
JMLR: Workshop and Conference Proceedings 1–22, 2017 Algorithmic Learning Theory 2017

Automatic Learning from Repetitive Texts

Rupert Hölzl r@hoelzl.fr
Institute for Theoretical Computer Science, Mathematics, and Operations Research, Bundeswehr
University Munich, Neubiberg, Germany

Sanjay Jain sanjay@comp.nus.edu.sg
School of Computing, National University of Singapore, Republic of Singapore

Philipp Schlicht schlicht@math.uni-bonn.de
Mathematisches Institut, Universität Bonn, Germany

Karen Seidel karen.seidel@hpi.de
Research Group Algorithm Engineering, Hasso-Plattner-Institut, Potsdam, Germany

Frank Stephan fstephan@comp.nus.edu.sg

Department of Mathematics, National University of Singapore, Republic of Singapore

Editor: Steve Hanneke and Lev Reyzin

Abstract

We study the connections between the learnability of automatic families of languages and
the types of text used to present them to a learner. More precisely, we study how re-
strictions on the number of times that a correct datum appears in a text influence what
classes of languages are automatically learnable. We show that an automatic family of
languages is automatically learnable from fat text iff it is automatically learnable from
thick text iff it is verifiable from balanced text iff it satisfies Angluin’s tell-tale condition.
Furthermore, many automatic families are automatically learnable from exponential text.
We also study the relationship between automatic learnability and verifiability and show
that all automatic families are automatically partially verifiable from exponential text and
automatically learnable from thick text.

Keywords: Inductive inference, automatic family, automatic learner, fat text, one-one
text, balanced text.

1. Introduction

Gold (1967) pioneered the field of inductive inference by proposing the model of learning
in the limit. Subsequently, this model and many variations of it were studied by numerous
authors, for example, Ambos-Spies et al. (2011); Angluin (1980a); Beros (2009); Blum and
Blum (1975); Fernau (2003); Geilke and Zilles (2011); Grieser (2008); Head et al. (1998);
Heinz et al. (2012); Hölzl et al. (2016); Hutter and Poland (2004); Jain et al. (2000, 1999);
Jantke (1991); Minicozzi (1976); Mukouchi and Arikawa (1995); Osherson et al. (1982, 1986);
Lange et al. (2008); Luo and Schulte (2006); Schäfer-Richter (1984); Stephan and Ventsov
(2001); Wexler and Culicover (1980); Wiehagen and Zeugmann (1994).

One central branch of inductive inference studies the learning of languages from positive
data in the limit. In this model, all elements of a target language L are presented to the
learner, one by one, in arbitrary order, and possibly with repetitions (such an input is called

c© 2017 R. Hölzl, S. Jain, P. Schlicht, K. Seidel & F. Stephan.

Automatic Learning from Repetitive Texts

a text for the language L). While processing more and more of this information, the learner
makes and refines conjectures about the language it is shown. If the sequence of conjectures
produced this way converges to an index for L, then the learner is said to learn the target
language from the given text. If the learner learns L from all texts for L, then it is said to
learn the language L. If it learns all L in a class L of languages, then it is said to learn L.

Pitt (1989) used a delaying technique to construct, for learnable families, polynomial
time learners, that is, learners which use only polynomial time to update their conjectures.
Case and Kötzing (2009) provide evidence that some kind of delaying technique works
for many inference criteria and therefore one can have learners with low time complexity.
Subsequent research therefore aimed for learning models which are of low complexity with
respect to criteria other than time so that similar delaying techniques cannot achieve full
learnability.

As such models cannot be found within the realm of standard complexity classes, one
has to turn to computationally weak models of learning. One such model stems from
automata theory where it is required that both the class to be learnt as well as the learner
can be represented using automatic structures. Hodgson (1982) and later Khoussainov and
Nerode (1995); Blumensath (1999); Blumensath and Grädel (2000) pioneered the field of
automatic structures, and Rubin (2004, 2008) provides an overview of the field. Automatic
structures have interesting closure properties. For example, suppose a first-order formula
defining a function or relation is given which uses given automatic relations and functions
in an automatic structure. Then this new function or relation is also automatic, and an
automaton computing it can be obtained effectively from automata for the functions and
relations used in the first-order formula giving the definition of the function. This effective
closure property also implies that the first-order theory of automatic structures is decidable.

Angluin (1980a) introduced indexed families as collections of sets Le such that the map-
ping e, x 7→ Le(x) is uniformly recursive, where the set Le is identified with its characteristic
function. Using the notion of automatic structures it is possible to introduce an analogue
notion in the context of automata theory by requiring that the mapping e, x 7→ Le(x) is
automatic where the e are drawn from a regular set E, the so-called index set. Jain et al.
(2012) give an introduction to the notion of automatic families and their usage in learn-
ing theory. The learnability of all regular sets or certain classes of regular sets has been
studied for a long time, for example, by Angluin (1982, 1987); Kinber (2010); Kearns and
Pitt (1989); Pitt (1989). Furthermore, there is related work by Angluin (1980b); Lange and
Wiehagen (1991); Shinohara and Arimura (2000) on the learnability of pattern languages.

Automatic learners are an example of learners which have constraints on how much
information about the past data they can memorise. More precisely, whenever a limited
memory learner processes a datum, it reads out some long term memory and then computes,
based on this long term memory and the current datum, an updated content of the long
term memory and a new conjecture. Freivalds et al. (1995) laid the foundations of this
model and Kinber and Stephan (1995) transferred it from function learning to language
learning from positive data. Jain et al. (2012) transferred this model to automata theory
by defining that the content of the long term memory is just a word over some alphabet
chosen ahead of time and by requiring that the two functions which compute the step-wise
updates of the memory and issue the conjecture are automatic functions. Case et al. (2011,
2013); Jia (2013) extended these studies.

