Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI
Login
 

Mohamed Esameldin Mohamed Elsaid

"Virtual Machines Live Migration Cost Modeling"

Die dynamische Ressourcenverwaltung ist eine wesentliche Voraussetzung für private und öffentliche Cloud-Computing-Umgebungen. Bei der dynamischen Ressourcenverwaltung hängt die Zuweisung der physischen Ressourcen zu den virtuellen Cloud-Ressourcen vom tatsächlichen Bedarf der Anwendungen oder der laufenden Dienste ab, was die Auslastung der physischen Cloud-Ressourcen verbessert und die Kosten für die angebotenen Dienste reduziert. Darüber hinaus können die virtuellen Ressourcen über verschiedene physische Ressourcen in der Cloud-Umgebung verschoben werden, ohne dass dies einen offensichtlichen Einfluss auf die laufenden Anwendungen oder die Produktion der Dienste hat. Das bedeutet, dass die Verfügbarkeit der laufenden Dienste und Anwendungen in der Cloud unabhängig von den Hardwareressourcen einschließlich der Server, Switches und Speicherausfälle ist. Dies erhöht die Zuverlässigkeit bei der Nutzung von Cloud-Diensten im Vergleich zu klassischen Rechenzentrumsumgebungen.

In dieser Arbeit wird das Thema der dynamischen Ressourcenverwaltung kurz erörtert, um sich dann eingehend mit der Live-Migration als Definition der dynamischen Verwaltung von Compute-Ressourcen zu beschäftigen. Live-Migration ist eine häufig verwendete und wesentliche Funktion in Cloud- und virtuellen Rechenzentrumsumgebungen. Cloud-Computing-Lastausgleich, Energiespar- und Fehlertoleranzfunktionen sind alle von der Live-Migration abhängig, um die Nutzung der virtuellen und physischen Ressourcen zu optimieren. Wie wir in dieser Arbeit erörtern werden, zeigt die Live-Migration viele Vorteile für Cloud- und virtuelle Rechenzentrumsumgebungen, jedoch können die Kosten der Live-Migration nicht ignoriert werden. Zu den Kosten der Live-Migration gehören die Migrationszeit, die Ausfallzeit, der Netzwerk-Overhead, der Anstieg des Stromverbrauchs und der CPU-Overhead.

IT-Administratoren führen Live-Migrationen von virtuellen Maschinen durch, ohne eine Vorstellung von den Migrationskosten zu haben. So kann es zu Ressourcenengpässen, höheren Migrationskosten und Migrationsfehlern kommen. Das erste Problem, das wir in dieser Arbeit diskutieren, ist, wie man die Kosten der Live-Migration virtueller Maschinen modellieren kann. Zweitens untersuchen wir, wie maschinelle Lerntechniken eingesetzt werden können, um den Cloud-Administratoren zu helfen, eine Schätzung dieser Kosten zu erhalten, bevor die Migration für eine oder mehrere virtuelle Maschinen eingeleitet wird. Außerdem diskutieren wir das optimale Timing für eine bestimmte virtuelle Maschine vor der Live-Migration auf einen anderen Server. Schließlich schlagen wir praktische Lösungen vor, die von den Cloud-Admins verwendet werden können, um in die Cloud-Administrationsportale integriert zu werden, um die oben aufgeworfenen Forschungsfragen zu beantworten.

Unsere Forschungsmethodik zur Erreichung der Projektziele besteht darin, empirische Modelle vorzuschlagen, die auf der Verwendung von VMware-Testbeds mit verschiedenen Benchmark-Tools basieren. Dann nutzen wir die Techniken des maschinellen Lernens, um einen Vorhersageansatz für die Kosten der Live-Migration virtueller Maschinen vorzuschlagen. Die Timing-Optimierung für die Live-Migration wird ebenfalls in dieser Arbeit vorgeschlagen, basierend auf der Kostenvorhersage und der Vorhersage der Netzwerkauslastung des Rechenzentrums. Die Live-Migration mit Clustern mit persistentem Speicher wird ebenfalls am Ende der Arbeit diskutiert.

Die in dieser Arbeit vorgeschlagenen Techniken zur Kostenvorhersage und Timing-Optimierung könnten praktisch in das VMware vSphere-Cluster-Portal integriert werden, so dass die IT-Administratoren nun die Funktion zur Kostenvorhersage und die Option zur Timing-Optimierung nutzen können, bevor sie mit einer Live-Migration der virtuellen Maschine fortfahren.

Die Testergebnisse zeigen, dass unser vorgeschlagener Ansatz für die VMs-Live-Migrationskostenvorhersage akzeptable Ergebnisse mit weniger als 20% Fehler in der Vorhersagegenauigkeit zeigt und leicht implementiert und in VMware vSphere als Beispiel für ein häufig verwendetes Ressourcenmanagement-Portal für virtuelle Rechenzentren und private Cloud-Umgebungen integriert werden kann. Die Ergebnisse zeigen, dass mit der von uns vorgeschlagenen Technik zur Timing-Optimierung der VMs-Migration auch bis zu 51% der Migrationszeit für speicherintensive Workloads und bis zu 27% der Migrationszeit für netzwerkintensive Workloads eingespart werden können. Diese Timing-Optimierungstechnik kann für Netzwerkadministratoren nützlich sein, um Migrationszeit zu sparen und dabei eine höhere Netzwerkrate und eine höhere Erfolgswahrscheinlichkeit zu nutzen.

Am Ende dieser Arbeit wird die persistente Speichertechnologie als neuer Trend in der Server-Speichertechnologie diskutiert. Die Betriebsarten und Konfigurationen des persistenten Speichers werden im Detail besprochen, um zu erklären, wie die Live-Migration zwischen Servern mit unterschiedlichen Speicherkonfigurationen funktioniert. Dann bauen wir einen VMware-Cluster mit persistentem Speicher im Server und auch mit Servern nur mit DRAM auf, um den Kostenunterschied bei der Live-Migration zwischen den VMs mit nur DRAM und den VMs mit persistentem Speicher im Server zu zeigen.