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Abstract. In studying randomized search heuristics, a frequent quantity of interest is the first time a (real-
valued) stochastic process obtains (or passes) a certain value. Commonly, the processes under investigation
show a bias towards this goal, the stochastic drift. Turning an iteration-wise expected bias into a first time
of obtaining a value is the main result of drift theorems. This thesis gives an introduction into the theory of
stochastic drift, providing examples and reviewing the main drift theorems available. Furthermore, the thesis
explains how these methods can be applied in a variety of contexts, including those where drift theorems seem
a counter intuitive choice. Later sections examine related methods and approaches.

This document is available as HTML1; furthermore, a copy was uploaded to arXiv2.
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Preface

This document gives an introduction to the theory of stochastic drift, as developed by the community re-
searching the theory of randomized search heuristics. For researchers new to the area (but with some basic
familiarity with probability theory and random processes), the early sections provide a gentle introduction
into the main theorems and sample applications. Later sections give more specialized theorems for particular
applications. Seasoned researchers might turn directly to later sections, browsing the list of drift theorems for
many settings which provides further pointers to the literature, as well as remarks on details of the techniques
and their relation to similar approaches.

Furthermore, this document serves as “a summarized and systematic presentation of the candidate’s own
work” in partial fulfillment of the requirements for Habilitation at the Digital Engineering Faculty of the
University of Potsdam, Germany.
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1 What is Stochastic Drift?

Suppose that you win a million dollars in a lottery and that you start spending your winnings. You observe
that you spend on average 10.000 dollars per day. How long will your lottery winnings last? Intuitively, you
would divide the million you won by 10.000 and estimate that your winnings would last for 100 days. But that
feels like confusing a random process with a deterministic one. Well, yes, but the good news are: There is a
theorem that tells us that 100 days is the mathematically precise answer, even when the process is randomized.
Even better, if you gain money on some days (say, by playing in a casino) but still, in expectation, your balance
goes down by 10.000 per day, the conclusion still holds. There can even be dependencies between the earnings
and spendings of different days (say, on a day after a big earning, you gamble higher amounts than otherwise).
The theorem which shows that this is the case is called the additive drift theorem (see Theorem 2.1 [Additive
Drift, Upper Bound]). The term drift refers to the difference between two successive values of the process, and
the term additive refers to the requirement that the drift is, in expectation, bounded by an additive constant.

A similar setting to that of the process described above is the well-known coupon collector process, defined
as follows. Suppose you want to collect coupons until you have one of each of 𝑛 different colors. Each day
you get one coupon the color which is chosen uniformly at random and independent of the other days; in
particular, you may gain coupons of a color which you already received before. How long does it take until
you have a complete set of at least one coupon of each color? For the analysis, note that in the first iteration
you get a new color of coupon with certainty (since you do not have any coupons yet). This changes over
time: once you already collected exactly half of the colors, the probability of gaining a new one is only one
in two. Once you have already gained 90 percent, it is down to one in ten, and so on. Or, flipped around:
if you are only half the way from your goal, you only have half the chance of making progress, and if you
are 10 percent away from the goal, you make 10 percent of the progress. This is a multiplicative expected
progress (the progress is a multiple of the current state of the process) and the multiplicative drift theorem (see
Theorem 2.5 [Multiplicative Drift]) can be used to analyze exactly this setting. The theorem also holds when
the number of coupons gained in each iteration is random (for example, if I gain every color of coupon with
a random chance of some value 𝑝 in each iteration), and it even holds when there is a possibility of losing
coupons. Furthermore, it also gives an upper concentration bound.

As these two examples show, we analyze the expected progress of a single step of the given random process
in order to find the first time the random process reaches a target state (the so-called “first-hitting time”). This
brings us to the following description of drift theory:

Drift theory is a collection of theorems to turn iteration-wise expected gains into expected first-hitting
times.

The first drift theorem, the additive drift theorem, was introduced by He and Yao [HY01], based on an
intricate theorem by Hajek [Haj82]. He and Yao applied their theorem in the context of analyzing randomized
search heuristics (RSHs), such as evolutionary algorithms (EAs), which work by the principle of variation
(mutating solutions by random changes) and selection (accepting improvements and rejecting worsenings).
Drift theory gained a lot of traction in the EA theory community after the multiplicative drift theorem was
introduced by Doerr, Johannsen, and Winzen [DJW10]. Their proof used additive drift, but a proof not relying
on Hajek’s result was given shortly after by Doerr and Goldberg [DG10]. Since then, drift theory has been the
dominant method for formally analyzing RSHs, easing their analysis significantly over analyses not arguing
via drift. For example, the main result of Droste [Dro04] on noisy optimization, spanning an entire paper, was
reproven in a more general form by Giessen and Kötzing [GK16] on a single page.

Drift theorems find application in the analysis of a plethora of different settings, ranging from randomized
optimization over approximation algorithms to further stochastic processes (see Section 2 [A Gentle Introduc-
tion to Classic Drift Theorems] and the second part of Section 4 [Going Nowhere: Drift Without Drift]). Key to
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the applicability is to model the problem as a search for the time until a random process reaches a target state.
However, in spite of the versatility of drift theorems, there are only very few results outside of the theory of
RSHs applying drift theory [BLM+20, GLR20, KU18]. Given the versatility of the approach within the area of
randomized optimization, it is likely that a higher visibility of these theorems could benefit further research
communities.

1.1 A Guide to this Document

This document presents an overview over drift theory. What theorems are available? How can they be applied?
What pitfalls abound when using drift theory? Concretely, the contents of this document are as follows.

Section 2 [A Gentle Introduction to Classic Drift Theorems] presents the two already mentioned drift
theorems (additive and multiplicative) formally. These are by far the two most important drift theorems and
the section includes many examples of their use from a diverse range of settings.

Section 3 [The Art of Potential Functions] discusses the most important technique of making drift theorems
applicable: With potential functions, random processes can be mapped to fulfill the requirements of drift
theorems, and this section discusses heuristics of how to do this.

One main example for how potential functions can be used to make a process exhibit drift is the analysis of
unbiased random walks. These walks have, by definition, a drift of 0, but nonetheless drift theory can be used
to analyze such processes. This is detailed in Section 4 [Going Nowhere: Drift Without Drift].

For researchers new to the area, Sections 2 to 4 give a brief but well-rounded introduction to the field.
Further sections provide deeper material, extending the applicability and discussing the finer points of
drift theory.

Section 5 [The Zoo: A Tour of Drift Theorems] provides a long list of available drift theorems, including the
famous variable drift theorem, as well as many other drift theorems tailored to various settings of drift. Some
example applications and discussions on the relation between the different theorems give an overview of the
currently available drift theorems.

A special case of drift is exhibited by monotone processes (processes that cannot go back). This is a
specific branch of analysis which was developed independently of the other drift theorems; we discuss the
corresponding theorems in Section 6 [No Going Back: The Fitness Level Method (FLM)].

While classic drift theorems give statements about how long it takes for a process to reach a certain
state, the dual question is to ask what state to expect after a given number of iterations. Also this area has
theorems similar to drift theorems, and we discuss them in Section 7 [A Different Perspective: Fixed Budget
Optimization].

In Section 8 [Drift as an Average: A Closer Look on the Conditioning of Drift] we consider the very technical
side of drift theorems. We contrast and discuss different ways in stating the drift theorems and point to pitfalls
in applying drift theorems without checking all conditions.

Finally, Section 9 [Notation] introduces some notation used in this work, before the author gives acknowl-
edgments in Section 10 [Acknowledgments].
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2 A Gentle Introduction to Classic Drift Theorems

In this section we present two classic drift theorems, the additive and the multiplicative drift theorem (see
Section 2.1 [The Additive and the Multiplicative Drift Theorems]). These two theorems are the basis for most
analyses made by drift theory, and many more advanced drift theorems are variations of these two core
examples. We give a number of instructive examples for how and when the theorems are helpful in Section 2.2
[Some Simple Applications], followed by two more complex examples in Section 2.3 [More Complex Problems];
at the end of this section, in Section 2.4 [Classic Results for Evolutionary Algorithms], we provide two classic
applications from the theory of randomized search heuristics. Note that, for this section, we refrain from
diving into the technically most powerful statements and present simpler versions of these theorems; stronger
versions can be found in Section 5 [The Zoo: A Tour of Drift Theorems].

2.1 The Additive and the Multiplicative Drift Theorems

We state the two most commonly used drift theorems. The first drift theorem is the additive drift theorem,
which requires a uniform bound on the expected change of a random process. It is due to [HY01, HY04].
The very general version given here is due to [KK19], where also an instructive proof can be found. We give
another proof on Theorem 5.1 [Additive Drift, Upper Bound, Time Condition].

Theorem 2.1: Additive Drift, Upper Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore, suppose the
following two conditions hold (non-negativity, drift).

(NN) For all 𝑡 ≤ 𝑇 , 𝑋𝑡 ≥ 0.

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

Then
E[𝑇 ] ≤ E[𝑋0]

𝛿
.

The condition (D) is the drift condition, this is where we require the additive progress towards the target state 0.
Note that we require to have drift for all possible histories 𝑋0, . . . , 𝑋𝑡 of the process. In many applications, we
have a Markov chain, which implies that conditioning on the history is equivalent on conditioning on 𝑋𝑡 only.
See Section 8 [Drift as an Average: A Closer Look on the Conditioning of Drift] for a detailed discussion on
what to condition on.

The condition (NN) requires non-negativity of the process. We cannot allow the process to assume smaller
values than the target 0 as demonstrated by the following example.

Example 2.2: Additive Drift and Processes Reaching Negative Numbers — Suppose our process
starts with 𝑋0 = 5 and, in each iteration deterministically, the process decreases by 2. Then the expected
time (in fact, the deterministic time) until 𝑋𝑡 ≤ 0 is exactly 3. If we want to apply Theorem 2.1 [Additive
Drift, Upper Bound] we use that the expected gain is 2, so the conclusion suggests an expected time of
2.5. This incorrect conclusions comes from the disregard for (NN).
We can amplify this effect with the following example. Let (𝑋𝑡 )𝑡 ∈ℕ be a random process with 𝑋0 = 1
and, for all 𝑡 ∈ ℕ, with probability 1 − 1/𝑛, 𝑋𝑡+1 = 𝑋𝑡 and otherwise 𝑋𝑡+1 = −𝑛 + 1; the expected time
until 𝑋𝑡 ≤ 0 is 𝑛 (since it follows a geometric distribution with probability 1/𝑛), while the expected
gain is 1, for which the additive drift theorem would suggest an expected time of 1.
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Note that there are also additive drift theorems that remove the condition (NN) and instead incorporate an
additional term in the conclusion, see Theorem 5.3 [Additive Drift, Upper Bound with Overshooting].

The additive drift theorem also allows for a corresponding lower bound as follows [HY01, HY04, KK19].
In Theorem 3 of [KST11], this theorem was used to show a lower bound to derive an asymptotically

tight run time analysis of an evolutionary algorithm. Another application can be found in Theorem 4 of
[FKL+17, FKL+20].

Theorem 2.3: Additive Drift, Lower Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore, suppose the
following conditions (bounded steps, drift).

(B) There is a 𝑐 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[|𝑋𝑡 − 𝑋𝑡+1 | | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝑐 .

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝛿 .

Then
E[𝑇 ] ≥ E[𝑋0]

𝛿
.

For this lower bound we need to require (B), a bounded expected step size. This is to avoid counterexamples
like the following process.

Example 2.4: Additive Drift and Unbounded Step Size — Let (𝑋𝑡 )𝑡 ∈ℕ with 𝑋0 = 1 and, for all
𝑡 , with probability 1/2, 𝑋𝑡+1 = 0 and otherwise 𝑋𝑡+1 = 2𝑋𝑡 − 2𝛿 . This process exhibits a drift of 𝛿 ,
suggesting an expected time of 1/𝛿 , but the true time until 𝑋𝑡 ≤ 0 is again geometrically distributed,
this time with probability 1/2, giving an expected time of 2.

In order to apply an additive drift theorem, one has to find a single constant 𝛿 bounding drift uniformly.
However, for processes where large parts of the state space exhibit a drift very differnt from this uniform
bound, stronger results can be obtained by using a drift theorem which allows for a different drift in different
states of the process.

The multiplicative drift theorem covers the case where the drift is proportional to the current value of the
process. It is due to [DJW10], with tail bounds given in [DG10].

Theorem 2.5: Multiplicative Drift

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable process over {0, 1} ∪ 𝑆 , where 𝑆 ⊂ ℝ>1, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}.
Assume that there is a 𝛿 ∈ ℝ+ such that, for all 𝑠 ∈ 𝑆 ∪ {1} and all 𝑡 < 𝑇 , it holds that

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿𝑋𝑡 .

Then
E[𝑇 ] ≤ 1 + ln E[𝑋0]

𝛿
.

Further, for all 𝑘 > 0 and 𝑠 ∈ 𝑆 ∪ {1} with Pr[𝑋0 ≤ 𝑠] > 0, it holds that

Pr
[
𝑇 >

𝑘 + ln 𝑠
𝛿

| 𝑋0 ≤ 𝑠

]
≤ e−𝑘 .

The condition (D) gives a bound dependent on the history, specifically dependent on the “current” value of
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the process. Intuitively it requires that, if the process has a current value of 𝑋𝑡 = 𝑠 , then the drift is at least 𝛿𝑠 .
In fact, the multiplicative drift theorem is frequently stated with a condition of 𝑋𝑡 = 𝑠 instead of 𝑋0, . . . , 𝑋𝑡 ,
and the upper bound is written as 𝛿𝑠 instead of 𝛿𝑋𝑡 . See Section 8 [Drift as an Average: A Closer Look on the
Conditioning of Drift] for a detailed discussion on the different ways to write a drift theorem.

These drift theorems cover a lot of applications; the remainder of this section gives a range of use cases. Most
scientists consider the drift theorems stated above first before turning to other drift theorems (see Section 5
[The Zoo: A Tour of Drift Theorems] for a list and discussion of such alternatives). An incomplete list of some
applications of these basic theorems, regarding the analysis of evolutionary algorithms, is as follows.

• Theorem 15 of [KSNO12] uses it for a simple 𝑂 (𝑛 log𝑛) bound.

• Similarly easy arguments are given in Theorems 14 and 17 of [DDK15].

• A number of applications is given in [FKL+17, FKL+20].

• Lemma 2 of [KM12] uses the concentration bound of Theorem 2.5 [Multiplicative Drift].

• So does Theorem 9 of [FKKS15a] (see also Theorem 9 of [FKKS17]) for the analysis of the cGA.

• The application in Theorem 9 of [FK13] is a bit more intricate argument for an upper bound via multi-
plicative drift.

• Similarly in Theorems 8 and 15 of [FKKS15b] for the analysis of an ant colony optimization (ACO)
algorithm optimizing noisy OneMax.

We note that, in our applications of the drift theorems in the following, we do not show that the random
processes under consideration are integrable, since this is easily observed from the context that they are
defined in.

2.2 Some Simple Applications

We will start by looking at the process from Section 1 [What is Stochastic Drift?] about collecting coupons, a
classic process analyzed in many text books on random processes. We start with a (suboptimal) analysis via
additive drift.

Theorem 2.6: Coupon Collector with Additive Drift

Suppose we want to collect at least one of each color of 𝑛 ∈ ℕ≥1 coupons. Each round, we are given
one coupon chosen uniformly at random from the 𝑛 colors. Then, in expectation, we have to collect for
at most 𝑛2 rounds.

Proof. Let 𝑋𝑡 be the number of coupons missing after 𝑡 rounds and let𝑇 be the random variable describing the
first time such that𝑋𝑡 = 0. Furthermore, let 𝑡 < 𝑇 . The probability of making progress (of 1) with coupon 𝑡 +1 is
at least𝑋𝑡/𝑛. In the worst case, when only one color is missing, this is still 1/𝑛. Thus, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] =
𝑋𝑡/𝑛 ≥ 1/𝑛. Since we start with 𝑋0 = 𝑛 missing colors, an application of Theorem 2.1 [Additive Drift, Upper
Bound] gives the desired upper bound of 𝑛2 rounds, using 𝛿 = 1/𝑛. ■

The analysis with additive drift completely disregards the very high probability of finding new colors while
still a lot of colors are missing. Thus, the analysis with multiplicative drift gives a much better bound, as the
following theorem shows. In a sense, the multiplicative drift theorem is a generalization of the classic analysis
of the coupon collector process; or, vice versa, the analysis of the coupon collector process follows directly
from the multiplicative drift theorem.
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Theorem 2.7: Coupon Collector with Multiplicative Drift

Suppose we want to collect at least one of each color of 𝑛 ∈ ℕ≥1 coupons. Each round, we are given
one coupon chosen uniformly at random from the 𝑛 colors. Then, in expectation, we have to collect for
at most 𝑛(1 + ln𝑛) rounds. Furthermore, for all 𝑘 ∈ ℝ>0, overshooting this time by 𝑘𝑛 has a probability
of at most e−(𝑘+1) .

Proof. Let 𝑋𝑡 be the number of coupons missing after 𝑡 rounds and let𝑇 be the random variable describing the
first time such that 𝑋𝑡 = 0. Furthermore, let 𝑡 < 𝑇 . The probability of making progress (of 1) with coupon 𝑡 + 1
is 𝑋𝑡/𝑛. Thus, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] = 𝑋𝑡/𝑛. An application of Theorem 2.5 [Multiplicative Drift] gives the
desired result. ■

A lower bound can be derived with an appropriate lower bounding multiplicative drift theorem (see
Theorem 5.12 [Coupon Collector, Lower Bound]). Since the process is monotone, both an upper and a lower
bound can be derived with the fitness level method, see Theorem 6.6 [Coupon Collector, Lower Bound via
Fitness Levels].

Using an analogous proof as in Theorem 2.7 [Coupon Collector with Multiplicative Drift], one can directly
analyze a generalized version of the coupon collector process as follows.

Theorem 2.8: Generalized Coupon Collector

Suppose we want to collect at least one of each color of 𝑛 ∈ ℕ≥1 coupons. For each color of coupon and
each round, we get this color of coupon with probability at least 𝑝 ∈ (0, 1]. Then, in expectation, we
have to wait for at most (1 + ln𝑛)/𝑝 rounds. Furthermore, for all 𝑘 ∈ ℝ>0, overshooting this time by
𝑘/𝑝 has a probability of at most e−(𝑘+1) .

Proof. Let 𝑋𝑡 be the number of coupons missing after 𝑡 rounds and let𝑇 be the random variable describing the
first time such that𝑋𝑡 = 0. Furthermore, let let 𝑡 < 𝑇 . The expected progress is E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑝𝑋𝑡 ,
since the expected number of missing coupons that we get in the next iteration is 𝑝𝑋𝑡 . An application of
Theorem 2.5 [Multiplicative Drift] gives the desired result. ■

Note that this generalized version does not make any assumptions on how many coupons we get per
iteration, or whether these indicator random variables are in any way correlated.

We now turn to the well-known geometric distribution. The typical computation for its expectation involves
modifying infinite sums. Using drift, the computation is rather simple. Furthermore, our analysis allows for
processes where the probability of success changes over time and depends on the history, but a uniform bound
on this probability is known.

Theorem 2.9: Geometric Distribution

Let (𝑋𝑡 )𝑡 ∈ℕ be some random process where, in each iteration, a success event happens with some
probability, possibly dependent on the history of the process; we let 𝑆 (𝑋0, . . . , 𝑋𝑡 ) denote the success
event. Then the following estimates hold for all 𝑝 ∈ (0, 1].

(1) If, for each 𝑡 , Pr[𝑆 (𝑋0, . . . , 𝑋𝑡 ) | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝑝 , then the expected time until any success event
happened is at least 1/𝑝 .

(2) If, for each 𝑡 , Pr[𝑆 (𝑋0, . . . , 𝑋𝑡 ) | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑝 , then the expected time until any success event
happened is at most 1/𝑝 .

(3) If, for each 𝑡 , Pr[𝑆 (𝑋0, . . . , 𝑋𝑡 ) | 𝑋0, . . . , 𝑋𝑡 ] = 𝑝 , then the expected time until any success event
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happened is exactly 1/𝑝 .

Proof. We start with the first statement. For all 𝑡 ∈ ℕ, let 𝑋𝑡 be 0 if a success event has happened within the
first 𝑡 iterations, and 1 otherwise. We let 𝑇 be the random variable describing the first time that a success
event happened. Furthermore, let 𝑡 < 𝑇 . Then E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝑝 . Thus, Theorem 2.3 [Additive
Drift, Lower Bound] give us the corresponding bounds of at least 1/𝑝 iterations until the first success event.
Analogously, we get the second statement from Theorem 2.1 [Additive Drift, Upper Bound]. The third statement
is the conjunction of the first two. ■

Next we consider a sequence of fair coin tosses. Known as the Gambler’s Fallacy is the believe that a
sequence of “heads” makes the occurrence of “tails” more likely. Quite in contrast to this, for any given 𝑘 ∈ ℕ
there will be an occurrence of 𝑘 “heads” in a row if the coin is tossed sufficiently often. In the following
theorem we derive exactly how long we have to wait in expectation for such an event to happen. In the proof
we apply the additive drift theorem not going down towards 0, but going up to a value of 𝑘 . Since the additive
drift is symmetrical, we can use it in either direction equally.

Theorem 2.10: Winning Streaks

Let 𝑘 ∈ ℕ be given. Consider flipping a fair coin indefinitely. Then the expected number of coin flips
until the first time that heads comes up 𝑘 times in a row is (exactly) 𝑓 (𝑘) = 2𝑘+1 − 2.

Proof. For all 𝑡 ∈ ℕ, let 𝑅𝑡 be the length of the current streak of heads after 𝑡 iterations (𝑅𝑡 = 0 if in iteration
𝑡 we got tails, as well as before any coin flip at 𝑡 = 0). In the following computation, we will condition on a
value for the current search point, which is equivalent to conditioning on the history since our process is a
discrete Markov chain (see Section 8 [Drift as an Average: A Closer Look on the Conditioning of Drift] for
details). Let 𝑋𝑡 = 𝑓 (𝑅𝑡 ) be our process for which we aim to show drift. Let 𝑖 ∈ ℕ be given. If our current streak
of heads is 𝑖 , then in the next iteration one of two things happens: either we lose all progress, falling to a 0
heads, or we now have a streak of 𝑖 + 1 heads. Each happens with probability 1/2, so we have

E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋𝑡 = 𝑓 (𝑖)] = E[𝑋𝑡+1 | 𝑋𝑡 = 𝑓 (𝑖)] − 𝑓 (𝑖)

=
1
2 𝑓 (𝑖 + 1) + 1

2 𝑓 (0) − 𝑓 (𝑖)

=
(
2𝑖+2/2 − 2/2

)
+ 0/2 − (2𝑖+1 − 2)

= 1.

Thus, using Theorem 2.1 [Additive Drift, Upper Bound] and Theorem 2.3 [Additive Drift, Lower Bound] together,
going up instead of down, we get an expected number of iterations of 𝑓 (𝑘) = 2𝑘+1 − 2 to reach a streak of 𝑘
heads. ■

Note that the potential function in the last proof, as in many places where potential functions are used, is
not intuitive, so let us discuss where this potential function comes from. We decide we want to set up for
additive drift, since the additive drift theorem gives both lower and upper bounds. Since any potential function
that gives an additive drift can be normalized to give an additive drift of 1, we search for a potential function
that gives a drift of exactly 1. From the two possible outcomes of the coin flipping process in each iteration, we
now get the condition of 𝑓 (𝑖 + 1)/2− 𝑓 (𝑖) = 1 for the potential 𝑓 . In this case, this is a straightforward and easy
to solve recurrence relation, so that with the (arbitrary) setting of 𝑓 (0) = 0 we get the desired formula for 𝑓 .

For a more in-depth discussion of potential functions and their use for the application of drift theorem, see
Section 3 [The Art of Potential Functions].

11 / 72



Theory of Stochastic Drift Timo Kötzing

2.3 More Complex Problems

In contrast to the previous applications of drift theorems, the following examples consider processes that are
not Markovian. This is no problem for the drift theorems, but the user now has to make sure that all bounds
hold regardless of the history, not just with respect to the current value of the process.