2

Automatic Learning from Repetitive Texts

Automatic learners have a severe limitation as they are not able to memorise all data
they see due to their computational limitations (except in case where the alphabet for the
data is unary). Already Jain et al. (2012) observed that fat texts – where every datum
appears infinitely often – enable overcoming these memory limitations in the sense that
whenever there is a recursive learner for an automatic family, there is also an automatic
learner which learns all languages in the family from fat text. Jia (2013) studied other
ways to overcome this memory limitation. In particular he showed that the family of all co-
singleton sets (that is, sets which miss out exactly one element from Σ∗) becomes learnable
when the text is a one-one text, that is, a text in which each element of the set to be
learnt appears exactly once (where padding the text using infinitely many pause symbols
is permitted). This finding is the starting point for the current research which attempts a
systematic study of various types of texts and the extent to which these texts support the
learnability of automatic families using automatic learners. Note that this specific topic is
really bound to the requirement that the learners are automatic, as all the types of texts
considered in this article have, in the case of recursive learners without any restrictions,
equivalent learning power as the various types of text can be translated into each other in
an effective way.

The present work extends the study of Jia (2013) by considering various forms of text
which generalise the previously considered types. First balanced texts are considered,
that is, texts in which every datum appears exactly k times for some k ∈ {1, 2, . . . ,∞}.
These texts are a natural common generalisation of both one-one texts and fat texts and
they share many learnability properties with these two. We also consider texts in which
the number of occurrences of a word grows quickly with the position of the word in the
length-lexicographic order. As “thick text” a type of text is denoted where the amount
of occurrences of longer and longer words approaches ∞ sufficiently fast but in which, in
contrast to fat texts, for each word there is still only a finite number of occurrences in the
text. So such a text is similiar to a fat text and it will turn out that a class is automatically
learnable from thick text iff it is automatically learnable from fat text. Furthermore, in
addition to the task of learning, the task of verification is studied. In verification problems,
the learner is given an index e and a text for some language L in the target class. Then,
the learner has to converge to the answer of the decision problem of whether e is an index
for L.

The main results of this article concern automatic families. For these, the following
conditions turn out to be equivalent: (a) A family is recursively learnable from arbitrary
text; (b) The family is verifiable from balanced text; (c) The family is verifiable from thick
text (see Definition 2.3); (d) The family is automatically learnable from fat text; (e) The
family is automatically learnable from thick text. Jain et al. (2012) have already observed
the equivalence of (a) and (d); Jia (2013) has furthermore shown that certain families which
are not automatically learnable from arbitrary text are nevertheless automatically learnable
from one-one text and these examples generalise to learnability from balanced text.

Gold (1967) already discovered that, in the recursion-theoretic setting, the class of all
r.e. languages is learnable from primitive recursive text. This suggests to ask the question
whether a similar result holds for inductive inference in the automatic setting. To study it,
one could introduce the notion of an automatic text which is given by an automatic function
from some automatic presentation of the natural numbers to the set of words and the pause

3

Automatic Learning from Repetitive Texts

symbol; such texts are always primitive recursive texts. However, since they are closed
under finite variants, one can show as in Theorem 3.5 and Example 5.1 that such texts are
too complicated for learning with automatic learners in the sense that there are automatic
families which are learnable from one-one text using such learners but not from automatic
text. Since this implies that texts of the lowest possible computational complexity can
already be insufficient for automatic learnability, the emphasis in the present work is on the
number of times a datum appears in a text instead.

2. Definitions and notations

Let N denote the set of natural numbers {0, 1, 2, . . .}. Let Σ denote the alphabet set used
for languages. For a set A, we write A+ for finite words of length at least 1 of elements
of A, and A∗ for A+ ∪ {ε}, where ε is the word of length 0. By |x| we denote the length
of the word x. We write x <lex y to express that x is lexicographically smaller than y and
x <ll y to express that x appears before y in the length-lexicographic ordering of words,
that is, either |x| < |y| holds or it holds that both |x| = |y| and x <lex y.

We use the additional symbol ♦ to pad words when we need multiple words to have the
same length. Let the convolution conv(u, v) of two words u, v ∈ Σ∗ be defined as follows.
Suppose u = u(0)u(1) . . . u(n− 1) and v = v(0)v(1) . . . v(m− 1) are two words of length n
and m, respectively. Let conv(u, v) be w(0)w(1) . . . w(max(m,n)− 1), where

w(i) =


(u(i)
v(i)

)
if i < min(m,n)(u(i)

♦

)
if m ≤ i < n(♦

v(i)

)
if n ≤ i < m

A relation R = {(u1, u2, . . . , un) : ui ∈ Σ∗} is said to be automatic if the set

{conv(u1, u2, . . . , un) : (u1, u2, . . . , un) ∈ R}

is regular. Similarly, a function f from (Σ∗)m to (Σ∗)n is said to be automatic if the set

{conv(u1, u2, . . . , um, w1, w2, . . . , wn) : f(u1, u2, . . . , um) = (w1, w2, . . . , wn)}

is regular.

Definition 2.1:
A set of languages L = {Le : e ∈ I} is called an automatic family of languages if both the
index set I of L and {conv(e, x) : x ∈ Le} are regular.

