the resulting CSG model do not 
necessarily correspond to the polygonal edges of its CSG primitives’ meshes. Figure 5-11a 
illustrates the visually important edges of a CSG model (yellow) that are, in particular, 
independent of the edges of its underlying meshes (black).  
The definition of visually important edges needs to be altered slightly to match the terms used 
for CSG models. Hence silhouette edges of CSG models represent edges where part of a front 
surface joins part of a back surface. Crease edges represent edges where two front surfaces or 
two back surfaces of CSG primitives join and form a certain angle. Since CSG models are solid 
objects, border edges do not exist at all. Figure 5-11b illustrates the silhouette and crease edges 
produced by set operations. 

Design and Spatial Layout of CSG Models 
Once generated, one can compose order-independent transparent depictions of CSG models [64] 
using the color buffers captured as color layers maps and the depth layers maps for depth sprite 
rendering (see Figure 5-12a). Although order-independent transparency allows one to illustrate 
the outer and inner faces of CSG models, and therefore represents a novel depiction technique 
for CSG, it is not sufficient for visualizing them adequately, because the outlines are hardly 
visible. 
Based on the normal buffer available as the color layer map and the depth buffer available as the 
depth layer map, the edge map can be constructed for each depth layer. In this way, both 

Crease Edge 

Silhoette Edge 

a) b)  
Figure 5-11: Visually Important Edges of CSG Models. (a) Visually important edges of a CSG 

model do not correspond to the edges of the polygonal mesh. (b) Based on the normal 
and depth buffers, the edge-enhancement algorithm allows one to detect silhouette and 
crease edges for image-based CSG rendering. 
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blueprints that outline a CSG model’s outer and inner features and provide depth complexity 
cueing for it (see Figure 5-12b), and edge-enhanced order-independent transparent depictions 
that illustrate a CSG model’s design and spatial layout efficiently (see Figure 5-12c) can be 
generated. 

Performance Considerations 
The programs for illustrating the design and spatial layout of CSG models using blueprint 
rendering run at interactive frame rates on today’s graphics cards.  
A fundamental graphics operation is depth peeling to process all the depth layers of a CSG 
model up to its depth complexity. As already mentioned in Section 5.2, the first few layers are 
generally sufficient to visualize 3D models efficiently. This can be observed for the CSG model 
in Figure 5-13. Here, two (a), three (b), and four (c) depth layers are used to depict the spanner. 
The differences in the visual quality in Figure 5-13b and Figure 5-13c are hardly noticeable. 
However, the depth complexity of the spanner was even higher. Restricting the number of 
rendering passes can thus increase performance without a significant loss of visual quality.  
The performance of the blueprint rendering technique for CSG models is essentially bound to 
(1) the depth complexity or the number of rendering passes, (2) the window resolution, (3) the 
number of CSG primitives and their geometric complexity, and (4) the layout of the normalized 
CSG tree, or the set operations that are used. 
The widget in Figure 5-10a takes 38.6 fps for the transparency rendering (see Figure 5-12a), 
30.4 fps for the blueprint depiction (see Figure 5-12b), and 30.1 fps for the edge-enhanced 
transparency rendering (see Figure 5-12c) while considering 4 depth layers at a window 
resolution of 512×512 on a GeForce 6800GT graphics card. The spanner in Figure 5-13d takes 
9.2 fps for the transparency rendering (see Figure 5-13e), 8.6 fps for the blueprint depiction (see 
Figure 5-13f), and 8.1 fps for the edge-enhanced transparency rendering using the same test 
conditions (see Figure 5-13g). It is noticeable that the spanner takes 8.7, 7.1, and 7.0 fps for 
rendering at a window resolution of 1024×1024, that is, the rendering performance decreases 
only slightly with higher window resolution. 

5.7 Conclusions 
This chapter has presented an image-space rendering technique that allows one to accentuate a 
3D model’s visible and occluded edges; it is based on the edge-map concept. The resulting 

a) b) c) 

Figure 5-12:  Visualizations of CSG Models. (a) Order-independent transparency rendering of CSG 
models shows their outer and inner faces, (c) a blueprint rendering enhances the outer
and inner outlines and provides depth complexity cues, and (c) edge-enhanced order-
independent transparency rendering visualizes the design as well as the spatial 
assembly of CSG models efficiently. 
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blueprints provide comprehensible insights into complex aggregate object assemblies, such as 
mechanical parts and architecture. 
It has been observed that the first few depth layers contribute to a comprehensible depiction 
whereas the remaining depth layers have less visual impact. Dynamically adjusting the number 
of rendering passes subject to the number of contributing pixels can thus increase performance 
while maintaining the visual quality of the blueprints.  
It has also been observed that models of high structural complexity become increasingly 
difficult to perceive. Orthographic views can reduce the visual complexity in blueprints while 
still providing a comprehensible insight into the models, because most edges are parallel and 
superimpose on one another. Plan views of architecture, for instance, allow one to identify each 
of the building’s components even when the structure is complex (see Figure 5-8). However, 
perspective views communicate spatial relationships more expediently. Depth masking can 
reduce the visual complexity in these views as well. Here, the model’s front-most parts up to a 
highlighted feature can be clearly identified. However, the model’s rear parts are neglected by 
depth peeling and thus cannot be perceived at all (see Figure 5-7). Blueprint rendering thus 
requires a more general method for reducing the visual complexity of the resulting depictions if 
the 3D model’s structural complexity is more than can be reasonably displayed. Viewers could 
then perceive even the rear parts efficiently. 
A disadvantage of blueprint rendering results from its image-space nature: although a 3D 
model’s interior composition can be illustrated up to its depth complexity, additional visual cues 
such as dashed or dotted line styles for occluded edges are missing. In contrast to object-space 
algorithms (see Figure 2-4), individual line styles that allow one to perceive occluded edges 
cannot be applied to image-space edges. Since line styles are required to increase the visual 
perception of spatial arrangements, they should be addressed by future work. One could, for 
instance, first operate on edge maps by way of a dilation filter [85] to customize the line widths 
of consecutive depth layers. Perhaps dotted or dashed line styles could be produced in a similar 
way.  
The blueprint rendering technique maintains a correct depth behavior for depth testing when 
blending the depth layers’ results into the frame buffer. Thus, 3D models rendered as blueprints 
can be combined with arbitrary 3D scene contents. As with transparency rendering, one must 

 

a) b) c) 

d) e) f) g) 

Figure 5-13: Illustrating the Design of a Spanner. Edge enhanced transparency renderings of the
CSG model using two depth layers (a), three depth layers (b), and four depth layers (c).
The spanner rendered with an image-space CSG rendering technique (d), the
transparency rendering technique (e), the blueprint rendering technique (f), and the
edge-enhanced transparency rendering technique (g). 
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ensure that the scene’s opaque models are rendered first, so that the scene’s models declared for 
blueprint rendering can be added smoothly. In conclusion, blueprint rendering can be an 
effective tool in interactive applications, such as CAD or CAM systems. 
Outlining spatial relations is particularly useful for conveying the composition of CSG models. 
So, an extension of blueprint rendering to image-space CSG algorithms, which synthesizes the 
blueprints and edge-enhanced transparent depictions, has been introduced in this chapter as 
well. These depictions can visualize the design and spatial assembly of CSG models in a way 
that assists their interactive construction. 
 



 

61 

Chapter 6 
“Sketchy Drawings” 

Rendering in a “sketchy” manner is of vital importance for communicating visual ideas and for 
illustrating the preliminary state of a draft or concept, especially in application areas such as 
archeology and product and architectural design [107].  
Common photorealistic renditions are often less efficient in proposing ideas and concepts, 
because they imply the impression of finality and correctness. Photorealistic renderings thus 
reduce one’s ability to rethink enhancements and modifications. In contrast, sketches 
communicate visually and can therefore be more helpful when dealing with renditions. In 
particular, sketches encourage the exchange of ideas when people are reconsidering drafts; 
sketches express uncertainty and suggest work in progress. In fact, hand-drawn sketches are still 
an integral part of the development process in architectural or product design; in the film 
making process storyboards are still used to assist communication (see Chapter 7). Sketches 
allow one to present drafts that suggest the possible design of an object’s layout in cases when 
its precise composition is unknown, e.g., in archeology. As stated in Section 2.2, STROTHOTTE 
ET AL. argue in favor of uncertainty when presenting and communicating drafts of 
reconstructions of ancient and medieval architecture. They implement a sketch renderer for 
generating sketchy depictions of architecture to express “imprecision, incompleteness, and 
vagueness” [114]. 
Sketchy drawing is a real-time rendering technique for sketching visually important edges and 
inner color patches of arbitrary 3D geometries non-uniformly even beyond the original models’ 
geometric boundaries [89][93]. Generally speaking, with sketchy drawing one can sketch the 3D 
geometries’ outlines to imply vagueness and “crayon in” inner color patches extending beyond 
the sketchy outline as though they had been painted in roughly. Combining both techniques 
produces sketchy, cartoon-like depictions that can enhance the visual attractiveness of 3D 
sceneries’ images and, more importantly, can increase one’s ability to review drafts and 
encourage discussions. 
In order to express vagueness, sketchy drawing implements uncertainty based on Perlin noise 
[99] and it applies the resulting uncertainty values in image-space for sketching. When 
interacting with the 3D scene this approach allows one to maintain frame-to-frame coherence, 
that is, to preserve form and style in images of consecutive frames and to avoid undesirable 
“flickering”. Alas, the approach results in the shower-door-effect, that is, the resulting sketchy 
depictions appear to “swim” in image space as if viewed through ripped glass. In order to 
reduce the shower-door-effect, the sketchy drawing rendering technique determines the 
uncertainty values that have an obvious correspondence to the geometric properties of the 3D 
geometry [91].  
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Since a blueprint represents a special form of a draft used for representing complex assemblies, 
both sketchy drawing and blueprint rendering (see Chapter 5) are combined in order to depict 
the assemblies’ composition in a sketchy way. 
The remainder of this chapter is structured as follows: Section 6.1 introduces the ingredients for 
sketching and Section 6.2 gives a brief overview of Perlin noise. The sketchy drawing rendering 
technique is divided into two parts: Section 6.3 presents how uncertainty values are applied to 
synthesize sketchy depictions and Section 6.4 presents how depth information is determined in 
order to combine sketchy depictions with 3D scenery. Section 6.5 outlines applications and 
Section 6.6 presents further style variations. Section 6.7 presents an approach for controlling 
uncertainty in order to reduce the shower door effect. Section 6.8 presents the combination of 
both sketchy drawing and blueprint rendering that allows one to sketch the assembly of complex 
aggregate 3D models. Section 6.9 draws final conclusions. 