Our next example is a randomized algorithm for finding, in expectation, a 2-approximation of the classical
vertex cover problem. For an undirected graph (𝑉 , 𝐸), a subset𝐶 ⊆ 𝑉 such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 or 𝑣 is in𝐶

is called a vertex cover. By Theorem 2.1 [Additive Drift, Upper Bound], we easily bound the expected size of
the vertex cover that the algorithm constructs.

Theorem 2.11: Vertex Cover Approximation

Given an undirected graph, iteratively choose an uncovered edge and add uniformly at random an
endpoint to the cover. Then, in expectation, the resulting cover is a 2-approximation of an optimal
vertex cover of the given graph.

Proof. Let a graph𝐺 be given. Furthermore, fix a minimum vertex cover𝐶 . For all 𝑡 , let 𝐷𝑡 be the set of vertices
chosen by the algorithm after 𝑡 iterations. Let𝑋𝑡 be 0 if 𝐷𝑡 is a vertex cover, and otherwise let𝑋𝑡 be the number
of vertices of𝐶 that are not in 𝐷𝑡 . Clearly, the algorithm terminates exactly when 𝑋𝑡 = 0. Furthermore, in each
step and regardless of the history, the algorithm selects a vertex from 𝐶 with probability at least 1/2, since,
for every edge of 𝐺 , at least one of the endpoints is in 𝐶 . We get E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 1

2 . Hence, using
Theorem 2.1 [Additive Drift, Upper Bound], we get that the algorithm terminates in expectation after choosing
2|𝐶 | vertices. ■

The next example considers a simple randomized sorting algorithm. This and similar sorting algorithms were
considered by Scharnow, Tinnefeld, and Wegener [STW04] (before the advent of drift theory). The analysis via
the multiplicative drift theorem is short, easy and intuitive.

Theorem 2.12: Random Sorting

Consider the sorting algorithm which, given an input array 𝐴 of length 𝑛 ∈ ℕ≥1, iteratively chooses
two different positions of the array uniformly at random and swaps them if and only if they are out
order. Then the algorithm obtains a sorted array after 𝛩 (𝑛2 log𝑛) iterations in expectation.

Proof. For all 𝑖, 𝑗 ∈ [𝑛] with 𝑖 < 𝑗 , an ordered pair (𝑖, 𝑗) is called an inversion if and only if 𝐴[𝑖] > 𝐴[ 𝑗]. Note
that the maximum number of inversions is

(
𝑛
2
)
. Let 𝑋𝑡 be the number of inversions after 𝑡 ∈ ℕ iterations, and

let 𝐴𝑡 denote the array after that iteration. If the algorithm chooses a pair which is not an inversion, nothing
changes. If the algorithm chooses an inversion (𝑖, 𝑗), then this inversion is removed; for any other inversion,
only indices 𝑘 ∈ [𝑖 .. 𝑗] are relevant. If 𝐴𝑡 [𝑘] < 𝐴𝑡 [ 𝑗] (< 𝐴𝑡 [𝑖]), then (𝑖, 𝑘) is an inversion before and after the
swap, while (𝑘, 𝑗) is neither an inversion before nor after the swap; similarly for 𝐴𝑡 [𝑘] > 𝐴𝑡 [𝑖] (> 𝐴𝑡 [ 𝑗]).
Finally, if 𝐴𝑡 [ 𝑗] < 𝐴𝑡 [𝑘] < 𝐴𝑡 [𝑖], then (𝑖, 𝑘) and (𝑘, 𝑗) are inversions before the swap but are not afterwards.
Overall, this shows that the number of inversions goes down by at least 1 whenever the algorithm chooses an
inversion for swapping, regardless of the history.

Let 𝑡 be such that 𝐴𝑡 is not sorted. Since the probability of the algorithm choosing an inversion is 𝑋𝑡/
(
𝑛
2
)
, we

get E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑋𝑡/
(
𝑛
2
)
. An application of Theorem 2.5 [Multiplicative Drift] gives the desired

upper bound.
Regarding the lower bound, consider the array 𝐴 which is almost sorted but the first and second element

are swapped, the third and fourth, and so on. Then the algorithm effectively performs a coupon collector
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process on 𝑛/2 coupons, where each has a probability of 1/
(
𝑛
2
)

to be collected. This takes an expected time of
𝛺 (𝑛2 log𝑛) with a proof analogous to that of Theorem 5.12 [Coupon Collector, Lower Bound]. ■

2.4 Classic Results for Evolutionary Algorithms

The basic evolutionary algorithm (EA) we want to analyze is the (1 + 1) EA; it proceeds as follows (see also
Section 9.1 [Algorithms]).

Algorithm 1: The (1 + 1) EA
1 Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random
2 for 𝑖 = 1 to∞ do

3 𝑦← mutate(𝑥)
4 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦

The (1+1) EA minimizing a function 𝑓 : {0, 1}𝑛 → ℝ. Mutation flips each bit independently with probability
1/𝑛.

The algorithm is set up to maximize the given function 𝑓 ; by turning around the inequality in line 4, we get
the analogous algorithm for minimization.

The two cardinal test functions that are used to analyze the performance of evolutionary algorithms are
OneMax and LeadingOnes:

• OneMax is a function {0, 1}𝑛 → ℝ mapping any bit string to the number of 1s in the bit string.

• LeadingOnes is a function {0, 1}𝑛 → ℝ mapping any bit string to the number of 1s before the first 0 (if
any) in the bit string (the number of leading 1s).

See also Definition 9.1 [Test Functions].

Theorem 2.13: (1 + 1) EA on OneMax

Consider the (1 + 1) EA maximizing the fitness function OneMax. Then the expected time for the
algorithm to find the global optimum 1𝑛 is O(𝑛 log𝑛) iterations.

Proof. For all 𝑡 , let 𝑋𝑡 be the Hamming distance to the optimum of the current individual after 𝑡 iterations. We
want to use the multiplicative drift theorem and estimate the drift as follows. If the currently best search point
has a Hamming distance of 𝑠 , then, for each bit 𝑖 of the 𝑠 missing positions, the event of flipping position 𝑖 and
no other when producing offspring will result in an accepted offspring with a distance of 1 less to the optimum.
These events are disjoint (since only one bit flips) and each has a probability of 1/𝑛 · (1 − 1/𝑛)𝑛−1 ≥ 1/(𝑒𝑛).
Since the (1 + 1) EA does not accept worsenings, no other event can contribute negatively to the drift, so we
can pessimistically assume a contribution of 0 to the drift in all other cases. Thus, we get

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑋𝑡/(𝑒𝑛) .

An application of Theorem 2.5 [Multiplicative Drift] gives the desired upper bound since 𝑋0 ≤ 𝑛. ■

Theorem 2.14: (1 + 1) EA on LeadingOnes

Consider the (1 + 1) EA maximizing the fitness function LeadingOnes. Then the expected time for the
algorithm to find the optimum is O

(
𝑛2) iterations.
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Proof. For all 𝑡 , let 𝑋𝑡 be the number of leading ones of the current individual after 𝑡 iterations (i.e. the fitness).
We want to use the additive drift theorem and estimate drift as follows. Improving the fitness of the current
individual requires flipping its first 0 and none of the previous positions. There are at most 𝑛 − 1 previous
positions, so the probability is at least 1/𝑛 · (1 − 1/𝑛)𝑛−1 ≥ 1/(𝑒𝑛). An improvement is an improvement by at
least 1. Since the (1 + 1) EA does not accept worsenings, no event can contribute negatively to the drift, so we
can pessimistically assume a contribution of 0. Thus, we get

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 1/(𝑒𝑛) .

An application of Theorem 2.1 [Additive Drift, Upper Bound] gives the desired upper bound since 𝑋0 ≥ 0 and
the target is at 𝑛. ■

Note that much more precise bounds are known for the optimization time of the (1+1) EA on LeadingOnes,
see Theorem 6.7 [Run Time of (1 + 1) EA on LeadingOnes].
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3 The Art of Potential Functions

Drift theorems can be applied to random processes on ℝ. For the analysis of randomized algorithms, this
typically means that one has to map the state of the algorithm to a real number, so that the resulting process
will be a process on ℝ. Such a mapping is called potential function and we already saw multiple in Section 2 [A
Gentle Introduction to Classic Drift Theorems]. Especially in the proof of Theorem 2.10 [Winning Streaks] we
saw that sometimes unintuitive potential functions can lead to very strong results. In fact, one could say that
the art of applying drift theorems is in choosing the right potential function. Later in this work, for example in
the proof of Theorem 4.1 [Unbiased Random Walk on the Line], we see yet more intricate potential functions.
In this section, we want to discuss a few cardinal examples.

3.1 A Simple Heuristic for Choosing Potential Functions

There is a very important rule of thumb to designing potential functions: better search points should have
better potential. The following example showcases this.

Example 3.1: Better Search Points with Better Potential — Let (𝑋𝑡 )𝑡 ∈ℕ be a Markov chain with
𝑋0 = 2 and, for all 𝑡 , if 𝑋𝑡 = 2 then, with probability 1 − 1/100, 𝑋𝑡+1 = 0 and otherwise 𝑋𝑡+1 = 1; if
𝑋𝑡 = 1 then 𝑋𝑡+1 = 0 with probability 1/100 and 𝑋𝑡+1 = 1 otherwise. Additive drift provides an upper
bound of an expected 200 iterations to reach 0 (since the lowest drift of 1/100 is encountered in state 1
and we start in state 2).
This process is very much misleading in that state 1 sounds like it is closer than 2 to the target of 0,
when actually it is not. Consider the potential function 𝑓 (0) = 0, 𝑓 (1) = 100 and 𝑓 (2) = 2. Now both
states 1 and 2 have an drift of exactly 1 towards the target 0, and we start in a state with potential 2, so
we get an expected time of 2 to reach 0 from the additive drift theorem.

From this example we see that what seems “natural” (because some process on the reals presents itself)
might not be the best for drift. In fact, as we will see later in this section, a potential can turn drift away from
the optimum into drift towards the optimum.

The example can be generalized to arbitrary processes: on time-homogeneous Markov chains, the best
potential for getting a tight bound with the additive drift theorem is the potential which assigns each state the
time until finding the target from starting in that state. The next theorem from [HY04] makes this formal.

Theorem 3.2: Expected Time as Potential

Let X be some state space and let (𝑋𝑡 )𝑡 ∈ℕ be a time-homogeneous Markov chain on X and let 𝑂 ⊆ X
be a set of targets. For any 𝑥 ∈ X, let 𝑇 (𝑥) be the random variable describing the number of steps until
reaching an element in 𝑂 (for the first time) when starting in 𝑥 , and suppose that all such 𝑇 (𝑥) have
finite expectation. We define

𝑔 : X → ℝ, 𝑥 ↦→ E[𝑇 (𝑥)] .

Then, for all 𝑡 with 𝑋𝑡 ∉ 𝑂 ,
E[𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) | 𝑡 < 𝑇 (𝑋0)] = 1.

Proof. Since (𝑋𝑡 )𝑡 ∈ℕ is a time-homogeneous Markov-chain, let an operator 𝜃 be given such that, for all 𝑡 ∈ ℕ,
𝑋𝑡+1 = 𝜃 (𝑋𝑡 ). For all 𝑖 ∈ ℕ, we use 𝜃 𝑖 to denote the 𝑖-times self-composition of 𝜃 . In particular, for all 𝑡 ∈ ℕ,
we have

𝑇 (𝑋𝑡 ) = min
𝑖∈ℕ

𝜃 𝑖 (𝑋𝑡 ) ∈ 𝑂 = min
𝑖∈ℕ

𝑋𝑡+𝑖 ∈ 𝑂.
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For all 𝑡 ∈ ℝ, conditional on 𝑡 < 𝑇 (𝑋0) (which implies 𝑋𝑡 ∉ 𝑂) we thus have

𝑇 (𝑋𝑡+1) = min
𝑖∈ℕ

𝑋𝑡+𝑖+1 ∈ 𝑂 =

(
min
𝑖∈ℕ

𝑋𝑡+𝑖 ∈ 𝑂
)
− 1 = 𝑇 (𝑋𝑡 ) − 1.

In particular,

E[𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) | 𝑡 < 𝑇 (𝑋0))] = E[E[𝑇 (𝑋𝑡 )] − E[𝑇 (𝑋𝑡+1)] | 𝑡 < 𝑇 (𝑋0)]
= E[E[𝑇 (𝑋𝑡 )] − E[𝑇 (𝑋𝑡 ) − 1] | 𝑡 < 𝑇 (𝑋0)]
= 1.

This shows the claim. ■

The theorem is interesting for understanding what a good potential should be; in order to apply a drift
theorem it is, however, completely useless: We could now use upper and lower additive drift theorems and the
proven drift of 1 to derive an expected time of E[𝑔(𝑋0)] to find an element of 𝑂 when starting in 𝑋0. But 𝑔(𝑋0)
is defined to be the expected time to find an element from 𝑂 when starting in 𝑋0, so we arrived where we
started.

Note that, in general, after mapping a Markov chain with a potential function, the resulting process is not
necessarily a Markov chain anymore. This is not a problem at all, since a well-formulated drift theorem does
not need the requirement of the process being a Markov chain, see Section 8 [Drift as an Average: A Closer
Look on the Conditioning of Drift] for a discussion.

When considering optimization algorithms, it is sometimes easy to show that the distance to the optimum or
directly the fitness decreases in expectation in each step. This means that this would make for a good potential
function; but sometimes this expected change is either too weak, too hard to analyze or even negative. In this
case, more inventive potential functions are sought, which is the concern of the remainder of this section.

Before we dive into developing concrete potential functions, we discuss normalizing potential functions.
This will later make one decision very easy for us.

Theorem 3.3: Normalizing Additive Drift

Let X be some state space and let (𝑋𝑡 )𝑡 ∈ℕ be a random process on X. Let 𝑐 ∈ ℝ>0 and let 𝑔 : X → ℝ be
any potential function such that

E[𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) | 𝑔(𝑋0), . . . , 𝑔(𝑋𝑡 )] ≥ 𝑐.

Then there is a potential function 𝑔 : X → ℝ such that

E[𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) | 𝑔(𝑋0), . . . , 𝑔(𝑋𝑡 )] ≥ 1,

and E[𝑔(𝑋0)] = E[𝑔(𝑋0)]/𝑐 .

Proof. We choose 𝑔 = 𝑔/𝑐 . ■

The theorem shows that, whenever there is any potential function at all amenable to analysis by additive
drift, there is one with an drift of 1. Note that normalization has no impact on the resulting time bound, since
the starting value is scaled correspondingly (and now equals the time bound derived by the additive drift
theorem).
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3.2 Potential Functions for Two-Part Drift

In our first example, we want to “glue together” two drift regimes.

Example 3.4: Gluing Together Fitness Functions — Let (𝑋𝑡 )𝑡 ∈ℕ be a discrete integrable process on
[0, 𝑛] with 𝑋0 = 𝑛 and let 𝑘 ∈ [0..𝑛]. Let 𝑇 be the first time 𝑡 such that 𝑋𝑡 = 0. Suppose that we have

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ≥ 𝑘] ≥ 2

and
E[𝑋𝑡 − 𝑋𝑡+1 | 0 < 𝑋𝑡 < 𝑘] ≥ 1.

In other words: while the potential is high, we get a drift of 2, for small values only a drift of 1. Further
assume that, if 𝑋𝑡 < 𝑘 , then also 𝑋𝑡+1 < 𝑘 . We want to show that

E[𝑇 ] ≤ 𝑛 + 𝑘
2 .

In order to make use of the stronger drift for large values of the process, we choose the potential
function

𝑔 : ℝ→ ℝ, 𝑥 ↦→
{
𝑥, if 𝑥 < 𝑘 ;
(𝑥 + 𝑘)/2, otherwise.

We have 𝑔(𝑋0) = (𝑛 + 𝑘)/2, so it is sufficient to show a drift of at least 1 to get our desired bound. This
holds trivially for 𝑋𝑡 < 𝑘 , heavily relying on the fact that this implies 𝑋𝑡+1 < 𝑘 . For the following
reasoning, note that, for all 𝑥 ∈ ℝ, 𝑔(𝑥) ≤ (𝑥 + 𝑘)/2. For 𝑋𝑡 ≥ 𝑘 , we see

E[𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) | 𝑋𝑡 ≥ 𝑘] ≥ E[(𝑋𝑡 + 𝑘)/2 − (𝑋𝑡+1 + 𝑘)/2 | 𝑋𝑡 ≥ 𝑘]
= E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ≥ 𝑘]/2
≥ 1.

This shows a drift of 1 in potential and thus gives the desired bound using Theorem 2.1 [Additive Drift,
Upper Bound].

Note that the potential function 𝑔 used in the proof above is concave, so in the main derivation in the proof
we could have reasoned with Jensen’s Inequality. Thus, this approach generalizes to other concave potential
functions.

3.3 (1 + 1) EA on Linear Functions

One of the most famous examples of an analysis with potential functions and drift theory is the analysis of the
(1 + 1) EA (see Section 9.1 [Algorithms]) on linear functions. In fact, the paper introducing the multiplicative
drift analysis [DJW12] used this drift theorem with a suitable potential function to show an upper bound of
(1 + 𝑜 (1)) 1.39𝑒 𝑛 ln(𝑛) on arbitrary linear functions. This bound was later improved to (1 ± 𝑜 (1)) 𝑒 𝑛 ln(𝑛),
including a matching lower bound, in [Wit13], with a more intricate potential function that crucially depended
on the concrete linear function.

Here we give a simple proof from [DJW12], showcasing the use of potential functions which achieves a
bound of (1 + 𝑜 (1)) 4𝑒 𝑛 ln(𝑛). We will further restrict the linear functions to have no duplicate weights,
avoiding to treat this edge case.
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Theorem 3.5: (1 + 1) EA on Linear Functions, no duplicated weights

Let 𝑓 be any linear function without duplicate weights. The expected time until the (1 + 1) EA on 𝑓

samples the optimum for the first time is (1 + 𝑜 (1)) 4𝑒 𝑛 ln(𝑛).

Proof. Let 𝑤1, . . . , 𝑤𝑛 be the weights of 𝑓 . We note that the (1 + 1) EA is unbiased, that is, “reordering” the bit
positions and swapping the “meaning” of 0 and 1, leads to analogous behavior of the algorithm [LW12]. Thus,
we can assume, without loss of generality, that the weights are ordered decreasingly and are positive, that is,

𝑤1 > 𝑤2 > . . . > 𝑤𝑛 > 0.

Now we define our potential function as follows. Let 𝑔 : {0, 1}𝑛 → ℝ be such that, for all 𝑥 ∈ {0, 1}𝑛 ,

𝑔(𝑥) =
𝑛∑︁
𝑖=1
(2 − 𝑖/𝑛) (1 − 𝑥𝑖) .

This potential essentially awards a potential weight between 1 and 2 to any incorrectly set bit, where higher
potential weight for a bit position corresponds with higher weight of this bit position in the objective function.
We call 2 − 𝑖/𝑛 also the potential of bit 𝑖 .

For each 𝑡 ≥ 0, let 𝑋𝑡 be the current best bit string found by the (1 + 1) EA after 𝑡 iterations. We want to
show that there is multiplicative drift in (𝑔(𝑋𝑡 ))𝑡 ∈ℕ. To that end, fix 𝑡 ∈ ℕ. Let 𝐼 = {𝑖 ≤ 𝑛 | 𝑥𝑖 = 0} be the set of
positions where the current best bit string has a 0. We define a number of events that we want to distinguish;
these events will be a partition of the entire event space at iteration 𝑡 .

• For each 𝑖 ∈ 𝐼 , let 𝐴𝑖 be the event that bit 𝑖 is the only 0-bit which is flipped by mutation and the final
offspring is accepted.

• Let 𝐶 be the event that at least 2 of the 0 bits are flipped.

• Let 𝐷 be the event that no 0 bit is flipped.

Let 𝛥 = 𝑔(𝑋𝑡 ) − 𝑔(𝑋𝑡+1) be the drift. We can now get the following breakup of the drift by the law of total
expectation.

E[𝛥 | 𝑔(𝑋𝑡 )] = E[𝛥 | 𝑔(𝑋𝑡 ),𝐶] Pr[𝐶 | 𝑔(𝑋𝑡 )]
+ E[𝛥 | 𝑔(𝑋𝑡 ), 𝐷] Pr[𝐷 | 𝑔(𝑋𝑡 )]
+

∑︁
𝑖∈𝐼

E[𝛥 | 𝑔(𝑋𝑡 ), 𝐴𝑖] Pr[𝐴𝑖 | 𝑔(𝑋𝑡 )] .

If no 0 bit flips (event 𝐷), then any flip of a 1 bit will result in worse offspring, which will be discarded; thus,
E[𝛥 | 𝑔(𝑋𝑡 ), 𝐷] = 0.

Now consider event 𝐶 . At least two 0 bits flip, leading to an increase in potential of at least 2. There are
at most 𝑛 many 1 bits, each flipping with a probability of 1/𝑛 and the potential associated with that bit is
strictly less than 2. Thus we lose (in expectation) strictly less than a potential of 2 from flipping 1 bits, but we
gain a potential of at least 2 from flipping 0 bits. Furthermore, the result might be accepted or not, and if it is
not accepted, then 𝛥 = 0. Note that, the more 1 bits are flipped, the less likely the offspring is accepted, so
there is a negative correlation between number of 1 bits flipped and the probability of acceptance. This shows
E[𝛥 | 𝑔(𝑋𝑡 ),𝐶] ≥ 0.

Now we consider the events 𝐴𝑖 . Note that, for all 𝑖 ∈ 𝐼 , 𝑃 (𝐴𝑖) ≥ (1 − 1/𝑛)𝑛−1/𝑛 ≥ 1/𝑒𝑛, since the event that
bit 𝑖 flips and no other is a subevent of 𝐴𝑖 . Not flipping 𝑛 − 1 bits has a probability of (1− 1/𝑛)𝑛−1, and flipping
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a specific bit has a probability of 1/𝑛. Crucially, it is impossible that any bit with position < 𝑖 flips and the
offspring is accepted, since it has a (strictly!) higher weight than bit 𝑖 (and bit 𝑖 is the only 0 bit that flips).

Overall, we have the following.

E[𝛥 | 𝑔(𝑋𝑡 )] ≥
∑︁
𝑖∈𝐼

E[𝛥 | 𝑔(𝑋𝑡 ), 𝐴𝑖] Pr[𝐴𝑖 | 𝑔(𝑋𝑡 )]

≥
∑︁
𝑖∈𝐼

1
𝑒𝑛

E[𝛥 | 𝑔(𝑋𝑡 ), 𝐴𝑖]

≥ 1
𝑒𝑛

∑︁
𝑖∈𝐼

[(
2 − 𝑖

𝑛

)
−

𝑛∑︁
𝑗=𝑖+1

1
𝑛

(
2 − 𝑗

𝑛

)]
=

1
𝑒𝑛

∑︁
𝑖∈𝐼

[(
2 − 𝑖

𝑛

)
− 1
𝑛

(
2(𝑛 − 𝑖) −

∑𝑛
𝑗=𝑖+1 𝑗

𝑛

)]
=

1
𝑒𝑛

∑︁
𝑖∈𝐼

[
2 − 𝑖

𝑛
− 2(𝑛 − 𝑖)

𝑛
+

∑𝑛
𝑗=𝑖+1 𝑗

𝑛2

]
=

1
𝑒𝑛

∑︁
𝑖∈𝐼

[
−𝑖 + 2𝑖

𝑛
+ 𝑛(𝑛 + 1) − (𝑖 + 1)𝑖

2𝑛2

]
≥ 1

𝑒𝑛

∑︁
𝑖∈𝐼

[
𝑖

𝑛
+ 𝑛(𝑛 + 1) − (𝑖 + 1)𝑛

2𝑛2

]
=

1
𝑒𝑛

∑︁
𝑖∈𝐼

[
𝑖 + 𝑛/2 − 𝑖/2

𝑛

]
=

1
𝑒𝑛

∑︁
𝑖∈𝐼

[
1
2 +

𝑖

2𝑛

]
≥ 1

𝑒𝑛

∑︁
𝑖∈𝐼

1
2

=
|𝐼 |

2𝑒𝑛 .

