Amir Semmo

Design and Implementation of Non-Photorealistic Rendering Techniques for 3D Geospatial Data

Geospatial data has become a natural part of a growing number of information systems and services in the economy, society, and people's personal lives. In particular, virtual 3D city and landscape models constitute valuable information sources within a wide variety of applications such as urban planning, navigation, tourist information, and disaster management. Today, these models are often visualized in detail to provide realistic imagery. However, a photorealistic rendering does not automatically lead to high image quality, with respect to an effective information transfer, which requires important or prioritized information to be interactively highlighted in a context-dependent manner.

Approaches in non-photorealistic renderings particularly consider a user's task and camera perspective when attempting optimal expression, recognition, and communication of important or prioritized information. However, the design and implementation of non-photorealistic rendering techniques for 3D geospatial data pose a number of challenges, especially when inherently complex geometry, appearance, and thematic data must be processed interactively. Hence, a promising technical foundation is established by the programmable and parallel computing architecture of graphics processing units.

This thesis proposes non-photorealistic rendering techniques that enable both the computation and selection of the abstraction level of 3D geospatial model contents according to user interaction and dynamically changing thematic information. To achieve this goal, the techniques integrate with hardware-accelerated rendering pipelines using shader technologies of graphics processing units for real-time image synthesis. The techniques employ principles of artistic rendering, cartographic generalization, and 3D semiotics—unlike photorealistic rendering—to synthesize illustrative renditions of geospatial feature type entities such as water surfaces, buildings, and infrastructure networks. In addition, this thesis contributes a generic system that enables to integrate different graphic styles—photorealistic and non-photorealistic—and provide their seamless transition according to user tasks, camera view, and image resolution.

Evaluations of the proposed techniques have demonstrated their significance to the field of geospatial information visualization including topics such as spatial perception, cognition, and mapping. In addition, the applications in illustrative and focus+context visualization have reflected their potential impact on optimizing the information transfer regarding factors such as cognitive load, integration of non-realistic information, visualization of uncertainty, and visualization on small displays.