6.1 Edges and Color Patches 
Edges as well as solid color patches derived from 3D models are considered as ingredients for 
implementing the sketchy drawing rendering technique. Both are rendered in a sketchy way. For 
this, they are preserved as intermediate rendering results using textures. The edge-enhancement 
technique (see Chapter 4) computes the 3D models’ visually important edges as an edge map 
(see Figure 6-1a). For edge-map construction, the z-buffer’s contents are captured as high-
precision texture, the depth map (see Figure 6-1c, Sec. 4.7), because the sketchy drawing 
rendering technique later on requires the 3D models’ z-values. Furthermore, the surface colors 
of unlit 3D models are rendered to texture, producing solid color patches that appear flat, cover 
all surface details, and emulate a cartoon-like style. This texture is referred to as the shade map 
(see Figure 6-1b). 

a) b) c)

b′) c′)a′)  
Figure 6-1: Applying Uncertainty to Edge and Shade Maps. (a) The edge map and (b) shade map 

are two ingredients for sketchy drawing. Applying uncertainty results in (a′) perturbations 
of the edge map and (b′) perturbations of the shade map. Depth sprites use the (c) depth 
map to adjust z-values. For sketchy rendering, the uncertainty applied to the edge and 
shade map are also applied to perturb the depth map (c′) for depth sprite rendering. 
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6.2 Perlin Noise 
We look for uncertainty values that let one sketch edges and color patches pseudo-randomly in 
image space. PERLIN introduces a pseudo-random noise function that serves as a primitive for 
controllable noise [99]. The stochastic patterns produced by the Perlin noise function maintain 
spatial coherence, that is, noise values calculated for “adjacent” input parameters are correlated 
to one another. Perlin noise allows one to simulate a wide variety of natural phenomena. One 
application of Perlin noise is the implementation of procedural texturing, e.g., for creating the 
impression of natural-looking materials, without the necessity to generate an explicit image 
texture. The turbulence function combines several calls to the Perlin noise function 
implementing a stochastic function. EBERT ET AL. modify texture coordinates in image space 
using a stochastic function to perturb image textures [33]. Sketchy drawing applies Perlin noise 
in a similar way in order to generate sketchy depictions that maintain frame-to-frame coherence 
through interaction and animation.  

6.3 Applying Uncertainty 
The sketchy drawing technique applies uncertainty values to edges and surface colors in image 
space in order to simulate the effect of “sketching on a flat surface.” For that purpose, the 
technique textures a screen-aligned quad (filling in the viewport of the canvas) using the edge 
and shade maps as input. Moreover, the technique applies an additional texture, whose texture 
values represent uncertainty values. Because we want to achieve continuous sketchy boundaries 
and frame-to-frame coherence, sketchy drawing applies a noise texture whose texture values 
have been determined by the Perlin noise function; hence neighboring uncertainty values are 
correlated in image space. Once created (in a preprocessing step), the noise texture serves as an 
offset texture for accessing the edge and shade maps when rendering. That is, its texture values 
slightly perturb the texture coordinates of each fragment of the quad that accesses the edge and 
shade maps; see Section 3.5. 
In addition, sketchy drawing introduces a degree of uncertainty to control the amount of 
perturbation, for which a user-defined 2×2 matrix is used. The rendering technique multiplies 
uncertainty values derived from the noise texture by that matrix to weight all these values 
uniformly and then uses the resulting offset vector to translate the texture coordinates. Figure 6-
2 illustrates the perturbation of the texture coordinates that access the shade map using the 
degree of uncertainty. 
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Figure 6-2: Applying Uncertainty in Image Space. The product of the uncertainty value (offs,offt)

derived from the noise texture and a 2×2 matrix (with weights a, b, c, and d) forms the
degree of uncertainty that is applied to the texture coordinates (s,t) of a fragment to
translate them in image space. Here, the perturbed texture coordinates (s′,t′) access a
texture value of the shape map’s interior region, even though its initial texture
coordinates (s,t) would access the exterior region. 
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In order to enhance the sketchiness effect, sketchy drawing perturbs the texture coordinates for 
accessing the edge and shade maps differently. It thus applies two different 2×2 matrices, 
resulting in different degrees of uncertainty for each map. One degree of uncertainty shifts the 
texture coordinates of the edge map, and one shifts the texture coordinates of the shade map, 
that is, sketchy drawing shifts them in contrary directions. Figure 6-1a′ shows the edge map and 
Figure 6-1b′ shows the shade map after uncertainty has been applied.  
We denote the set of texels that correspond to fragments of 3D geometry as interior regions; the 
set of texels that do not correspond to fragments of 3D geometry is called exterior regions. So, 
in conclusion, by texturing the quad and perturbing texture coordinates using uncertainty, the 
sketchy drawing technique can access interior regions of the edge and shade maps, although the 
initial texture coordinates would access exterior regions and vice versa (see Figure 6-2). In this 
way, interior regions can be sketched beyond the 3D geometry’s boundary, and exterior regions 
can penetrate interior regions. Sketchy drawing can even produce spots beyond the geometric 
boundary (see Figure 6-1). 
Sketchy drawing finally combines the resulting texture values of both the edge and the shade 
maps. For this, the intensity values derived from perturbing the edge map is multiplied by the 
color values derived from perturbing the shade map. For the sketchy depictions in Figure 6-3, 
uncertainty values (offs, offt) are determined using the turbulence function [33]: 

off
s
 ← turbulence(s,t); // Calculating uncertainty based on s and t 

off
t
 ← turbulence(1-s,1-t);         // and based on (1-s) and (1-t) 

6.4 Adjusting Depth 
Up to now, just a screen-aligned quad is textured with a depiction synthesized by the sketchy 
drawing rendering technique. This method has the following significant shortcomings: when 

a) b)

Figure 6-3: Sketchy Drawings for Sketching 3D Models. (a) The sketchy depiction of the Ogre
shows spots near his mouth. (b) In contrast to the original approach to sketchy drawing
one can also use lit surfaces to generate the shade map, e.g., for sketching CSG
models. 
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rendering a quad that is textured with textures derived from 3D geometry, (1) z-values of the 
original geometry are not present in interior regions, and in particular (2) no z-values of the 
original 3D geometry are present in exterior regions when uncertainty has been applied. In 
conclusion, a sketchy depiction cannot interact correctly with other objects in the 3D scene. 
To overcome these shortcomings, sketchy drawing applies depth sprite rendering while 
considering the previous perturbations. That is, sketchy drawing additionally textures the quad 
with the high-precision depth texture, which is already available as a depth map (see Figure 6-
1c), and accesses this texture twice using perturbed texture coordinates. As first perturbation, 
sketchy drawing applies the degree of uncertainty used for accessing the edge map; as second 
perturbation, the technique applies the degree of uncertainty used for accessing the shade map. 
The minimum value of both these texture values produces the final z-value of the fragment for 
depth testing. Figure 6-1c′ shows the result of both perturbations applied to the depth map. The 
interior region of the perturbed depth map matches the combination of the interior regions of 
both the perturbed edge map and the perturbed shade map. Even those spots produced for the 
shade map appear in the perturbation of the depth map (see Figure 6-1). 
Modifying depth sprite rendering thus allows one to adjust the z-values of a screen-aligned quad 
that is textured by the 3D model’s sketchy depiction. In this way, sketchy drawing behaves 
correctly with respect to depth, that is, the z-buffer remains in a correct state with respect to the 
geometry of that model. The 3D model’s sketchy representation can thus be combined with 
further (e.g., non-sketchy) 3D models.  
The sketchy drawing rendering technique facilitates real-time frame rates. The Ogre in Figure 6-
3, for instance, takes 49.0 fps at a window resolution of 1024×1024. Listing 6-1 illustrates the 
fragment shader for implementing the sketchy drawing rendering technique. 

Listing 6-1. Fragment Shader for Implementing Sketchy Drawings. The fragment 
shader perturbs texture accesses for implementing sketchy drawings. 

uniform sampler2D edgeMap;      // 2D texture with edge intensities 

uniform sampler2D shadeMap;     // 2D texture with color values 

uniform sampler2D depthMap;     // 2D texture with depth values 

uniform sampler2D noiseTexture; // 2D texture with offset values 

uniform vec2 windowDimension; 

 
Figure 6-4: Drafts of Medieval Architecture. Sketchy depictions can communicate uncertain 

knowledge to present, for instance, cloister’s possible reconstruction.  



CHAPTER 6 “SKETCHY DRAWINGS” 

66 

uniform mat2 matEdges; 

uniform mat2 matShades; 

 

void main (void) { 

  // Calc. texture coordinates that corresond to pixel position 

  vec4 texCoord = vec4(gl_FragCoord.x/windowDimension.x,  

                       gl_FragCoord.y/windowDimension.y, 1.0, 1.0); 

  texCoord = gl_TextureMatrix[0]*texCoord; 

 

  // Access noise texture  

  vec2 noiseValue = texture2D(noiseTexture, texCoord.xy).xy; 

 

  // Calc. texure coordinate for accessing the edge map  

  vec2 edgeTexCoord = texCoord.xy + (matEdges*noiseValue); 

 

  // Calc. texure coordinate for accessing the shade map  

  vec2 shadeTexCoord = texCoord.xy + (matShades*noiseValue); 

 

  // Access depth map twice using perturbations of edges and shades 

  // and set the new z-value to the minimum of both 

  float edgeDepth = float(texture2D(depthMap, edgeTexCoord).xyz); 

  float shadeDepth = float(texture2D(depthMap, shadeTexCoord).xyz); 

  float depth = min(edgeDepth, shadeDepth); 

 

  // Either discard fragment in advance or proceed with  

  // new z-value for the depth sprite rendering 

  if(depth == 1.0) { 

    discard; 

  }  

  gl_FragDepth = depth;  // New z-value for depth testing 

 

  // Access edge map  

  vec4 edgeValue = texture2D(edgeMap, edgeOffset); 

  if(edgeDepth == 1.0) { 

    edgeValue = vec3(1.0,1.0,1.0,1.0);  // white background 

  } 

 

  // Access shade map  

  vec4 shadeValue = texture2D(shadeMap, shadeOffset); 

  if(shadeDepth == 1.0) { 

    shadeValue = vec3(1.0,1.0,1.0,1.0);  // white background 

  } 

 

  // Combine both color values 

  gl_FragColor = edgeValue*shadeValue; 

} 
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6.5 Drafts of Architecture 
When knowledge about the precise composition of architecture is not available or is partially 
missing, which is often the case for ancient or medieval buildings, we can generate a sketchy 
depiction of that architecture to help visualize a possible reconstruction. The imprecision 
conveyed by the sketches lets viewers understand that the presented draft merely depicts one 
reconstruction among many possible alternatives (Sec. 2.2). Figure 6-4 shows sketchy 
depictions of architecture presenting a virtual reconstruction of a cloister. 
Furthermore, sketchy drawing can generate architectural drafts that illustrate the design of 
modern architecture. In this way, a preliminary state or design decisions for the buildings can be 
presented in a noncommittal way. Sketchy representations of architecture can then help when 
reconsidering the design in order to convince customers of the soundness of the underlying 
concept or to encourage their participation in the design and the discussion of further decisions 
(Sec. 2.2). Figure 6-5 shows sketchy depictions of the designs for a department store.  