We now give a short summary of notions for inductive inference as first considered by Gold
(1967). We will be mainly concentrating on automatic learners. More detailed discussion
about learners and learning criteria is provided by Angluin (1980a); Blum and Blum (1975);
Gold (1967); Jain et al. (1999); Osherson et al. (1986). The description below is a modi-
fication of the model considered by Gold (1967), to adapt it to automatic learners as first
considered by Jain et al. (2012).

A text is a mapping from N to Σ∗ ∪ {#}. The content of a text T , denoted cnt(T), is
{T (i) : i ∈ N ∧ T (i) 6= #}. T is a text for a language L if cnt(T) = L. A finite sequence

4

Automatic Learning from Repetitive Texts

is a finite initial segment of a text, that is, a finite sequence of words. The length of a
finite sequence σ, denoted |σ|, is the number of elements in its domain. The content of a
sequence σ is defined as {σ(i) : i < |σ|} − {#} and denoted by cnt(σ).

Intuitively speaking, a learner M is presented a text of a language L as input, one word
at a time. At any given time, the learner M has some information stored in its working
memory which depends on the words it has seen previously. In dependence of its working
memory and the word which is currently presented to M , M modifies its working memory
and forms a new conjecture about L. The sequence of conjectures formed this way over
time can be interpreted as how M ’s understanding about L evolves when acquiring more
and more information. If the sequence does indeed converge to an index of the language L,
then M is said to learn L.

In this article we will be mainly concerned about automatic learners.

Definition 2.2 (Gold (1967); Osherson et al. (1986); Jain et al. (2012)):
A learner M that learns an automatic family L = {Le : e ∈ I} using a conjecture space
H = {He : e ∈ J} is defined as follows. In this article, except where it is explictly said to be
otherwise, H and L will be equal.

M has an initial memory consisting of the empty word and in each cycle, the learner
reads a datum, updates its memory and outputs a conjecture from J . Formally, the memory
is a word over M ’s memory alphabet Γ and the update in each cycle is realised by a recursive
function mapping the old memory memn and the current datum T (n) to the new memory
memn+1 and the conjecture en; if this mapping is even automatic then M is called an
automatic learner.

M learns a language L from text T , if the sequence of the en, as defined above, converges
to an e such that He = L.

M partially learns a language L from text T , if for the sequence of the en as defined
above, there exists an e such that He = L and (i) there exist infinitely many n such that
en = e, and (ii) for all e′ 6= e, there exist only finitely many n such that en = e′.

M automatically learns L from text T if it learns L from text T and is automatic. M
automatically partially learns L from text T if it partially learns L from text T and is
automatic.

M (automatically) learns a language L if for all texts T for L, M (automatically) learns L
from T . M (automatically) learns L if it (automatically) learns each Le ∈ L. We say that
L is (automatically) learnable if there is an (automatic) learner that learns L.

(Automatic) partial learning is similarly defined.

In order to define the notion of the complement of a set of words we need to fix a base set
inside which the complement is taken. Without explicitly mentioning it in the remainder
of the article we fix Σ∗ as the base set where Σ is the smallest alphabet with

⋃
e∈I Le ⊆ Σ∗.

With the base set fixed we can also talk about the position of a word inside the base set by
letting ll be an order-isomorphism from the base set with length-lexicographical ordering
to N with the usual ordering <.

Let succ(x) denote the length-lexicographically least element of the set {y ∈ Σ∗ : x <ll y}.
Furthermore, given an automatic family {Le : e ∈ I}, we let succe(x) denote the length-
lexicographically least element of the set {y ∈ Le : x <ll y}; if this set is empty then succe(x)
is just the successor of x with respect to the base set Σ∗.

5

Automatic Learning from Repetitive Texts

In this article, we restrict our study to the learnability from texts with a specific number
of occurrences for each word. Osherson et al. (1986) introduced the notion of a fat text where
each word appears infinitely often. We extend their study to the following notions.

Definition 2.3:
Suppose that f : N→ N ∪ {∞} is a function. A text T is called an f -text for a language L
if every x ∈ L appears in T exactly f(ll(x)) times.

If f is the constant function with value k ∈ N ∪ {∞}, we call T a k-text. To maintain
consistency with existing literature, 1-texts will be referred to as one-one-texts. Similarly,
∞-texts will be called fat texts.

Moreover, a text that is a k-text for some k ∈ N ∪ {∞} is called a balanced text.
A 2ll(x)-text is called an exponential text. An f -text with all values of f being nonzero
natural numbers and f(ll(w) + 1) > 6 · |succ(w)| · f(ll(w)) for all w is called a thick text.

If R is one of these text types then we say that a learner M (automatically) learns a
language L from R if for all texts T ∈ R for L, M (automatically) learns L from T . We
say that L is (automatically) learnable from R if there is an (automatic) learner that learns
each L ∈ L from R.

Intuitively, thick texts are texts in which each element of the text appears “many more”
times than elements length-lexicographically smaller than it.

The following important condition due to Angluin (1980a) will be used several times
below.

Definition 2.4:
Angluin (1980a) A family L = {Le : e ∈ I} satisfies the tell-tale condition if and only if for
all e ∈ I there are finite sets De ⊆ Le such that for all d ∈ I with De ⊆ Ld ⊆ Le, we have
Ld = Le. We call such a set De tell-tale set for the language Le.

For learnable automatic families, the tell-tale cut-off word for Le is the length-lexico-
graphically first word ce for which {x ∈ Le : x <ll ce} is a tell-tale set for Le. The mapping
e 7→ ce is automatic by a first-order definability argument.

3. Balanced text

In this section we extend the following characterisation of Jain et al. (2012).

Theorem 3.1 (Jain et al. (2012), Theorem 28):
An automatic family is automatically learnable from fat text if and only it satisfies the
tell-tale condition.

