Kommentarspalten von Online-Nachrichtenplattformen sind ein essentieller Ort, um Meinungen zu äußern und politische Themen zu diskutieren. Der Missbrauch durch Trolle und Verbreiter von Hass und Spam lässt jedoch Zweifel aufkommen, ob der Nutzen die Kosten der zeitaufwendigen Kommentarmoderation rechtfertigt. Als Konsequenz daraus haben viele Plattformen ihre Kommentarspalten eingeschränkt oder sogar ganz abgeschaltet. In dieser Arbeit stellen wir Deep-Learning-Verfahren zur Klassifizierung, Empfehlung und Vorhersage von Kommentaren vor, um respektvolle und anregende Online-Diskussionen zu fördern. Das Hauptaugenmerk liegt dabei auf zwei Arten von Kommentaren: toxische Kommentare, die die Leser veranlassen, eine Diskussion zu verlassen, und anregende Kommentare, die die Leser veranlassen, sich an einer Diskussion zu beteiligen. Im ersten Schritt identifizieren und entfernen wir toxische Kommentare, z.B. Beleidigungen oder Drohungen. Zu diesem Zweck stellen wir einen halbautomatischen Moderationsprozess vor, der auf feingranularen Textklassifikationsmodellen basiert und Moderatoren unterstützt. Unsere Experimente zeigen, dass Datenanreicherung, Transfer- und Ensemble-Lernen das Trainieren robuster Klassifikatoren selbst auf kleinen Datensätzen ermöglichen. Um Vertrauen in die maschinell gelernten Modelle zu schaffen, zeigen wir mit attributionsbasierten Erklärungsmethoden auf, welche Teile der Eingabe für ihre Ausgabe entscheidend sind. Im zweiten Schritt ermutigen und markieren wir anregende Kommentare, z.B. ernsthafte Fragen oder sachliche Aussagen. Wir identifizieren automatisch die anregendsten Kommentare, sodass die Leser nicht durch Tausende von Kommentaren blättern müssen, um sie zu finden. Der Trainingsprozess der Modelle baut auf Upvotes und Kommentarantworten als Maß für die Aktivität der Leser auf. Wir identifizieren außerdem Kommentare, die sich an die Artikelautoren richten oder anderweitig für sie relevant sind, um die Interaktion zwischen Journalisten und ihrer Leserschaft zu unterstützen. Unter Berücksichtigung der Interessen der Leser bieten wir darüber hinaus personalisierte Diskussionsempfehlungen an, die sich an den von ihnen bevorzugten Themen oder häufigen Diskussionspartnern orientieren. In Experimenten mit Kommentardatensätzen von verschiedenen Plattformen übertreffen unsere Modelle mehrere grundlegende Vergleichsverfahren und aktuelle verwandte Arbeiten.