6.6 Variations of Sketchy Drawings 
This section presents two variations of the sketchy drawing rendering technique, both of which 
are certainly real-time capable as well. 

Roughened Profiles and Color Transitions 
Although edges and surface colors are sketched non-uniformly, the profiles and the color 
transitions of a sketchy depiction look exactly as though they had been sketched with pencils on 
a flat surface. Sketchy drawing can roughen the profiles and color transitions to simulate 
different drawing tools and media, such as chalk, applied on a rough surface. For this, random 
noise values are applied; hence, adjacent texture values of the noise texture are uncorrelated. 
Consequently, the degrees of uncertainty that perturb the texture coordinates of adjacent 
fragments are also uncorrelated. In this way, sketchy drawing can produce depictions with 
softened and frayed edges and color transitions (see Figure 6-6a). The roughness and 
granularity, in particular for edges, vary as though the pressure had varied as it does when 
drawing with chalk. This effect depends on the amount of uncertainty applied in image space. 

Repeated Edges 
A fundamental technique in hand drawings is to repeatedly draw edges to draft a layout or 
design. Sketchy drawing can restrict sketchiness to visually important edges only in order to 

 

 
Figure 6-5: Drafts of Modern Architecture. Sketchy drawings can illustrate design decisions to 

build, for instance, a department store. 
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simulate this technique. For that purpose, sketchy drawing excludes the shade map but applies 
the edge map multiple times using different degrees of uncertainty and possibly different edge 
colors. Edges will then overlap non-uniformly as if the edges of the 3D model had been 
sketched repeatedly (see Figure 6-6b). Certainly sketchy drawing must also adjust depth 
information by accessing the depth map multiple times using the corresponding degrees of 
uncertainty. 

6.7 Controlling Uncertainty 
Controlling uncertainty values, in general, enables one to configure the visual appearance of 
sketchy depictions. By providing uncertainty values based on a Perlin noise function for each 
pixel in image space, (1) we can access interior regions from beyond exterior regions and vice 
versa to sketch beyond the boundary of 3D geometries, and (2) we achieve frame-to-frame 
coherence for sketchy drawing, for instance, when interacting with the 3D scene (because 
neighboring uncertainty values are correlated). However, uncertainty values remain unchanged 
in image space and have no obvious correspondence to the geometric properties of the original 
3D geometry. Consequently, the resulting sketchy depictions tend to “swim” in image space, 
known as the shower-door effect, and a sketchy depiction’s appearance cannot be 
predetermined, which is essential when considering artistic guidelines. 
To overcome these limitations, sketchy drawing must accomplish at least the following: 
 Preserve geometric properties, such as surface positions, normal vectors, or curvature 

information, for determining uncertainty values. 
 Continue to provide uncertainty values in exterior regions, at least close to the 3D 

geometry. 

Preserving Geometric Properties  
To preserve the geometric properties of 3D geometry in order to control uncertainty, the sketchy 
drawing rendering technique proceeds as follows: 
1. It renders the geometric properties directly into a texture to generate an additional G-

Buffer. 

 

a) b)  
Figure 6-6: Different Styles of Sketchy Rendering. Sketchy drawings enable one to simulate (b) 

roughened profiles and color transitions and (c) repeated edges. 
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2. Next it textures the screen-aligned quad with that additional texture, and then accesses 
geometric properties using texture coordinates (s,t). 

3. Finally, it calculates uncertainty values based on a noise function, using the geometric 
properties as parameters. 

Sketchy drawing can then use these uncertainty values to determine the different degrees of 
uncertainty needed to perturb the texture coordinates resulting in (s′,t′). From a mathematical 
point of view, the rendering technique uses the following function to determine the perturbed 
texture coordinates (s′,t′): 
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( ) ( )( )

: , ,

, , , , ,

f s t s t

f s t p s t g s t

→ ′ ′

=
 

where (s,t) represent a fragment’s texture coordinates produced when rasterizing the screen-
aligned quad, g() provides the geometric properties available in the additional texture, and p() 
determines the perturbation applied to (s,t) using g() as input.  
Sketchy drawing requires two different functions f(s,t) in order to handle perturbations of the 
edge map (fEdge(s,t)) and the shade map (fShade(s,t)) differently. 

Enlarging the Geometry 
The sketchy drawing technique enlarges the original 3D geometry to generate the geometric 
properties in its surroundings in image space. Sketchy drawing implements this by shifting the 
vertex of its 3D meshes slightly along its vertex normal in object space. For this technique to 
work as expected, the surface must at least form a connected component and each of its shared 
vertices must provide an interpolated normal vector.  
Enlarging the 3D geometry in this way allows sketchy drawing to render the geometric 
properties into a texture for calculating uncertainty values in interior regions as well as in the 
exterior regions (near the original 3D geometry in image space). Thus, uncertainty values can be 
determined and applied so that interior regions can be sketched beyond the 3D geometry’s 
boundary and exterior regions can penetrate interior regions. In conclusion, sketchy drawing can 
apply perturbations based on uncertainty values that do have an obvious correspondence to the 
underlying 3D geometry. 

Reducing the Shower-Door Effect 
The following example demonstrates how to control the sketchiness in order to reduce the 
shower-door effect.  
The sketchy drawing rendering technique renders enlarged 3D geometry with its object-space 
positions as color values into a texture. To do so, the technique determines the object-space 
position for each displaced vertex and provided them as texture coordinates to the rasterization 
process. The rasterizer then produces interpolated object-space positions for each fragment. A 
fragment shader then outputs them as high-precision color values to populate a high-precision 
texture (Sec. 3.3). In this way, g(s,t) preserves object-space positions.  
Based on g(s,t), sketchy drawing can determine texture coordinates f(s,t) using p(). In this 
example, the function p() calculates the perturbation by a user-defined 2×2 matrix and by a 
Perlin noise function encoded into a 3D texture. The 3D texture can be accessed using g(s,t) as 
texture coordinates. Multiplying the resulting texture value by the 2×2 matrix gives the degree 
of uncertainty. The function f(s,t) finally applies the degree of uncertainty to perturb (s,t), 
resulting in (s′,t′). 
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Calculating fEdge(s,t) and fShade(s,t) using different matrices results in the sketchy depiction shown 
in Figure 6-7(right). The overview in Figure 6-7 illustrates the sketchy drawing’s process flow 
for considering geometric properties. 

Conclusions 
Controlling uncertainty values reduces the shower-door effect. Moreover, the previous example 
gives a clue as to how to control sketchy depictions using geometric properties. However, 
further research is required to implement sketchy drawing that is capable of simulating artistic 
styles. 
A disadvantage of the technique presented here is that the enlarged geometry produces abrupt 
changes of geometric properties in image space at those locations where the values of the z-
buffer change abruptly. This can result in disturbing artifacts when interacting with the 3D 
scene, because neighboring uncertainty values here are not correlated to one another any more. 

6.8 Sketching Blueprints 
Since blueprint rendering provides spatial insight into aggregated objects for understanding 
them as a whole (see Chapter 5) and sketchy drawing communicates drafts for the purpose of 
reconsideration, the combination of both rendering techniques is the obvious choice for 
illustrating the design decisions of complex aggregate objects. 
Combining sketchy drawing and blueprint rendering is a straightforward task: as before 3D 
geometries are graphically decomposed into disjunctive layers to generate color layer maps, 
which represent the color buffer and the normal buffer of each depth layer, and depth layer 
maps. As variation to the original sketchy drawing rendering technique, lighting calculations are 
used to determine the color values that populate the color buffer; the color layer map then 
represents the shade map for each layer (see Figure 6-3b). In this way, spatial cues are provided 
(Sec. 5.3). The edge map can then be constructed for each depth layer (see Figure 6-8a). In 
contrast to the original blueprint rendering technique, the noise texture is applied to perturb the 
texture coordinates for final image composition. That is, a sketchy depiction is rendered for each 
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Figure 6-7: Conceptual Sketch for Controlling Uncertainty. The overview illustrates intermediate 
rendering results involved in the process for generating sketchy drawings. It clarifies the
usage of f(s,t) when considering geometrical properties. 
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depth layer by combining the perturbation of the shade map (see Figure 6-8b) and the 
perturbation of the edge map (see Figure 6-8c). The resulting sketchy depictions are then 
blended in depth-sorted order into the frame buffer using the perturbed depth layer maps (see 
Figure 6-8d) for depth sprite rendering. 
As long as the rendering technique uses the same noise texture for all textures derived from all 
the depth layers, consecutive layers can still be blended into the frame buffer without disturbing 
artifacts, such as diverging edges or interpenetrating layers. Consider one and the same texel 
location of the textures of consecutive layers. The corresponding texture value is accessed by 
specific texture coordinates (s,t) sampling that location in all textures regardless of whether the 
texture coordinates result from a previous perturbation or not. Figure 6-9a illustrates that the 
edges of edge maps of consecutive depth layers match one another even though they have been 
perturbed. Consequently, the ordering of z-values specified by the ordering of depth layers can 
even be ensured for composing all sketchy depictions.  
As one application, the design decisions for composing CSG models can be communicated by 
rendering their complex aggregation in a sketchy manner (see Figure 6-9b). 

6.9 Conclusions 
The sketchy drawing rendering technique presented here allows one to sketch both edges and 
color patches, an approach which has rarely been addressed by previous work. Furthermore, 
sketchy drawing is, by its image-space nature, both almost independent of the 3D model’s 
geometric complexity, and essentially independent of the number of edges that are sketched. In 
addition, it requires few prerequisites from 3D geometry, e.g., per-vertex normal vectors. 
Sketchy drawing can avoid disturbing flickering effects when interactively exploring 3D models 
by ensuring frame-to-frame coherence. Furthermore, an approach for reducing the shower-door 
effect has been introduced.  
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Figure 6-8: Layer Maps for Composing Sketchy Blueprints. Depth layer maps and color layer
maps are generated and the edge maps are then constructed for each depth layer (a).
Perturbing the contents of (b) the shade map, (c) the edge map, and (d) the depth map
for each depth layer enables one to render layouts in a sketchy manner. 
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Although an approach for controlling uncertainty has been presented, it does, in its current form, 
not allow one to control the artistic stylization of image-space edges. In contrast, object-space 
silhouette algorithms allow graphic designers to configure the artistic styles of individual line 
segments (Sec. 2.1) and allow one to maintain frame-to-frame coherence in interactive 
environments [59] as well. So, the stylization produced by sketchy drawing is visually inferior 
to that produced by object-space algorithms. One reason is that visually important edges stored 
in an edge map represent a composition of connected line segments in image space. Thus, 
visually important edges cannot be decomposed into individual line segments. Furthermore, 
edges are represented by pixels in image space, that is, they lack an analytic representation. 
Generating stroke-like geometry and applying artistic stylization using texture mapping can thus 
not be achieved by sketchy drawing. Today, computer graphics hardware supports texture 
lookups at the vertex processing stage and upcoming graphics hardware will support the 
generation of additional geometry while processing the rendering pipeline. Future 
implementations of sketchy drawing may thus be able to decompose the intensity values of the 
edge map into line segments for building brush-like strokes. 
Nevertheless, sketchy drawing represents a real-time capable rendering techniques that allow 
one to stylize visually important edges using uncertainty. Sketching beyond the model’s original 
geometric boundary while ensuring a correct depth behavior is managed by depth sprites that 
adjust depth information. Hence, a 3D model’s sketchy depictions can be combined arbitrarily 
with further 3D scenery. In addition, the sketchy drawing rendering technique is implemented 
on a per-object basis and integrates into the programmable rendering pipeline as well. Sketchy 
drawing can thus be integrated into any real-time graphics application such as CAD or 
storyboarding systems. 
Though accentuating visible and occluded edges in image space using blueprint rendering 
already represents a novel technique, incorporating sketchy drawing provides a new tool for 
interactive communication. Consequently, the design and layout of complex, aggregate 
assemblies, which can either be represented by polygonal 3D models or CSG models, can be 
sketched to encourage participation, discussions, and reconsideration.  