Definition 3.2:
A verifier M for L = {Le : e ∈ I} is defined similarly to an automatic learner except that (a)
as input it first receives an index e ∈ I and then some text and (b) its possible conjectures
are yes and no.

M is said to partially verify an input e, T when the conjectures of M are infinitely often
yes iff T is a text for Le; M is said to verify an input e, T iff it partially verifies e, T and,
furthermore, the conjectures of M converge either to yes or to no.

6

Automatic Learning from Repetitive Texts

M (partially) verifies L if M (partially) verifies every input e, T where e is an index of
a language in L and T is a text for a language in L.

Let R be a class of texts. M (partially) verifies L from R if M (partially) verifies every
input e, T where e is an index of a language in L and T is a text in R for a language in L.
We say that L is (partially) verifiable from R if there is a learner that (partially) verifies L
from R.

Example 3.3:
Even without any restrictions on texts, verifiers can be more powerful than automatic
learners. For example, Jain et al. (2012) showed that the family of all co-singleton sets
is not automatically learnable; however, it is verifiable as upon receipt of the index x
of Lx = {y ∈ Σ∗ : y 6= x}, the verifier just conjectures yes until x appears in the text and
in that case, the verifier makes a mind change to no and keeps that conjecture forever. Jia
(2013) showed that this family is automatically learnable from one-one text.

While it is unknown whether all automatic families satisfying the tell-tale condition are
automatically learnable from balanced text or from one-one text, one can show that they
are verifiable from balanced text; recall that verifiers are by definition automatic.

Theorem 3.4:
An automatic family is verifiable from balanced text if and only if it satisfies the tell-tale
condition.

Proof. (⇒): Suppose that L = {Le : e ∈ I} is an given automatic family which sat-
isfies the tell-tale condition. Recall that the mapping e 7→ ce is automatic, where ce is
the tell-tale cut-off word which is the length-lexicographically first word w satisfying that
De = {x ∈ Le : x <ll w} is a tell-tale set for Le.

Suppose the verifier is given an index e and a balanced text T for Ld as input. It needs
to verify whether Le = Ld. Without loss of generality assume that Le 6= ∅, as otherwise the
verification is easy. Intuitively, if the verifier ever sees an element in the text outside Le,
then it immediately knows that Ld 6= Le. Otherwise, the verifier runs two subalgorithms in
parallel. One algorithm works correctly if the input is a k-text for Le where 1 ≤ k < ∞,
while the other works correctly if the input is a fat text. The main aim of the following
construction is to combine both algorithms so that they do not interfere with each other
while ensuring that the resulting algorithm is automatic.

Algorithm. The verifier keeps track of the following conditions and numbers, which can
be stored in the memory using convolution:

• Whether any element not in Le has appeared in the input text;

• The number k denoting the number of occurrences so far of the length-lexicographi-
cally least word in Le in the input text;

• A number ` denoting the number of occurrences so far of elements strictly below ce
in the input text;

• A word x, which starts as being the length-lexicographically least word in De; this
word x is updated to succe(x), whenever it appears in the input text;

7

Automatic Learning from Repetitive Texts

• A number m, which denotes the value of ` had when x got updated the last time,
that is, got its current value;

• A check whether `/k = |De|; note that this check is not automatic, its computations
are done over several cycles of reading the input words with one step per cycle and
the check restarts every time ` or k is updated.

Now the verifier, after reading any input, outputs no if it has seen some word not in Le in
the past and remains so. If this has not happened and x ≥ll ce, then the verifier outputs yes,
as it has clearly seen all the elements of De in the input text and remains so. Otherwise,
the verifier checks whether `/k = |De| and k ≤ m. If the computation of `/k = |De| has
terminated and is still valid, that is, `, k did not change after the start of the computation,
and also the condition k ≤ m is true, then the verifier outputs yes, else it outputs no.

Verification. To show that this algorithm succeeds, first assume that Ld = Le. In this case
the verifier never sees an element outside Le. If the text is fat, then eventually the value
of x will be length-lexicographically larger than all elements of De and thus the verifier will
almost always output yes. If the input is an n-text for some n ∈ N, the above may also
happen. So assume otherwise, that is, the value of x stabilises on some element of De. Note
that eventually the value of k converges to n and m ≥ n (as otherwise a further occurrence
of x in the text will happen after the point when x got its current value and therefore the
value of x will become larger). Thus, the values ` and k = n will eventually converge,
`/k = |De| and k ≤ m. Therefore the verifier will almost always output yes.

Now assume that Ld 6= Le. If Ld 6⊆ Le, then the output is eventually no as the verifier
will eventually see an input element outside Le. The other case is that Ld ⊂ Le. In that
case, De 6⊆ Ld and De is nonempty by the tell-tale condition. Furthermore, the value of x
is always an element of De. Thus, the verifier never outputs yes due to it having seen all
the elements of De. If the input text is an n-text, for some n ∈ N, then the value of k
eventually reaches n. Furthermore, ` < n · |De| holds, as the input text does not contain all
the elements of De. Hence the verifier outputs no almost always. If the input text is fat,
then the value of k is unbounded, whereas the value of m is fixed (as it does not change
after the last time x is updated). Thus, k ≤ m almost always fails and the verifier outputs
no almost always.

