Xiaoyin Che

E-Lecture Material Enhancement Based on Automatic Multimedia Analysis

In this era of high-speed informatization and globalization, online education is no longer an exquisite concept in the ivory tower, but a rapidly developing industry closely relevant to people's daily lives. Numerous lectures are recorded in form of multimedia data, uploaded to the Internet and made publicly accessible from anywhere in this world. These lectures are generally addressed as e-lectures. In recent year, a new popular form of e-lectures, the Massive Open Online Courses (MOOCs), boosts the growth of online education industry and somehow turns " learning on line" into a fashion.

As an e-learning provider, besides to keep improving the quality of e-lecture content, to provide better learning environment for online learners is also a highly important task. This task can be preceded in various ways, and one of them is to enhance and upgrade the learning materials provided: e-lectures could be more than videos. Moreover, this process of enhancement or upgrading should be done automatically, without giving extra burdens to the lecturers or teaching teams, and this is the aim of this thesis.

The first part of this thesis is an integrated framework of multi-lingual subtitles production, which can help online learners penetrate the language barrier. The framework consists of Automatic Speech Recognition (ASR), Sentence Boundary Detection (SBD) and Machine Translation (MT), among which the proposed SBD solution is major technical contribution, building on Deep Neural Network (DNN) and Word Vector (WV) and achieving state-of-the-art performance. Besides, a quantitative evaluation with dozens of volunteers is also introduced to measure how these auto-generated subtitles could actually help in context of e-lectures.

Secondly, a technical solution " TOG" (Tree-Structure Outline Generation) is proposed to extract textual content from the displaying slides recorded in video and re-organize them into a hierarchical lecture outline, which may serve in multiple functions, such like preview, navigation and retrieval. TOG runs adaptively and can be roughly divided into intra-slide and inter-slides phases. Table detection and lecture video segmentation can be implemented as sub- or post-application in these two phases respectively. Evaluation on diverse e-lectures shows that all the outlines, tables and segments achieve dare trustworthily accurate.

Based on the subtitles and outlines previously created, lecture videos can be further split into sentence units and slide-based segment units. A lecture highlighting process is further applied on these units, in order to capture and mark the most important parts within the corresponding lecture, just as what people do with a pen when reading paper books. Sentence-level highlighting depends on the acoustic analysis on the audio track, while segment-level highlighting focuses on exploring clues from the statistical information of related transcripts and slide content. Both objective and subjective evaluations prove that the proposed lecture highlighting solution is with decent precision and welcomed by users.

All above enhanced e-lecture materials have been already implemented in actual use or made availablefor implementation by convenient interfaces.