 1. Layer 

2. Layer 

3. Layer 

Composition 
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Figure 6-9: Composing Sketchy Layouts. (a) Repeated edges in edge maps of consecutive depth 

layer match to one another even though uncertainty has been applied. (b) Composing
sketchy depictions of each depth layer results in the final sketchy depiction of the CSG 
model’s layout.  
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Chapter 7 
Depicting Dynamics 

In visual art, a single static image frequently represents much more than projected 3D scenery. 
Artists are accustomed to include subtle visual elements outlining movements, indicating past or 
future events, sketching ongoing activities, or guiding the observer’s attention. Artists have 
found ways to visualize the physical as well as the non-physical dynamics of scenes using 
graphics techniques. In a sense, we can consider these depictions as a form of expressive visual 
contents adopting the styles of visual art and abstraction techniques. These depictions can serve, 
for example, as pictograms and signs that advise and assist people or for creating effective 
advertising [86]; they are also omnipresent in comic books and storyboards that present 
dynamics and narrate sequential processes effectively (see Figure 7-1).  
Taking these depictions a step further, we can speak of smart depictions, that is, depictions that 
“capitalize on the humans’ facility for processing visual information and thereby improve 
comprehension, memory, inference, and decision making” [1]. The developed depiction system 
[88] presented in this thesis automatically generates smart, compelling depictions of dynamics 
from a general 3D scene description. The dynamics are depicted following the traditional design 
principles of visual art and visual narrations, and the principles of classic graphics design such 
as those found in comic books [81] and storyboards [8][60]. These media offer a rich 
vocabulary of visual art deployed as techniques to facilitate the visual communication of a 
wealth of activities and events in static images. In particular, we can symbolize in a single, static 
image past, ongoing, and future activities as well as events taking place in 3D scenes. 
Additionally, the system takes into account non-visual information. For example, in the scope of 
narratives the system can integrate information such as tension, danger, and other emotions into 
the symbolization process.  
Designers and artists traditionally depict dynamics by hand or utilize imaging or sketch tools. 
The challenge was to find a solution for automating the process of specifying, interpreting, and 
mapping the dynamics of visual narrations in 3D scenes. The method presented here uses the 
following approach:  
 Depiction techniques analyze scene and behavior descriptions (e.g., encoded in scene 

graphs), and map found and relevant dynamics to dynamics glyphs.  
 Dynamics glyphs are additional graphical elements that symbolize dynamics and augment 

the resulting image of the 3D scene.  
Designers can configure the way depiction techniques operate, and they can edit the visual and 
textual appearance of dynamics glyphs. Consequently, the system lets one model “from word to 
image” [8]. 
As an enabling technology, the system uses non-photorealistic rendering intensely [44][116]. In 
fact, digitizing the process of generating visual art is increasingly feasible because of expressive 
and artistic rendering algorithms, most of them now operating in real-time, e.g., edge-
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enhancement (see Chapter 4), blueprint rendering (see Chapter 5), and sketchy drawing (see 
Chapter 6). 
Compared to imaging and sketch tools the dynamics-depiction system offers the following 
benefits:  
 It explicitly models the graphical representations of dynamics.  
 It applies to a standard 3D scene description, and it integrates smoothly into a scene graph 

based graphics system.  
 It supports design alternatives by selecting specific types of dynamics and by configuring 

the symbolization process. The user can experiment and finally choose those depictions 
that best communicate her or his ideas.  

 A user can easily modify a given depiction and accept and adopt changes after a 
reconsideration phase to start the next iteration step. 

The manifold scenarios, in which smart depictions can be applied, include:  
 Non-artists can model and generate smart depictions of dynamics and visual narration 

from common scene descriptions based on the system’s built-in analysis and 
symbolization capabilities.  

 Graphics artists can customize and automate the production of smart depictions.  
 In planning and discussion processes, smart depictions provide content-rich static 

imagery well-suited to be a basis for manual and cooperative sketching and illustrating.  
 In the pre-production phase of motion-picture productions, smart depictions serve as 

storyboard-like depictions derived from a previsualization of the scene including its 
narration and intended dynamics. 

This chapter is structured as follows: Section 7.1 provides a brief survey of the principles and 
guidelines for depicting dynamics in static images and outlines previous work. Section 7.2 then 
introduces dynamics glyphs that symbolize dynamics. Section 7.3 introduces scene and 
behavior graphs as general tools for scene and animation specification for deriving and 
interpreting dynamics. Section 7.4 provides a formal description of the process of assembling 
dynamics information in scene and behavior graphs. Section 7.5 gives a characterization of 
dynamics to type and access motion for symbolization. Section 7.6 presents depiction 
techniques that interpret dynamics and implement rendering techniques for generating dynamics 

 
Figure 7-1: Storyboard of a Batting Sequence. A storyboard depiction illustrates the batting 

sequence of a boy playing baseball [60]. The dynamics depicted include the swing of the 
baseball bat, the bat hitting the ball, and the accelerated ball. 
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glyphs. Section 7.7 introduces expressions that permit a high degree of user involvement to 
model and enhance the explanatory power of the resulting depictions. Section 7.8 then gives a 
overview on the entire depiction system and outlines user involvements. Section 0 introduces 
user-defined semantics and semantics-related depictions for narrating processes more vividly, 
e.g., frames illustrating a camera in motion or bubbles depicting a talking character. Section 
7.10 finally focuses on pattern-based symbolizations and considers more complex relationships 
between scene and behavior graphs, automatic enhancements for expressions, and dynamics 
influence one another and Section 7.11 gives conclusions. 

7.1 Introduction to Depictions of Dynamics 
In the field of visualizing dynamics, CUTTING [18] surveys the traditional techniques for 
depicting motion in static images from a perceptual point of view. He states that representations 
of motion – compared with reproductions of static scenes – have long been neglected. He 
therefore analyses techniques that have the ability to convey motion in static images. In order to 
judge the efficacy of representations of motion in the contexts of art, science, and popular 
culture he introduces the following criteria:  
 Evocativeness. Indicates whether a motion’s representation succeeds in convincing an 

observer of a sense of motion, that is, “is motion perceivable in the image at all?” 
 Clarity of object. Indicates whether an observer can clearly identify either the object 

whose motion is represented or the object that designates one’s own movement. Clarity of 
object is mostly indispensable in science whereas a suggestive image is often sufficient 
and even wished in art. 

 Direction of motion. Indicates whether a motion’s representation conveys its direction 
clearly. Here, the observer’s previous experience can assist prediction, for instance, the 
image of a runner leaning forward probably indicates forward motion. 

 Precision of motion. Indicates whether a motion’s representation depicts the amount of 
motion properly, so that an observer is able to predict it. Precision of motion is crucial in 
the context of science, for instance, to communicate time-variant data. 

Using these criteria CUTTING then analyses the following schemes for representing motion: 
 Dynamic Balance or Broken Symmetry. Handcrafted paintings and sculptures of the 

natural poses of humans and figures in motion often show distortions in symmetry, such 

 

b) a) c) 

Figure 7-2: Representations of Motion. (a) Broken symmetry, (b) multiple stroboscopic images, (c) 
and forward lean show motion in static images. 
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as hips and legs turning in a different direction than from shoulders and arms (see Figure 
7-2a). These distortions let one realize postural motion. 

 Multiple Stroboscopic Images. A single static image composed by a series of captured 
images, for instance, by multiple exposure photography, illustrates motion through 
several discreet instances in time (see Figure 7-2b). 

 Affine Shear or Forward Lean. Shearing moving objects’ shapes leaning them into the 
direction of motion as if “leaning them against a wind” illustrates the objects’ locomotion 
in a static image (see Figure 7-2c). 

 Photographic Blur. Photographs captured using a long-exposure time show blurred 
regions in those areas where parts of the targeted scene have moved during image 
acquisition.  

 Image and Action Lines. Drawing multiple images of a moving object at a discreet point 
in time and additionally drawing multiple lines that align to the moving object’s path or 
trajectory in the opposite direction to the direction of motion depict motion in static 
images (see Figure 7-1). 

It turned out that Image and Action Lines fulfills all criteria well and, that it is well-suited for 
representing motion in static images. 
Comic books are a visual medium that can communicate complex narratives without using 
words in a way that even children can understand. MCCLOUD [81] describe a wide variety of the 
symbolization and abstraction techniques used to generate sequential art in comic books. These 
include techniques to depict the motion of single objects and to illustrate noises and speeches 
bound to time. The principles of visual and sequential art include the following: 
 Symbolization. Simplifies the perception of activities and events by an iconic language 

that abstracts from reality. The vocabulary of symbols includes arrows, strokes, bubbles, 
and signs. 

 Action Lines. Indicate moving objects by well-placed strokes (see Image and Action 
Lines). In addition streaking the background indicates a moving camera. 

 Ghost Images. Mark past, present, and future positions of objects by drawing multiple 
images of the original objects (see Image and Action Lines), e.g., the repeated contours of 
the baseball in Figure 7-3 illustrate its former positions.  

 Visual Metaphors. Indicate non-visual phenomena like sound, speech, smell, tension, 
and feelings using symbols that are associated with a scene or story context.  

 Panels. Frame single depictions to form the entities of a narration. Each panel can depict 
a single activity or event that contributes to the comprehension of a story. 

 Closure. Represents the ability to reconstruct and conceive sequential processes and 
narrations based on depictions that omit transitional steps and show only discrete 
moments in different perspectives, e.g., arranged as a collection of key-frame panels. 