(⇐): Let N be a verifier for L = {Le : e ∈ I} and assume that N verifies L from k-text.
Assume that an arbitrary text T for some L ∈ L is given. We build a recursive learner M
which first transforms T into a k-text T ′ for L. M simulates the operation N on input e, T ′

for length-lexicographically increasing values of e ∈ I and the n-th conjecture of M is the
length-lexicographically least e ∈ I such that ll(e) ≤ n and the verifier outputs yes. If there
is currently no such e, then M abstains from a conjecture and outputs ?. It is immediate
that M ’s conjectures converge to the least e ∈ I with Le = L. Angluin (1980a) showed that
this implies that L satisfies the tell-tale condition.

The following result shows that the last result is close to optimal.

Theorem 3.5:
There is an automatic family L = {Le : e ∈ I} as follows.

8

Automatic Learning from Repetitive Texts

1. There is an automatic learner that learns L from balanced text.

2. There is no automatic verifier that verifies L from texts in which every word in the
input language appears exactly 1 or 2 times.

3. There is no automatic verifier that verifies L from texts that contain every word
exactly k times for a k with 1 ≤ k ≤ ∞, with the possible exception of a single word
that only needs to appear at least once.

Proof. Consider the automatic family L given by the index set I = {0, 1}+ ∪ {2}+ and
the languages Le = {0, 1}|e| \ {e} for e ∈ I.

The proof of the first claim is similar to the proof of Theorem 3.4. We assume that the
input text is a text for some Le with |e| = n, where n can be obtained from the first input
word in {0, 1}∗. The learner keeps track of the following information.

• The first datum z of the input text and the number k of its occurrences.

• A number ` denoting the overall number of words read so far.

• A word x, which starts as being the length-lexicographically least word in L2n . The
word x is updated to succ2n(x) when the verifier sees the word x in its input. For
ease of notation, we take succ2n(1n) = 2n.

• The binary sum s of all data observed so far, as well as the binary sum s′ =
∑

y∈{0,1}n y.

• The value m of ` at the first time when x reaches its current value (after the update
of the current value of `).

The memory takes the value ? until the first datum z is observed, when the values are
initialised as x = minll({0n, 0n−11} \ {z}), k = 1, ` = 1 and m = 1. The conjecture d is
defined as follows.

• If x = 2n then d = x else the conjecture is computed in the following steps.

• If k ≤ m and `/k is an even integer then d = 2n.

• If k ≤ m and `/k is an odd integer and s′ ·k = s+y ·k for some y ∈ {0, 1}n then d = y.

• If k > m then d = x.

• If none of these conditions holds then d = ?.

The conditions in the second and third bullet points need to be checked by the learner
using computations that run over multiple learning steps. This allows calculating the divi-
sions stepwise. Whenever the computations have not yet terminated, or if they have been
invalidated by new data, the conditions are considered not satisfied.

To show that this algorithm has the required properties, note that for x = 2n we have
Le = L2n and hence the conjecture is correct by the first condition. Thus we now assume
that the eventual value of x is not 2n.

9

Automatic Learning from Repetitive Texts

We first assume that the input is a k-text for some k ∈ N. Assume that every datum
different from # has already been processed by the learner. If x 6= e at the time when
x first takes its final value, then all k occurrences of x have already passed, k ≤ m and the
conjecture is correct by second and third cases. Otherwise x = e at the time when x takes
its final value and then the conjecture is correct by the second, third and fourth cases.

We now assume that the input is a fat text. Then we will eventually have x = e. Since
m is fixed from this step onwards but k converges to ∞, we eventually have k > m and
hence the fourth condition implies that the conjecture d = e is correct.

The proofs of the remaining claims are modifications of a proof from Jain et al. (2012).
To prove the second claim, we consider sequences σ containing exactly n distinct words of
length n from {0, 1}n in length-lexicographic order for any n ∈ N. There are

(
2n

n

)
many

such sequences with different content. When n is sufficiently large, we have 2n−n
n ≥ n and

hence
(
2n

n

)
= 2n·(2n−1)·...·(2n−n)

1·2·...·n ≥ nn.
If M is an automatic verifier for this family, let memM (e, σ) denote the memory contents

after reading the index e and the prefix σ of some text. If the automaton for the update
function of M has c states, then due to the pumping lemma, the length of the memory after
reading σ is at most (n + 1)c. If the alphabet for the memory has b letters, then for any
index e of length at most n, there are b(n+1)c many possible values of memM (e, σ), thus the
number of possible values of the memory after reading n words of length n is at most dn

for some constant d.
As nn grows faster than any exponential function, one has for sufficiently large n that

there are two sequences σ, ρ with cnt(σ) 6= cnt(ρ), each of σ, ρ containing exactly n distinct
words from {0, 1}n and memM (e, σ) = memM (e, ρ), where e is the index 2n of {0, 1}n. As
the content of the two sequences are different, there is one word x which occurs in only one
of the sequences, say x ∈ cnt(σ) \ cnt(ρ). Let T be a one-one text for Lx. Now σT is a text
for {0, 1}n while ρT is a text for Lx. However, the verifier has to behave in the limit on
both texts the same way, as its memory cannot retain whether the text begins with σ or ρ.
So M converges to the same conjecture for both texts, contradicting the assumption that
M is a verifier for the family L.

The proof of the last claim is obtained from the previous argument by replacing the
one-one text T with a fat text for Lx.

The previous result also answers a question posed by one of the anonymous referees of
ALT 2017 who asked whether texts where each occurring word occurs at most k times
are as powerful as texts where each occurring word occurs exactly k times; the answer is
negative for all k ≥ 2. Furthermore, the referee posed the question of what happens if texts
are considered in which every word occurs at least k times. This notion is equivalent to the
learnability from texts without any restriction for any k ≥ 1.

Proposition 3.6:
If a class can be learnt by an automatic learner from all texts in which every datum appears
at least k times, then the class can also be learnt by another automatic learner from all
texts without any restrictions.

