Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI
  • de

Gregor Berg

Virtual Prototypes for the Model-Based Elicitation and Validation of Collaborative Scenarios

Requirements engineers have to elicit, document, and validate how stakeholders act and interact to achieve their common goals in collaborative scenarios. Only after gathering all information concerning who interacts with whom to do what and why, can a software system be designed and realized which supports the stakeholders to do their work. To capture and structure requirements of different (groups of) stakeholders, scenario-based approaches have been widely used and investigated. Still, the elicitation and validation of requirements covering collaborative scenarios remains complicated, since the required information is highly intertwined, fragmented, and distributed over several stakeholders. Hence, it can only be elicited and validated collaboratively. In times of globally distributed companies, scheduling and conducting workshops with groups of stakeholders is usually not feasible due to budget and time constraints. Talking to individual stakeholders, on the other hand, is feasible but leads to fragmented and incomplete stakeholder scenarios. Going back and forth between different individual stakeholders to resolve this fragmentation and explore uncovered alternatives is an error-prone, time-consuming, and expensive task for the requirements engineers. While formal modeling methods can be employed to automatically check and ensure consistency of stakeholder scenarios, such methods introduce additional overhead since their formal notations have to be explained in each interaction between stakeholders and requirements engineers. Tangible prototypes as they are used in other disciplines such as design, on the other hand, allow designers to feasibly validate and iterate concepts and requirements with stakeholders.

This thesis proposes a model-based approach for prototyping formal behavioral specifications of stakeholders who are involved in collaborative scenarios. By simulating and animating such specifications in a remote domain-specific visualization, stakeholders can experience and validate the scenarios captured so far, i.e., how other stakeholders act and react. This interactive scenario simulation is referred to as a model-based virtual prototype. Moreover, through observing how stakeholders interact with a virtual prototype of their collaborative scenarios, formal behavioral specifications can be automatically derived which complete the otherwise fragmented scenarios. This, in turn, enables requirements engineers to elicit and validate collaborative scenarios in individual stakeholder sessions – decoupled, since stakeholders can participate remotely and are not forced to be available for a joint session at the same time. This thesis discusses and evaluates the feasibility, understandability, and modifiability of model-based virtual prototypes. Similarly to how physical prototypes are perceived, the presented approach brings behavioral models closer to being tangible for stakeholders and, moreover, combines the advantages of joint stakeholder sessions and decoupled sessions.