Storyboard artists deploy similar techniques to visualize and illustrate the storyline of a movie 
as storyboards; KATZ [60] and BEGLEITER [8] present the underlying design principles. 
Storyboards are usually produced and reconsidered in collaboration with the director and the 
screenwriter of the motion-picture production; they provide a basis for discussions about the 
screenplay. Storyboards deliver a skeletal structure, which documents the set design and depicts 
the shooting directions for the story used when preparing the production. As effective diagrams 
for documenting, communicating, and discussing ideas, they let outside participants understand 
the layout of the story and set design. Common storyboard diagrams depict camera movements 
and frame part of the scene to communicate camera exposures efficiently. The following 
outlines some terms and principles frequently used for storyboarding shooting directions: 
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 Shot. Frames part of a staging; typically it indicates camera placement and narration 
instructions for the later production. 

 Shot Flow. Represents the visual connection of a sequence of shots, whereby each shot 
can vary in size, aiming at a consistent spatial-temporal order. Shot sizes include medium 
and close-up shots. 

 Medium Shot. Frames only half of a scene object, e.g., to capture an actor’s gestures and 
body language. 

 Close-Up. Frames a small part of a scene object in detail to position the viewer closer to 
it, e.g., to take a position for a dialog sequence. 

 Crane Shot. Defines the uninterrupted movement of the camera in a predominantly 
vertical direction. At the beginning it establishes the environment towering above the 
scene (establishing shot) and then enters into details to direct attention from the general to 
the specific.  

 Tracking Shot. Defines a flowing movement of the camera, tracking an object in a single 
shot or in a sequence of shots to visualize the varying composition of multiple story 
elements. 

Traditional 2D hand-drawn animations use well-established techniques for conveying 
animations to make them entertaining [119][124]. THOMAS AND JOHNSTON identify and the 
term basic principles of traditional animations [119] and LASSETER postulates their importance 
in the field of 3D computer animations [71]. As a basic principle both describe the squash-and-
stretch technique that squashes and stretches objects through motion to communicat their 
rigidity and mass. In a time-lapsed animation, the deformation of an object in each frame 
vividly depicts its dynamics: its velocity and acceleration. Thus, one can implement squash-and-
stretch to depict an object’s motion by generating multiple images of it showing forward lean. 
In a static image squash-and-stretch style depictions then maintain the clarity of moving objects 
and indicate their direction of motion [18]. To depict the ball’s motion in Figure 7-4 squash and 
stretch has been implemented based on the technique described by CHENNEY ET AL. [14].  
The visualization of motion in static images has rarely been discussed in the area of computer 
graphics. HSU AND LEE introduce skeletal strokes [54] for rendering speed lines [55]. Speed 
lines (a.k.a. action lines) streak away from the object in the opposite direction of moving. They 
thereby convey the objects’ locomotion and its velocity in a way similar to motion blur but in a 
static image using expressive rendering. MASUCH ET AL. [79] present one of the first approaches 
in computer graphics that focuses exclusively on “presenting the motion of objects in computer 
generated still images” by way of speed elements. In addition to speed lines they repeatedly 
draw a moving object’s contours depicting past movements, with arrows depicting future 
movements as well. Combining them in a single static image can depict past and future motion 
of objects (see Figure 7-3). Further stylization, such as applying line styles, achieves a hand-
drawn impression. 

 
Figure 7-3:  Speed Elements Depicting Motion. Speed elements, such as speed lines, repeated 

contours, and arrows, depict the baseball’s motion. (Image by MASUCH ET AL. [80]) 
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7.2 Dynamics Glyphs 
NIENHAUS AND DÖLLNER introduce dynamics glyphs [94]. According to abstract-graphical 
picture elements [115] and speed elements [80], dynamics glyphs symbolize and depict 
dynamics, such as actions and time-related events, “in static images of 3D scenes”. Dynamics 
glyphs include, for instance, action lines visualizing an object’s locomotion, arrows indicating 
their future movements, ghost images depicting their past, present, or future positions, bubbles 
representing speech or thoughts, texts visualizing noises and frames capturing and portraying a 
dramatic moment as an instant in time to narrate a story.  
Augmenting a static image with dynamics glyphs purposefully allows one to depict past, 
ongoing, and future processes of a certain situation or to convey non-geometric information 
such as tension, danger, and feelings. Furthermore, a sequence of augmented images even 
allows one to narrate a story line in a way similar to that of comic books and storyboards. 

7.3 Specifying Scenes and Their Dynamics 
First of all, it is shown how scenes and their dynamics are specified in the smart depiction 
system. These specifications represent the basis for all further functionality. 

Specification Requirements 
Hierarchical scene descriptions have a long tradition in computer graphics, and various scene 
graph libraries and scene description languages support them. In a typical scene specification 
3D shapes, appearance attributes, geometric transformations, and environmental objects are 
arranged into a hierarchical structure. With these components, or scene nodes, developers can 
construct scenes composed of individual scene objects.  

 Scene Graph 

Behavior Graph 

Sequence {[0,20],[20,50]} 

TimeCt [0,20] 
    Curve0: t→ (x,y,z) 

tr : Translation 
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a) b) 

Figure 7-4: Specifying Scenes and their Dynamics. Squash and stretch applied as a traditional 
animation principle to bouncing balls. Scene and behavior graphs specify their animation
and different time-layout strategies. 
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With respect to the specification of scenes, the following functional requirements are essential 
for the scene graph library:  
 The scene specification must support a generic traversal operation, for example, to access 

each individual scene object, its components, and its scene graph context.  
 The scene specification must allow one to assign (semantics-based) identifiers to scene 

objects and for defining complex scene objects.  
With respect to the specification of dynamics, it is assumed that it must allow for the following 
requirements: 
 Identifying which time-dependent changes are applied to a specific scene object.  
 Determining the lifetime of each animation.  
 Evaluating the scene specifications for any given point in time.  

In the present approach, the scene graphs and behavior graphs as described by DÖLLNER AND 
HINRICHS [30] are applied. Both types of graphs are represented as directed acyclic graphs 
(DAG). 
Figure 7-4b illustrates a scene graph that specifies a simple scene consisting of a sphere 
representing a ball and a polygon representing the ground. The graph branches into two 
subgraphs for specifying both the position (tr) and the color (col0) of the ball and the color (col1) 
of the ground. 

Specifying Scenes using Scene Graphs 
A scene graph specifies 3D scenes in a hierarchical way using scene nodes as building blocks 
[29]. In general, a scene graph library provides a collection of scene nodes, which model the 
structural and graphical aspects of 3D scenes. The following are descriptions of the most 
important categories of scene nodes:  
 Groups. Build up the hierarchical structure and are used as the inner nodes of a scene 

graph. Examples are the Branch Node, which collects a number of subgraphs, and the 
Switch Node, which selects one out of the many subgraphs as an active child.  

 Shapes. Specify geometric objects and are arranged typically as leaf nodes. Examples: 
Box, Sphere, Cone, and PolygonMesh.  

 Transformations. Specify geometric transformations. The collection of transformation 
nodes along a path through the scene graph defines the transformation from the local to 
the world coordinate system. Examples: Translation, Scaling, Rotation, and 
DirectionOfFlight.  

 Appearance Attributes. Specify properties and techniques that define the visual 
appearance of scenes and scene objects. Examples include Color, Material, and Texture 
as well as attributes used in the scope of non-photorealistic rendering such as 
EdgeEnhancement, CartoonShading, and SketchyDrawing.  

 Environment Attributes. Specify properties of the scene’s environment. Examples: 
LightSource, PhongLightingModel, GoochLightingModel, ShadowCaster, and 
ShadowReceiver.  

 Non-Graphics Attributes. Provide the application-specific and semantics information 
within the hierarchical scene description. Examples: Identifier as a textual description of a 
subgraph, and FilterTag. 

As a general mode of operation, only the nodes along the path from the root node to a specific 
node have an impact on that node and its components. 
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Scene Graph Rendering 
For image synthesis the scene graph is traversed in pre-order. During the traversal, a graphics 
context manages hierarchically defined attributes. According to the rendering technique, scene 
graph rendering can imply multiple traversals of the scene graph. For example, non-
photorealistic sketchy drawing produces several intermediate rendering results (see Chapter 6). 
Scene graph rendering is a critical real-time process; the scene graph library requires an efficient 
functionality to create and to modify scene graphs (e.g., adding new subgraphs) and scene nodes 
(time-dependent properties).  

Scene Graph Inspection 
The scene graph inspection represents a generic traversal function to report the structure and 
contents of a scene graph. The inspection allows one to retrieve the hierarchy layout (e.g., 
“Collect all nodes that represent a specific character having a specific Identifier”), browsing 
through the scene graph (reporting each node, its components, and types), and detecting 
dependencies between attributes and shapes etc. (e.g., “Which attributes apply to a given 
shape?”, “Which shapes are affected by a given attribute?” etc.). Consequently, inspection is the 
best tool for interpreting scene graphs. The user can invoke the inspection function at any time, 
independent of the scene graph rendering.  

Specifying Dynamics using Behavior Graphs 
The behavior graph specifies the time-dependent and event-dependent aspects of scenes and 
scene objects. For a given scene graph, one or more behavior graphs may exist. Nodes of 
behavior graphs generally manipulate one or more nodes contained in the associated scene 
graph. The nodes used to construct behavior graphs are different from those for scene graphs.  
The fundamental tasks of behavior graphs include the definition of the lifetimes of activities and 
the points in time of events. Activities and events specify time-dependent changes of in the 
properties of scene nodes. Activities take place during a defined, non-zero time interval, whereas 
events have no measurable duration because they take place instantaneously. Each node of the 
behavior graph provides its own time requirement, which represents the time needed to process 
the activity and event. 

Layout of Time Flows 
Time-group nodes, a major category of behavior graph nodes, hierarchically organize the time 
flow at a high level of abstraction similar to the specifications in storybooks. A time-group node 
calculates the lifetimes of its child nodes based on their time requirements and its own time-
layout strategy. When a time-group node receives a time event, it checks which child nodes to 
activate or deactivate and then delegates the time event to its active child nodes. Specialized 
time-group nodes include the following: 
 Sequence. Defines the total time requirement as the sum of the time requirements of its 

child nodes. It delegates the time flow to its child nodes in sequential order. Only one 
child node is alive at any given time during the sequence’s lifetime. 

 Simultaneity. Defines the total time requirement as the maximum of the time 
requirements of the child nodes. It delegates the time flow simultaneously to its child 
nodes. The simultaneity layout shrinks or stretches the time requirements of the child 
nodes or applies alignment strategies to the lifetime of the child nodes to fit the duration 
[30]. 

 Time Table. Defines for each child node an explicit time requirement. It manages 
activation and deactivation according to the child nodes’ lifetime. For example, a time 
table can specify different starting times for individual objects in an animation. 
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Figure 7-4a illustrates a time-lapsed animation of three bouncing balls. Time layouts specify the 
lifetimes of each dynamic, for instance, a Time Table specifies different starting times for the 
green ball and the red and the blue balls. 