Proof. Consider the case where an automatic learner M learns from all texts in which
every occurring word occurs at least k times. Now convert M into a new learner N

10

Automatic Learning from Repetitive Texts

which simulates M in such a way that M immediately processes each received datum
k times. For instance, if k = 3 and M on memory y and datum x updates the memory to
mem(x, y) and outputs the conjecture hyp(x, y) then consider N which updates the mem-
ory to mem(x,mem(x,mem(x, y))) and outputs the conjecture hyp(x,mem(x,mem(x, y))).
This learner N behaves on a text T as M would behave on the text T (0) T (0) T (0) T (1)
T (1) T (1) T (2) T (2) T (2) . . . and thus when M learns on the so translated text then N
learns on T . Thus whatever M learns from texts in which every occurring word occurs at
least k times, N learns from all texts. Furthermore, if M is automatic, so is N , as automatic
functions are closed under composition.

All automatic families are partially verifiable from balanced text. The proof uses some ideas
from the proof of Theorem 3.4, but also requires some new tricks since without the tell-tale
condition the quantities ce, De as used in the proof of Theorem 3.4 do not exist.

Theorem 3.7:
Every automatic family is partially verifiable from balanced text.

Proof. Recall that, given an automatic family L = {Le : e ∈ I}, a partial verifier needs to
infinitely often output yes on an input consisting of e ∈ I and a balanced text for Le, and
it must almost always output no on an input consisting of an e ∈ I and a balanced text for
some Ld 6= Le with d ∈ I. On all other inputs, the learner can show arbitrary behaviour.

Assume without loss of generality that Le 6= ∅, as ∅ is easy to verify. Intuitively, the idea
of the algorithm is the following. If ever an element not in Le is observed in the input text,
then clearly the input text is not for Le. To verify whether the input is properly contained
in Le or not we again use an algorithm composed of two subalgorithms similar in spirit to
those appearing in the proof of Theorem 3.4.

At the beginning of the algorithm, b, b′ are initialised as ε and k, `, `′,m are initialised
as 0. Furthermore, y is initialised as the length-lexicographically least element of Le (unless
Le is empty in which case the value of y does not matter). For each newly observed word x
in the text the learner acts as follows; we only explicitly mention it when the verifier outputs
yes and assume implicitly that at all other times it outputs no.

1. If x /∈ Le∪{#} then the verifier stores in its memory that it has a seen a non-element
of Le. If this is not the case, and has never happened so far, proceed with step 2.

2. If Le = ∅ and k = 0 then the verifier outputs yes and terminates this round; if Le 6= ∅
and x = # the algorithm goes to step 5; if Le 6= ∅ and x 6= # then the algorithm
continues in step 3; the remaining case is already captured in Step 1.

3. If x ≤ll b then ` = `+ 1 else `′ = `′ + 1;
let b′ = maxll{b′, x};
if x = minll(Le) then k = k + 1.

4. If x = y or y is length-lexicographically larger than all elements of Le,
then conjecture yes, let m = `+ `′ and let y = succe(y).

11

Automatic Learning from Repetitive Texts

5. Carry out one step of the computation of n = |{x ∈ Le : e ≤ll b}| and the product n ·k
(these computations run over several cycles).
If these computations have terminated without any change of b, k and ` during the
computations and ` = k · n and 1 ≤ k ≤ m,

then let b′ = succe(b
′), let b = b′, let ` = `+ `′, let `′ = 0 and output yes.

The following case-distinction establishes the correctness of the algorithm.

1. If the input text contains some x /∈ Le then the verifier only finitely often outputs yes
by Step 1 of the algorithm. So assume that the text is for a language contained in Le.

2. If Le = ∅ and the text is for ∅, then Step 2 ensure that yes is infinitely often conjec-
tured, since k remains 0 forever. On the other hand, when the text is for a nonempty
set, then as needed the verifier outputs yes only finitely often by the previous case.

3. If the text is for Le and contains every element of Le exactly k times for some k ∈ N
then the verifier outputs yes infinitely often: The reason is that for each current value
of b, the learner will eventually have computed the number n = |{x ∈ Le : x ≤ b}|.
Furthermore, for each value of y, if m is initialised below the final value of k, then
y will occur in the text at least once after this initialisation and therefore y will be
updated to another value; hence whenever y stabilises on some value, then the m for
this value of y will be initialised as at least the final value of k. Now for each bound b
it will eventually happen that all elements of Le up to b have appeared k times in the
text and no other elements below b have appeared. Then the equality n · k = ` will
eventually hold and b will be updated to b′ and yes will be output.

4. If the text is a k-text for a k ∈ N and if the text is for a strict subset of Le then
the verifier outputs a yes only finitely often which means that it converges to a no:
Assume that enough of the text has been seen that k has reached its final value and
that b bounds an element of Le which is not in the text. From now onwards the
equality k ·n = ` will never hold again and therefore only finitely often a yes is output
by Step 3. Furthermore, y will never move beyond the gap of the element in Le which
is not in the text and so there will be only finitely many yes’s output by Step 4. Hence
the verifier converges to a no.

5. If the text is a fat text for Le then the verifier will output a yes infinitely often by
Step 4: The reason is that for all elements y of Le and each occurrence of y in the
text, there will be a further occurrence of y later in the text, since the text is fat.
When this further occurrence is found, y will advance to the next element of Le and
yes will be output. For texts of finite Le, when y has advanced through all elements
of Le, yes will also be infinitely often output as this case is captured by Step 4.

