Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI
Login
 

Uwe Draisbach

"Efficient Duplicate Detection and the Impact of Transitivity"

Dissertation zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften eingereicht von Uwe Draisbach

Dubletten sind mehrere Repräsentationen derselben Entität in einem Datenbestand. Diese zu identifizieren ist das Ziel der Dublettenerkennung, wobei in der Regel Paare von Datensätzen anhand von Ähnlichkeitsmaßen miteinander verglichen und unter Verwendung eines Schwellwerts als Dublette oder Nicht-Dublette klassifiziert werden. Für Dublettenerkennung existieren verschiedene Anwendungsbereiche, beispielsweise im Kundenbeziehungsmanagement, beim Onlineshopping, der Genealogie und in den Sozialwissenschaften. Der in den letzten Jahren zu beobachtende Anstieg des gespeicherten Datenvolumens erschwert die Dublettenerkennung, da die Anzahl der benötigten Vergleiche quadratisch mit der Anzahl der Datensätze wächst. Durch Verwendung eines geeigneten Paarauswahl-Algorithmus kann die Anzahl der zu vergleichenden Paare jedoch reduziert und somit die Effizienz gesteigert werden.

Die Dissertation untersucht die Auswirkungen und Möglichkeiten transitiver Beziehungen auf den Dublettenerkennungsprozess. Durch Transitivität lässt sich beispielsweise ableiten, dass aufgrund einer Klassifikation der Datensatzpaare ⟨ri, rj ⟩ und ⟨rj , rk⟩ als Dublette auch die Datensätze ⟨ri, rk⟩ eine Dublette sind. Dies kann jedoch im Widerspruch zu einer paarweisen Klassifizierung stehen, denn im Unterschied zur Äquivalenz ist die Ähnlichkeit von Objekten nicht notwendigerweise transitiv.

Im ersten Teil der Dissertation wird die Auswirkung einer steigenden Datenmenge auf die Wahl des Schwellwerts zur Klassifikation von Datensatzpaaren als Dublette oder Nicht-Dublette untersucht. Die Experimente zeigen, dass unabhängig von dem gewählten Paaraus-wahl-Algorithmus und des gewählten Ähnlichkeitsmaßes die Wahl eines geeigneten Schwellwerts mit steigender Datensatzanzahl schwieriger wird, da die Gefahr fehlerhafter Cluster-Zuordnungen steigt. Der optimale Schwellwert eines Datensatzes variiert mit dessen Größe. So ist ein guter Schwellwert für einen kleinen Datensatz (oder eine Stichprobe) nicht notwendigerweise ein guter Schwellwert für einen größeren (ggf. vollständigen) Datensatz. Steigt die Datensatzgröße im Lauf der Zeit an, so muss ein einmal gewählter Schwellwert ggf. nachjustiert werden. Aufgrund der Transitivität ist dies insbesondere bei Datensätzen mit größeren Clustern relevant.

Der zweite Teil der Dissertation beschäftigt sich mit Algorithmen zur Auswahl geeigneter Datensatz-Paare für die Klassifikation. Basierend auf der Sorted Neighborhood Method (SNM) werden mit der Duplicate Count Strategy (DCS) und ihrer Erweiterung DCS++ zwei neue Algorithmen vorgestellt. DCS adaptiert die Fenstergröße in Abhängigkeit der Anzahl gefundener Dubletten und DCS++ verwendet zudem die transitive Abhängigkeit, um kostspielige Vergleiche einzusparen und trotzdem größere Cluster von Dubletten zu identifizieren. Weiterhin wird bewiesen, dass mit einem geeigneten Schwellwert DCS++ ohne Einbußen bei der Effektivität effizienter als die Sorted Neighborhood Method ist.

Der dritte und letzte Teil der Arbeit beschäftigt sich mit dem Problem widersprüchlicher paarweiser Klassifikationen. In vielen Anwendungsfällen wird die Transitive Hülle zur Erzeugung konsistenter Cluster verwendet, wobei hierbei paarweise Klassifikationen als Nicht-Dublette missachtet werden. Es werden drei neue und mehrere existierende Cluster-Algorithmen vorgestellt und experimentell mit verschiedenen Datensätzen und Konfigurationen evaluiert. Die Ergebnisse zeigen, dass die Transitive Hülle den meisten anderen Clustering-Algorithmen insbesondere bei der Precision, definiert als Anteil echter Dubletten an der Gesamtzahl klassifizierter Dubletten, unterlegen ist. In Anwendungsfällen mit größeren Clustern ist der vorgeschlagene EMCC-Algorithmus trotz seiner subexponentiellen
Laufzeit zusammen mit dem Markov-Clustering der beste Clustering-Ansatz für die Dublettenerkennung. EMCC übertrifft Markov Clustering insbesondere hinsichtlich der Precision der Ergebnisse und hat zusätzlich den Vorteil, dass dieser auch ohne Ähnlichkeitswerte eingesetzt werden kann.