Activities and Events 
Having organized the overall time flow, constraint nodes let us specify activities and events. 
Essentially they associate a time-to-value mapping with the property of a scene node. For 
instance, constraint nodes can set up the position of an object by associating a time-to-vector 
mapping with the object’s midpoint. Time-to-value mappings of the form:  

TypeTimef →:  

can implement a variety of mappings, such as mapping time to a constant value (constant map), 
to a value that results from linear interpolation of specified values (linear map), and to a value 
that results from calculating a point of a parameterized curve by interpreting time as a curve 
parameter (curve map). 
A time-constraint defined as  

SceneNodesSceneNodesTimeftct →)),((:  

controls time-varying parameters of a scene node contained in the scene graph. Whenever a 
constraint node receives a time event during its lifetime, it calculates new parameter values, and 
assigns them to its constrained scene node. The generic class TimeCt takes care of most 
constraint variants. 
In Figure 7-4a, time-constraint nodes (see the behavior graph) constrain translation nodes (see 
the scene graph) to specify the movement of the balls. A function map, which maps time to a 
value that results from a function call, controls the fall of the green and red balls taking gravity 
into account. In Figure 7-4b, two adjoining curves control the midpoint and, thus, the movement 
of the bouncing ball. They are processed in sequential order to form a single continuous 
trajectory. 

Modifying Local Time Flows 
Time-modifier nodes define time-to-time mappings, which can be used to alter the local time 
flow in behavior graphs. For instance, a reverse modifier inverts the direction of the time 
progress for its child nodes. Consider the bouncing ball in Figure 7-4b. Here, a reversal node 
could be used to invert the ball’s direction of motion. Similar modifiers exist, such as repeating 
a time interval multiple times (repeat modifier) or defining a creeping time progress (creep 
modifier), that is, slowing down a progress in the beginning and speeding it up at the end of the 
time interval. 

Behavior Graph Inspection 
In an analogy to scene graphs, an inspection operation exists for behavior graphs, which allow 
one to examin the time flow and time mappings. For a given time interval we can reproduce 
activation and deactivation of behavior nodes, reproduce the results of a mapping, and identify 
the linkages of constraint nodes to scene nodes of the scene graph. Thus, the state of the 3D 
scene can be analyzed for a given point in time. 

7.4 Assembling Dynamics Information 
In the next step for generating smart depictions, we have to assemble dynamics information, 
that is, we must detect information about which nodes of the scene graph are affected by nodes 
in the behavior graph at any point in time.  
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First an inspection operation is applied to the scene graph to trace the path from its root node to 
a given scene node node. As result, we get the path set P(node) containing a sorted list of scene 
nodes with respect to their scene graph depth: 

( ) { }depthkpathobjobjnodeP kk =∈= ,::  

In particular, P(node) records all attributes and transformations that could potentially impact on 
the node node.  
Then, an inspection of the behavior graph is invoked to analyze its time layouts. As a result, we 
determine the global lifetime of the time-constraint nodes. Let tct be a time-constraint node, 
then the analysis gives: 

[ ]( ) [ ] [ ]  ttt inactive ttt active : objftct tt 1010, ,,,
10

∉∀∧∈∀  

Now, both results can be related to each other to determine the set of time-constraints that 
influence the properties of the scene nodes of P(node): 

( ) ( ) ( ){ }nodePobjf,objtctnodeC ∈= ::  

We can further derive a subset of C(node) containing time constraints that are active at a certain 
point in time t: 

( ) [ ]( ) ( ){ }nodePobjtttobjftctnodeC ttt ∈≤≤= ,:,: 10, 10
 

Similarly, we can derive a subset of C(node) containing time constraints that are (anywhere) 
active in a given time interval [T0, T1]: 

[ ] [ ]( ) ( ) [ ] [ ]{ }0,,:,:)( 1010,, 1010
/≠∩∧∈= ttTTnodePobjobjftctnodeC ttTT  

Also taking into account the set P(node) of scene nodes, we can (1) evaluate the state or 
condition of a scene node at any point in time or time interval and (2) identify the types (e.g., 
translation) of scene nodes that contribute to a state change. 
Because P(node) contains the transformation hierarchy, the trajectory of an object in 3D space 
can be easily determined by additionally sampling the set [ ]( )nodeC TT 10 ,  at discreet points in time 
during its time interval. Position, velocity, and acceleration can then be used to depict an 
animation. 
In conclusion, the tupel  

[ ]
( ) [ ]( )( )nodeCnodePD TT

node
TT 101,0 ,,:=  

represents the assembled dynamics information of a scene node during a time interval. 

7.5 Characterizing Dynamics 
Once the dynamics information have been collected for a scene object, one particular 
characteristic of the dynamics out of the many possible characteristics that we want to visualize 
in the final smart depiction has to be selected. The later symbolization process uses this 
information, which the user typically provides.  
A characteristic of dynamics represents a token that classifies the kind of activity performed or 
event triggered by a scene object, the depiction target, in an informal way. In the case of a 
sphere as depiction target moving between two positions, we can declare a path characteristic 
to refer to the depiction target’s trajectory. 
Some basic characteristics of dynamics, which are elements of an extensible set of tokens, 
include the following: 
 Path. Indicates a schematic description of the movement of a depiction target.  



7.6 SYMBOLIZATION AND DEPICTION TECHNIQUES  

83 

 Motion. Indicates a more natural and informal description of a movement in contrast to 
the path characteristic. 

 Still. Indicates past, present, and future positions and orientations of a depiction target. 
 Collision. Indicates a collision with other scene objects as an event related to a depiction 

target. 

7.6 Symbolization and Depiction Techniques 
Having assembled the dynamics information and chosen its dynamics, the system can now 
symbolize the dynamics. This process is encapsulated in depiction techniques, which implement 
specific characteristics of dynamics by mapping assembled dynamics information to dynamics 
glyphs. Technically, scene graphs specify dynamics glyphs, and these scene graphs link to the 
main scene graph as subgraphs for rendering.  
For example, depiction techniques have been implemented for symbolizing path and motion 
characteristics. The path technique visualizes the trajectory of a movement; it constructs a 
flexible 3D arrow aligned to it and oriented towards the viewer (see Figure 7-5). For depicting 
motion, the motion technique generates motion lines, and includes additional strokes to provide 
a jittered appearance to make the motion easier to perceive (see Figure 7-6e). 
A depiction technique requests assembled dynamics information for a given time interval and 
for a given depiction target as its main information source. Formally, we can define a depiction 
technique as a mapping of the depiction target’s dynamics to a set of dynamics glyphs for the 
time interval [T0, T1]: 

[ ] yphsDynamicsGlDechniqueDepictionT target depiction
TT

sticCharacteri →
10 ,:  

Figure 7-5 illustrates the path of a bouncing ball. The path technique generates arrows for the 
ball’s trajectory. For this, it determines the depiction target’s position at different points in time 
to reconstruct its path. The still technique constructs ghost images of the ball in a squash-and-

 Scene Graph 

Behavior Graph 

Sequence {[0,20],[20,50]} 

TimeCt [0,20] 
    Curve0: t→ (x,y,z) 

tr : Translation 

TimeCt [0,30] 
    Curve1: t→ (x,y,z) 

col0 : ColorAttribute Red 

ground : Polygon  

Dynamic Glyphs 

col1 : ColorAttribute Grey 
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Expressions (ball)

Path Glyphs 
(flexible 3D arrow) 
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Path{ball} [4,9]

Path Technique{ball}[4,9]

D 
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Subgraph (Ball) 

Path {ball} [4,9] 
Squash-and-Stretch {ball} [10] 
Path {ball} [11,15] 
Squash-and-Stretch {ball} [16]
Path {ball} [17,19] (future) 

invoke Depiction Technique 
(for each expression) 
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and append 

Dynamics Glyphs 

Subgraph (Ground) 

 Depiction Target 

Dynamics Specification

 
Figure 7-5: System Overview. The system overview (left) illustrates the general workflow for 

generating dynamics depictions. The scene and behavior graphs specify the ball’s 
dynamics, which is the depiction target. Associating expressions to the ball allows one to 
model the representation of motion. A combination of squash and stretch and arrows as 
dynamics glyphs relate the bouncing ball’s dynamics in the past, present, and future 
(right). 
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stretch style at discreet points in time. The depiction technique maps position, velocity, and 
acceleration to symbolize the ball in that traditional form. 
Thus, with depiction techniques, the system maps triples consisting of the characteristics of 
dynamics, the time interval, and the assembled dynamics information to sets of dynamics 
glyphs. 

7.7 Interactive Composition of Depictions 
In practice, depicting dynamics represents a creative process and depends largely on the 
intentions and skills of the graphic designer. To give designers and artists as much control as 
possible, the system lets these depictions be interactively composed and customized. For this, an 
expression-like language is given, which allows users to invoke and set up depiction techniques.  
Expressions let users create, store, apply, and configure dynamics depictions. In particular, users 
can directly set up parameters of depiction techniques to do the following: 
 Control the visual appearance of dynamics glyphs. As an example, consider the still 

characteristic that indicates the positions and orientations of depiction targets as ghost 
images. The depiction technique can (1) simply render the depiction target (see Figure 7-
6a), (2) render the depiction target in a squash-and-stretch style to visualize its velocity 
additionally by deformations (see Figure 7-6b), or (3) render a sketchy representation to 
mimic a hand-drawn illustration (see Figure 7-6 c). 

 Control the composition of dynamics glyphs. For example, the collision technique 
symbolizes potential collisions between two given scene objects. The user can define the 

 Motion {PaperPlane} [0,4] 
Still {PaperPlane} [4] 
Motion {PaperPlane} [5,9] 
Still {PaperPlane} [9] 
Motion {PaperPlane} [10,14] 
Still {PaperPlane} [14] 
Motion {PaperPlane} [15,19] 
Still {PaperPlane} [19] 
Motion {PaperPlane} [20,24] 
Still {PaperPlane} [24] 

Motion {Mannequin} [1,2] 
Still {Mannequin} [2] 
Speak {Mannequin} [2] 

a) 

b) 

c) 

d) e) 

Figure 7-6: Depictions of Dynamics. (a-c) The system provides different kinds of symbols for a 
moving ball. (a) The path and the non-deformed ball visualize its motion in a motion-less 
way. The ball seems to rest at that point of travel. (b) The deformation of the ball using a
squash-and-stretch technique depicts believable motion. (c) The sketchy depiction 
corresponds to an efficient drawing style and implies a fast moving ball. (d) Motion lines
starting from the tips of the wings of the paper plane depict the paper plane’s flight. (e)
Expressions specify the dynamics depiction of the running, talking character. Motion 
lines are used for those parts of the character that move in the main direction of the
motion and additional strokes for those that swing in opposite directions. 
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set of dynamics glyphs for visualizing collisions by rendering associated sounds as texts 
(see Figure 7-7).  