Since we have |𝐼 | ≥ 𝑔(𝑋𝑡 )/2, we get a multiplicative drift with drift constant 𝛿 = 4𝑒𝑛. Using 𝑔(𝑋0) ≤ 2𝑛, we
can apply Theorem 2.5 [Multiplicative Drift] to get

E[𝑇 ] ≤ (1 + 𝑜 (1)) 4𝑒 𝑛 ln(𝑛) .

■

3.4 Designing a Potential Function via Step-Wise Differences

In this section we give a method for finding a suitable potential function by defining the potential differences of
“neighboring” states. Note that this method was used to find the proof given in Theorem 2.10 [Winning Streaks]
and is also the basis of the work in Section 5.6 [Finite State Spaces], with details in [KK18]. Furthermore, a
version of this method for overcoming negative drift was given in [GK14, GK16]. Early work using such an
approach can be found in [DJW00].

We consider the optimization of a test function which looks like OneMax for most of the search space, but
around the optimum is a plateau of constant fitness. This is a fitness function defined as follows, for a given
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parameter 𝑘 ∈ ℕ (for 𝑥 ∈ {0, 1}𝑛 we use |𝑥 |1 to denote the number of 1s in 𝑥 ).

Plateau𝑘 : {0, 1}𝑛 → {0, 1}𝑛, 𝑥 ↦→
{
|𝑥 |1, if |𝑥 |1 ≤ 𝑛 − 𝑘 or |𝑥 |1 = 𝑛;
𝑛 − 𝑘, otherwise.

This function is maximized by the bit string 1𝑛 . All bit strings with a distance between 1 and 𝑘 to the optimum
have identical fitness, so there is no guiding signal towards the optimum on that so-called plateau.

We want to study the random search heuristics (1 + 1) EA and RLS on the plateau function (see Section 9.1
[Algorithms]).

For the (1 + 1) EA, we can analyze the performance as follows. Within O(𝑛 log𝑛) iterations the algorithm
will have found a search point on the plateau, that is, at distance at most 𝑘 to the optimum (this follows
analogously to the analysis of (1 + 1) EA on OneMax). From now on at most 𝑘 bits will be incorrect, and
correcting exactly those 𝑘 bits and no others has a probability of(

1
𝑛

)𝑘 (
1 − 1

𝑛

)𝑛−𝑘
≥ 1

𝑒𝑛𝑘
.

Thus, for 𝑘 ≥ 2, the total expected optimization time will be O
(
𝑛𝑘

)
. This reasoning disregards the analysis of

the random walk performed by the algorithm on the plateau.
The search heuristic Random Local Search (RLS) exchanges the mutation operator of the (1 + 1) EA for

an operator which flips exactly one bit. The analysis of the (1 + 1) EA above explicitly makes use of large
steps which are not performed by RLS, so a different analysis is required. We now have to understand the
random walk on the plateau as an essential part to finding the optimization time, and analyzing it with drift
theory provides a nice example of the power of potential functions. In fact, it is somewhat surprising that, also
for this fitness function, an analysis with drift theory can find a good bound on the expected optimization
time: Using the fitness function as the potential function, the drift for “inner” points on the plateau (where all
neighbors are also points on the plateau) is 0.

We want to develop a potential function that is 0 at the optimum. We aim for an drift for the RLS optimizing
Plateau of at least 1, given that Theorem 3.3 [Normalizing Additive Drift] shows that we can always find a
normalized drift function. For reasons of symmetry, all bit strings at the same distance to the optimum should
have the same potential, so we now wonder what should be the potential of a bit string with exactly 𝑑 many
0s (so 𝑑 is the Hamming distance to the optimum). Let us simplify and consider first the case of 𝑑 = 1.

On the plateau, any change is accepted by RLS. Thus, if there is only one incorrect bit, RLS will correct it
with probability 1/𝑛 and otherwise lose a different bit with probability 1 − 1/𝑛. If we think about the potential
difference between 𝑑 = 0 and 𝑑 = 1 as 𝑎(0), and the potential difference between 𝑑 = 1 and 𝑑 = 2 as 𝑎(1), then
the expected gain in potential is given by

1
𝑛
· 𝑎(0) −

(
1 − 1

𝑛

)
· 𝑎(1) = 𝑎(0) − (𝑛 − 1)𝑎(1)

𝑛
.

We want this quantity to be a least 1, so, for fixed 𝑎(0), we get 𝑎(1) ≤ (𝑎(0) − 𝑛)/(𝑛 − 1). This is a rather
complex term, but note that for 𝑎(0) ≥ 2𝑛, we can choose 𝑎(1) = 𝑎(0)/(2𝑛), a much simpler term.

Turning to the general case of arbitrary 𝑑 , we get an drift of

𝑑

𝑛
· 𝑎(𝑑 − 1) −

(
1 − 𝑑

𝑛

)
· 𝑎(𝑑) = 𝑑 · 𝑎(𝑑 − 1) − (𝑛 − 𝑑)𝑎(𝑑)

𝑛
.

Thus, if again 𝑎(𝑑 − 1) ≥ 2𝑛, we could work with 𝑎(𝑑) = 𝑎(𝑑 − 1)/(2𝑛). Inductively, we now have 𝑎(𝑑) =
𝑎(0)/(2𝑛)𝑑 .
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Note that we need this to hold for 𝑑 starting at 𝑑 = 0 up until 𝑑 = 𝑘 − 1, since on the plateau we cannot
go outward from being exactly 𝑘 away. We can now choose 𝑎(0) to suit all requirements. Concretely, for all
𝑑 ∈ [0..𝑘 − 1] we need

𝑎(0)
(2𝑛)𝑑

= 𝑎(𝑑) ≥ 2𝑛,

so 𝑎(0) ≥ (2𝑛)𝑑+1. This restriction is strongest for 𝑑 = 𝑘 − 1, leading to 𝑎(0) ≥ (2𝑛)𝑘 .
After we established the size of the different gaps between different states of the algorithm, we now define

the potential function (denoting the number of 0s in a bit string 𝑥 as |𝑥 |0) as

𝑔 : {0, 1}𝑛 → ℝ≥0, 𝑥 ↦→
|𝑥 |0−1∑︁
𝑖=0

𝑎(𝑖) .

This way of defining a potential function as a sum of “gaps” has a the advantage that the difference in potential
of similar search points is easy to compute.

We now get to the final proof, where we will also need to worry about the “easy” part of the search space
(again “gluing together” the drift regimes as in Section 3.2 [Potential Functions for Two-Part Drift]). Note
that we simplify the terms 𝑎(𝑖) by changing the base from 2𝑛 to 𝑛; while the 2𝑛 suggested itself during proof
discovery, the final computations can do without.

Theorem 3.6: RLS on Plateau, upper bound

Let 𝑘 ≥ 2. The expected time for RLS to optimize Plateau is O
(
𝑛𝑘

)
.

Proof. Let (𝑋𝑡 )𝑡 ∈ℕ be the current search point of RLS after 𝑡 iterations. For all 𝑑 ∈ ℕ we define 𝑎(𝑑) = 𝑛𝑘−𝑑

and 𝑔0 =
∑𝑘−1

𝑖=0 𝑎(𝑖). Now we define a potential function 𝑔 as

𝑔 : {0, 1}𝑛 → ℝ≥0, 𝑥 ↦→
{∑ |𝑥 |0−1

𝑖=0 𝑎(𝑖), if |𝑥 |0 ≤ 𝑘 ;
𝑔0 + (|𝑥 |0 − 𝑘)𝑛, if |𝑥 |0 > 𝑘.

Intuitively, we artificially distort the gaps where the plateau does not provide a fitness signal and use unit gap
sizes in the easy part. Note that this is suboptimal for the easy part, but the impact on the overall bound of the
theorem will only be in lower order terms, since the time to cross the plateau dominates.

Let now 𝑡 be given and let 𝑥 = 𝑋𝑡 and 𝑥 ′ = 𝑋𝑡+1. We are interested in bounding E[𝑔(𝑥) − 𝑔(𝑥 ′)]. We will
use the law of total expectation and make a case distinction on |𝑥 |0.

First, let 𝑑 < 𝑘 be given and consider an iteration of RLS on a bit string with exactly 𝑑 many 0s (where it
flips exactly 1 bit). RLS either gains a potential of 𝑎(𝑑 − 1), with probability 𝑑/𝑛, or loses a potential of 𝑎(𝑑),
otherwise. We have

E[𝑔(𝑥) − 𝑔(𝑥 ′) | |𝑥 |0 = 𝑑] = 𝑑

𝑛
𝑎(𝑑 − 1) − 𝑛 − 𝑑

𝑛
𝑎(𝑑)

=
𝑑

𝑛
· 𝑛𝑘−𝑑+1 − 𝑛 − 𝑑

𝑛
· 𝑛𝑘−𝑑

= (𝑑𝑛 − 𝑛 + 𝑑) · 𝑛𝑘−𝑑−1.

For 𝑑 = 1 this equals 𝑛𝑘−2 ≥ 1; for 𝑑 > 1 this is at least (𝑑 − 1)𝑛 · 𝑛𝑘−𝑑−1 ≥ 𝑛𝑘−𝑑 . Since 𝑑 ≤ 𝑘 , this value is at
least 1.

We now consider the case of 𝑑 = 𝑘 . Note that, in this case, we cannot lose potential, as the selection of RLS
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discards any strictly worse search point. Thus, we have

E[𝑔(𝑥) − 𝑔(𝑥 ′) | |𝑥 |0 = 𝑘] = 𝑘

𝑛
𝑎(𝑘 − 1)

=
𝑘

𝑛
· 𝑛𝑘−𝑘+1

= 𝑘 ≥ 1.

Finally, we consider the case of 𝑑 > 𝑘 . Also in this case we cannot lose potential; we have

E[𝑔(𝑥) − 𝑔(𝑥 ′) | |𝑥 |0 = 𝑑] = 𝑑

𝑛
· 𝑛

= 𝑑 ≥ 1.

Thus, Theorem 2.1 [Additive Drift, Upper Bound] gives an upper bound on the expected optimization time of
the maximal potential value of 𝑔0 + 𝑛(𝑛 − 𝑘) ≤ 𝑛 · 2𝑛𝑘 + 𝑛2 = O

(
𝑛𝑘

)
. ■

For 𝑘 constant, we can use drift theory with a similar potential function to find a matching lower bound.
Note that this a particular strength of the additive drift theorem: it comes with a matching lower bound without
additional requirements to the random process (such as concentration in each step).

Theorem 3.7: RLS on Plateau, lower bound

Let 𝑘 ≥ 2 be constant. The expected time for RLS to optimize Plateau is 𝛺 (𝑛𝑘 ).

Proof. Let (𝑋𝑡 )𝑡 ∈ℕ be the current search point of RLS after 𝑡 iterations. For all 𝑑 ∈ ℕ we define 𝑎(𝑑) =
((𝑛 − 𝑘)/𝑘)𝑘−𝑑 and 𝑔0 =

∑𝑘−1
𝑖=0 𝑎(𝑖). Now we define a potential function 𝑔 as

𝑔 : {0, 1}𝑛 → ℝ≥0, 𝑥 ↦→
{∑ |𝑥 |0−1

𝑖=0 𝑎(𝑖), if |𝑥 |0 ≤ 𝑘 ;
𝑔0, if |𝑥 |0 > 𝑘.

Intuitively, we ignore the run time outside of the plateau, since it does not contribute to the asymptotic bound.
Let now 𝑡 be given and let 𝑥 = 𝑋𝑡 and 𝑥 ′ = 𝑋𝑡+1. We are interested in bounding E[𝑔(𝑥) − 𝑔(𝑥 ′)], this time

we want an upper bound. We will again use the law of total expectation and make a case distinction on |𝑥 |0.
First, let 𝑑 < 𝑘 be given and let the current bit string 𝑥 have |𝑥 |0 = 𝑑 . Since RLS will flip exactly 1 bit, we

either gain a potential of 𝑎(𝑑 − 1) (with probability 𝑑/𝑛) or lose a potential of 𝑎(𝑑), otherwise. From 𝑑 ≤ 𝑘 we
see 𝑑 (𝑛 − 𝑘) ≤ 𝑘 (𝑛 − 𝑑) and thus

𝑑

𝑛

𝑛 − 𝑘
𝑘
≤ 𝑛 − 𝑑

𝑛
.

Now we can derive

E[𝑔(𝑥) − 𝑔(𝑥 ′) | |𝑥 |0 = 𝑑] = 𝑑

𝑛
𝑎(𝑑 − 1) − 𝑛 − 𝑑

𝑛
𝑎(𝑑)

=
𝑑

𝑛
· ((𝑛 − 𝑘)/𝑘)𝑘−𝑑+1 − 𝑛 − 𝑑

𝑛
· ((𝑛 − 𝑘)/𝑘)𝑘−𝑑

≤ 𝑛 − 𝑑
𝑛
· ((𝑛 − 𝑘)/𝑘)𝑘−𝑑 − 𝑛 − 𝑑

𝑛
· ((𝑛 − 𝑘)/𝑘)𝑘−𝑑

= 0.
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An upper bound of 0 might seem surprising, but in this area of the search space the distortion by the potential
function is large enough to arrive at negative drift.

We now consider the case of 𝑑 = 𝑘 . In this case, we cannot lose potential. We have

E[𝑔(𝑥) − 𝑔(𝑥 ′) | |𝑥 |0 = 𝑘] = 𝑘

𝑛
𝑎(𝑘 − 1)

=
𝑘

𝑛
· ((𝑛 − 𝑘)/𝑘)𝑘−𝑘+1

= (𝑛 − 𝑘)/𝑛 ≤ 1.

Finally, we consider the case of 𝑑 > 𝑘 . Since in this case all neighboring search points have the same
potential, we again have a drift of 0.

E[𝑔(𝑥) − 𝑔(𝑥 ′) | |𝑥 |0 = 𝑑] = 0.

The initial potential is 𝑔0 with a probability of at least some constant 𝑐 . Thus, Theorem 2.3 [Additive Drift,
Lower Bound] gives a lower bound on the expected optimization time of the initial potential value of 𝑐𝑔0 ≥
𝑐 (𝑛/𝑘)𝑘 = 𝛺 (𝑛𝑘 ). ■

As can be seen from the proof, the lower bound extends to super-constant 𝑘 as 𝛺 ((𝑛/𝑘)𝑘 ). Note that both
this lower bound and the upper bound of O

(
𝑛𝑘

)
are no longer optimal for super-constant 𝑘 . In particular, the

extreme case of 𝑘 = 𝑛 is known as the Needle function (see [GKS99] for the first analysis on Needle).

3.5 Further Potential Functions

The literature knows many more example applications of potential functions in order to allow for the applica-
tions of drift theory. For example, in [FKN+23] a clever potential function is used to incorporate a state of the
algorithm into the general progress of the algorithm towards the goal. In Section 4.2 of [DKLL17], the potential
function essentially has two parts to allow for a unified drift argument, rather than arguing over two phases.

Further interesting potential functions can be found in [DDK18]. One function incorporates speed (a
self-adjusting parameter) of the algorithm and the distance to the optimum into a single potential. Another
combines the distances in different dimensions in a suitably scaled way to arrive at a useful potential function.

3.6 Conclusion

While building a potential function is more of an art than a science, there are heuristics which can help.

• As we saw in Example 3.1 [Better Search Points with Better Potential], states that are “closer” to the
target should have potential “closer” to that of the target; in fact, as shown by Theorem 3.2 [Expected
Time as Potential], the most accurate potential assigns each search point the “distance” to the target.

• Drift might be different in different parts of the search space; in this case, we can use potential functions
to “glue together” these parts, as showcased by Example 3.4 [Gluing Together Fitness Functions].

• In Section 3.4 [Designing a Potential Function via Step-Wise Differences] we saw one way of iteratively
building a potential function by comparing “neighboring” states.
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4 Going Nowhere: Drift Without Drift

We encounter a surprisingly easy application of drift theory in the absence of drift. An example of a random
process which does not exhibit any expected change (drift) is the Gambler’s Ruin process. By considering
a transformation of the process (essentially: squaring it) the process now exhibits drift in the order of its
variance, which is then amenable to analysis with drift theory.

4.1 Unbiased RandomWalks

We start by deriving two general corollaries, before we draw conclusions for specific random walks. The first,
Theorem 4.1 [Unbiased Random Walk on the Line], concerns completely unbiased random walks. The second,
Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier], gives the situation for random walks with one
barrier.

Theorem 4.1: Unbiased Random Walk on the Line

Let 𝑛 ∈ ℕ, let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over [0, 𝑛], and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ∈ {0, 𝑛}}.
Suppose that there is a 𝛿 ∈ ℝ+ such that, for all 𝑡 < 𝑇 , we have the following conditions (variance, drift).

(Var) Var[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] = 𝛿 ;

(D) E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] = 0.

Then E[𝑇 ] = E[𝑋0 (𝑛−𝑋0 ) ]
𝛿

.

Proof. We consider the process 𝑌𝑡 = 𝑋𝑡 (𝑛 − 𝑋𝑡 ). Note that 𝑇 is the first time 𝑡 ∈ ℕ such that 𝑌𝑡 = 0. In the
following, we condition on 𝑋0, . . . , 𝑋𝑡 , a filtration that 𝑌0, . . . , 𝑌𝑡 is adapted to; this allows us to apply our drift
theorems by Theorem 8.6 [Conditioning on Filtration vs. History vs. Events] while giving information not
only about the value of 𝑌𝑡 , but also about 𝑋𝑡 . Furthermore, for all 𝑠 ∈ [1..𝑛 − 1], we have

E[𝑌𝑡 − 𝑌𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] = E
[
𝑋 2
𝑡+1 − 𝑋 2

𝑡 | 𝑋0, . . . , 𝑋𝑡

]
− 𝑛 E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ]

= E
[
𝑋 2
𝑡+1 | 𝑋0, . . . , 𝑋𝑡

]
− 𝑋 2

𝑡 = Var[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ]
= Var[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] = 𝛿.

Thus, we have a drift of 𝛿 towards 0. Since 𝑌0 = 𝑋0(𝑛 − 𝑋0), the theorem follows from an application of
Theorem 2.1 [Additive Drift, Upper Bound]. ■

Since the proof is based on the additive drift theorem, a lower bound of 𝛿 on the variance is enough for an
upper bound on the expected first-hitting time and vice versa.

Theorem 4.2: Unbiased Random Walk on the Line, One Barrier

Let 𝑛 ∈ ℕ, let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over [0, 𝑛], and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 = 𝑛}.
Suppose that there is a 𝛿 ∈ ℝ+ such that, for all 𝑡 < 𝑇 , we have the following conditions (variance, drift).

(Var) Var[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 ;

(D) E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 0.

Then E[𝑇 ] ≤ 𝑛2−E[𝑋 2
0 ]

𝛿
.
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Proof. We consider the process 𝑌𝑡 = 𝑛2 − 𝑋 2
𝑡 . Note that 𝑇 is the first time such that 𝑌𝑡 = 0. Further note that,

from (D) we get, for all 𝑡 < 𝑇 ,
E[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ]2 ≥ 𝑋 2

𝑡 . (∗)

As in the previous proof, we condition on 𝑋0, . . . , 𝑋𝑡 and implicitly use Theorem 8.6 [Conditioning on Filtration
vs. History vs. Events]. We now have

E[𝑌𝑡 − 𝑌𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] = E
[
𝑋 2
𝑡+1 − 𝑋 2

𝑡 | 𝑋0, . . . , 𝑋𝑡

]
= E

[
𝑋 2
𝑡+1 | 𝑋0, . . . , 𝑋𝑡

]
− 𝑋 2

𝑡

≥
(∗)

E
[
𝑋 2
𝑡+1 | 𝑋0, . . . , 𝑋𝑡

]
− E[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ]2

= Var[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ]
= Var[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ]
≥ 𝛿.

Thus, we have a drift of at least 𝛿 towards 0. Since 𝑌0 = 𝑛2 − 𝑋 2
0 , the theorem follows from an application of

Theorem 2.1 [Additive Drift, Upper Bound]. ■

Note that in neither of the two preceding theorems is the process allowed to overshoot the target. Using
an additive drift theorem that allows for overshooting, like Theorem 5.3 [Additive Drift, Upper Bound with
Overshooting], one can derive corresponding extensions of the above two theorems with essentially the same
proof. We note that Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier] is tight with the following
example.

Example 4.3: Fair Random Walk — Let (𝑋𝑡 )𝑡 ∈ℕ be the time-homogeneous Markov-chain on [0..𝑛],
where, for all 𝑡 ∈ ℕ,

(1) for all 𝑖 ∈ [1..𝑛 − 1], Pr[𝑋𝑡+1 = 𝑖 + 1 | 𝑋𝑡 = 𝑖] = 1/2 = Pr[𝑋𝑡+1 = 𝑖 − 1 | 𝑋𝑡 = 𝑖];

(2) the state 0 is reflective, that is, Pr[𝑋𝑡+1 = 1 | 𝑋𝑡 = 0] = 1; and

(3) the state 𝑛 is absorbing.

We transform 𝑋 into the fair random walk (𝑌𝑡 )𝑡 ∈ℕ on [0..2𝑛], where the states 0 and 2𝑛 are both
absorbing, such that, for all 𝑡 ∈ ℕ, it holds that 𝑋𝑡 = |𝑌𝑡 − 𝑛 |.
Informally, we mirror 𝑋 at 0 and then shift it by 𝑛. Whenever this new process is at 𝑛, it goes to
either 𝑛 − 1 or 𝑛 + 1, each with probability 1/2, which results exactly in 𝑌 . Note that 𝑇 = inf{𝑡 ∈ ℕ |
𝑌𝑡 ∈ {0, 2𝑛}} = inf{𝑡 ∈ ℕ | 𝑋𝑡 = 𝑛}. Applying Theorem 4.1 [Unbiased Random Walk on the Line]
to 𝑌 yields E[𝑇 ] = E[𝑌0(2𝑛 − 𝑌0)]. Since 𝑋0 ≤ 𝑛, it holds that 𝑌0 = 𝑛 − 𝑋0. Substituting this back into
the equation for E[𝑇 ] yields E[𝑇 ] = E[(𝑛 − 𝑋0) (𝑛 + 𝑋0)] = 𝑛2 − E

[
𝑋 2

0
]
, which is exactly the bound of

Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier].

4.2 Analysis of Concrete Unbiased RandomWalks

In this section we see several domains in which we apply our theorems about unbiased random walks. The
Gambler’s Ruin in Theorem 4.4 [Gambler’s Ruin] is the most straightforward application of Theorem 4.1
[Unbiased Random Walk on the Line]. A more intricate application is given in Theorem 4.5 [The Recolour
Algorithm], where it is used to bound the expected run time for an algorithm to find a certain coloring of a
graph.
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Regarding Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier], in Theorem 4.6 [Random 2-SAT]
we use it to derive an upper bound on the time for an algorithm to find a satisfying assignment for a 2-SAT
formula.

We start with the gambler’s ruin, a random walk on the line. It starts at 𝑛, going either one step to the left or
one step to the right, each with probability 1/2, modeling winning or losing a fair coin toss to either win or
lose a coin. The question of how long it takes to either be broke (0 coins left) or double the starting number of
coins is the simplest setting of an unbiased random walk. This process also goes by many other names, such as
drunkard’s walk, random walk on a line, or one-dimensional random walk.

Theorem 4.4: Gambler’s Ruin

Suppose we start with 𝑛 ∈ ℕ coins and, in each iteration, uniformly at random either gain a coin or lose
a coin. Then, after an expected number of exactly 𝑛2 iterations, we are either broke or have reached a
total of 2𝑛 coins.

Proof. For all 𝑡 ∈ ℕ, let 𝑋𝑡 be the random sequence of the number of coins after 𝑡 iterations. We have

E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] =
1
2 · 1 +

1
2 · (−1) = 0.

Furthermore, we have
Var[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] =

1
2 · 1

2 + 1
2 · (−1)2 = 1.

