In einer Zeit stetigen Wandels und immer schneller wechselnder Technologien nimmt das lebenslange Lernen einen immer höheren Stellenwert ein. Massive Open Online Courses (MOOCs) sind ein hervorragendes Werkzeug, um in kurzer Zeit und mit vergleichsweise wenig Aufwand breite Teile der Bevölkerung zu erreichen. Das HPI leistet mit der eigenen Plattform openHPI und den für diverse Partner betriebenen Plattformen openSAP, OpenWHO und mooc.house sowohl im deutschsprachigen Raum als auch international einen wichtigen Beitrag zu digitalen Aufklärung. In vielen Bereichen ist die Plattform State of the Art und ist den international bekannteren Plattformen zumindest ebenbürtig. Gerade bei der Entwicklung und Anwendung von neuen Lehr- und Lernmethoden und deren technischer Unterstützung ist openHPI auch international richtungsweisend.
Die vorliegende Dissertation befasst sich mit den Möglichkeiten der technischen und didaktischen Unterstützung von bewertbaren Aufgabenstellungen in MOOCs, die im Team zu bearbeiten sind. Durch die Größe der Kurse - in der Regel steht hier ein kleines Teaching Team mehreren tausend Teilnehmern gegenüber - ist eine manuelle Bewertung der Teilnehmenden durch die Lehrenden nicht möglich. Hier wird eine der alternativen Möglichkeiten zur Bewertung von Aufgaben, das sogenannte Peer Assessment, eingesetzt und für die speziellen Gegebenheiten der Bearbeitung von Aufgaben im Team angepasst. In den vergangenen fünf Jahren wurde eine iterative Langzeitstudie durchgeführt, bei der verschiedene qualitative und quantitative Methoden der Auswertung eingesetzt wurden. Das Ergebnis dieser Forschungsarbeit ist eine tiefgehende Einsicht in die Mechanismen der Teamarbeit in skalierenden digitalen Lernplattformen sowie eine Reihe von Empfehlungen zur weiteren Verbesserung der kollaborativen Eigenschaften der HPI-Plattformen, die zum Teil bereits umgesetzt wurden bzw. gerade umgesetzt werden.