 Control the composition of time. Defining what is past, present, and future is crucial for 
dynamics representations in images. For instance, the dashed arrow in Figure 7-5 
effectively illustrates the path of the bouncing ball in the future. The user can provide 
temporal hints with expressions as an optional parameter. 

In general, each expression requires the dynamics’ characteristics that identify the depiction 
technique, the time interval to specify the period for depicting the dynamics, and optional 
parameters to configure the depiction technique. 

7.8 System Overview and User Involvement 
Figure 7-5 outlines the general workflow of the depiction system so far. To model the intended 
depiction of an objects’ dynamics, the user selects a scene node in the scene graph as the 
depiction target and defines a set of expressions. Once associated with the depiction target, the 
system evaluates the set of expressions as follows: 
1. For each expression, the system invokes the corresponding depiction technique, whereby 

technique choice is based on the characteristics of dynamics given by the expression. 
2. The depiction technique requests the dynamics specification to retrieve the assembled 

dynamics information for the specified depiction target and time interval.  
3. The depiction technique interprets the retrieved data and constructs dynamics glyphs.  
4. The dynamics glyphs are linked to the main scene graph. 
The pseudocode in Listing 7-1 illustrates the evaluation of a depiction target and its associated 
set of expressions. The system renders the 3D scene together with the dynamics glyphs. It 
doesn’t render the depiction target itself because its picture is inessential and, more particularly, 
would interfere with the depictions of its dynamics. 
In the present implementation, selecting a depiction target triggers the inspection of both scene 
graph and behavior graph. Depiction techniques can then be invoked and process in real-time, 

 

b) 

c) d) e) 

a) 

Figure 7-7: Animation sequence showing a baseball batter hitting a ball. (a) Single frames 
illustrate the original time-lapsed animation. (b) Depicting the batter when he hits the ball
and the path of the ball after being hit. (c) Depicting the hit by symbolizing the collision
and the noise that arises. The depiction shows the same action but in a sketchy style. (d)
Narrating the batter’s motion sequence, resulting in a more vibrant depiction. (e) 
Conveying ongoing motion by depicting the batter after realizing his excellent hit.  
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so that the user can interactively experiment with techniques using expressions and navigate the 
3D scene. The sets of expressions (except for optional parameters) in the insets of Figure 7-6, 
Figure 7-5, Figure 7-8, and Figure 7-9 define the corresponding depictions. 

Listing 7-1: Mapping Dynamics to Dynamics Glyphs. Expressions and depiction 
techniques allow one to map dynamics to dynamics glyphs. 

procedure evaluate(SetOfExpression exprs, DepictionTarget obj) begin 

  for all expr ∈ exprs begin 

    /* Find depiction technique for requested characteristic */ 

    DepictionTechnique dt ← findTechnique(expr.Characteristic) 

 

    /* Invokde depiction technique for generating dynamics glyphs 

       based on assembled dynamics information and optional 

       parameter */ 

    SceneNode dynGlyphs ← dt.depict(
target depiction
ntervalexpr.TimeID , expr.Parameter) 

    SceneGraph.append(dynGlyphs) 

  end 

end 

7.9 Using Semantics for Depictions 
Until now, we have merely considered scene nodes as depiction targets. However, a scene graph 
representation is sometimes not sufficient to define a depiction target unambiguously. That is, 
semantics information about scene objects must be available too. In particular, depictions of 
activities and events depend on semantics information because there are generally no obvious 
depiction techniques as in the case of depicting motion and path. For instance, we can’t generate 
and position meaningful bubbles symbolizing speeches and thoughts until the character and its 
head are explicitly defined (see Figure 7-6 and Figure 7-7). 

Assigning Semantics to Scene Objects 
Specifying scene objects with semantics information is subject to 3D scene modeling. 
Semantics information can be assigned to scene objects with a specialized attribute class, the 
identifier. Identifier attributes can form hierarchies to allow for hierarchical semantics 
descriptions for complex scene objects.  
If a scene node contains an identifier, techniques looking for that kind of information will 
search in that node and its subgraphs; otherwise they will prune that node in the traversal. In this 
manner, the system can assemble a collection of scene nodes for one depiction target with 
specific semantics. 
We define S as the set of scene nodes that contribute to a semantics description: 

{ } semanticsto scontribute node  nodeS ::=  

The system assembles the dynamics information for each scene node. So,  

[ ] [ ]{ }SnodeDD node
TT

S
TT

∈= ::
101,0 ,  

provides all the assembled dynamics information that influence the depiction target with the 
specified semantics. 
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An independent subgraph represents each of the characters in Figure 7-6 and Figure 7-7. The 
subgraph contains further subgraphs, each of which represents parts of the body such as the 
head, arm, or hand. In this case, S consists of those shapes that form the visible corpus of the 
character. Once animation data, such as motion capture data, has been assigned 

[ ]
CHARACTER

TT
D

1,0
 

provides all the dynamics information for the character. Consequently, depiction techniques can 
locate single parts of the body, identify their relationship to each other, or consider the character 
as the whole at any point in time to generate dynamics glyphs. So, by defining the character 
through a hierarchical composition of identifiers, we can narrate the batting sequence in Figure 
7-7. 

Semantics-Related Depictions 
For scene graphs enhanced by semantics information we can refine depiction techniques and the 
characteristics of dynamics.  

Semantics-Related Depiction Techniques  
For a specific characteristic of dynamics depiction techniques can be implemented that convey 
that kind of dynamics more precisely for objects with specific semantics than a depiction 
technique implemented for a general scene object. For instance, a depiction technique that’s 
specialized for camera semantics can symbolize the trajectory of a camera (path characteristic) 
as an extruded rectangular frame (see Figure 7-8a). Moviemakers often use this sort of depiction 
in storyboards to visualize a long crane shot [60]. In addition to the camera’s position, an 
extruded frame encodes its viewing direction and alignment.  
Another example is the depiction technique for the still characteristic of the paper plane 
semantics: it deforms the wings and endings of the paper plane under cross acceleration in a 
way similar to the deformation of a real paper plane. This can lead to a more dramatic 
appearance of the paper plane in a visual narration of its flight. The pseudocode in Listing 7-2 
illustrates the modified selection procedure for semantics-related depiction techniques. 

 

Path {Camera} [0,10] 
Inset-View {Camera} [9]  ShotFlow {Camera} [0,10] 

a) b) 

Figure 7-8: Depictions based on Camera-Semantics. Camera-related depiction techniques can
visualize (a) crane shots or (b) close-ups in storyboard-like depictions. An additional
inset view characteristic in (a) illustrates a medium shot of the scene; it was inspired by
the long crane shot from Notorious [60]. Sketchy drawing has been used to generate the
sketchy depictions (see Chapter 6). 
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Listing 7-2: Modified Mapping Procedure. Invoking semantics-related depiction 
techniques. 

procedure evaluate(SetOfExpression exprs, DepictionTarget obj) begin 

  for all expr ∈ exprs begin 

    /* Find semantics related depiction technique  

       for requested characteristic */ 

    DepictionTechnique dt ← findTechnique(obj.Semantics, 

                                           expr.Characteristic) 

    SceneNode dynGlyphs ← dt.depict(
target depiction
ntervalexpr.TimeID , expr.Parameter) 

    SceneGraph.append(dynGlyphs) 

  end 

end 

Semantics-Related Characteristics of Dynamics 
Semantics information leads to a broader vocabulary for the characteristics of dynamics, that is, 
for a specific semantics new characteristics and the appropriate depiction techniques can be 
added.  
For example, in cinematography a shot flow is clearly a characteristic of camera semantics. So, 
that characteristic can be added and its depiction technique using the design principles for 
cameras inspired by storyboard depictions can be implemented. Figure 7-8b illustrates a 
shooting direction from a medium shot to a close-up. Here, both frames indicate which part of 
the scene is visible when taking the shot at certain points in time. The arrows indicate the 
movement of the camera for taking the close-up. A lot of potential exists for exploring 
semantics-related depiction techniques to cope with the manifold ways of camera movements 
and illustrations of shooting directions deployed by storyboard artists. 

Information Retrieval Functions 

Depiction techniques request the function 
[ ]
S

TT
D

1,0
 to retrieve encoded time-dependent data (see 

Figure 7-5), e.g., for the reconstruction of the transformation hierarchy. To facilitate the actual 
implementation of depiction techniques, information retrieval functions (such as the hierarchy 
retrieval function) are defined that search for and analyze the semantics-related data of a 
depiction target for a specific point in time. A center retrieval function, for instance, determines 
the center of a depiction target, which is needed to depict the object’s trajectory. For a ball (or 
sphere) the center is likely to be the origin of its coordinate system in model space whereas a 
character’s center isn’t well defined. The center might be located in the character’s geometrical 
bounding box. This is not appropriate because the box adjusts to its animated geometry. So, the 
hip as the character’s center has been chosen. In conclusion, the path technique applies to both 
the ball and the character for constructing path glyphs. Thus, retrieval functions allow one to 
invoke depiction techniques for a broader set of semantics, respectively, depiction targets. 
Core retrieval functions implement computational geometry algorithms. For instance, depiction 
techniques frequently require the extreme points of 3D geometries for constructing motion lines. 
An extreme points retrieval function can determine these points by evaluating the spatial 
arrangement of the geometries’ vertices in strips, which are aligned to the object’s moving 
direction [79][116]. In contrast, the extreme points retrieval function for the paper plane 
semantics provides wingtips that typically produce turbulence (depicted by motion lines in 
Figure 7-6d).  
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For a character, retrieval functions considering human measurements [118] can determine 
information that isn’t available at first glance. For instance, facial measurement retrieval 
functions can, based on the position and orientation of the head of a character, provide the 
position of the eyes, nose, and mouth even though they are not modeled explicitly. In this way, 
the speaking technique can align the cone of the bubble towards to the character’s mouth in 
Figure 7-6e and Figure 7-10a. Thus, retrieval functions in combination with semantics 
information can provide beneficial information beyond their actual existence. 

7.10 Pattern-Based Symbolization 
Besides modeling depictions interactively using expressions, further analysis of dynamics by 
identifying patterns assists the process of symbolization. Pattern-based techniques allow one to 
determine relations  
 in the composition of scene and behavior graphs,  
 in the set of expressions, and  
 among different dynamics that influence one another.  

Thus, pattern-based techniques can give clues for producing depictions automatically and can 
enhance their comprehensibility. 

Composition of Scene and Behavior Graphs 
At a higher level of abstraction, the assembly of both scene and behavior graphs and the 
relationship between them can reveal patterns. In particular, animating those transformations 
that influence scene objects can lead to advanced characteristics of dynamics including the 
following: 
 Tailspin. If a tailspin animates a scene, then a simultaneity group having two child nodes 

(one for constraining its position and one for constraining its rotation angle) encodes 
these dynamics in a behavior graph. The system then transfers a path characteristic to a 
tailspin characteristic to symbolize the dynamics with specific path glyphs (see Figure 7-
9b). 