Thus, we can now apply Theorem 4.1 [Unbiased Random Walk on the Line] to get the desired result. ■

Our next example considers the analysis of the run time of an algorithm. McDiarmid [McD93] studies the
following simple randomized algorithm called Recolour, for coloring a given undirected graph 𝐺 with two
colors such that it contains no monochromatic triangle (a subgraph on three pairwise connected vertices which
are all colored with the same color). Recolour starts with an arbitrary 2-coloring of𝐺 . At every step, it checks
whether the current coloring has a monochromatic triangle. If so, Recolour changes the color of one of the
vertices of this triangle uniformly at random. Otherwise, the 2-coloring has no monochromatic triangles and it
is the output of Recolour.

McDiarmid shows that, when Recolour is applied to a 3-colorable graph 𝐺 (a graph that can be colored
with three colors so that no two neighbors share a color), it returns a 2-coloring of 𝐺 with no monochromatic
triangle in expected time O

(
𝑛4) . His analysis shows that the expected run time of the algorithm is bounded

above by the expected hitting time of a random walk on the line with two absorbing states – which is exactly
the setting of Theorem 4.1 [Unbiased Random Walk on the Line]. This analysis in turn relies on previous
results on one-dimensional random walks, which usually require lengthy calculations.

We present a simple and self-contained proof of the O
(
𝑛4) expected run time of the Recolour algorithm for

finding a 2-coloring with no monochromatic triangles on 3-colorable graphs. Our proof follows the proof of
McDiarmid [McD93] to reduce the problem to an unbiased random walk on the line and then uses Theorem 4.1
[Unbiased Random Walk on the Line]. A similar analysis can be used to derive an upper bound on the run
time of Recolour on hypergraph colorings.

Theorem 4.5: The Recolour Algorithm

The expected run time of Recolour on a 3-colorable graph with 𝑛 ∈ ℕ+ vertices is O
(
𝑛4) .

Proof. Let 𝐺 = (𝑉 , 𝐸) be a 3-colorable graph, and let 𝜒 : 𝑉 → {1, 2, 3} be a 3-coloring of 𝐺 . Let 𝑈 = {𝑣 ∈ 𝑉 |
𝜒 (𝑣) ∈ {1, 2}} be the set of all vertices which are colored with colors 1 and 2. Note that any 2-coloring of 𝐺

26 / 72



Theory of Stochastic Drift Timo Kötzing

that agrees with 𝜒 on the vertices from 𝑈 is a 2-coloring of 𝐺 with no monochromatic triangles. Thus, the run
time of Recolour is bounded from above by the expected time that Recolour takes to find such a coloring.

Let 𝜒𝑡 be the 2-coloring found by Recolour at time 𝑡 ∈ ℕ. Let 𝑌𝑡 be the number of vertices 𝑢 ∈ 𝑈 such that
𝜒𝑡 (𝑢) = 𝜒 (𝑢). The algorithm terminates when 𝑌𝑡 ∈ {0, |𝑈 |}, since agreeing on all vertices of 𝑈 is a coloring
without monochromatic triangles, but disagreeing on all vertices from𝑈 is also such a valid coloring, since the
use of the colors is symmetric.

Let 𝑠 ∈ [1..|𝑈 | − 1] denote an outcome of 𝑌𝑡 before the algorithm terminates. We then have that
Pr[𝑌𝑡+1 = 𝑌𝑡 + 1 | 𝑌𝑡 = 𝑠] = 1/3, as, for every monochromatic triangle, there is exactly one vertex in 𝑢 ∈ 𝑈
with 𝜒𝑡 (𝑢) ≠ 𝜒 (𝑢) which can be recolored to obtain another vertex where the colors match. Similarly,
Pr[𝑌𝑡+1 = 𝑌𝑡 − 1 | 𝑌𝑡 = 𝑠] = 1/3. Thus, 𝑌𝑡 is an unbiased random walk on the line with first-hitting time
𝑇 = inf{𝑡 ∈ ℕ | 𝑌𝑡 ∈ {0, |𝑈 |}}. We have

Var[𝑌𝑡+1 − 𝑌𝑡 | 𝑌0, . . . , 𝑌𝑡 ] =
1
3 · 1

2 + 1
3 · 0

2 + 1
3 · (−1)2 = 2

3 .

Applying Theorem 4.1 [Unbiased Random Walk on the Line] we get

E[𝑇 ] = 3 E[𝑌0( |𝑈 | − 𝑌0)]
2 ≤ 3𝑛2

8 .

At each step, the algorithm requires O
(
𝑛2) time to find a monochromatic triangle and modify this to obtain a

new coloring, which concludes the proof. ■

The analysis of the Recolour algorithm for finding 2-colorings with no monochromatic triangles appears
as an exercise in [MU05].

In the final example of this section, we consider finding satisfying assignments of 2-SAT formulas. Papadim-
itriou [Pap91] studies the following simple randomized algorithm that returns a satisfying assignment of a
satisfiable 2-SAT formula 𝜙 with 𝑛 variables and 𝑚 clauses within O

(
𝑛2𝑚

)
time in expectation. The algorithm

starts with a random assignment of the variables of 𝜙 . At every step, the algorithm checks whether there is
an unsatisfied clause for this assignment. If so, the algorithm changes the assignment of one of the variables
of this assignment uniformly at random. Otherwise, the assignment is satisfying and it is the output of the
algorithm.

The analysis given is similar to the Recolour algorithm, and it also relies on the previous results on one-
dimensional random walks. An extensive analysis of this algorithm appears in [MU05]. Here, we present a
simpler proof that uses Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier].

Theorem 4.6: Random 2-SAT

The randomized 2-SAT algorithm, when run on a satisfiable 2-SAT formula over 𝑛 ∈ ℕ+ variables and
𝑚 ∈ ℕ+ clauses, terminates in O

(
𝑛2𝑚

)
time in expectation.

Proof. Let 𝜙 be a satisfiable 2-SAT formula and 𝑎 a satisfying assignment. At each time step 𝑡 ∈ ℕ+, the
randomized 2-SAT algorithm finds a (not necessarily satisfying) assignment 𝑎𝑡 . Let 𝑋𝑡 be the random variable
denoting the number of variables that have the same truth assignment in both 𝑎 and 𝑎𝑡 . Let 𝑇 be the first time
the algorithm reaches a satisfying assignment for 𝜙 . Assume that a clause 𝑥 ∨ 𝑦 is not satisfied by 𝑎𝑡 . Since 𝑎
is a satisfying assignment, 𝑎 and 𝑎𝑡 differ in the assignment of at least one of the variables in this clause. Thus,

Pr[𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 1/2; and
Pr[𝑋𝑡+1 = 𝑋𝑡 − 1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 1/2.
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When 𝑎𝑡 = 𝑎, the algorithm terminates. By Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier]
with variance bounded by 1, we have E[𝑇 ] ≤ 𝑛2. In order to transition from 𝑎𝑡 to 𝑎𝑡+1, the algorithm requires
O(𝑚) time (since the 2-SAT formula has𝑚 distinct clauses), concluding the proof. ■
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5 The Zoo: A Tour of Drift Theorems

We have seen the basic two drift theorems, the additive drift theorem and the multiplicative drift theorem, in
Section 2 [A Gentle Introduction to Classic Drift Theorems]. In this section we provide a list of more advanced
drift theorems with applications.

(1) In Section 5.1 [Additive Drift] we start by extending the additive drift theorem; we see how to avoid the
requirement of non-negativity (allowing overshooting of the target) and explore different conditions for
the drift.

(2) Section 5.2 [Additive Drift: Concentration] provides a different view on additive drift by considering
concentration.

(3) In Section 5.3 [Multiplicative Drift] we give lower bounds for the case of multiplicative drift.

(4) While additive drift required drift to be constant and multiplicative drift required proportional drift, in
Section 5.4 [Variable Drift] we give theorems allowing for an arbitrary monotone dependence of the drift
on the current state.

(5) Somewhat different in flavor is Section 5.5 [Negative Drift]. Here we discuss drift theorems providing
exponential lower bounds given drift away from the target.

(6) In Section 5.6 [Finite State Spaces] we consider the special case of random processes on finite search
spaces.

(7) Some settings allow drift only when far away from the target, but in the proximity of the target the drift
is negative. In this case, the theorem of Section 5.7 [Headwind Drift] can offer an upper bound on the
run time nonetheless.

(8) In order to derive good upper bounds even when the drift gets stronger when getting closer to the
optimum, Section 5.8 [Multiplicative Up-Drift] provides a drift theorem for the case of proportionally
increasing drift.

(9) A completely different approach to understanding drift is given by Wormald and briefly discussed in
Section 5.9 [Wormald’s Method].

Note that there are a few novel approaches to analyzing multi-dimensional potential functions [Row18, JL22];
while the initial works are promising, they have not gained traction yet and we will not discuss them here.

5.1 Additive Drift

We want to start with an illustrative proof for a strong version of the additive drift theorem; the proof is
adapted from the proof of Theorem 2.3.1 in [Len20].

Theorem 5.1: Additive Drift, Upper Bound, Time Condition

Let (𝑋𝑡 )𝑡 ∈ℕ be a stochastic process on ℝ with deterministic 𝑋0, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}.
Suppose that there is a 𝛿 > 0 so that we have the following conditions (drift, non-negativity).

(D) For all 𝑡 with Pr[𝑡 < 𝑇 ] > 0, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ] ≥ 𝛿 .

(NN) For all 𝑡 ≤ 𝑇 , 𝑋𝑡 ≥ 0.
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We have
E[𝑇 ] ≤ 𝑋0/𝛿.

Proof. We first replace the process (𝑋𝑡 )𝑡 ∈ℕ with a process (𝑋 ′𝑡 )𝑡 ∈ℕ such that, for all 𝑡 ≤ 𝑇 , we have 𝑋 ′𝑡 = 𝑋𝑡 ,
and for all 𝑡 > 𝑇 we have 𝑋 ′𝑡 = 𝑋 ′𝑡−1. Both processes are ≤ 0 at the same time, but (𝑋 ′𝑡 )𝑡 ∈ℕ does not change
after that. We have that (NN) gives 𝑋𝑇 = 0, and, thus, 𝑋𝑡 = 0 for all 𝑡 ≥ 𝑇 . We will from now on assume that
(𝑋𝑡 )𝑡 ∈ℕ is exactly this modified process. Together with (NN) we thus have

∀𝑡 ∈ ℕ : 𝑋𝑡 ≥ 0. (NN’)

Furthermore, for all 𝑡 ≥ 𝑇 with Pr[𝑡 ≥ 𝑇 ] > 0, we have E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 ≥ 𝑇 ] = 0.
We now have, for all 𝑡 ∈ ℕ with Pr[𝑡 < 𝑇 ] > 0,

E[𝑋𝑡 − 𝑋𝑡+1] = E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ] Pr[𝑡 < 𝑇 ] + E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 ≥ 𝑇 ] Pr[𝑡 ≥ 𝑇 ]
= Pr[𝑡 < 𝑇 ] E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ]
≥
(D)

Pr[𝑡 < 𝑇 ]𝛿

= 𝛿 Pr[𝑇 > 𝑡] .

The first equality is the law of total expectation; the second follows from 𝑋𝑡 = 𝑋𝑡+1 for 𝑡 ≥ 𝑇 . Note that the
overall inequality holds trivially for all 𝑡 ∈ ℕ such that Pr[𝑡 < 𝑇 ] = 0, so it holds for all 𝑡 . Explicitly, for all
𝑡 ∈ ℕ we have

Pr[𝑇 > 𝑡] ≤ 1
𝛿

E[𝑋𝑡 − 𝑋𝑡+1] . (∗)

Since 𝑇 takes only values in ℕ ∪ {∞}, we have

E[𝑇 ] =
∞∑︁
𝑖=0

Pr[𝑇 > 𝑖] .

We want to use this to compute E[𝑇 ]. For all 𝑛 ∈ ℕ we have

𝑛∑︁
𝑡=0

Pr[𝑇 > 𝑡] ≤
(∗)

1
𝛿

𝑛∑︁
𝑡=0
(E[𝑋𝑡 ] − E[𝑋𝑡+1]) =

1
𝛿
(𝑋0 − E[𝑋𝑛+1]) ≤

(NN’)

𝑋0
𝛿
.

Since all partial sums are upper bounded by 𝑋0/𝛿 , so is the infinite sum. ■

Note that we can turn the proof around to get the analogous version for a lower bound. Again the proof is
essentially taken from the proof of Theorem 1 in [Len20]. Note that it uses the somewhat strong assumption
of a bounded search space, whereas Theorem 2.3 [Additive Drift, Lower Bound] only requires a bound on the
size of each step.

Theorem 5.2: Additive Drift, Lower Bound, Time Condition

Let (𝑋𝑡 )𝑡 ∈ℕ be a stochastic process on ℝ with deterministic 𝑋0, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}.
Suppose that there is a 𝛿 ∈ ℝ+ so that we have the following conditions (drift, upper bounded search
space).

(D) For all 𝑡 with Pr[𝑡 < 𝑇 ] > 0, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ] ≤ 𝛿 .
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(UB) There is a 𝑐 > 0 such that, for all 𝑡 < 𝑇 , 𝑋𝑡 ≤ 𝑐 .

We have
E[𝑇 ] ≥ 𝑋0/𝛿.

Proof. We first replace the process (𝑋𝑡 )𝑡 ∈ℕ with a process (𝑋 ′𝑡 )𝑡 ∈ℕ such that, for all 𝑡 ≤ 𝑇 , we have 𝑋 ′𝑡 = 𝑋𝑡 ,
and for all 𝑡 > 𝑇 we have 𝑋 ′𝑡 = 𝑋 ′𝑡−1. Both processes are ≤ 0 at the same time, but (𝑋 ′𝑡 )𝑡 ∈ℕ does not change
after that. We will from now on assume that (𝑋𝑡 )𝑡 ∈ℕ is exactly this modified process. Thus, for all 𝑡 ≥ 𝑇 with
Pr[𝑡 ≥ 𝑇 ] > 0 we have E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 ≥ 𝑇 ] = 0.

We now have, for all 𝑡 ∈ ℕ with Pr[𝑡 < 𝑇 ] > 0,

E[𝑋𝑡 − 𝑋𝑡+1] = E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ] Pr[𝑡 < 𝑇 ] + E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 ≥ 𝑇 ] Pr[𝑡 ≥ 𝑇 ]
= Pr[𝑡 < 𝑇 ] E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ]
≤
(D)

Pr[𝑡 < 𝑇 ]𝛿

= 𝛿 Pr[𝑇 > 𝑡] .

The first equality is the law of total expectation; the second follows from 𝑋𝑡 = 𝑋𝑡+1 for 𝑡 ≥ 𝑇 . Note that the
overall inequality holds trivially for all 𝑡 ∈ ℕ such that Pr[𝑡 < 𝑇 ] = 0, so it holds for all 𝑡 . Explicitly, for all
𝑡 ∈ ℕ we have

Pr[𝑇 > 𝑡] ≥ 1
𝛿

E[𝑋𝑡 − 𝑋𝑡+1] . (∗)

Since 𝑇 takes only values in ℕ ∪ {∞}, we have

E[𝑇 ] =
∞∑︁
𝑖=0

Pr[𝑇 > 𝑖] .

We want to use this to compute E[𝑇 ]. For all 𝑛 ∈ ℕ, we have

𝑛∑︁
𝑡=0

Pr[𝑇 > 𝑡] ≥
(∗)

1
𝛿

𝑛∑︁
𝑡=0
(E[𝑋𝑡 ] − E[𝑋𝑡+1]) =

1
𝛿
(𝑋0 − E[𝑋𝑛+1]) .

It remains to be shown that E[𝑋𝑛+1] converges to a value ≤ 0 for 𝑛 going to infinity. Using the 𝑐 from (UB), we
have for all 𝑛 ∈ ℕ with Pr[𝑛 < 𝑇 ] > 0 that

E[𝑋𝑛] = E[𝑋𝑛 | 𝑛 < 𝑇 ] Pr[𝑛 < 𝑇 ] + E[𝑋𝑛 | 𝑛 ≥ 𝑇 ] Pr[𝑛 ≥ 𝑇 ] ≤ 𝑐 · Pr[𝑛 < 𝑇 ] + 0 · Pr[𝑛 ≥ 𝑇 ]
= 𝑐 Pr[𝑛 < 𝑇 ] .

We distinguish two cases. If Pr[𝑛 < 𝑇 ] converges to 0 for 𝑛 going to∞, then E[𝑋𝑛] converges to 0 as desired.
Otherwise, there is a non-zero probability of 𝑇 = ∞, in which case the theorem follows directly from that. ■

Both in Theorem 2.1 [Additive Drift, Upper Bound], the classic version of the additive drift theorem, as in
the version just above, it required that the target of 0 must be hit exactly and not overshot (NN). From [Kre19]
we have a stronger version that allows for overshooting. This is frequently helpful, for example for finding
approximations, when potentially much better values than required can be achieved.
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Theorem 5.3: Additive Drift, Upper Bound with Overshooting

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore, suppose the
following (drift).

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

Then
E[𝑇 ] ≤ E[𝑋0] − E[𝑋𝑇 ]

𝛿
.

Proof. Consider the process (𝑋 ′𝑡 )𝑡 ∈ℕ such that, for all 𝑡 ∈ ℕ, 𝑋 ′𝑡 = 𝑋𝑡 − 𝑋𝑇 . ■

In a sense, this drift theorem is simpler than Theorem 2.1 [Additive Drift, Upper Bound]: the requirement
(NN) is dropped and the expected time is increased corresponding to the expected additional distance the
process will have traveled (note that E[𝑋𝑇 ] is not a positive value, since 𝑇 is the first point 𝑡 where 𝑋𝑡 ≤ 0).
From the condition (NN) we could derive 𝑋𝑇 = 0 and thus immediately recover Theorem 2.1 [Additive Drift,
Upper Bound].

5.2 Additive Drift: Concentration

One of the reasons why the additive drift theorem is so general (we only really have a requirement on the
expectation of change, the first moment, but not on the higher moments) is that we only get a conclusion
about the expectation of the first hitting time of the target. With requirements on the higher moments we can
derive concentration bounds on the expected first hitting time. This is provided by [Köt16], from which we
give two different variants, one using an absolute bound on the step size (B), Theorem 2 in the cited work, and
one requiring concentrated step size (C), combining Theorems 10 and 15 from the cited work. Each time we
get that there is only a very small probability of arriving significantly later than the expected time of 𝑛/𝛿 . An
example application of such a concentration result for additive drift is in [KLW15] regarding an analysis of the
(1 + 1) EA on a dynamic version of OneMax (see Theorem 10 in the cited work). Another application is given
in Theorem 5 of [FKL+17, FKL+20].

Theorem 5.4: Additive Drift, Upper Concentration, Bounded Step Size

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore, suppose
that there is 𝑐 > 0 such that we have the following conditions (drift, bounded steps).

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

(B) For all 𝑡 ∈ ℕ, |𝑋𝑡+1 − 𝑋𝑡 | ≤ 𝑐 .

Let 𝑛 ∈ ℕ such that 𝑋0 ≤ 𝑛. Then, for all 𝑠 ≥ 2𝑛/𝛿 ,

Pr[𝑇 ≥ 𝑠] ≤ exp
(
−𝑠𝛿

2

8𝑐2

)
.

Theorem 5.5: Additive Drift, Upper Concentration, Concentrated Step Size

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore,
suppose that there are 𝜀 > 0 and 𝑐 > 0 such that we have the following conditions (drift, concentration).

32 / 72



Theory of Stochastic Drift Timo Kötzing

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

(C) For all 𝑡 ∈ ℕ and all 𝑥 ≥ 0, Pr[|𝑋𝑡+1 − 𝑋𝑡 | ≥ 𝑥 | 𝑋𝑡 ] ≤ 𝑐
(1+𝜀 )𝑥 .

Let 𝑛 ∈ ℕ such that 𝑋0 ≤ 𝑛. Then, for all 𝑠 ≥ 2𝑛/𝛿 ,

Pr[𝑇 ≥ 𝑠] ≤ exp
(
−𝑠𝛿4 min

(
𝜀

4 ,
𝛿𝜀3

256𝑐

))
.

Also in [Köt16] are analogous lower bounds. Again we give two different variants, one using an absolute
bound on the step size (B), Theorem 1 in the cited work, and one requiring concentrated step size (C), combining
Theorems 10 and 14 from the cited work. Each time we get that there is only a very small probability of arriving
significantly before the expected time of 𝑛/𝛿 .

Theorem 5.6: Additive Drift, Lower Concentration, Bounded Step Size

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore,
suppose that there is 𝑐 > 0 such that we have the following conditions (drift, bounded steps).

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝛿 .

(B) For all 𝑡 ∈ ℕ, |𝑋𝑡+1 − 𝑋𝑡 | ≤ 𝑐 .

Let 𝑛 ∈ ℕ such that 𝑋0 ≥ 𝑛. Then, for all 𝑠 ≤ 𝑛/(2𝛿),

Pr[𝑇 < 𝑠] ≤ exp
(
− 𝑛2

8𝑐2𝑠

)
.

Theorem 5.7: Additive Drift, Lower Concentration, Concentrated Step Size

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 0}. Furthermore,
suppose that there are 𝜀 > 0 and 𝑐 > 0 such that (drift, concentration)

(D) there is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝛿 ;

(C) for all 𝑡 ∈ ℕ and all 𝑥 ≥ 0, Pr[|𝑋𝑡+1 − 𝑋𝑡 | ≥ 𝑥 | 𝑋𝑡 ] ≤ 𝑐
(1+𝜀 )𝑥 .

Let 𝑛 ∈ ℕ such that 𝑋0 ≥ 𝑛. Then, for all 𝑠 ≤ 𝑛/(2𝛿),

Pr[𝑇 < 𝑠] ≤ exp
(
−𝑛4 min

(
𝜀

4 ,
𝑛𝜀3

256𝑐𝑠

))
.

The overall situation depending on the strength of the drift is depicted in detail in [Köt16]. In particular,
there are three main regimes:

(1) If the drift is at least 𝛿 ≥ 1/𝑛, then we get high concentration of the first hitting time.

(2) If the drift is 𝛿 ∈ [−1/𝑛, 1/𝑛] but the variance is significant, then we get to hit the optimum with constant
chance within O

(
𝑛2) steps, see Theorem 4.2 [Unbiased Random Walk on the Line, One Barrier].

(3) If the drift is much smaller than −1/𝑛, then we have negative drift and only a superpolynomially small
chance to reach the optimum in polynomial time, see Theorem 5.15 [Negative Drift, Bounded Step Size].
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The literature knows also the following theorem for bounding additive drift only relying on the variance,
given by Semenov and Terkel [ST03].

Theorem 5.8: Additive Drift, Upper Concentration, Bounded Variance

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ with 𝑋0 = 0. Furthermore, suppose the following
(drift, variance).

(D) There is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

(Var) There is a 𝑐 > 0 such that, for all 𝑡 ∈ ℕ, Var[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝑐 .

Then, for all 𝜀 > 0, the following holds with probability 1.

𝑋𝑡 ≥ 𝑡𝛿 − 𝑜
(
𝑡0.5+𝜀 ) .

5.3 Multiplicative Drift

The plain multiplicative drift theorem (see Theorem 2.5 [Multiplicative Drift]) is already very strong, in that it
requires few conditions on the search space and even gives a concentration (in one direction). What it does
not provide is a lower bound. One possible such bound can be found in [Wit13] which we state here.

Theorem 5.9: Multiplicative Drift, Lower Bound, Monotone

Let (𝑋𝑡 )𝑡 ∈ℕ be a discrete, integrable process over {0, 1} ∪ 𝑆 , where 𝑆 ⊂ ℝ>1 is finite, and let𝑇 = inf{𝑡 ∈
ℕ | 𝑋𝑡 ≤ 0}.
We assume that there are 𝛽, 𝛿 ∈ (0, 1) such that the following conditions (drift, monotonicity, concen-
tration) hold for all 𝑠 > 1 and 𝑡 ∈ ℕ with Pr[𝑋𝑡 = 𝑠] > 0.

(D) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑠] ≤ 𝛿𝑠 .

(M) 𝑋𝑡+1 ≤ 𝑋𝑡 .

(C) Pr[𝑋𝑡 − 𝑋𝑡+1 ≥ 𝛽𝑠 | 𝑋𝑡 = 𝑠] ≤ 𝛽𝛿/ln(𝑠).

