Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI

Ioannis Koumarelas

Data Preparation and Domain-agnostic Duplicate Detection

Successfully completing any data science project demands careful consideration across its whole process. Although the focus is often put on later phases of the process, in practice, experts spend more time in earlier phases, preparing data, to make them consistent with the systems' requirements or to improve their models' accuracies. Duplicate detection is typically applied during the data cleaning phase, which is dedicated to removing data inconsistencies and improving the overall quality and usability of data. While data cleaning involves a plethora of approaches to perform specific operations, such as schema alignment and data normalization, the task of detecting and removing duplicate records is particularly challenging. Duplicates arise when multiple records representing the same entities exist in a database. Due to numerous reasons, spanning from simple typographical errors to different schemas and formats of integrated databases. Keeping a database free of duplicates is crucial for most use-cases, as their existence causes false negatives and false positives when matching queries against it. These two data quality issues have negative implications for tasks, such as hotel booking, where users may erroneously select a wrang hotel, or parcel delivery, where a parcel can get delivered to the wrong address. ldentifying the variety of possible data issues to eliminate duplicates demands sophisticated approaches.

While research in duplicate detection is well-established and covers different aspects of both efficiency and effectiveness, our work in this thesis focuses on the latter. We propose novel approaches to improve data quality before duplicate detection takes place and apply the latter in datasets even when prior labeling is not available. Our experiments show that improving data quality upfront can increase duplicate classification results by up to 19%. To this end, we propose two novel pipelines that select and apply generic as weil as address-specific data preparation steps with the purpose of maximizing the success of duplicate detection. Generic data preparation, such as the removal of special characters, can be applied to any relation with alphanumeric attributes. When applied, data preparation steps are selected only for attributes where there are positive effects on pair similarities, which indirectly affect classification, or on classification directly. Our work on addresses is twofold; first, we consider more domain-specific approaches to improve the quality of values, and, second, we experiment with known and modified versions of similarity measures to select the most appropriate per address attribute, e.g., city or country.

To facilitate duplicate detection in applications where gold standard annotations are not available and obtaining them is not possible or too expensive, we propose MDedup. MDedup is a novel, rule-based, and fully automaticduplicate detection approach that is based on matching dependencies. These dependencies can be used to detect duplicates and can be discovered using state-of-the-art algorithms efficiently and without any prior labeling. MDedup uses two pipelines to first train on datasets with known labels, learning to identify useful matching dependencies, and then be applied on unseen datasets, regardless of any existing gold standard. Finally, our work is accompanied by open source code to enable repeatability of our research results and application of our approaches to other datasets.