Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI

Andrey Sapegin

High-Speed Security Log Analytics Using Hybrid Outlier Detection

The rapid development and integration of Information Technologies over the last decades influenced all areas of our life, including the business world. Yet not only the modern enterprises become digitalised, but also security and criminal threats move into the digital sphere. To withstand these threats, modern companies must be aware of all activities within their computer networks.

The keystone for such continuous security monitoring is a Security Information and Event Management (SIEM) system that collects and processes all security-related log messages from the entire enterprise network. However, digital transformations and technologies, such as network virtualisation and widespread usage of mobile communications, lead to a constantly increasing number of monitored devices and systems. As a result, the amount of data that has to be processed by a SIEM system is increasing rapidly. Besides that, in-depth security analysis of the captured data requires the application of rather sophisticated outlier detection algorithms that have a high computational complexity. Existing outlier detection methods often suffer from performance issues and are not directly applicable for high-speed and high-volume analysis of heterogeneous security-related events, which becomes a major challenge for modern SIEM systems nowadays.

This thesis provides a number of solutions for the mentioned challenges. First, it proposes a new SIEM system architecture for high-speed processing of security events, implementing parallel, in-memory and in-database processing principles. The proposed architecture also utilises the most efficient log format for high-speed data normalisation. Next, the thesis offers several novel high-speed outlier detection methods, including generic Hybrid Outlier Detection that can efficiently be used for Big Data analysis. Finally, the special User Behaviour Outlier Detection is proposed for better threat detection and analysis of particular user behaviour cases. The proposed architecture and methods were evaluated in terms of both performance and accuracy, as well as compared with classical architecture and existing algorithms. These evaluations were performed on multiple data sets, including simulated data, well-known public intrusion detection data set, and real data from the large multinational enterprise. The evaluation results have proved the high performance and efficacy of the developed methods.

All concepts proposed in this thesis were integrated into the prototype of the SIEM system, capable of high-speed analysis of Big Security Data, which makes this integrated SIEM platform highly relevant for modern enterprise security applications.