Hasso-Plattner-Institut
Hasso-Plattner-Institut
  
Login
 

Zhe Zuo

From unstructured to structured: Context-based Named Entity Mining from Text

Mit den jüngsten Fortschritten in den Gebieten der Informationsextraktion wird die automatisierte Extrahierung strukturierter Informationen aus einer unüberschaubaren Menge unstrukturierter Textdaten eine wichtige Aufgabe, deren manuelle Ausführung unzumutbar ist. Benannte Entitäten, (z.B. Personen, Organisationen oder Orte), essentielle Bestandteile in Texten, sind normalerweise der Gegenstand strukturierter Informationen aus Textdokumenten. Daher erhält die Aufgabe der Gewinnung benannter Entitäten viel Aufmerksamkeit. Sie besteht aus drei großen Unteraufgaben, nämlich Erkennung benannter Entitäten, Verbindung benannter Entitäten und Extraktion von Beziehungen. 

Diese drei Aufgaben zusammen sind der Grundprozess eines Systems zur Gewinnung benannter Entitäten, wobei jede ihre eigene Herausforderung hat und für weitere Anwendungen eingesetzt werden kann. Als ein fundamentaler Aspekt in der Verarbeitung natürlicher Sprache haben Studien zur Erkennung benannter Entitäten eine lange Geschichte, und viele bestehenden Ansätze erbringen verlässliche Ergebnisse. Die Aufgabe zielt darauf ab, Nennungen benannter Entitäten zu extrahieren und ihre Typen zu bestimmen. Verbindung benannter Entitäten hat in letzter Zeit durch die Entwicklung von Wissensdatenbanken, welche reiche Informationen über Entitäten enthalten, viel Aufmerksamkeit erhalten. Das Ziel ist es, Nennungen benannter Entitäten zu unterscheiden und diese mit dazugehörigen Einträgen in einer Wissensdatenbank zu verknüpfen. Der letzte Schritt der Gewinnung benannter Entitäten, die Extraktion von Beziehungen, ist eine stark anspruchsvolle Aufgabe, nämlich die Extraktion semantischer Beziehungen zwischen Entitäten, z.B. die Eigentümerschaft zwischen zwei Firmen. 

In dieser Doktorarbeit arbeiten wir den aktuellen Stand der Wissenschaft in den Domäne der Gewinnung benannter Entitäten auf, unter anderem wertvolle Eigenschaften und Evaluationsmethoden. Darüber hinaus präsentieren wir zwei Ans\"atze von uns, die jeweils ihren Fokus auf die Verbindung benannter Entitäten sowie der Aufgaben der Extraktion von Beziehungen legen. 
Um die Aufgabe der Verbindung benannter Entitäten zu lösen schlagen wir hier die Verbindungstechnik BEL vor, welche auf einer textuellen Bandbreite relevanter Begriffe agiert und Entscheidungen einer Kombination von einfacher Klassifizierter aggregiert. Jeder dieser Klassifizierter arbeitet auf einer zufällig ausgewählten Teilmenge der obigen Bandbreite. In umfangreichen Experimenten mit handannotierten sowie Vergleichsdatensätzen hat unser Ansatz andere Lösungen zur Verbindung benannter Entitäten, die auf dem Stand der aktuellen Technik beruhen, sowie in Bezug auf Qualität als auch Effizienz geschlagen. 

Für die Aufgabe der Extraktion von Beziehungen fokussieren wir uns auf eine bestimmte Gruppe schwieriger Beziehungstypen, nämlich die Geschäftsbeziehungen zwischen Firmen. Diese Beziehungen können benutzt werden, um wertvolle Erkenntnisse in das Zusammenspiel von Firmen zu gelangen und komplexe Analysen ausführen, beispielsweise die Risikovorhersage oder Bewertung von Firmen. Unsere teilbeaufsichtigte Strategie kann Geschäftsbeziehungen zwischen Firmen anhand nur weniger nutzergegebener Startwerte von Firmenpaaren extrahieren. Dadurch bieten wir auch eine Lösung für das Problem der Richtungserkennung asymmetrischer Beziehungen, beispielsweise der Eigentumsbeziehung. Wir verbessern die Verlässlichkeit des Extraktionsprozesses, indem wir holistische Musteridentifikationsmethoden verwenden, welche die erstellten Extraktionsmuster klassifizieren. Unsere Experimente zeigen, dass wir neue Entitätenpaare akkurat und verlässlich in der Zielbeziehung mit bereits fünf bezeichneten Startpaaren extrahieren können.