6. If the text is a fat text for a proper subset of Le, then the verifier will only finitely
often output yes and therefore its conjecture converges to no: The reason is that
there is a minimal y which appears in Le, but not in the text. If the verifier reaches y
and reinitialises the value m then y will remain unchanged, as it does not occur in
the text, while k will become larger and larger until k > m. From then onwards, the

12

Automatic Learning from Repetitive Texts

verifier will no longer output a yes as in Step 4 the y does no longer advance upward
and in Step 5 the condition k ≤ m is no longer satisfied.

In summary, the verifier converges in all cases to the correct answer.

4. Exponential and thick text

We now consider texts where the number of occurrences of an individual word is fast-growing
with the position of that word in the length-lexicographical order. Exponential texts and
thick texts are nearly fat texts, however, in these texts each word occurs only finitely often.
The main idea for learning exponential text is to do some form of counting which allows
constructing in the limit an informant for the input language in the memory. However, this
construction only converges in the limit and therefore a learner operating like this cannot
learn all learnable automatic families using it, but only those which are learnable finitely
from informant.

Here, we say that T is an informant for a language L, if T (ll(x)) = Le(x) for all x in
the base set, that is, T is a sequence of bits. We say that a family of languages is finitely
learnable from informant, if there is a learner which given any informant for L outputs only
one distinct conjecture besides ? and this conjecture is an index for the language L. For an
automatic family {Le : e ∈ I} finite learnability from informant is equivalent to

∀e ∈ I ∃be ∀d ∈ I [∀x <ll be [Ld(x) = Le(x)]→ ∀x [Ld(x) = Le(x)]]

where the mapping e 7→ be is automatic as it is first-order definable.
The idea for learning from thick text is to buffer a reduced copy of the text in the working

memory and then to simulate a recursive learner using this reduced copy as input text. This
strategy works for all learnable families. The construction can also easily be modified to
produce an informant in the limit which never contains false positive information.

Theorem 4.1:
Every automatic family is automatically partially learnable from exponential text. Fur-
thermore, if an automatic family {Le : e ∈ I} is finitely learnable from informant then the
family is also automatically learnable from exponential text.

Proof. The learner maintains a natural number a which is the sum of 2|x| for all words x
observed so far. Note that the (ll(x) + |x|)-th bit of a is L(x) after the learner has seen
all words y with |y| ≤ ll(x) + |x| + 1 in the 2ll(x)-text; all subsequent words y will be
represented in a as multiples of 2ll(x)+|x|+1 and do not influence the lower bits of the binary
representation of a. Consequently, the number a converges to an infinite binary sequence.

In parallel to building up a, the learner cycles through all e so that each e is accessed
infinitely often and maintains for each e a variable pe which stores that at the last recent
checking the bits of the stored word a at ll(x) + |x| coincides with Le(x) for all x up to pe.
Now the learner carries out, distributed over multiple but finitely many learning cycles,
a new computation of pe. When this new value is larger than the old then the learner
outputs e one more time. Now one can see that an index e is conjectured infinitely often if
the bits of a, in the limit, code Le; furthermore, if the bit at x is wrong then the learner

13

Automatic Learning from Repetitive Texts

will eventually always see a wrong bit for x and pe will never go beyond x but converge to
the smallest y where a(ll(y) + |y|) 6= Le(y). Thus e will only be conjectured finitely often.
Furthermore, we can assume that I is a one-one indexing; if not, replace I by a suitable
subset, as shown by Jain et al. (2012). Therefore there will only be one correct index that is
conjectured infinitely often while all other indices are conjectured only finitely often. Thus
the so described automatic learner is a partial learner.

For the last result, note that when the family is finitely learnable from informant, then
there is an automatic mapping e 7→ be such that whenever Ld 6= Le then there is an x ≤ be
with Ld(x) 6= Le(x). This property is exploited by making the learner conjecture e as long
as pe >ll be. As each bit of a converges in the limit, the learner will only finitely often
oscillate between conjecturing e and conjecturing something else.

Theorem 4.2:
Every automatic family {Le : e ∈ I} is automatically partially learnable from thick text.
Furthermore, the family is automatically learnable from thick text iff it satisfies the tell-tale
condition.

Proof. The main idea of the proof is to construct an automatic learner N which simulates
a recursive learner M and also manages its inputs and outputs. N tries to write the words
into a buffer which then serves as input for M ; however, due to the slow down caused by
the fact that concatenation operations require more than one cycle, there is a loss of data.
Now if a word appears sufficiently more often than all length-lexicographically lower words
(which will be copied into the buffer with priority), then it will eventually be copied into
the buffer itself. Thick texts have this property for all words.

More precisely, the simulated recursive learner M is given as a three tape Turing machine
having a one-way infinite read-only input tape and write-only output tape and which uses
the work tape also as an internal memory for everything it wants to remember. The Turing
machine M is programmed such that it reads the buffer representing the text from the back
to the front and N inserts new data-items at the front end of the buffer. The new learner N
maintains as its memory a convolution of a copy of the current or a very recent datum x
to be added to the buffer; a word u representing the contents of the buffer (reading tape)
of M ; a word w representing the output tape of M ; a word v representing the content of the
work tape of M , the internal states of M and other similar data such as a special symbol
indicating whether the current output w is complete or not; the current conjecture e of N
which will be repeated until a new conjecture of M is available in w. As the concatenation
of automatic functions is automatic, we can describe the update function of the learner N
in multiple separate steps which are in actuality carried out by a single automatic update
function. The algorithm is as follows for every new datum y:

1. If x is void or if y <ll x then replace x by y.

2. Shift u by inserting two blanks at the start.

3. If there are |x| + 1 or more blanks at the beginning of u then replace the first |x|
blanks by x and then void x.

14

Automatic Learning from Repetitive Texts

4. Simulate one step of the Turing machine M ; if M requests to read a new word from
the input, read the last symbol of the buffer u and remove it from u; in case that
u consists only of blanks, append a pause symbol # prior to reading at the end of u
which is then read.

