Generative adversarial networks (GANs) wurden seit ihrer Einführung in einer Vielzahl von Anwendungsbereichen eingesetzt. In dieser Dissertation schlagen wir einige Verfahren vor, die darauf abzielen, verschiedene bestehende Probleme von GANs zu lösen. Insbesondere, fokussieren wir uns auf das Problem das GANs zwar qualitative hochwertige Samples generieren können, aber die Diversität ist oft sub-optimal. Darüber hinaus, stellt die allgemein übliche Zunahme der Anzahl der Modelle unter dem ursprünglichen GAN-Framework, als auch deren Modellgröße weitere Aufwendungskosten dar. Abschließend, ist die richtige Evaluierung einer generierten Menge, wenn auch herausfordernd, eine wichtige Forschungsrichtung, um letztendlich den Generierungsprozess von GANs zu verbessern.
Wir beginnen mit der Einführung von zwei Diversifizierungsmethoden die das ursprüngliche GAN-Framework um mehrere Gegenspieler erweitern, um die Diversität zu erhöhen. Um den zusätzlichen Speicher- und Rechenaufwand zu reduzieren, führen wir dann eine neue Kompressionsmethode ein. Diese Methode basiert auf den Monte-Carlo-Methoden und Importance Sampling, für das Quantisieren und Pruning der Gewichte und Aktivierungen von schon trainierten neuronalen Netzwerken ohne zusätzliches Trainieren. Wir erweitern die erwähne Methode zusätzlich für das Quantisieren und Pruning von Gradienten während des Trainierens, was die Kommunikationskosten zwischen verschiedenen sogenannten „Workern“ in einer verteilten Trainingsumgebung reduziert.
Bezüglich der Bewertung der generierten Samples, stellen wir mehrere typologie basierte Evaluationsmethoden vor, die sich auf Bild-und Text konzentrieren. Um verschiedene Anwendungsfälle zu erfassen, liefern unsere vorgestellten Methoden einwertige und doppelwertige Metriken. Diese können einerseits dazu genutzt werden, generierte Samples, oder die Qualität und Verteilung der Samples anhand einer Menge von echten Samples zu bewerten. Außerdem, verwenden zwei unserer vorgestellten Metriken so genanntes locality-sensitive Hashing, um die generierten Samples von stark komprimierten GANs genau zu bewerten. Die Analyse von Kompressionseffekten in GANs ebnet den Weg für ihren effizienten Einsatz für reale Anwendungen.
Aufgrund der allgemeinen Anwendungsmöglichkeit von GANs, können die in dieser Arbeit vorgestellten Methoden auch über Kontext von GANs hinaus erwei- tert werden. Daher könnten sie allgemein auf existierende neuronale Netzwerke angewandt werden und insbesondere auf generative Frameworks.