Then
E[𝑇 | 𝑋0] ≥

ln(𝑋0)
𝛿
· 1 − 𝛽

1 + 𝛽 ≥
ln(𝑋0)

𝛿
· (1 − 2𝛽) .

From [DDK18] we have a variant which allows for non-monotone drift. It substitutes the monotonicity
with the requirement that we cannot expect more progress from first returning to bigger values of the
process. Turned around, progress in any state 𝑠 cannot be bigger than in a state 𝑠′ < 𝑠 . We use the notation
(𝑥)+ := max(0, 𝑥).

Theorem 5.10: Multiplicative Drift, Lower Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be a discrete random process over {0, 1} ∪ 𝑆 , where 𝑆 ⊂ ℝ>1 is finite, and let 𝑇 = inf{𝑡 ∈
ℕ | 𝑋𝑡 ≤ 1}.
We assume that there are 𝛽, 𝛿 ∈ (0, 1) such that the following conditions (drift, concentration) hold for
all 𝑠 > 1 and 𝑡 ∈ ℕ with Pr[𝑋𝑡 = 𝑠] > 0.

(D) For all 𝑠′ with 1 < 𝑠′ ≤ 𝑠: E[(𝑠′ − 𝑋𝑡+1)+ | 𝑋0, . . . , 𝑋𝑡 , 𝑋𝑡 = 𝑠] ≤ 𝛿𝑠′.
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(C) For all 𝑠′ with 1 < 𝑠′ ≤ 𝑠: Pr[𝑠′ − 𝑋𝑡+1 ≥ 𝛽𝑠′ | 𝑋0, . . . , 𝑋𝑡 , 𝑋𝑡 = 𝑠] ≤ 𝛽𝛿/ln(𝑠′).

Then
E[𝑇 | 𝑋0] ≥

ln(𝑋0)
𝛿
· 1 − 𝛽

1 + 𝛽 ≥
ln(𝑋0)

𝛿
· (1 − 2𝛽) .

As an alternative, we can find a lower bound when the step size is bounded. The following theorem is given
in [DKLL20]. A further version can be found in [KK19].

Theorem 5.11: Multiplicative Drift, Lower Bound, Bounded Step Size

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ+, let 𝑥min > 0, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 𝑥min}.
We assume that there are 𝑐, 𝛿 ∈ ℝ+ with 𝑥min ≥

√
2𝑐 such that the following conditions (drift, bounded

step size) hold for all 𝑡 < 𝑇 .

(D) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝛿𝑋𝑡 .

(B) |𝑋𝑡 − 𝑋𝑡+1 | ≤ 𝑐 .

Then
E[𝑇 | 𝑋0] ≥

1 + ln(𝑋0) − ln(𝑥min)
2𝛿 + 𝑐2

𝑥2
min−𝑐2

.

Note that, for typical applications, 𝛿 is small; yet the term 2𝛿 should dominate the term 𝑐2

𝑥2
min−𝑐2 to give a

tight bound. But this is typically not a problem: consider the setting of 𝛿 = 𝛩 (1/𝑛) and 𝑋0 = 𝛩 (𝑛). We can
let 𝑥min = 𝛩 (

√
𝑛) and suppose we can bound 𝑐 = 𝑜 (

√
𝑛) with sufficiently high probability (which would be

typical). Then the theorem lets us derive the asymptotically optimal bound of 𝛺 (𝑛 log𝑛).
As an example application we provide a lower bound for the coupon collector process (see the upper bound

proven in Theorem 2.7 [Coupon Collector with Multiplicative Drift]).

Theorem 5.12: Coupon Collector, Lower Bound

Suppose we want to collect at least one of each color of 𝑛 ∈ ℕ≥1 coupons. Each round, we are given
one coupon with a color chosen uniformly at random from the 𝑛 kinds. Then, in expectation, we have
to collect for at least 𝛺 (𝑛 ln𝑛) iterations.

Proof. Let𝑋𝑡 be the number of coupons missing after 𝑡 iterations. We want to apply Theorem 5.11 [Multiplicative
Drift, Lower Bound, Bounded Step Size] and note that, since each iteration at most one coupon is gained and
none is lost, we can use 𝑐 = 1 to satisfy (B). Furthermore, regarding (D), the probability of making progress (of
1) with coupon 𝑡 + 1 is 𝑋𝑡/𝑛. Thus, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] = 𝑋𝑡/𝑛 and we can use 𝛿 = 1/𝑛. We set 𝑥min =

√
𝑛

and an application of Theorem 5.11 [Multiplicative Drift, Lower Bound, Bounded Step Size] gives an upper
bound of

1 + ln(𝑛) − ln(
√
𝑛)

2
𝑛
+ 1

𝑛−1
≥ 1 + ln(𝑛)/2

3
𝑛−1

=
1
6 · (𝑛 − 1) ln(𝑛) = 𝛺 (𝑛 ln𝑛) .

■
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5.4 Variable Drift

A more general version of Theorem 2.1 [Additive Drift, Upper Bound] and Theorem 2.5 [Multiplicative Drift] is
the variable drift theorem, allowing for any monotone dependency of the drift on the current state (meaning
that a larger distance to the target has to imply a larger drift). It is due to [MRC09, Joh10] and was improved
in [RS14]. We give here the version from [KK19], where the random process is not assumed to be discrete or
Markovian.

Theorem 5.13: Variable Drift

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ, 𝑥min ∈ ℝ+, and let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 < 𝑥min}.
Additionally, let 𝐼 denote the smallest real interval that contains at least all values 𝑥 ≥ 𝑥min that, for all
𝑡 ≤ 𝑇 , any 𝑋𝑡 can take. Furthermore, suppose that there is a function ℎ : 𝐼 → ℝ+ such that the following
conditions (drift, monotonicity, start, non-negativity) hold for all 𝑡 ≤ 𝑇 .

(D) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ ℎ(𝑋𝑡 ).

(M) The function ℎ is monotonically non-decreasing.

(S) 𝑋0 ≥ 𝑥min.

(NN) 𝑋𝑡 ≥ 0.

Then
E[𝑇 | 𝑋0] ≤

1
ℎ(𝑥min)

+
∫ 𝑋0

𝑥min

1
ℎ(𝑧) d𝑧.

Note that the additive drift theorem is the special case of constant ℎ and the multiplicative drift theorem is
the special case of linear ℎ. It is surprising that the cases of additive and multiplicative drift are sufficient in
many applications, but the variable drift theorem can also in these cases sometimes give tighter bounds.

Concentration bounds for variable drift are also available [LW14]. The same paper also gives a lower
bounding variable drift theorem, which requires ℎ to be monotonically non-decreasing, the opposite as for the
upper bound. Further variants can be found in [KK19], including lower bounds for step-size bounded settings.

An example application of Theorem 5.13 [Variable Drift] is the optimization of LeadingOnes by the (1 + 1)
EA. It is known [DJW02] that the expected gain in fitness value per iteration, given that the current fitness
value is 𝑛 − 𝑠 (and thus 𝑠 away from the optimum), is (essentially) at least

ℎ(𝑠) = 2 · (1 − 1/𝑛)𝑛−𝑠 · 1
𝑛
.

The middle term is the probability to not lose a bit already gained; the 1/𝑛 is the probability to flip the left-most
0 and the 2 is the expected fitness gained when the two just mentioned events happen (one bit flipped, plus an
expected one more bit that happens to be correctly set). The middle term can be lower-bounded by 1/𝑒 , which
allows for applying Theorem 2.1 [Additive Drift, Upper Bound], giving a total run time of at most

𝑒

2 · 𝑛
2.

Using the variable drift theorem directly on the bound given by ℎ, a simple integration gives an upper bound
on the optimization time of

𝑒 − 1
2 · 𝑛2.

This optimization time was first established in [BDN10]. In this example, the use of the variable drift theorem
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improved the leading constant. Note that the bound can be derived also by other means, for example by the
fitness level method, which can also be used to show tightness of this bound, see Theorem 6.7 [Run Time of
(1 + 1) EA on LeadingOnes].

An essential application of a variable drift is given in the proof of Theorem 17 in [DFF+19], considering the
optimization of OneMax by an islands-based evolutionary algorithm, employing 𝜆 islands and an exchange of
individuals every 𝜏 rounds. In particular, the considered drift function is ℎ : ℝ→ ℝ such that, for all 𝑠 > 0,

ℎ(𝑠) = ln(𝜆)
/

ln
(
𝑛 ln(𝜆)

𝜏𝑠

)
The final bound on the run time is shown to be asymptotically tight, thanks to using both upper and lower
bounding variable drift theorems.

Further uses of the variable drift theorem are given in Theorem 7 of [FKL+17, FKL+20] and in Theorem 6 of
[DDK16, DDK18].

5.5 Negative Drift

When the drift goes away from the target, we speak of negative drift. The negative drift theorem [OW11, OW12]
gives an exponential lower bound in this setting.

Theorem 5.14: Negative Drift

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ. Suppose there is an interval [𝑎, 𝑏] ⊆ ℝ, two
constants 𝛿, 𝜀 > 0 and, possibly depending on ℓ = 𝑏 − 𝑎, a function 𝑟 (ℓ) satisfying 1 ≤ 𝑟 (ℓ) = 𝑜 (ℓ/log ℓ)
such that, for all 𝑡 ∈ ℕ, the following conditions (drift, concentration) hold.

(D) E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ;𝑎 < 𝑋𝑡 < 𝑏] ≥ 𝛿 .

(C) For all 𝑗 ∈ ℕ, Pr[|𝑋𝑡+1 − 𝑋𝑡 | ≥ 𝑗 | 𝑋0, . . . , 𝑋𝑡 ;𝑎 < 𝑋𝑡 ] ≤ 𝑟 (ℓ )
(1+𝜀 ) 𝑗 .

Then there is a constant 𝑐 such that, for 𝑇 = min{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 𝑎}, we have

Pr
[
𝑇 ≤ 2𝑐ℓ/𝑟 (ℓ )

��� 𝑋0 ≥ 𝑏

]
= 2−𝛺 (ℓ/𝑟 (ℓ ) ) .

Note that drift goes with a strength independent of the width ℓ = 𝑏 − 𝑎 of the interval away from the target 𝑎
(while the process is in the interval). A version with scaling which allows for more flexibility in this dependence
is given in [OW14].

A variant that allows for arbitrary 𝜀 (with decaying guarantees) is given in [Köt16] as follows. It requires a
bounded step size, but in return gives a very simple and easy-to-apply bound.

Theorem 5.15: Negative Drift, Bounded Step Size

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ, each with finite expectation, and let 𝑛 > 0. Let
𝑇 = min{𝑡 ∈ ℕ | 𝑋𝑡 ≥ 𝑛} and suppose there are 0 < 𝑐 < 𝑛 and 𝜀 < 0 such that, for all 𝑡 ∈ ℕ, the
following conditions hold (drift, boundedness).

(D) E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝜀.

(B) |𝑋𝑡+1 − 𝑋𝑡 | < 𝑐 .
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Then, for all 𝑠 ∈ ℕ, we have
Pr[𝑇 ≤ 𝑠] = 𝑠 exp

(
−𝑛 |𝜀 |2𝑐2

)
.

Given as Corollary 22 in [Köt16] is a second variant of the negative drift theorem. It allows for very large 𝑟
while still giving a super-polynomial bound for finding the target in polynomial time.

Theorem 5.16: Negative Drift II

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ. Suppose there is an interval [𝑎, 𝑏] ⊆ ℝ, two
constants 𝛿, 𝜀 > 0 and, possibly depending on ℓ = 𝑏−𝑎, a function 𝑟 (ℓ) satisfying 1 ≤ 𝑟 (ℓ) = exp(𝑜 ( 4√

ℓ))
such that, for all 𝑡 ∈ ℕ, the following conditions hold (drift, concentration).

(D) E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, . . . , 𝑋𝑡 ;𝑎 < 𝑋𝑡 < 𝑏] ≥ 𝜀.

(C) For all 𝑗 ∈ ℕ, Pr[|𝑋𝑡+1 − 𝑋𝑡 − 𝜀 | ≥ 𝑗 | 𝑋0, . . . , 𝑋𝑡 ;𝑎 < 𝑋𝑡 ] ≤ 𝑟 (ℓ )
(1+𝛿 ) 𝑗 .

Then there is a constant 𝑐 such that, for 𝑇 = min{𝑡 ∈ ℕ | 𝑋𝑡 ≤ 𝑎}, we have

Pr
[
𝑇 ≤ 2𝑐

√
ℓ
��� 𝑋0 ≥ 𝑏

]
= 2−𝛺 (

4√
ℓ ) .

Example applications of negative drift theorems for the analysis of evolutionary algorithms are given in
the proofs of the following statements. Lemma 3 of [KM12]; in Lemma 8 of [FKKS15a] (see also Lemma 5 of
[FKKS17]); Theorem 3 of [FKKS17]; Lemma 6 [FKS16]; and Lemma 13 [FKK16].

5.6 Finite State Spaces

Most drift theorems consider a random walk on the real numbers, sometimes restricted to non-negative numbers.
For the analysis of discrete algorithms, frequently the state space is even more restricted, in particular finite.
By numbering the successive states, we can assume the state space to be [0..𝑛]. For this setup we have the
following drift theorem from [KK18]. Note that the proof given in the paper is derived by the method of
step-wise differences, see Section 3.4 [Designing a Potential Function via Step-Wise Differences]. The theorem
generalizes a theorem from [DJW00].

Theorem 5.17: Finite State Spaces, Upper Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be a time-homogeneous Markov chain on [0..𝑛] and let𝑇 be the first time 𝑡 such that𝑋𝑡 = 0.
Suppose there are two functions 𝑝← : [1..𝑛] → [0, 1] and 𝑝→ : [0..𝑛 − 1] → [0, 1] such that, for all 𝑡 < 𝑇

and all 𝑠 ∈ [1..𝑛],
(1) 𝑝←(𝑠) > 0,

(2) Pr[𝑋𝑡 − 𝑋𝑡+1 ≥ 1 | 𝑋𝑡 = 𝑠] ≥ 𝑝←(𝑠),

(3) Pr[𝑋𝑡 − 𝑋𝑡+1 = −1 | 𝑋𝑡 = 𝑠] ≤ 𝑝→(𝑠) (for 𝑠 ≠ 𝑛), and

(4) Pr[𝑋𝑡 − 𝑋𝑡+1 < −1 | 𝑋𝑡 = 𝑠] = 0 (for 𝑠 ≠ 𝑛).

Then

E[𝑇 | 𝑋0] ≤
𝑋0∑︁
𝑠=1

𝑛∑︁
𝑖=𝑠

1
𝑝←(𝑖)

𝑖−1∏
𝑗=𝑠

𝑝→( 𝑗)
𝑝←( 𝑗) .
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A special case of this theorem is the fitness level method (see Theorem 6.1 [Fitness Level Method (FLM)]),
where the process is monotone; we can recover this setting by setting 𝑝→ to be constantly 0, significantly
simplifying the above formula.

We also have the corresponding lower bound.

Theorem 5.18: Finite State Spaces, Lower Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be a time-homogeneous Markov chain on [0..𝑛] and let𝑇 be the first time 𝑡 such that𝑋𝑡 = 0.
Suppose there are two functions 𝑝← : {1, . . . , 𝑛} → [0, 1] and 𝑝→ : [0..𝑛 − 1] → [0, 1] such that, for all
𝑡 < 𝑇 and all 𝑠 ∈ [1..𝑛],

(1) 𝑝←(𝑠) > 0,

(2) Pr[𝑋𝑡 − 𝑋𝑡+1 = 1 | 𝑋𝑡 = 𝑠] ≤ 𝑝←(𝑠),

(3) Pr[𝑋𝑡 − 𝑋𝑡+1 > 1 | 𝑋𝑡 = 𝑠] = 0, and

(4) Pr[𝑋𝑡 − 𝑋𝑡+1 ≤ −1 | 𝑋𝑡 = 𝑠] ≥ 𝑝→(𝑠) (for 𝑠 ≠ 𝑛).

Then

E[𝑇 | 𝑋0] ≥
𝑋0∑︁
𝑠=1

𝑛∑︁
𝑖=𝑠

1
𝑝←(𝑖)

𝑖−1∏
𝑗=𝑠

𝑝→( 𝑗)
𝑝←( 𝑗) .

Note that for processes which make steps of at most 1 and given exact 𝑝→ and 𝑝←, the two bounds coincide.

5.7 Headwind Drift

Sometimes drift only carries until shortly before the target, but then, close to the target, turns negative. In
case only a small remaining distance needs to be bridged, and the probability of going the right way is still
sufficiently high, the following Headwind drift theorem can be used to directly get a decent bound without
relying on hand crafted potential functions. The theorem was developed and applied in [KLW15].

Theorem 5.19: Headwind Drift

Let (𝑋𝑡 )𝑡 ∈ℕ be a time-homogeneous Markov chain on [0..𝑛]. Let bounds

𝑝− (𝑖) ≤ Pr[𝑋𝑡+1 ≤ 𝑖 − 1 | 𝑋𝑡 = 𝑖]

and
𝑝+(𝑖) ≥ Pr[𝑋𝑡+1 ≥ 𝑖 + 1 | 𝑋𝑡 = 𝑖],

where 0 ≤ 𝑖 ≤ 𝑛, be given, and define

𝛿 (𝑖) := 𝑝− (𝑖) − E[(𝑋𝑡+1 − 𝑖) · 𝟙[𝑋𝑡+1 > 𝑖] | 𝑋𝑡 = 𝑖] .

Assume that 𝛿 (𝑖) is monotone increasing with respect to 𝑖 and let 𝜅 ≥ max{𝑖 ≥ 0 | 𝛿 (𝑖) ≤ 0} (noting
that 𝛿 (0) ≤ 0). The function 𝑔 : [0..𝑛 + 1] → ℝ+ is defined by

𝑔(𝑖) :=
𝑛∑︁

𝑘=𝑖+1

1
𝛿 (𝑘)
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for 𝑖 ≥ 𝜅 (in particular, 𝑔(𝑛) = 𝑔(𝑛 + 1) = 0), and inductively by

𝑔(𝑖) := 1 + (𝑝+(𝑖 + 1) + 𝑝− (𝑖 + 1))𝑔(𝑖 + 1)
𝑝− (𝑖 + 1)

for 𝑖 < 𝜅.
Then it holds for the first hitting time 𝑇 := min{𝑡 ∈ ℕ | 𝑋𝑡 = 0} of state 0 that

E[𝑇 | 𝑋0] ≤ 𝑔(0) − 𝑔(𝑋0).

We can also get a closed expression for the expected first hitting time E[𝑇 | 𝑋0]. This expression involves the
factor

∑𝑁
𝑘=𝜅+1

1
𝛿 (𝑘 ) that is reminiscent of the formula for the expected first hitting time of state 𝜅 under variable

drift towards the target (see Theorem 5.13 [Variable Drift]). For the states less than 𝜅, where drift away from
the target holds, the product

∏𝜅
𝑘=1

𝑝+ (𝑘 )+𝑝− (𝑘 )
𝑝− (𝑘 ) comes into play. Intuitively, it represents the waiting time for

the event of taking 𝜅 consecutive steps against the drift. Since the product involves probabilities conditioned
on leaving the states, which effectively removes self-loops, another sum of products must be added. This sum,
represented by the second line of the expression for E[𝑇 | 𝑋0], intuitively accounts for the self-loops.

Corollary 5.20: Headwind Drift, Closed Form

Let the assumptions of Theorem 5.19 [Headwind Drift] hold. Then

E[𝑇 | 𝑋0] ≤
((

𝑁∑︁
𝑘=𝜅+1

1
𝛿 (𝑘)

) (
𝜅∏

𝑘=1

𝑝+(𝑘) + 𝑝− (𝑘)
𝑝− (𝑘)

))
+

(
𝜅∑︁

𝑘=1

1
𝑝− (𝑘)

𝑘−1∏
𝑗=1

𝑝+( 𝑗) + 𝑝− ( 𝑗)
𝑝− ( 𝑗)

)
.

Note that there is a similarity between the theorems for headwind drift and those from Section 5.6 [Finite
State Spaces]. This is because the analysis for the last steps of headwind drift is essentially an analysis
brute-forcing the small interval of negative drift, which also happens in Section 5.6 [Finite State Spaces].

5.8 Multiplicative Up-Drift

The idea of Theorem 2.5 [Multiplicative Drift] was to have multiplicative drift going down towards 0. While
this has many applications (owing to the fact that progress in optimization typically gets harder as better and
better solutions are found), there are also a number of processes that gain in speed over time, typically making
progress proportional to the current state of the process, such as rumor spreading, epidemics and population
take-over. This is known as multiplicative up-drift and was studied in depth in [DK21b]. The main theorem is
the following.

Theorem 5.21: Multiplicative Up-Drift

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℤ≥0. Let 𝑛, 𝑘 ∈ ℤ≥1, 𝐸0 > 0, 𝛾0 < 1, and 𝛿 > 0 such
that 𝑛−1 ≤ min{𝛾0𝑘, (1+𝛿)−1𝑘}. Let 𝐷0 = min(⌈100/𝛿⌉, 𝑛) when 𝛿 ≤ 1 and 𝐷0 = min(32, 𝑛) otherwise.
Assume that, for all 𝑡 ∈ ℕ and all 𝑥 ∈ [0..𝑛 − 1] with Pr[𝑋𝑡 = 𝑥] > 0, the following two conditions hold
(binomial distribution, gain at 0); note that we use the concept of stochastic dominance.

(Bin) If 𝑥 ≥ 1, then (𝑋𝑡+1 ⪰ Bin(𝑘, (1 + 𝛿)𝑋𝑡/𝑘).
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(0) E[min(𝑋𝑡+1, 𝐷0) | 𝑋𝑡 = 0] ≥ 𝐸0.

Let 𝑇 := min{𝑡 ∈ ℕ | 𝑋𝑡 ≥ 𝑛}.
Then, if 𝜹 ≤ 1,

E[𝑇 ] ≤ 4𝐷0
0.4088𝐸0

+ 15
1 − 𝛾0

𝐷0 ln(2𝐷0) + 2.5 log2(𝑛) ⌈3/𝛿⌉ .

In particular, when 𝛾0 is bounded away from 1 by a constant, then 𝐸 [𝑇 ] = O
(

1
𝐸0𝛿
+ log(𝑛)

𝛿

)
, where

the asymptotic notation refers to 𝑛 tending to infinity and where 𝛿 = 𝛿 (𝑛) may be a function of 𝑛.
Furthermore, if 𝑛 > 100/𝛿 , then we also have that once the process has reached a state of at least 100/𝛿 ,
the probability to ever return to a state of at most 50/𝛿 is at most 0.5912.
If 𝜹 > 1, then we have

E[𝑇 ] ≤ 128
0.78𝐸0

+ 2.6 log1+𝛿 (𝑛) + 81

= O
(

1
𝐸0
+ log(𝑛)

log(𝛿)

)
.

In addition, once the process has reached state 32 or higher, the probability to ever return to a state
lower than 32 is at most 1

𝑒 (𝑒−1) < 0.22.

Note that this drift theorem is essentially restricted to processes based on the binomial distribution. For
many applications this restriction is satisfied, particularly for the level-based theorem introduced in [Leh11]
and refined in [DL16, CDEL18]. We now discuss the currently strongest version in terms of the asymptotics in
𝛿 , given in [DK21b] as a consequence to the multiplicative up-drift theorem.

The general setup of level-based theorems is as follows. There is a ground setX, which in typical applications
is the search space of an optimization problem. On this ground set, a Markov chain (𝑃𝑡 ) induced by a population-
based EA is defined. We consider populations of fixed size 𝜆, which may contain elements several times
(multi-sets). We write X𝜆 to denote the set of all such populations. We only consider Markov chains where
each element of the next population is sampled independently with repetition. That is, for each population
𝑃 ∈ X𝜆 , there is a distribution 𝐷 (𝑃) on X such that given 𝑃𝑡 , the next population 𝑃𝑡+1 consists of 𝜆 elements
of X, each chosen independently according to the distribution 𝐷 (𝑃𝑡 ). As all our results hold for any initial
population 𝑃0, we do not make any assumptions on 𝑃0.

