




















problem size n is varied in [100, 1000] (with a step size of
25). In each tested setting, the run is replicated 100 times
with different random seeds and the number of function eval-
uations, denoted as ‘# evaluations’, is reported as the run
time. The result for k = 4 is shown in Figure 1. Note that we
also did the experiment with p. = 0 for the no-mechanism
setting, e.g., comparing the EA with the GAs, however, the
average run time for n = 100 in this experiment is already
2.28 - 10% which cannot be displayed in the figure.

On average, the highest contribution to the reduction of
the run time in order is fitness sharing, then convex hull
maximisation, deterministic crowding, and, finally, dupli-
cate elimination and minimisation have quite similar aver-
age run times. We also notice that the the island model with
1 = 2 requires approximately the same average numbers of
evaluations as deterministic crowding. Overall, compared to
the standard (u+1) GA, all the diversity mechanisms con-
tribute to the reduction of the average run time, as well as
to the stability of the result.
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Figure 1: Performance of the diversity mechanisms.

7. CONCLUSION

We have considered the role of selection-based diversity
mechanisms used together with crossover for escaping lo-
cal optima. We prove rigorous upper bounds on the run
time of the (u41) GA for seven well-known diversity mech-
anisms optimising the Jump,, function. Our results reveal a
qualitative difference in the ability of the different diversity
mechanisms to escape local optima.

In contrast to previous theoretical work on crossover for
Jump,,, our upper bounds do not rely on unreasonably small
(e.g., vanishing with n) crossover probabilities, but instead
cover the more practical case of constant crossover probabil-
ities. Furthermore, our proofs provide insight into the ways
that diversity mechanisms, when applied as a tie-breaking
rule in selection, can quickly spread the population out
over the jump plateau in order to get enough diversity for

652

crossover to combine the correct solution components to es-
cape the set of local optima.
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