 
Scene   Behavior   

TimeCt [0,20] 
Curve 1 : t →  (x, y, z) 

Translation 0 

Sphere {Ball} 
Translation 1 

Sphere {Ball} 

TimeTable {[0,40], [10,30]} 
TimeCt [0,40] 

Curve 0 : t → (x, y, z) 

Scene  Behavior  

TimeCt [0,30]
Linear: t → angle

Translation

Sphere {Ball}

Simultaneity [0,30]

TimeCt [0,30]
Curve: t → (x, y, z)

Rotation

SplitPath {Ball} [0,40] 

Tailspin {Ball} [0,30] 

a) b)

Figure 7-9: Pattern-based Depictions. Pattern-based techniques analyze scene and behavior 
graphs leading to advanced depiction techniques, such as (a) the split path or (b) the 
tailspin techniques.  
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 Split path. If at least of the two scene objects that build up one depiction target follow the 
same trajectory in the beginning of an animation and then follow individual trajectories, 
their path splits smoothly into two. If we encounter a configuration of diverging paths in 
scene and behavior graphs, a split path characteristic can be applied (see Figure 7-9a). 

 Turnaround. If a scene object rotates about an axis in model space, a constraint node in 
the behavior graph animates the rotation angle of a rotation transformation located 
directly in font of the object in its scene graph path (P(node)). Whenever we detect this 
composition, a turnaround characteristic for its motion can be created yielding a bent 
arrow aligned around the axis within a certain distance (see Figure 7-10a). 

 Explode. The pattern indicating an explosion characteristic is similar to that of the split 
path but this time many scene objects of a single depiction target might abruptly change 
their direction of motion arbitrarily. Then, semantics-related explosion techniques either 
symbolize each launching part separately or produce a cloud of dust. They can also 
intensify the perception of the explosion by semantics-related sound using text.  

 Expand/Collapse. An animated scale transformation that enlarges or scales down a 
single scene object can be interpreted by an expansion/collapse characteristic. If the 
scaling is located directly before the scene object, then the object pulses. Otherwise, if 
further transformations, e.g., translations, are located in-between, the object additionally 
moves in 3D space. The expand/collapse technique handles expansion and collapse 
differently. The technique symbolizes the expansion through multiple arrows starting at 
the scenes object’s center and heading in different directions while increasing their width. 
They end at the estimated boundary of the enlarged object. In the collapse mode, the 
technique inverts the direction of the arrows, so that they point to the object’s center. In 
the case of an assembly of diverging objects the explode characteristic can again be 
applied. 

Set of Expressions 
A set of expressions specified by the user can be subject to automatic enhancements. The 
system provides a join operation and a split operation to assist dynamics interpretation. 

a) b) 
 

Figure 7-10: Pattern-based Depictions. (a) A bent arrow indicates a single rotation for illustrating a 
character turning his head to look around. (b) Motion lines streaking the background
indicate the motion of both the camera and the character. 
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 Join operation. Sometimes multiple expressions that temporarily overlap can be 
depicted through specialized characteristics of the dynamics. The join operation scans the 
set of expressions and merges applicable expressions into single expressions to invoke 
advanced depiction techniques. For instance, a collision may occur during an object’s 
motion. Visualizing both separately can produce dynamics glyphs that overlap in the 
depiction producing disturbing effects. Combining both enhances glyph constructions 
because a specialized depiction technique smoothly incorporates them for rendering. 

 Split operation. The single expression of a long time interval can be split into several 
expressions because a more fine-grained schema might depict the dynamics more 
appropriately. To facilitate a split operation, the system queries the associated aspects of 
the dynamics in order to derive indicative information, such as velocity or acceleration. 
For instance, the motion characteristic of an accelerating object can be split into several 
expressions for motion to depict the dynamics in several time intervals and, thus, 
dramatize acceleration (see Figure 7-11). 

Interacting Dynamics 
The dynamics of depiction targets can influence the depictions of other objects’ dynamics. For 
instance, well-placed motion lines allow one to distinguish fast from very fast movements. This 
is generally the case with a fixed camera. But if the camera is moving with the object, a 
traveling shot characteristic is more expedient. Here, the object remains focused while motion 
lines are then used for the background to depict the motion of both the camera and the object 
[81] (see Figure 7-10b). So, the relations of different dynamics influence depiction techniques in 
the whole. The pattern-based approach for symbolization helps resolve cases in which the 
dynamics influence one another.  

7.11 Conclusions and Future Work 
This chapter has presented a, automated depiction system for analyzing and symbolizing 
dynamics. Based on common scene and behavior specifications, the system produces smart 
depictions in a cost- and time-efficient way, and users can extend it with application-specific 
analysis and symbolization techniques. Here, non-photorealistic 3D rendering techniques 
achieves good results that come close to traditional and artistic works. 
New designs of dynamics glyphs should be systematically implemented on top of the 
framework presented here. Future work might investigate which visual design of dynamics 
glyphs to use, for example, in the field of Virtual Reality and Augmented Reality applications. 
For the placement of dynamics glyphs, the layout, such as for frames and bubbles, can be 
further automated.  

b)a) 
Figure 7-11: Split-Operation. (a) Splitting a path glyph depicts the ball’s movement and its

acceleration more expediently. (b) The sketchy depiction includes an additional causing
event. The ball is catapulted and thus accelerated by an external force. 
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The semantics-based analysis and symbolization must be analyzed in more detail. In particular, 
all the camera-related depictions, which are relevant in the pre-production of a movie, need to 
be further optimized.  
In addition, a pattern catalogue should be investigated. Although pattern-based techniques have 
been identified and the system can cope with the mapping of patterns to glyphs, pattern-based 
techniques, in particular interacting dynamics are a subject for future research. More techniques, 
patterns, and glyphs should be investigated for speech and sound as an interesting class of 
dynamics and an important category of multimedia contents. 
The techniques for depicting dynamics presented here can enhance image quality even for 
standard interactive and animated computer graphics applications since they allow one outline 
certain activities, visually indicating events, or enhancing certain actors or objects. Depicting 
dynamics as a mostly automated process has great potential for rendering more than just 3D 
scenery into single images. 
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Chapter 8 
Summary and 
Conclusions 

The following statement has motivated the concepts in this thesis:  

“Given a scene description, the number of rendering passes required by the 
rendering system – typically synthesizing and combining results of multiple 
rendering passes – will become less important in the long run but the essential 
questions will be whether the rendering system can produce visually compelling, 
comprehensible depictions.” 

Jürgen Döllner 

Taking this as a starting point, the presented work has developed non-photorealistic rendering 
techniques and applications for generating depictions of 3D scenes and their dynamics.  
The edge-enhancement algorithm transforms the concept of G-Buffers into the realm of real-
time rendering. The edge map proves to be a flexible, generic, and collaborative tool for 
implementing a variety of edge-enhancement rendering techniques. Edge-enhancement allows 
applications and systems to display 3D scenes in an expressive and illustrative way and in real-
time. 
Blueprint rendering takes this approach a step further. It applies edge enhancement to several 
depth layers and overcomes a former limitation of image-space edge-based rendering, that is, it 
is capable of enhancing visible as well as occluded visually important edges. The vivid and 
expressive depictions composed by blueprint rendering enable viewers to understand the design 
and spatial assembly of complex aggregated objects as a whole. 
Sketchy drawing uses the edge map as input for stylizing image-space edges. Sketchy and vague 
image representations of 3D models and 3D scenes let viewers understand a presentation as an 
early draft of a design and motivate them to participate in the ideas presented in it, to reconsider 
the design and to discuss improvements.  
We found that the edge map approach applies well to image-based CSG rendering not only to 
illustrate a CSG model’s shape using edge enhancement, but also to visualize its assembly, 
possibly in a sketchy manner. 
Finally, the illustrative visualization of large-scale 3D city models demonstrates that the edge-
enhancement algorithm can enhance scenes of high geometric complexity in real-time. 

The second approach to comprehensible depictions presented in this thesis considers not only 
the geometric aspects of 3D scenes, but also their dynamics aspects. The smart depiction system 
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developed for depicting dynamics analyzes scene and dynamics specifications. It maps the 
relevant dynamics to dynamics glyphs, and generates augmented images of 3D scenes using 
illustrative and expressive rendering. The resulting smart depictions can communicate the 
dynamics that are present in the 3D scene clearly, that is, the system enriches the information 
contents of the depictions of 3D scenery. 

The work presented in this thesis shows that non-photorealistic rendering represents an enabling 
technology for conveying information comprehensibly using a human beings’ innate ability to 
process visual information. 
Illustrative and expressive visualizations of 3D city models emphasize a high perceptual and 
cognitive quality for effective communication. On the one hand, non-photorealistic rendering 
(i.e., edge enhancement and reduced color schemes) achieves visual clarity and conciseness in 
depictions of 3D city models. On the other hand, non-photorealistic rendering helps to 
communicate thematic information associated with 3D urban environments. Mapping the 
thematic information onto graphical attributes (e.g., line styles, procedural facade textures, and 
color tables) can convey this information in a subtle way. 
Using the principles of visual art and visual narrations, the smart depiction system for depicting 
dynamics generates expressive visual contents that can visualize past, ongoing, and future 
activities and events taking place in and related to 3D scenes. The system relies on non-
photorealistic rendering to generate smart depictions that come close to traditional drawings, 
such as storyboards. The storyboard-like depictions let non-experts, who are less comfortable 
with computer-graphics renderings, be involved in the design of sequential processes. Assisting 
the pre-visualization phase of a motion-picture production represents a significant application of 
the smart depiction system. For example, a series of depictions of dynamics derived from the 
given animations allow directors, set designers, and actors to actively participate, to discuss, to 
decide, and to reconsider sequential processes. 

Depicting activities and events for visual communication raises a wealth of interesting issues for 
interdisciplinary work and need to be further explored.  
The expression of a specific meaning in pictograms, signs, or decal information to advise and 
assist people represents a challenging task because it depends largely on the goal of the graphic 
designer. Future research could address the following: 
 The possibility of generating meaningful pictograms, signs, and decal information 

automatically should be explored.  
 What graphical representations of activities and events are most useful in a specific 

context should be explored.  
 How much user involvement is essentially required to design the best composition of 

graphical representations should be explored.  
 Suitable user-interfaces that allow graphic designers to customize pictograms, signs, and 

decal information in a cost and time efficient way could be developed.  
Since the visualization of motion in static images has, on the whole, been neglected [18], 
depicting dynamics offers a large potential for future research in diverse contexts. For example, 
abstract image representations of all kinds of dynamics taking place in urban environments, 
such as traffic and the motion of crowds, should be explored. Illustrative 3D city models could 
assist in communicating dynamics in urban environments visually to finally synthesize 
depictions that convey more than just the projected 3D scenery. 
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