In the level-based setting, we assume that there is a partition of X into levels 𝐴1, . . . , 𝐴𝑚 (leading to the
name of a level-based theorem). Based on information in particular on how individuals in higher levels are
generated, we aim for an upper bound on the first time such that the population contains an element of the
highest level 𝐴𝑚 .

Theorem 5.22: Level-Based Theorem

Consider a population-based process as described above.
Let (𝐴1, . . . , 𝐴𝑚) be a partition of X. Let 𝐴≥ 𝑗 :=

⋃𝑚
𝑖=𝑗 𝐴𝑖 for all 𝑗 ∈ [1..𝑚]. Let 𝑧1, . . . , 𝑧𝑚−1, 𝛿 ∈ (0, 1],

and let 𝛾0 ∈ (0, 1
1+𝛿 ] with 𝛾0𝜆 ∈ ℤ. Let 𝐷0 = min{⌈100/𝛿⌉, 𝛾0𝜆} and 𝑐1 = 56 000. Let

𝑡0 =
7000
𝛿

©«𝑚 + 1
1 − 𝛾0

𝑚−1∑︁
𝑗=1

log0
2
©« 2𝛾0𝜆

1 + 𝑧 𝑗𝜆

𝐷0

ª®¬ + 1
𝜆

𝑚−1∑︁
𝑗=1

1
𝑧 𝑗

ª®¬,
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where log0
2(𝑥) := max(0, log2(𝑥)) for all 𝑥 ∈ ℝ+. Assume that, for any population 𝑃 ∈ X𝜆 , the following

three conditions are satisfied (drift, zero condition, population size).

(D) For each level 𝑗 ∈ [1..𝑚 − 2] and all 𝛾 ∈ (0, 𝛾0], if |𝑃 ∩𝐴≥ 𝑗 | ≥ 𝛾0𝜆/4 and |𝑃 ∩𝐴≥ 𝑗+1 | ≥ 𝛾𝜆, then

Pr𝑦∼𝐷 (𝑃 )
[
𝑦 ∈ 𝐴≥ 𝑗+1

]
≥ (1 + 𝛿)𝛾 .

(0) For each level 𝑗 ∈ [1..𝑚 − 1], if |𝑃 ∩𝐴≥ 𝑗 | ≥ 𝛾0𝜆/4, then

Pr𝑦∼𝐷 (𝑃 )
[
𝑦 ∈ 𝐴≥ 𝑗+1

]
≥ 𝑧 𝑗 .

(PS) The population size 𝜆 satisfies
𝜆 ≥ 256

𝛾0𝛿
ln(8𝑡0).

Then 𝑇 := min{𝜆𝑡 | 𝑃𝑡 ∩𝐴𝑚 ≠ ∅} satisfies

E[𝑇 ] ≤ 8𝜆𝑡0 = 𝑐1
𝜆

𝛿

©«𝑚 + 1
1 − 𝛾0

𝑚−1∑︁
𝑗=1

log0
2
©« 2𝛾0𝜆

1 + 𝑧 𝑗𝜆

𝐷0

ª®¬ + 1
𝜆

𝑚−1∑︁
𝑗=1

1
𝑧 𝑗

ª®¬.
Note that, with 𝑧∗ = min𝑗∈[1..𝑚−1] 𝑧 𝑗 and 𝛾0 a constant, (PS) in the previous theorem is satisfied for some 𝜆

with
𝜆 = 𝛺

(
1
𝛿

log
( 𝑚
𝛿𝑧∗

))
as well as for all larger 𝜆.

5.9 Wormald’s Method

A very different approach to understanding random processes via their step-wise changes is given by Wormald
[Wor99], tracking the processes via solutions of a system of differential equations. We briefly state a version
of this theorem here.

Consider a stochastic process (𝑌 (𝑡 ) )𝑡 ∈ℕ, where each random variable 𝑌 (𝑡 ) takes values in some set 𝑆 . We
use 𝐻𝑡 to denote a history of the process up to time 𝑡 , i.e. 𝐻𝑡 = (𝑌 (0) , . . . , 𝑌 (𝑡 ) ). And 𝑆+ denotes the set of all
sequences (𝑌 (0) , . . . , 𝑌 (𝑡 ) ) such that 𝑌 (𝑡 ) ∈ 𝑆 .

We say that a function 𝑓 : ℝ𝑘 → ℝ satisfies a Lipschitz condition on 𝐷 ⊆ ℝ𝑘 if there is an 𝐿 > 0 such that,
for all 𝑢 = (𝑢1, . . . , 𝑢𝑘 ), 𝑣 = (𝑣1, . . . , 𝑣𝑘 ) ∈ 𝐷 ,

|𝑓 (𝑢) − 𝑓 (𝑣) | ≤ 𝐿 max
1≤𝑖≤𝑘

|𝑢𝑖 − 𝑣𝑖 |.

Theorem 5.23: Wormald’s Method

For some 𝑎 ∈ ℕ, let (𝑌 (𝑡 )
𝑖
)1≤𝑖≤𝑎,𝑡 ∈ℕ be a stochastic process, such that there is 𝐶 ∈ ℝ+ so that for all

𝑚 ∈ ℕ+ and 𝑡 ∈ ℕ, |𝑌 (𝑡 )
𝑖
| < 𝑚 for all 𝐻𝑡 ∈ 𝑆+. Let 𝐷 be some bounded connected open set containing

the closure of {
(0, 𝑧1, . . . , 𝑧𝑎)

��� Pr
[
𝑌
(0)
𝑖

= 𝑧𝑖𝑚, 1 ≤ 𝑖 ≤ 𝑎

]
≠ 0 for some𝑚

}
.

Assume the following three conditions hold, where for each 1 ≤ 𝑖 ≤ 𝑎 function 𝑓𝑖 : ℝ+ × ℝ𝑎 → ℝ is
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continuous, and satisfies a Lipschitz condition on 𝐷 with the same Lipschitz constant 𝐿 for all 𝑖 (drift,
boundedness).

(D) E
[
𝑌
(𝑡+1)
𝑖

− 𝑌 (𝑡 )
𝑖
| 𝐻𝑡

]
= 𝑓𝑖 (𝑡/𝑚,𝑌

(𝑡 )
1 /𝑚, . . . , 𝑌

(𝑡 )
𝑎 /𝑚).

(B) For all 𝑡 ∈ ℕ, max1≤𝑖≤𝑎 |𝑌 (𝑡+1)𝑖
− 𝑌 (𝑡 )

𝑖
| ≤ 1.

Then the following are true.

(1) For any (0, 𝑧1, . . . , 𝑧𝑎) ∈ 𝐷 , the system of differential equations

𝑑𝑧𝑖

𝑑𝑥
= 𝑓𝑖 (𝑥, 𝑧1, . . . , 𝑧𝑎), 𝑖 = 1, . . . , 𝑎

has a unique solution in 𝐷 for 𝑧𝑖 : ℝ → ℝ passing through 𝑧𝑖 (0) = 𝑧𝑖 , 1 ≤ 𝑖 ≤ 𝑎, and which
extends to points arbitrarily close to the boundary of 𝐷 ;

(2) Let 𝜆 = 𝜆(𝑚) = 𝑜 (1). For some constant 𝐶 > 0, with probability 1 − O
( 1
𝜆

exp(−𝑚𝜆3)
)
,

𝑌
(𝑡 )
𝑖

=𝑚𝑧𝑖 (𝑡/𝑚) + O(𝜆𝑚)

uniformly for 0 ≤ 𝑡 ≤ 𝜎𝑚 and for each i, where 𝑧𝑖 (𝑥) is the solution in given above with
𝑧𝑖 =

1
𝑚
𝑌
(0)
𝑖

, and 𝜎 = 𝜎 (𝑚) is the supremum of those 𝑥 to which the solution can be extended
before reaching within 𝐿∞-distance 𝐶𝜆 of the boundary of 𝐷 .

A few analyzes of randomized search heuristics with Wormald’s theorem exist [LS15, FKM17, Her18]. It has
the advantage that it allows to track multiple interacting random variables (which, for other drift theorems,
would have to be combined to a single potential). On the other hand, it requires solving a differential equation
(well-known to be not an easy task) and the conclusion is typically deteriorating over time, since the variance
is not averaged out but accumulates over time.

Note that there are also theorems closer to the classic drift theorems for tracking multiple random variables
in restricted settings [Row18, JL22].
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6 No Going Back: The Fitness Level Method (FLM)

Some processes (𝑋𝑡 )𝑡 ∈ℕ are monotone, that is, we have ∀𝑡 : 𝑋𝑡 ≤ 𝑋𝑡+1. Monotone processes occur frequently
in the analysis of heuristic optimization, since the best fitness found so far is a typical process considered.
For some such processes, simpler (and sometimes stronger) analyses are possible than with drift theorems
allowing for non-monotone processes (see Proposition 6.2 [Application to Rumor Spreading] for an example).

Wegener [Weg01] proposed the following method, called the fitness level method (FLM). We partition the
search space into a number 𝑚 of sections (“levels”) in a linear fashion, so that all elements of later levels have
better fitness than all elements of earlier levels. For the algorithm to be analyzed we regard the best-so-far
individual and the level it is in. Since the best-so-far individual can never move to lower levels, it will visit each
level at most once (possibly staying there for some time). Suppose we can show that, for any level 𝑖 < 𝑚 which
the algorithm is currently in, the probability to leave this level is at least 𝑝𝑖 . Then, bounding the expected
waiting for leaving a level 𝑖 by 1/𝑝𝑖 (geometric distribution) and pessimistically assuming that we visit (and
thus have to leave) each level 𝑖 < 𝑚 before reaching the target level𝑚, we can derive an upper bound for the
optimization time of

𝑚−1∑︁
𝑖=1

1
𝑝𝑖
.

The fitness level method allows for simple and intuitive proofs and has therefore frequently been applied.
Variations of it come with tail bounds [Wit14], work for parallel EAs [LS14] or regard populations [Wit06].
A similar analysis in levels can be made for non-elitist EAs, but here it is crucially possible (and sometimes
not unlikely) to lose a level. See Theorem 5.22 [Level-Based Theorem] for a corresponding theorem along a
discussion.

We state the fitness level method (FLM) formally as follows.

Theorem 6.1: Fitness Level Method (FLM)

Let (𝑋𝑡 )𝑡 ∈ℕ be a monotone process on [𝑚]. For all 𝑖 ∈ [𝑚−1], let 𝑝𝑖 be a lower bound on the probability
of a state change of (𝑋𝑡 )𝑡 ∈ℕ, conditional on being in state 𝑖 , formally: for all 𝑡 with Pr[𝑋𝑡 = 𝑖] > 0,

Pr[𝑋𝑡+1 > 𝑖 | 𝑋0, . . . , 𝑋𝑡 , 𝑋𝑡 = 𝑖] ≥ 𝑝𝑖 .

Let 𝑇 be the random variable describing the first time 𝑡 such that 𝑋𝑡 =𝑚. Then

E[𝑇 ] ≤
𝑚−1∑︁
𝑖=1

1
𝑝𝑖
.

Proof. For all 𝑖 ∈ [𝑚 − 1], we let 𝑆𝑖 = {𝑡 ∈ ℕ | 𝑋𝑡 = 𝑖}. Since (𝑋𝑡 )𝑡 ∈ℕ is monotone, each 𝑆𝑖 is a discrete interval.
Calling the leaving of 𝑆𝑖 a success event, we can use Theorem 2.9 [Geometric Distribution] to see that the
expected size of each 𝑆𝑖 is at most 1/𝑝𝑖 . Since 𝑇 =

∑𝑚−1
𝑖=1 |𝑆𝑖 |, the theorem follows. ■

Note. The main strength of the fitness level method over drift theorems is that the chance to leave a
level 𝑖 , 𝑝𝑖 , can depend arbitrarily on 𝑖 . In contrast, in Theorem 5.13 [Variable Drift], one of the most
general drift theorems, the drift has to depend monotonically on the state of the process.
Conversely, the main strength of drift theorems over the fitness level method is that the process is
allowed to be non-monotone, so that we can work with other processes than those based on fitness.

The following example shows a toy application of the fitness level method where drift theorems are not
easily applicable. The setting is borrowed from the area of rumor spreading, see, for example, [DK14] and also
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[DFF+19] for an application in the area of randomized search heuristics.

Propostion 6.2: Application to Rumor Spreading

Let 𝑛 ∈ ℕ. Suppose 𝑛 people each want to obtain a certain information, and suppose in iteration 0
exactly one of them knows this information. In each iteration, one of the 𝑛 people is chosen uniformly
at random and if this person does not know the information, the person will contact another person
chosen uniformly at random. If this other person knows the information, then the calling person from
now on also knows the information. Then it takes, in expectation, at most 2𝑛(ln(𝑛 − 1) + 1) iterations
until all persons know the rumor.

Proof. We let, for each 𝑡 ∈ ℕ, 𝑋𝑡 be the number of persons who know the rumor after 𝑡 iterations. Then (𝑋𝑡 )𝑡 ∈ℕ
is a monotone process on [𝑛]. Let some iteration 𝑡 be given. If, after 𝑡 iterations, exactly 𝑖 ∈ [𝑛 − 1] persons
know the rumor, then the probability that in the next iteration an uninformed person is chosen to make a call
is (𝑛 − 𝑖)/𝑛. The probability that this person calls an informed person is independent of that probability and
𝑖/(𝑛 − 1). Thus, the chance 𝑝𝑖 to “leave state 𝑖” is

𝑝𝑖 =
𝑛 − 𝑖
𝑛

𝑖

𝑛 − 1 .

By Theorem 6.1 [Fitness Level Method (FLM)], the total time until all people are informed is thus at most

𝑛−1∑︁
𝑖=1

1
𝑝𝑖

=

𝑛−1∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑖 .

[Comment: For didactic reasons, we give two different ways of bounding this sum; the second uses calculus
and gives the better bound.] A first way to bound the sum is by splitting it into two and using worst case
estimates to simplify. Let 𝑘 = ⌊𝑛/2⌋; we have

𝑛−1∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑖 =

𝑘∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑖 +

𝑛−1∑︁
𝑖=𝑘+1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑖

≤
𝑘∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑘)𝑖 +

𝑛−1∑︁
𝑖=𝑘+1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑘

=

𝑘∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑘)𝑖 +

𝑛−𝑘−1∑︁
𝑖=1

𝑛(𝑛 − 1)
𝑖 𝑘

=
𝑛(𝑛 − 1)
𝑛 − 𝑘

𝑘∑︁
𝑖=1

1
𝑖
+ 𝑛(𝑛 − 1)

𝑘

𝑛−𝑘−1∑︁
𝑖=1

1
𝑖

≤ 𝑛(𝑛 − 1)
𝑛 − 𝑘 (ln(𝑘) + 1) + 𝑛(𝑛 − 1)

𝑘
(ln(𝑛 − 𝑘 − 1) + 1) .

The last inequality uses Lemma 9.11 [Upper Bound on the Harmonic Sum]. By bounding 1/(𝑛 − 𝑘) ≤ 2/𝑛 and
1/𝑘 ≤ 2/(𝑛 − 1) we can further bound the term by

2(𝑛 − 1) (ln(𝑘) + 1) + 2𝑛(ln(𝑛 − 𝑘 − 1) + 1) ≤ 4𝑛(ln(𝑛) + 1).
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We can get a tighter bound as follows by turning to calculus. The function

𝑓 : [1, 𝑛 − 1] → ℝ, 𝑥 ↦→ 1
(𝑛 − 𝑥)𝑥

has a minimum at 𝑛/2, is before that monotone decreasing and afterwards monotone increasing. Thus, we
can use Lemma 9.12 [Upper Bounding Sum by Integral] twice, once on the interval [1, ⌊𝑛/2⌋] and once on
[⌈𝑛/2⌉, 𝑛 − 1] to bound

𝑛−1∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑖 ≤ 𝑛 + 𝑛 + 𝑛(𝑛 − 1)

∫ 𝑛−1

1
𝑓 (𝑥)d𝑥 .

Note that the summands before the integral are the first and the last summand of the large sum (which are not
covered by the cited lemma). The indefinite integral over 𝑓 is given by the function

𝑥 ↦→ ln(𝑥) − ln(𝑛 − 𝑥)
𝑛

,

which can be seen by taking the derivative of that function. Using the integral bounds, we arrive at

𝑛−1∑︁
𝑖=1

𝑛(𝑛 − 1)
(𝑛 − 𝑖)𝑖 ≤ 2𝑛 + (𝑛 − 1) (ln(𝑛 − 1) − ln(1) − ln(1) + ln(𝑛 − 1)) = 2(𝑛 − 1) ln(𝑛 − 1) + 2𝑛

as desired. ■

Note that due to the drift being strongest in the middle of the state space, no other drift theorem is directly
available without losing asymptotically: one could apply the additive drift theorem to obtain a bound of 𝑂 (𝑛2)
by using that the drift is 𝛺 (1/𝑛). Another choice is to us an argument in phases: since the process is monotone,
one can analyze the time until reaching 𝑛/2 separately from the remainder. This would then potentially allow
to use some version of multiplicative up-drift (for the first phase) and multiplicative drift (for the second phase).
However, this would lead to an unnecessarily complicated analysis.

While very effective for proving upper bounds, it seems much harder to use fitness level arguments to prove
lower bounds. The first to devise a lower bound method based on fitness levels that gives competitive bounds
was Sudholt [Sud13]. Next we see a lower bound from [DK21a].

Theorem 6.3: Fitness Level Method with Visit Probabilities, Lower Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be a monotone process on [𝑚]. For all 𝑖 ∈ [𝑚 − 1], let 𝑝𝑖 be an upper bound on the
probability of a state change of (𝑋𝑡 )𝑡 ∈ℕ, conditional on being in state 𝑖 . Furthermore, let 𝑣𝑖 be a lower
bound on the probability of there being a 𝑡 such that 𝑋𝑡 = 𝑖 (the visit probability of level 𝑖). Then the
expected time for (𝑋𝑡 )𝑡 ∈ℕ to reach the state𝑚 is

E[𝑇 ] ≥
𝑚−1∑︁
𝑖=1

𝑣𝑖

𝑝𝑖
.

Proof. We proceed as in the proof for Theorem 6.1 [Fitness Level Method (FLM)]. For all 𝑖 ∈ [𝑚 − 1], we let
𝑆𝑖 = {𝑡 ∈ ℕ | 𝑋𝑡 = 𝑖}. With probability at most 1− 𝑣𝑖 we have that 𝑆𝑖 = ∅. Again using Theorem 2.9 [Geometric
Distribution], we see that the expected size of each non-empty 𝑆𝑖 is at least 1/𝑝𝑖 . Since 𝑇 =

∑𝑚−1
𝑖=1 |𝑆𝑖 |, the

theorem follows with linearity of expectation. ■

A corresponding upper bound [DK21a] follows with analogous arguments and shows the tightness of the
approach, with the bounds required on 𝑝𝑖 and 𝑣𝑖 reversed.
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Theorem 6.4: Fitness Level Method with Visit Probabilities, Upper Bound

Let (𝑋𝑡 )𝑡 ∈ℕ be a monotone process on [𝑚]. For all 𝑖 ∈ [𝑚−1], let 𝑝𝑖 be an lower bound on the probability
of a state change of (𝑋𝑡 )𝑡 ∈ℕ, conditional on being in state 𝑖 . Furthermore, let 𝑣𝑖 be an upper bound on
the probability of there being a 𝑡 such that 𝑋𝑡 = 𝑖 . Then the expected time for (𝑋𝑡 )𝑡 ∈ℕ to reach the state
𝑚 is

E[𝑇 ] ≤
𝑚−1∑︁
𝑖=1

𝑣𝑖

𝑝𝑖
.

Proof. Analogous to the proof of Theorem 6.3 [Fitness Level Method with Visit Probabilities, Lower Bound]. ■

In a typical application of the fitness level method, finding good estimates for the leaving probabilities is
easy. It is more complicated to estimate the visit probabilities accurately, the following lemma from [DK21a]
offers an option.

Lemma 6.5: Computing Visit Probabilities

Let (𝑋𝑡 )𝑡 ∈ℕ be a monotone process on [𝑚]. Further, suppose that (𝑋𝑡 )𝑡 ∈ℕ reaches state 𝑚 after a
finite time with probability 1. Let 𝑖 < 𝑚 be given. Suppose there is 𝑣𝑖 such that, for all 𝑡 ∈ ℕ with
Pr[𝑋𝑡+1 ≥ 𝑖 > 𝑋𝑡 ] > 0,

Pr[𝑋𝑡+1 = 𝑖 | 𝑋0, . . . , 𝑋𝑡 ;𝑋𝑡+1 ≥ 𝑖 > 𝑋𝑡 ] ≥ 𝑣𝑖 ,

and
Pr[𝑋0 = 𝑖 | 𝑋0 ≥ 𝑖] ≥ 𝑣𝑖 .

Then 𝑣𝑖 is a lower bound for visiting level 𝑖 as required by Theorem 6.3 [Fitness Level Method with Visit
Probabilities, Lower Bound].

An analogous bound for upper bounds on visit probabilities also holds.

6.1 Applications

As a first application of these methods we now determine a lower bound for the coupon collector problem (see
Theorem 2.7 [Coupon Collector with Multiplicative Drift]).

Theorem 6.6: Coupon Collector, Lower Bound via Fitness Levels

Suppose we want to collect at least one of each kind of 𝑛 ∈ ℕ≥1 coupons. Each round, we are given one
coupon chosen uniformly at random from the 𝑛 kinds. Then, in expectation, we have to collect for at
least 𝑛(1 + ln𝑛) iterations.

Proof. Let 𝑋𝑡 be the number of coupons after 𝑡 iterations. Note that this process is monotone and, since it
gains at most one in any iteration, visits all elements of [𝑛 − 1] before reaching the target of 𝑛. The probability
of making progress (of 1) with coupon 𝑡 + 1 is 𝑝𝑖 = (𝑛 − 𝑖)/𝑛, since 𝑛 − 𝑖 coupons are missing and each has a
probability of 1/𝑛, and all these events are disjoint. An application of both Theorem 6.3 [Fitness Level Method
with Visit Probabilities, Lower Bound] and Theorem 6.4 [Fitness Level Method with Visit Probabilities, Upper
Bound] gives an exact value of the expected time to find all 𝑛 coupons of

𝑛−1∑︁
𝑖=0

𝑣𝑖

𝑝𝑖
=

𝑛−1∑︁
𝑖=0

𝑛

𝑛 − 𝑖 = 𝑛𝐻𝑛,
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Where, for each𝑚 ∈ ℕ+, we use 𝐻𝑚 to denote the𝑚th harmonic number. ■

As a second application we now determine the precise run time of the (1 + 1) EA on LeadingOnes via the
two fitness level theorems. This optimization time was first established in [BDN10].

Theorem 6.7: Run Time of (1 + 1) EA on LeadingOnes

Consider the (1 + 1) EA optimizing LeadingOnes with mutation rate 𝑝 . Let 𝑇 be the (random) time for
the (1 + 1) EA to find the optimum. Then

E[𝑇 ] = 1
2

𝑛−1∑︁
𝑖=0

1
(1 − 𝑝)𝑖𝑝 .

Proof. We want to apply Theorem 6.4 [Fitness Level Method with Visit Probabilities, Upper Bound] and
Theorem 6.3 [Fitness Level Method with Visit Probabilities, Lower Bound] simultaneously. For all 𝑡 ∈ ℕ, we let
𝑋𝑡 be the LeadingOnes-value of the individual which the (1 + 1) EA has found after 𝑡 iterations. Now we
need a precise result for the probability to leave a level and for the probability to visit a level.

First, we consider the probability 𝑝𝑖 to leave a given level 𝑖 < 𝑛. Suppose the algorithm has a current search
point in level 𝑖 , so it has 𝑖 leading 1s and then a 0. The algorithm leaves level 𝐴𝑖 now if and only if it flips the
first 0 of the bit string (probability of 𝑝) and no previous bits (probability (1 − 𝑝)𝑖 ). Hence, 𝑝𝑖 = 𝑝 (1 − 𝑝)𝑖 .

