The innovation of information techniques has changed many aspects of our life. In health care field, we can obtain, manage and communicate high-quality large volumetric image data by computer integrated devices, to support medical care. In this dissertation I propose several promising methods that could assist physicians in processing, observing and communicating the image data. They are included in my three research aspects: telemedicine integration, medical image visualization and image segmentation. And these methods are also demonstrated by the demo software that I developed.
One of my research point focuses on medical information storage standard in telemedicine, for example DICOM, which is the predominant standard for the storage and communication of medical images. I propose a novel 3D image data storage method, which was lacking in current DICOM standard. I also created a mechanism to make use of the non-standard or private DICOM files.
In this thesis I present several rendering techniques on medical image visualization to offer different display manners, both 2D and 3D, for example, cut through data volume in arbitrary degree, rendering the surface shell of the data, and rendering the semi-transparent volume of the data.
A hybrid segmentation approach, designed for semi-automated segmentation of radiological image, such as CT, MRI, etc, is proposed in this thesis to get the organ or interested area from the image. This approach takes advantage of the region-based method and boundary-based methods. Three steps compose the hybrid approach: the first step gets coarse segmentation by fuzzy affinity and generates homogeneity operator; the second step divides the image by Voronoi Diagram and reclassifies the regions by the operator to refine segmentation from the previous step; the third step handles vague boundary by level set model.
Topics for future research are mentioned in the end, including new supplement for DICOM standard for segmentation information storage, visualization of multimodal image information, and improvement of the segmentation approach to higher dimension.
downloadable thesis (pdf format)