Next we consider the probability 𝑣𝑖 to visit a level 𝑖 . We claim that it is exactly 1/2, following reasoning
given in several places before [DJW02, Sud13]. We want to use Lemma 6.5 [Computing Visit Probabilities]
and its analogue for upper bounds. Let 𝑖 be given. For the initial search point, if it is at least on level 𝑖 (the
condition considered by the lemma), the individual is on level 𝑖 if and only if the 𝑖 + 1st bit is a 0, so exactly
with probability 1/2 as desired for both bounds. Before an individual with at least 𝑖 leading 1s is created, the
bit at position 𝑖 + 1 remains uniformly random (this can be seen by induction: it is uniform at the beginning
and does not experience any bias in any iteration while no individual with at least 𝑖 leading 1s is created).
Once such an individual is created, if the bit at position 𝑖 + 1 is 1, the level 𝑖 is skipped, otherwise it is visited.
Thus, the algorithm skips level 𝑖 with probability exactly 1/2, giving 𝑣𝑖 = 1/2. With these exact values for the
𝑝𝑖 and 𝑣𝑖 , Theorem 6.4 [Fitness Level Method with Visit Probabilities, Upper Bound] and Theorem 6.3 [Fitness
Level Method with Visit Probabilities, Lower Bound] immediately yield the claim. ■

By computing the geometric series in Theorem 6.7 [Run Time of (1 + 1) EA on LeadingOnes], we obtain as
a (well-known) corollary that the (1 + 1) EA with the classic mutation rate 𝑝 = 1/𝑛 optimizes LeadingOnes in
an expected run time of 𝑛2 𝑒−1

2 (1 ± 𝑜 (1)).
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7 A Different Perspective: Fixed Budget Optimization

In the previous chapters we have seen many theorems regarding the first hitting time of a process. This
answers the question: “How much time do I have to invest until a desired outcome?” Sometimes we want
to answer a different question: “I have a fixed budget 𝑡0 of time available; what performance can I expect?”
Furthermore, fixed-budget results that hold with high probability are crucial for the analysis of algorithm
configurators [HOS19]. These configurators test different algorithms for fixed budgets in order to make
statements about their appropriateness in a given setting.

In this chapter we want to discuss general tools for fixed-budget analyses. We still want to use knowledge
about step-wise changes and translate them into the global view, just as for the drift theorems for first hitting
times.

We start by analyzing the most basic setting in Section 7.1 [The Additive Case] and generalize it in Section 7.2
[Variable Fixed Budget Drift]. We show sample results derived with these methods in Section 7.3 [Applications
to OneMax and LeadingOnes].

7.1 The Additive Case

We start with the simple case of additive drift. If we expect to go down by 𝛿 in each iteration, then, after 𝑡
iterations, we expect to be down 𝑡𝛿 , as would be the case for a completely deterministic process. Here the proof
is simple and instructive.

Theorem 7.1: Additive Fixed-Budget Drift

Let (𝑋𝑡 )𝑡 ∈ℕ, be an integrable random process on ℝ. Suppose there is a 𝛿 ∈ ℝ+ so that we have the drift
condition

(D) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

Thus, the drift condition is equivalent to

(D’) E[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ 𝑋𝑡 − 𝛿 .

Then, for all 𝑡 ≥ 0,
E[𝑋𝑡 | 𝑋0] ≤ 𝑋0 − 𝑡𝛿 .

Proof. We prove the theorem by induction on 𝑡 , with a trivial induction basis. Suppose now the statement is
true for some 𝑡 ≥ 0 (IH). Using the law of total expectation (LTE), we have

E[𝑋𝑡+1 | 𝑋0] =
(LTE)

E[E[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] | 𝑋0]

≤
(D’)

E[𝑋𝑡 − 𝛿 | 𝑋0]

≤
(IH)

𝑋0 − (𝑡 + 1)𝛿.

This concludes the induction. ■

Note that this version does not take into account that drift might only hold before a target has been reached.
We refer to this setting as unlimited time. The next theorem considers a potential end point. Note that the
proof follows the proof of Theorem 1 in [Len20].
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Theorem 7.2: Additive Fixed-Budget Drift, Limited Time

Let (𝑋𝑡 )𝑡 ∈ℕ, be an integrable random process on ℝ and let 𝑇 be any random variable on ℕ. Suppose
that there is a 𝛿 ∈ ℝ+ so that we have the following drift condition.

(D) For all 𝑡 ∈ ℕ with Pr[𝑡 < 𝑇 ] > 0, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 < 𝑇 ] ≥ 𝛿 .

(D’) For all 𝑡 ∈ ℕ with Pr[𝑡 ≥ 𝑇 ] > 0, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑡 ≥ 𝑇 ] ≥ 0.

Then, for all 𝑡 ∈ ℕ,
E[𝑋𝑡 | 𝑋0] ≤ 𝑋0 − 𝑡𝛿 Pr[𝑡 ≤ 𝑇 ] .

Proof. First, we show that, for all 𝑡 ∈ ℕ,

E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0] ≤ −𝛿 Pr[𝑡 < 𝑇 ] . (∗)

We distinguish three cases. (1) If Pr[𝑡 < 𝑇 ] = 0, then Equation (∗) follows from (D’). (2) If Pr[𝑡 < 𝑇 ] = 1, then
Equation (∗) follows from (D). (3) Otherwise, we use the law of total expectation to get

E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0] = E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, 𝑡 < 𝑇 ] Pr[𝑡 < 𝑇 ] + E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, 𝑡 ≥ 𝑇 ] Pr[𝑡 ≥ 𝑇 ]
≤
(D)
−𝛿 Pr[𝑡 < 𝑇 ] + E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0, 𝑡 ≥ 𝑇 ] Pr[𝑡 ≥ 𝑇 ]

≤
(D’)
−𝛿 Pr[𝑡 < 𝑇 ] .

We now prove the theorem by induction on 𝑡 ∈ ℕ, with a trivial induction basis for 𝑡 = 0. Suppose now the
statement is true for some 𝑡 ≥ 0 (IH). We now have

E[𝑋𝑡+1 | 𝑋0] = E[𝑋𝑡+1 − 𝑋𝑡 + 𝑋𝑡 | 𝑋0]
= E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0] + E[𝑋𝑡 | 𝑋0]
≤

(IH)
E[𝑋𝑡+1 − 𝑋𝑡 | 𝑋0] + 𝑋0 − 𝑡𝛿 Pr[𝑡 ≤ 𝑇 ]

≤
(∗)
−𝛿 Pr[𝑡 < 𝑇 ] + 𝑋0 − 𝑡𝛿 Pr[𝑡 ≤ 𝑇 ]

≤ −𝛿 Pr[𝑡 + 1 ≤ 𝑇 ] + 𝑋0 − 𝑡𝛿 Pr[𝑡 + 1 ≤ 𝑇 ]
= 𝑋0 − (𝑡 + 1)𝛿 Pr[𝑡 + 1 ≤ 𝑇 ] .

This concludes the induction. ■

7.2 Variable Fixed Budget Drift

For the rest of this chapter, we want to generalize Theorem 7.1 [Additive Fixed-Budget Drift] to state-varying
drift. Suppose that, for some function ℎ, in state 𝑥 we observe a drift of ℎ(𝑥). In order to understand what
kind of result to expect in this context, we consider a completely deterministic process starting in 𝑥0 ∈ ℝ and
progressing down by ℎ(𝑥) when in state 𝑥 . Then, after one step, the process is in 𝑥0 − ℎ(𝑥0), after two steps in
𝑥0 − ℎ(𝑥0) − ℎ(𝑥0 − ℎ(𝑥0)) and so on. We write, for all 𝑥 , ℎ̃(𝑥) = 𝑥 − ℎ(𝑥). Thus we can write the sequence of
states of the process as 𝑥0, ℎ̃(𝑥0), ℎ̃(ℎ̃(𝑥0)) and so on. We write ℎ̃𝑡 for the 𝑡-fold application of ℎ̃, so after 𝑡 steps
of the process the state is ℎ̃𝑡 . Thus, we want a theorem that shows that we get a similar expected value for a
probabilistic process.

The main question is now what we need to assume about ℎ to get a behavior similar to the deterministic
process. Consider the following monotone process on {0, 1, 2}: 𝑋0 is 2 and the process moves to one of {0, 1}
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uniformly. State 0 is the target state, from state 1 there is only a very small probability to progress to 0 (say
0.1). Then it is better to stay in State 2 instead of being trapped in State 1. Here the drift is 1.5 in State 2 and
only 0.1 in State 1. Thus, the expected next state for State 2 is 0.5, which is less than the expected next state for
State 1, which is 0.9! Intuitively, greedily going forward is a bad idea, if given the choice between States 1 and
2 one should choose (non-greedily) State 2. It turns out that forbidding this kind of situation, formalized in the
next definition, leads to a viable generalization of Theorem 7.1 [Additive Fixed-Budget Drift].

Definition 7.3: Greed-Admitting Functions

We say that a drift functionℎ : 𝑆 → ℝ>0 is greed-admitting if and only if id−ℎ (the function 𝑥 ↦→ 𝑥−ℎ(𝑥))
is monotone non-decreasing.

Intuitively, this formalizes the idea that being closer to the goal is always better (“greed is good”). The
process described before the definition is, in a sense, badly designed: State 1 is worse than State 2, so it should
not have a smaller value.

We now give two different versions of fixed-budget drift theorems. The first considers unlimited time, a very
strong requirement, leading to a strong conclusion.

Theorem 7.4: Variable Fixed-Budget Drift, Unlimited Time

Let (𝑋𝑡 )𝑡 ∈ℕ, be an integrable random process on 𝑆 ⊆ ℝ, where 0 = min 𝑆 . Let ℎ : 𝑆 → ℝ≥0 be a
twice differentiable, convex and greed-admitting function such that ℎ̃′(0) ∈ ]0, 1] and we have the drift
condition

(D-ut) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ ℎ(𝑋𝑡 ).

Define ℎ̃(𝑥) = 𝑥 − ℎ(𝑥). Thus, the drift condition is equivalent to

(D-ut’) E[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ ℎ̃(𝑋𝑡 ).

Then, for all 𝑡 ≥ 0,
E[𝑋𝑡 | 𝑋0] ≤ ℎ̃𝑡 (𝑋0)

and, in particular,
E[𝑋𝑡 ] ≤ ℎ̃𝑡 (E[𝑋0]) .

Crucial for this theorem is that the drift condition is unlimited time, by which we mean that the drift
condition has to hold for all times 𝑡 , not just (which is the typical case in the literature for drift theorems) those
before the optimum is hit. This theorem is applicable if there is no optimum (and the optimization progresses
indefinitely) or if the drift is 0 in the optimum. In order to bypass these limitations we also give a variant
which allows for limited time drift, where the drift condition only needs to hold before the optimum is hit;
however, in this case we pick up an additional error term in the result, derived from the possibility of hitting
the optimum within the allowed time budget of 𝑡 . Thus, in order to apply this theorem, one will typically need
concentrations bounds for the time to hit the optimum.

A special case of the previous theorem is given in [LS15], where the drift is necessarily multiplicative. Note
that in this case we can typically consider unlimited time, since after reaching the state 0 the multiplicative
drift holds vacuously.

Now we give a version of the variable fixed-budget drift where the time is limited in the sense that the drift
condition might no longer hold at some point in time.
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Theorem 7.5: Variable Fixed-Budget Drift, Limited Time

Let (𝑋𝑡 )𝑡 ∈ℕ, be an integrable random process on 𝑆 ⊆ ℝ, where 0 = min 𝑆 . Let 𝑇 = inf{𝑡 ∈ ℕ | 𝑋𝑡 = 0}
and ℎ : 𝑆 → ℝ≥0 be a twice differentiable, convex and greed-admitting function such that ℎ̃′(0) ∈ ]0, 1]
and we have, for all 𝑡 < 𝑇 , the drift condition

(D-lt) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ ℎ(𝑋𝑡 ).

Define ℎ̃(𝑥) = 𝑥 − ℎ(𝑥). Thus, the drift condition is equivalent to

(D-lt’) E[𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≤ ℎ̃(𝑋𝑡 ).

Then, for all 𝑡 ≥ 0,

E[𝑋𝑡 | 𝑋0] ≤ ℎ̃𝑡 (𝑋0) +
ℎ̃(0)
ℎ̃′(0)

and, in particular,

E[𝑋𝑡 ] ≤ ℎ̃𝑡 (E[𝑋0]) −
ℎ̃(0)
ℎ̃′(0)

· Pr[𝑡 ≥ 𝑇 | 𝑋0] .

For both these theorems, the drift function bounding the drift has to be convex and greed-admitting, which
intuitively says that being closer to the goal is always better in terms of the expected state after an additional
iteration, while search points closer to the goal are required to have weaker drift. These conditions are fulfilled
in many sample applications.

In order to interpret the conclusions of the last two theorems properly, we need to estimate the term ℎ̃𝑡 .
With the following theorem we give a general way of making this estimation.

Theorem 7.6: Estimation of Iterated Functions

Let ℎ : ℝ→ ℝ+ be a monotone non-decreasing and integrable function. Let ℎ̃ = id − ℎ. Then, for all
starting points 𝑛 and all target points 𝑥 ≤ 𝑦 and all time budgets 𝑡 ,

if 𝑡 ≥
∫ 𝑦

𝑥

1
ℎ(𝑧) d𝑧 then ℎ̃𝑡 (𝑦) ≤ 𝑥 .

We can specialize the previous theorem to the discrete case.

Theorem 7.7: Estimation of Iterated Functions, Sum Formula

Let ℎ : ℕ→ ℝ+ be a monotone non-decreasing function and let ℎ̃ = id − ℎ. Then, for all starting points
𝑛 ∈ ℕ and all target points𝑚 ≤ 𝑛 and all time budgets 𝑡 ,

if 𝑡 ≥
𝑛−1∑︁
𝑖=𝑚

1
ℎ(𝑖) then ℎ̃𝑡 (𝑛) ≤ 𝑚.

Proof. We apply Theorem 7.6 [Estimation of Iterated Functions] to ℎ : ℝ → ℝ>0, 𝑥 ↦→ ℎ(max(0, ⌊𝑥⌋)); note
that we only care about non-negative arguments to ℎ. Further, we use that, for all 𝑖 ∈ ℕ,

1
ℎ(𝑖) =

∫ 𝑖+1

𝑖

1
ℎ(𝑧)

d𝑧.
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■

7.3 Applications to OneMax and LeadingOnes

In this section we show results from applications of Theorem 7.4 [Variable Fixed-Budget Drift, Unlimited Time]
as given in [KW20]. We consider the optimization of the (1 + 1) EA on OneMax and on LeadingOnes as
examples. We start with OneMax, where we have multiplicative drift.

Theorem 7.8: Fixed Budget for OneMax

For all 𝑡 ∈ ℕ, let 𝑋𝑡 be the number of 1s which the (1 + 1) EA on OneMax has found after 𝑡 iterations
of the algorithm. Then we have, for all 𝑡 ,

E[𝑋𝑡 ] ≥
{
𝑛
2 +

𝑡

2
√
𝑒
−𝑂 (1), if 𝑡 = 𝑂 (

√
𝑛);

𝑛
2 +

𝑡

2
√
𝑒
(1 − 𝑜 (1)), if 𝑡 = 𝑜 (𝑛).

Furthermore, for all 𝑡 , we have E[𝑋𝑡 ] ≥ 𝑛(1 − exp(−𝑡/(𝑒𝑛))/2).

For the (1 + 1) EA on OneMax, no concrete formula for a bound on the fitness value after 𝑡 iterations was
known: The original work [JZ12] could only handle RLS on OneMax, not the (1 + 1) EA. The multiplicative
drift theorem of [LS15] allows for deriving a lower bound of 𝑛/2 + 𝑡/(2𝑒) for 𝑡 = 𝑜 (𝑛), using a multiplicative
drift constant of (1 − 1/𝑛)𝑛/𝑛. Since our drift theorem allows for variable drift, we can give the better bound
of 𝑛/2 + 𝑡/(2

√
𝑒) − 𝑜 (𝑡) for the (1 + 1) EA on OneMax with 𝑡 = 𝑜 (𝑛). Note that [LS15] also gives bounds for

values of 𝑡 closer to the expected optimization time.
Our second example shows the progress of the (1 + 1) EA on LeadingOnes, where we have additive drift.

The result is summarized in the following theorem.

Theorem 7.9: Fixed Budget for LeadingOnes

For all 𝑡 ∈ ℕ, let 𝑋𝑡 be the number of leading 1s which the (1 + 1) EA on LeadingOnes has found after
𝑡 iterations of the algorithm. We have, for all 𝑡 ,

E[𝑋𝑡 ] ≥


2𝑡
𝑛
−𝑂 (1), if 𝑡 = 𝑂 (𝑛3/2);

2𝑡
𝑛
· (1 − 𝑜 (1)), if 𝑡 = 𝑜 (𝑛2);

𝑛 ln(1 + 2𝑡
𝑛2 ) −𝑂 (1), if 𝑡 ≤ 𝑒−1

2 𝑛2 − 𝑛3/2.

For the (1 + 1) EA on LeadingOnes with a budget of 𝑡 = 𝑜 (𝑛2) iterations, the paper [JZ12] gives a lower
bound of 2𝑡/𝑛 − 𝑜 (𝑡/𝑛) for the expected fitness after 𝑡 iterations, which are recovered with a simpler proof.
The general theorems from this section also allow budgets closer to the expected optimization time, where we
get a lower bound of 𝑛 ln(1 + 2𝑡/𝑛2) −𝑂 (1).

7.4 Bibliographic Remarks

The setting of fixed-budget analysis was introduced to the analysis of randomized search heuristics by Jansen
and Zarges [JZ12], who derived fixed-budget results for the classical example functions OneMax and Leadin-
gOnes by bounding the expected progress in each iteration. A different perspective was proposed by Doerr,
Jansen, Witt and Zarges [DJWZ13], who showed that fixed-budget statements can be derived from bounds on
optimization times if these exhibit strong concentration. Lengler and Spooner [LS15] proposed a variant of
multiplicative drift for fixed-budget results and the use of differential equations in the context of OneMax
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and general linear functions. Nallaperuma, Neumann and Sudholt [NNS17] applied fixed-budget theory to
the analysis of evolutionary algorithms on the traveling salesman problem and Jansen and Zarges [JZ14] to
artificial immune systems. The quality gains of optimal black-box algorithms on OneMax in a fixed-budget
perspective were analyzed by Doerr, Doerr and Yang [DDY20]. He, Jansen and Zarges [HJZ19] consider the
so-called unlimited budgets to estimate fitness values in particular for points of time larger than the expected
optimization time. A survey by Jansen [Jan20] summarizes the state of the art in the area of fixed-budget
analysis.

In contrast to the numerous drift theorems available for bounding the optimization time, there was no
corresponding theorem for making a fixed-budget analysis apart from one for the multiplicative case given
in [LS15]. This changed with [KW20], introduced in this chapter, providing several such drift theorems.

Note that a further fixed-budget drift theorem can be found in [KW20], where a detour of the computation
of fixed budget results via first hitting times is made.
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8 Drift as an Average: A Closer Look on the Conditioning of Drift

Consider a deterministic process which starts at 100 and goes down by 1 in each iteration; we trivially see that
the expected time until the process reaches 0 is 100. If the process goes down by 1 or 1/2, then a worst-case
view would state an upper bound of 200 until the process reaches 0.

Drift theory allows for an average case view. In fact, the main strength of drift theory is that even the
possibility of going away from the target is incorporated, as long as in expectation we have a bias towards the
target. For example, if a process goes down by 10 with probability 11/20 and up by 10 with probability 9/20,
then the progress is in expectation also 1, but not in the worst case. The additive drift theorem tells us that, also
in this case, we expect to arrive at 0 after 100 steps. Thus, instead of a worst case bound, averaging different
outcomes leads to a useful bound.

In this section we investigate three questions.

(1) How do drift theorems allow to exploit that drift is an average over a range of possibilities?

(2) Why do drift theorems in the literature condition on various different things?

(3) How do we account for insufficient drift after reaching the target?

8.1 Drift as an Average

In Theorem 2.1 [Additive Drift, Upper Bound] we have seen the standard (additive) drift condition to be

(D) there is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

In this section we want to take a closer look at the conditioning on 𝑋0, . . . , 𝑋𝑡 . First we show that not
conditioning on anything leads to counterexamples.

Example 8.1: Global Averaging — Suppose we first flip a coin in secret. Then, if the coin shows tails,
for all 𝑖 ∈ ℕ we let 𝑋𝑖 = 1. If, on the other hand, the coin shows heads, we let 𝑋0 = 1 and, for all 𝑖 ∈ ℕ,
we draw independently uniformly at random bits 𝐵𝑖 ∈ {0, 1} and set 𝑋𝑖+1 = 𝑋𝑖 − 𝐵𝑖 . For any 𝑡 with
𝑡 < 𝑇 we now have E[𝑋𝑡 − 𝑋𝑡+1] ≥ 1/4 (we make a progress of exactly 1 if the coin shows tails and the
bit is 1, and otherwise of 0). Thus, the conclusion of the additive drift theorem states an upper bound of
4 on the expected time to hit 0, while, in fact, E[𝑇 ] is infinite.

The previous example shows that the conclusion of the additive drift theorem can be false while the drift
condition holds, averaged over all possible situations. What we can do is average over all possible situations
with the same history of 𝑋0, . . . , 𝑋𝑡 , as stated by the additive drift theorem. To illustrate this, we have the
following example.

Example 8.2: Local Averaging — Let us play a game where your goal is to draw a total number of 10
red balls. In each iteration I randomly fill in secret a bag of balls of different colors, and draw a ball
uniformly at random from that bag. Suppose I either fill the bag with 10 balls, 9 of which are blue and
one is red, or with 100 balls, where 99 are blue and one is red. Suppose I choose either situation with
equal probability of 1/2. Then, on average, in any iteration your probability to pick a red ball is 11/200.
Thus, you arrive at a value of 10 drawn red balls after an expected number of 2000/11 iterations.

Note that in this example there seem to be two different possible situations in each iteration with different
drift. One way to address this is to bound drift by the smaller of the two drift values; but the drift theorem
allows for averaging the drift of the different situations, since we are given the probabilities of the two values.
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We cannot average over global decisions that we can learn about from the history, see Example 8.1 [Global
Averaging]; this depends on our choice of what is the history in this context. If we cannot learn about the
global decisions from the history, we can use the principle of deferred decision to model the random decision as
a decision in that given iteration, as illustrated by the following example.

Example 8.3: Deferred Decisions — Let us again play a game where your goal is to draw a total
number of 10 red balls. This time, before the game starts, I fill an infinite sequence of bags, making for
each the exact same decision as given in Example 8.2 [Local Averaging]. In each iteration you get the
next bag from this sequence. Since the outcome of one bag is independent of other bags, we cannot
learn anything about future bags from the history. Thus, using the principle of deferred decision, we
compute as if the bag was only packed in the current iteration, after all previous (random) decisions
have been made. Thus, the analysis proceeds exactly as in Example 8.2 [Local Averaging] and you
arrive at a value of 10 drawn red balls after an expected number of 2000/11 iterations.

8.2 The Conditioning of Drift

Let us take a closer look at the drift condition. For this section, we define four variants with different
conditioning of the drift as follows.

Definition 8.4: Variants on the Conditioning of Drift

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process over ℝ and let (𝐹𝑡 )𝑡 ∈ℕ be a filtration such that (𝑋𝑡 )𝑡 ∈ℕ is
adapted to (𝐹𝑡 )𝑡 ∈ℕ, let 𝑓 be a measurable function and 𝑡 ∈ ℕ.

(D-filtration) E[𝑋𝑡 − 𝑋𝑡+1 | 𝐹𝑡 ] ≥ 𝑓 (𝑋𝑡 ) with probability 1.

(D-history) E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑓 (𝑋𝑡 ) with probability 1.

(D-events) For all 𝑠0, . . . , 𝑠𝑡 with Pr[𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] > 0,
E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] ≥ 𝑓 (𝑠𝑡 ).

(D-Markov) For all 𝑠𝑡 with Pr[𝑋𝑡 = 𝑠𝑡 ] > 0, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑠𝑡 ] ≥ 𝑓 (𝑠𝑡 ).

Some researchers prefer to state all drift theorems in terms of filtrations, see, for example, [Wit23]; some
prefer conditioning on the history [KK19].

In Section 2.1.2 of [Len20], Lengler discusses the differences between (D-filtration) and (D-Markov), phrasing
drift theorems in terms of (D-Markov). Many applications of drift theorems involve states of algorithms which
typically behave as Markov chains. This ubiquity of Markov chains sometimes leads to drift theorems being
stated for Markov chains only. However, the states of algorithms need to be mapped to real numbers in order
to apply drift theorems (see Section 3 [The Art of Potential Functions] for a discussion on potential functions).
If this mapping is not 1-to-1, then, in general, the resulting mapped process is not Markovian any more, so
drift theorems applicable for Markov chains on ℝ are no longer applicable. As we will see, (D-history) is a
necessary condition for (D-Markov) (see Theorem 8.6 [Conditioning on Filtration vs. History vs. Events]),
which is why in this work all drift theorems are stated analogously to (D-history).

In the following we want to discuss how the four given conditions differ and in what sense they are
equivalent. First we recall that conditioning on the history 𝑋0, . . . , 𝑋𝑡 is defined as conditioning on the 𝜎-
algebra 𝜎 (𝑋0, . . . , 𝑋𝑡 ), leading to the canonical filtration. In this sense, the condition (D-history) implies that
there is a filtration such that (D-filtration) holds.
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Propostion 8.5: Canonical Filtration as Filtration

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random process ℝ, 𝑓 a measurable function and 𝑡 ∈ ℕ. Suppose (D-history).
Then there is a filtration (𝐹𝑡 )𝑡 ∈ℕ such that (𝑋𝑡 )𝑡 ∈ℕ is adapted to (𝐹𝑡 )𝑡 ∈ℕ and such that (D-filtration)
holds.

Proof. Using 𝐹𝑡 = 𝜎 (𝑋0, . . . , 𝑋𝑡 ), (D-history) and (D-filtration) are identical. ■

The question now arises whether anything can be gained from using other filtrations than the canonical
filtration. Sometimes it can be easier to assume a different filtration, which gives more information for the
analysis to work with; more outcomes of random variables can be fixed, allowing the analysis to proceed with
these concrete outcomes (see, for example, the proof of Theorem 4.1 [Unbiased Random Walk on the Line]).
But how should the drift theorem be stated? Using the following theorem, we see that if the drift theorem is
only stated conditional on the history, any other filtration (where the process is adapted to) can also be used,
since (D-filtration) implies (D-history).

Theorem 8.6: Conditioning on Filtration vs. History vs. Events

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable random processover ℝ and 𝑓 a measurable function. Suppose further
(𝐹𝑡 )𝑡 ∈ℕ is a filtration such that (𝑋𝑡 )𝑡 ∈ℕ is adapted to (𝐹𝑡 )𝑡 ∈ℕ. We then have, for all 𝑡 ∈ ℕ, the following
implications:
(D-filtration)⇒ (D-history)⇒ (D-events)⇒ (D-Markov)
where the last implication holds for discrete (𝑋𝑡 )𝑡 ∈ℕ.

Proof. Suppose first, for “(D-filtration)⇒ (D-history)”, E[𝑋𝑡+1 | 𝐹𝑡 ] ≥ 𝑓 (𝑋𝑡 ) with probability 1.
Since (𝑋𝑡 )𝑡 ∈ℕ is adapted to (𝐹𝑡 )𝑡 ∈ℕ, we have that, for all 𝑡 ,

𝜎 (𝑋0, . . . , 𝑋𝑡 ) ⊆ 𝐹𝑡 .

Using Lemma 9.15 [Tower Property for Sub-𝜎-Algebra] in the second equality, we have, with probability 1,

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] = E[𝑋𝑡 − 𝑋𝑡+1 | 𝜎 (𝑋0, . . . , 𝑋𝑡 )]
= E[E[𝑋𝑡 − 𝑋𝑡+1 | 𝐹𝑡 ] | 𝜎 (𝑋0, . . . , 𝑋𝑡 )]
≥ E[𝑓 (𝑋𝑡 ) | 𝜎 (𝑋0, . . . , 𝑋𝑡 )]
= 𝑓 (𝑋𝑡 ) .

Suppose now, for “(D-history)⇒ (D-events)”, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑓 (𝑋𝑡 ) with probability 1. Let
𝑠0, . . . , 𝑠𝑡 and let 𝐴 be the event such that 𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 . Suppose Pr[𝐴] > 0. Since 𝐴 ∈ 𝜎 (𝑋0, . . . , 𝑋𝑡 ), we
get (using Lemma 9.13 [Conditional and Indicator] in the first step and Definition 9.14 [Filtration Conditional]
in the second),

E[𝑋𝑡 − 𝑋𝑡+1 | 𝐴] Pr[𝐴] = E[(𝑋𝑡 − 𝑋𝑡+1)1{𝐴}]
= E[E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ]1{𝐴}]
≥ E[𝑓 (𝑋𝑡 )1{𝐴}]
= 𝑓 (𝑠𝑡 ) Pr[𝐴] .

Regarding (D-events)⇒ (D-Markov), we note that, for discrete (𝑋𝑡 )𝑡 ∈ℕ, and any 𝑠𝑡 with Pr[𝑋𝑡 = 𝑠𝑡 ] > 0,
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we can find 𝑠0, . . . , 𝑠𝑡−1 such that Pr[𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] > 0. For such 𝑠0, . . . , 𝑠𝑡 we then have

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 = 𝑠𝑡 ] = E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] .

This gives the desired implication. ■

Note that (D-events) and (D-Markov) implicitly consider the process to be discrete. As we see in the example
given next, a drift theorem based on (D-events) without the the requirement of a discrete process would in this
generality be wrong.

Example 8.7: Conditioning on Events of Continuous Processes — Let 𝑋0 be a uniformly real
random number from [1, 2] and let, for all 𝑡 ∈ ℕ, 𝑋𝑡+1 = 𝑋𝑡 . Then we have

(D-events) for all 𝑠0, . . . , 𝑠𝑡 with Pr[𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] > 0, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] ≥ 1.

This follows since, for all 𝑡 ∈ ℕ and all 𝑠0, . . . , 𝑠𝑡 , we have Pr[𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] = 0 (we have a truly
continuous random variable). Thus, (D-events) is vacuously true. Furthermore, for all 𝑡 ∈ ℕ, 𝑋𝑡 ≥ 1, so
there is no 𝑡 such that 𝑋𝑡 ≤ 0.

The example shows that the problem arises when considering continuous random variables. The next
proposition shows that, for discrete processes, (D-events) implies (D-history), making these two conditions
equivalent. The proof is due to Marcus Pappik (private communication).

Propostion 8.8: Equivalence of Conditionals for Discrete Search Spaces

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable and discrete random process over ℝ, 𝑓 a measurable function and 𝑡 ∈ ℕ.
Then (D-events) implies (D-history).

Proof. Fix 𝑡 ≥ 0, and let 𝑅 := range(𝑋0) × . . . × range(𝑋𝑡 ). For a tuple 𝑠 = (𝑠𝑖)0≤𝑖≤𝑡 ∈ 𝑅, let 𝐴(𝑠) := {∀0 ≤ 𝑖 ≤
𝑡 : 𝑋𝑖 = 𝑠𝑖}. Let 𝑆 := {𝑠 ∈ 𝑅 | Pr[𝐴(𝑠)] > 0}. For all 𝑠 = (𝑠𝑖)0≤𝑖≤𝑡 ∈ 𝑆 and 𝜔 ∈ 𝐴(𝑠), Lemma 9.17 [Conditioning
on History vs. Events] and (D-event) yield

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] (𝜔) = E[𝑋𝑡 − 𝑋𝑡+1 | 𝐴(𝑠)] ≥ 𝑓 (𝑠𝑡 ) = 𝑓 (𝑋𝑡 (𝜔)) .

Since further every 𝑋𝑖 has countable range, it holds in particular that 𝑆 and 𝑅 are countable. Hence, we have
that

⋃
𝑠∈𝑆 𝐴(𝑠) is measurable and

Pr
[⋃
𝑠∈𝑆

𝐴(𝑠)
]
≥ 1 −

∑︁
𝑠∈𝑅\𝑆

Pr[𝐴(𝑠)] = 1.

Therefore, we have that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝑓 (𝑋𝑡 ) holds with probability 1. ■

Just as (D-events) implicitly assumes a discrete space, (D-Markov) assumes the process to be Markovian.
The following theorem shows that, for discrete Markov chains, (D-Markov) implies (D-events), making also
these two conditions equivalent in this case.

Propostion 8.9: Equivalence for Markov Chains

Let (𝑋𝑡 )𝑡 ∈ℕ be an integrable and discrete Markov chain over ℝ, 𝑓 a measurable function and 𝑡 ∈ ℕ.
Then (D-Markov) implies (D-events).
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Proof. This follows directly from the Markov property that, for all 𝑠0, . . . , 𝑠𝑡 with Pr[𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] > 0,
E[𝑋𝑡+1 | 𝑋𝑡 = 𝑠𝑡 ] = E[𝑋𝑡+1 | 𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ]. ■

We have seen that for discrete spaces and for Markov chains, one can give specialized formulations of
drift theorems. However, drift theorems conditioning on the history are strictly more general. Furthermore,
conditioning on the history is easy to state and understand for users of the theorem.

Conditioning on a filtration results in drift theorems equally general as those conditioning on the history,
since the history is one possible filtration, and in fact the least restrictive.

8.3 Reaching the Target

Let us consider again the drift condition

(D) there is a 𝛿 > 0 such that, for all 𝑡 < 𝑇 , it holds that E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ] ≥ 𝛿 .

We want to take a closer look at the requirement “for all 𝑡 < 𝑇 ”. Since 𝑇 is a random variable, this does not
properly define a range for 𝑡 . This is desirable to allow for processes which naturally do not go down anymore
after reaching the target. One clean way to write it would be

(D) there is a 𝛿 > 0 such that, for all 𝑡 ∈ ℕ, E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋0, . . . , 𝑋𝑡 ]1{𝑡 < 𝑇 } ≥ 𝛿1{𝑡 < 𝑇 }.

This notation resorts to indicator random variables and, while quantifying 𝑡 over all of ℕ, effectively requires
the inequality to hold only in case of 𝑡 < 𝑇 . This inspires the following convention.

Convention 8.10: Drift While not at Target — We state inequalities that only need to hold for
points in time when a random process did not reach its target yet. Formally, let 𝑇 be a random variable
over ℕ ∪ {∞}, let 𝑋 and 𝑌 be random variables over ℝ.
Further, let ∼ denote a relation symbol, such as =, ≤, or ≥. We define the phrase “for all 𝑡 < 𝑇 , it holds
that 𝑋 ∼ 𝑌 ” to be equivalent to “for all 𝑡 ∈ ℕ, it holds that 𝑋 · 1{𝑡 < 𝑇 } ∼ 𝑌 · 1{𝑡 < 𝑇 }”.

Note that, alternatively, we can condition on 𝑡 ≤ 𝑇 , the way chosen in Theorem 5.1 [Additive Drift, Upper
Bound, Time Condition] and Theorem 5.2 [Additive Drift, Lower Bound, Time Condition]. This makes the
dependence on 𝑡 < 𝑇 very explicit (this was the reason for stating it in this way in the two named theorems).
However, now one has to quantify over “all 𝑡 ∈ ℕ such that Pr[𝑡 < 𝑇 ] > 0”, which is again somewhat
cumbersome.
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9 Notation

In this section we collect some algorithms, notation and lemmas used in this work.

9.1 Algorithms

The most simple search heuristic is Random Local Search (RLS). It starts with a random bit string and iteratively
tries to improve it by changing the currently best search point in exactly one position (we use this as the
“flipOne” function below). The pseudo code for RLS maximizing a given function 𝑓 : {0, 1}𝑛 → ℝ is given as
follows.

Algorithm 2: Random Local Search (RLS)
1 Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random
2 for 𝑖 = 1 to∞ do

3 𝑦← flipOne(𝑥)
4 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦

The algorithm is set up to maximize the given function 𝑓 ; by turning the inequality around, we get the
analogous algorithm for minimization.

RLS constitutes a simple and straightforward hill climber. A slightly more advanced algorithm allows for
larger jumps, that is, it also considers changing the currently best search point in more than one position. The
most common way to achieve this is by flipping not exactly one bit, but each bit independently with some
predefined probability 𝑝 . This independently random flipping of bits is called mutation, and the resulting
algorithm is called the (1 + 1) EA; its pseudo code is given as follows.

Algorithm 3: The (1 + 1) EA
1 Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random
2 for 𝑖 = 1 to∞ do

3 𝑦← mutate(𝑥)
4 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦

Note that the standard bit flip probability is 𝑝 = 1/𝑛, implying that, on average, exactly one bit changes.
We consider in this document two concrete test functions and one function class as follows.

Definition 9.1: Test Functions

• OneMax is a function {0, 1}𝑛 → ℝ mapping any bit string to the number of 1s in the bit string.

• LeadingOnes is a function {0, 1}𝑛 → ℝ mapping any bit string to the number of 1s before the
first 0 (if any) in the bit string (the number of leading 1s).

• A linear function is any function 𝑓 : {0, 1}𝑛 → ℝ such that there exists 𝑤1, . . . , 𝑤𝑛 ∈ ℝ such that,
for all 𝑥 ∈ {0, 1}𝑛 , 𝑓 (𝑥) = ∑𝑛

𝑖=1𝑤𝑖 𝑥𝑖 .

9.2 Notation

Next we give some non-standard notation.

60 / 72



Theory of Stochastic Drift Timo Kötzing

Definition 9.2: Discrete Intervals

For any 𝑛,𝑚 ∈ ℕ with 𝑛 ≤ 𝑚, we use [𝑛..𝑚] to denote the set {𝑖 ∈ ℕ | 𝑛 ≤ 𝑖 ≤ 𝑚}. Furthermore, for
any 𝑛 ∈ ℕ+, we will write [𝑛] for [1..𝑛].

Definition 9.3: Function Self-Composition

For any function 𝑓 : 𝑋 → 𝑋 and 𝑖 ≥ 0, we let 𝑓 𝑖 denote the 𝑖-times self-composition of 𝑓 (with 𝑓 0 being
the identity on 𝑋 ).

We use the following notation regarding probabilities.

Definition 9.4: Indicator Function

For any event 𝐴, let 1{𝐴} denote the indicator function for the event 𝐴.

Definition 9.5: Conditional Expectation

For any discrete random variable 𝑋 and any event 𝐴 such that Pr[𝐴] > 0, we have

E[𝑋 | 𝐴] =
∑︁
𝑥

𝑥
Pr[{𝑋 = 𝑥} ∩𝐴]

Pr[𝐴] .

Note that we can only condition on the event 𝑋 = 𝑠 if Pr[𝑋 = 𝑠] > 0.

Definition 9.6: Integrability

A random variable 𝑋 is integrable if and only if E[|𝑋 |] < ∞. In general, a random process (𝑋𝑡 )𝑡 ∈ℕ is
integrable if and only if, for all 𝑡 ∈ ℕ, it holds that 𝑋𝑡 is integrable.

Definition 9.7: Discrete Random Variable, Discrete Random Process

A random variable 𝑋 is discrete if and only if it has a countable range. We call a random process (𝑋𝑡 )𝑡 ∈ℕ
discrete if each 𝑋𝑡 is discrete.

Definition 9.8: Monotone Process

A random process (𝑋𝑡 )𝑡 ∈ℕ is monotone (sometimes called monotone non-decreasing) if and only if, for
all 𝑡 , 𝑋𝑡 ≤ 𝑋𝑡+1 (point-wise, i.e., for all atomic events 𝜔 ∈ 𝛺 we have 𝑋𝑡 (𝜔) ≤ 𝑋𝑡+1(𝜔)).

Definition 9.9: Stochastic Dominance

Given two random variables 𝑋,𝑌 over ℝ, we say that 𝑌 stochastically dominates 𝑋 if and only if, for all
𝑥 ∈ ℝ, Pr[𝑋 ≤ 𝑥] ≥ Pr[𝑌 ≤ 𝑥]; we write 𝑋 ⪯ 𝑌 .

Definition 9.10: Markov Chain

A discrete random process (𝑋𝑡 )𝑡 ∈ℕ is a Markov chain if and only if the outcome of each next step
only depends on the current state and time point. Formally, for all 𝑡 ∈ ℕ as well as all 𝑠 ∈ ℝ and
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all 𝑣 ∈ ℝ𝑡 , it holds that Pr[𝑋𝑡+1 = 𝑠 | 𝑋𝑡 = 𝑣𝑡 ] = Pr[𝑋𝑡+1 = 𝑠 | ∀𝑡 ′ ∈ [0..𝑡] : 𝑋𝑡 ′ = 𝑣𝑡 ′]. A Markov chain
(𝑋𝑡 )𝑡 ∈ℕ is time-homogeneous if and only if the outcome of each next step only depends on the current
state but not the current time point. Formally, for all 𝑡, 𝑘 ∈ ℕ as well as all 𝑠,𝑢 ∈ ℝ, it holds that
Pr[𝑋𝑡+1 = 𝑠 | 𝑋𝑡 = 𝑢] = Pr[𝑋𝑡+𝑘+1 = 𝑠 | 𝑋𝑡+𝑘 = 𝑢].

9.3 Lemmas

We will make use of the following lemmas. The first two pertain to bounding certain sums.

Lemma 9.11: Upper Bound on the Harmonic Sum

For all 𝑛 ∈ ℕ+ we have
𝑛∑︁
𝑖=1

1
𝑖
≤ ln(𝑛) + 1.

Proof. See (1.4.12) in [Doe20]. ■

Lemma 9.12: Upper Bounding Sum by Integral

Let 𝑎, 𝑏 ∈ ℝ with 𝑎 ≤ 𝑏 and let 𝑓 : [𝑎, 𝑏] → ℝ be integrable. If 𝑓 is monotone increasing, then

𝑏−1∑︁
𝑖=𝑎

𝑓 (𝑖) ≤
∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 .

If 𝑓 is monotone decreasing, then

𝑏∑︁
𝑖=𝑎+1

𝑓 (𝑖) ≤
∫ 𝑏

𝑎

𝑓 (𝑥) d𝑥 .

The remaining lemmas pertain to random variables.

Lemma 9.13: Conditional and Indicator

For all events 𝐴 with Pr[𝐴] > 0, we have

E[𝑌 | 𝐴] · Pr[𝐴] = E[𝑌1{𝐴}] .

Definition 9.14: Filtration Conditional

Let a sub-𝜎-algebra 𝐹 of the underlying probability space be given and let 𝑋 be a random variable. Then
E[𝑌 | 𝐹 ] refers to any 𝐹 -measurable random variable such that, for all 𝐴 ∈ 𝐹 with probability 1,

E[𝑌 · 1{𝐴}] = E[E[𝑌 | 𝐹 ] · 1{𝐴}] .

Lemma 9.15: Tower Property for Sub-𝝈-Algebra

Let two sub-𝜎-algebras 𝐹1 ⊆ 𝐹2 of the underlying probability space be given and let 𝑋 be a random

62 / 72



Theory of Stochastic Drift Timo Kötzing

variable. Then, with probability 1,

E[E[𝑋 | 𝐹2] | 𝐹1] = E[𝑋 | 𝐹1] .

Very much related to the preceding lemma is the law of total expectation (also known under other names
and with different formulations).

Lemma 9.16: Law of Total Expectation

Let 𝑋 be a random variable and 𝐴𝑖 , . . . , 𝐴𝑛 disjoint measurable events with positive probability that
partition the probability space. Then we have

E[𝑋 ] =
𝑛∑︁
𝑖=1

E[𝑋 | 𝐴𝑖] Pr[𝐴𝑖] .

We will also have cause to use a different way to state this. Let 𝑋,𝑌 be two random variables. Then

E[𝑋 ] = E[E[𝑋 | 𝑌 ]] .

We need the following lemma to make a specific proof in this document rigorous. The proof is due to Marcus
Pappik (private communication).

Lemma 9.17: Conditioning on History vs. Events

Let 𝑌,𝑋0, . . . , 𝑋𝑡 be random variables and let 𝑍 be any version of the conditional expectation
E[𝑌 | 𝑋0, . . . , 𝑋𝑡 ]. For all 𝑠0, . . . , 𝑠𝑡 ∈ ℝ such that Pr[𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] > 0 and all 𝜔 ∈ {𝑋0 =

𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 } it holds that
𝑍 (𝜔) = E[𝑌 | 𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 ] .

Proof. We start by proving the following claim.
Claim. Consider two measurable spaces (𝛺, F ) and (𝑆,S) such that, for all 𝑠 ∈ 𝑆 , {𝑠} ∈ S. Let𝑋,𝑍 : 𝛺 → 𝑆

be measurable. If 𝑍 is 𝜎 (𝑋 )-measurable then 𝑍 is constant on {𝑋 = 𝑠} for every 𝑠 ∈ 𝑆 .
Proof of claim. For the sake of contradiction, assume the statement is false. That is, suppose 𝑍 is 𝜎 (𝑋 )-

measurable and there is some 𝑠0 ∈ 𝑆 such that 𝑍 is not constant on 𝐴0 := {𝑋 = 𝑠0}. Let 𝑠1, 𝑠2 ∈ 𝑆 be distinct
values of 𝑍 on 𝐴0. Since 𝑍 is 𝜎 (𝑋 )-measurable, it holds that 𝐴1 := {𝑍 = 𝑠1} ∈ 𝜎 (𝑋 ). Consequently, we have
that 𝐴0 ∩ 𝐴1 ∈ 𝜎 (𝑋 ) and, by construction, ∅ ⊂ 𝐴0 ∩ 𝐴1 ⊂ 𝐴0. We now show that these two properties of
𝐴0 ∩𝐴1 pose a contradiction. To this end, suppose there exists any set 𝐴 ⊆ 𝛺 with ∅ ⊂ 𝐴 ⊂ 𝐴0 and 𝐴 ∈ 𝜎 (𝑋 ).
Note that

𝜎 (𝑋 ) = {𝑋 −1(𝐵) | 𝐵 ∈ S}.

Hence, if 𝐴 ∈ 𝜎 (𝑋 ) then 𝐵 := {𝑋 (𝜔) | 𝜔 ∈ 𝐴} must be in S. But since ∅ ⊂ 𝐴 ⊂ 𝐴0 it holds that

∅ ⊂ 𝐵 ⊂ {𝑋 (𝑎) | 𝑎 ∈ 𝐴0} = {𝑠0}.

However, since both inclusions are strict, such a set 𝐵 cannot exist. End of proof of claim.

To prove the lemma, suppose now that𝑍 is any version of E[𝑌 | 𝑋0, . . . , 𝑋𝑡 ] and let𝐴 = {𝑋0 = 𝑠0, . . . , 𝑋𝑡 = 𝑠𝑡 }
for any 𝑠0, . . . , 𝑠𝑡 ∈ ℝ. Since 𝑍 is 𝜎 (𝑋0, . . . , 𝑋𝑡 )-measurable, the claim above yields that 𝑍 is constant on 𝐴. Let
𝑧 be the value of 𝑍 on 𝐴 and note that, for all 𝜔 ∈ 𝐴, we have

𝑍 (𝜔) · Pr[𝐴] = E[𝑧 · 1{𝐴}] = E[𝑍 · 1{𝐴}] = E[𝑌 · 1{𝐴}],
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where the first equality is due to 𝑍 (𝜔) = 𝑧 and Pr[𝐴] = E[1{𝐴}], the second equality follows from the fact that
𝑧 · 1{𝐴} = 𝑍 · 1{𝐴} point-wise, and the last equality is due to the fact that 𝑍 is a version of E[𝑌 | 𝑋0, . . . , 𝑋𝑡 ].
Further, by Lemma 9.13 [Conditional and Indicator], we have, using Pr[𝐴] > 0,

E[𝑌 · 1{𝐴}] = E[𝑌 | 𝐴] · Pr[𝐴] .

Combining both steps yields
𝑍 (𝜔) · Pr[𝐴] = E[𝑌 | 𝐴] · Pr[𝐴] .

Provided Pr[𝐴] > 0, this implies 𝑍 (𝜔) = E[𝑌 | 𝐴] for all 𝜔 ∈ 𝐴, which proves the lemma. ■
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