5. If after the simulation step a valid conjecture has been completely written into w then
update e to w and then void w.

6. N outputs e as its current conjecture.

To summarise, N is buffering the observed data in u using the protocol of a queue. This
buffering process is a bottle neck and conflicts are resolved by defining that the length-
lexicographically smaller words have higher priority. The simulated Turing machine M is
delayed, as suggested by Pitt (1989) for many complexity-theoretic settings. M reads pause
symbols if it overtakes the buffering process in speed. The output of M is stored in w and
is then moved into e as soon as it has been completely written. This way N obtains delayed
versions of M ’s conjectures.

Consider now a thick text T for a language to be learnt. For the verification, the
most critical point is that for every x occurring in the text, some copy of x in the thick
text is eventually buffered in u and then processed by M , that is, M reads from the
input a translated text for the language to be learnt. As 6 · f(n) < f(n + 1) implies∑

m≤n f(m) ≤ 2 · f(n), it follows immediately from f(ll(z) + 1) > 6 · |succ(z)| · f(ll(z)) that
f(ll(z) + 1) > 3 · |succ(z)|

∑
y≤llz

f(ll(y)). Thus there is an i with T (i) = z such that there
is no j satisfying i − |z| ≤ j ≤ i + |z| and T (j) <ll T (i). When N processes T (i), the
component x of N ’s memory is either void or contains a value z′ ≥ll z; so x will have the
value T (i) after the i-th cycle. Now, during the next |z| cycles, none of the T (j) will force
the replacement of the value of x by something different from z and therefore z will be
copied into u during these cycles; once z is in u it will stay there until M reads this copy
of z. Thus, M sees, during the simulation, copies of all words occurring in the thick text;
M therefore works correctly and its conjectures are copied eventually into those of N .

Osherson et al. (1986) showed that every uniformly r.e. family and thus also every
automatic family is partially learnable by a recursive learner; if we let M be this learner
then N will be an automatic partial learner N for this family.

Similarly, Angluin (1980a) showed that every uniformly recursive family that satisfies
the tell-tale condition (and thus every automatic family that satisfies the tell-tale condition)
is learnable by a recursive learner; so if we let M be this learner then N will be an automatic
learner learning this family. Inversely, if an automatic family can be learnt by an automatic
learner, then the family must satisfy the tell-tale condition by Angluin (1980a), as every
automatic learner is also recursive.

5. Learning by counting the number of words

Jia (2013) constructed automatic families that are automatically learnable from one-one
text, but not from arbitrary text; one such family is that of the co-singleton sets in Ex-
ample 3.3. The next example shows that it is possible for an automatic family to be not
automatically learnable from arbitrary text, while there is very simple learning algorithm

15

Automatic Learning from Repetitive Texts

from one-one text. Unlike the algorithms for exponential text in the previous section, which
added the values 2ll(x) for each datum x observed, this algorithm simply counts words.

Example 5.1:
For a binary number h = 2n − 2m+1 + k with k < 2m and m + 2 ≤ n, let Lh contain all
binary words of length n which either do not start with 0n−m−11 or which are of the form
0n−m−11x with |x| = m and the binary value of x being strictly below k; for h = 2n − 1
with n > 0, let Lh = {0, 1}n \ {0n−11}. The family of the languages Lh as above is
automatically learnable from one-one text by counting the number of words, but it is not
learnable from arbitrary text.

Proof. In order to obtain an automatic family, we use a coding of (N, n 7→ n + 1) where
each number n is identified with the binary representation without leading zeroes in the
usual way. For every h > 0, Lh represents a set with h elements. To see this, note that
Lh = {x ∈ {0, 1}n : x <lex vh ∨ x >lex wh}, where for h = 2n − 1 the values of vh, wh are
both 0n−11 and for h = 2n − 2m+1 + k with m + 1 < n and k < 2m the values of vh and
wh are 0n−m−11u and 0n−m−11m+1, respectively, where u is the binary word of length m
with binary value k. Now Lh contains all words of {0, 1}n except those between vh and wh,
inclusively. There are 2m+1 − k words in the closed interval from vh to wh of length n and
therefore Lh has 2n − 2m+1 + k many values.

For h, u,m, n as above, as the input h is either 1n in case that h = 2n−1 or 1n−m−10u in
case that h = 2n−2m+1+k, the mappings h 7→ vh and h 7→ wh are automatic. Therefore the
family {Lh : h > 0} is automatic. The automatic family has the following straightforward
learner from one-one text:

The learner for this family simply counts the number h of words seen so far (not
counting #) in the one-one text. If h > 0 then the learner conjectures h else the
learner outputs ? in order to signal that there is no conjecture.

This learner is clearly automatic and correct.
It remains to show that the family is not automatically learnable from arbitrary text.

For any n, consider the behaviour of an arbitrary learner after seeing a sequence containing
n− 3 inputs (x1, x2, . . . , xn−3) where xm is from the set {0n−m−210} · ({0, 1}m \ {1}m). For
given n, the number of possible such sequences is

n−3∏
m=1

(2m − 1) ≥
n−3∏
m=1

2m−1 = 2(n−4)(n−3)/2;

however, the size of the possible memory of the learner after seeing such a sequence has
at most c · (n + 1) symbols, for some constant c. So the memory can only take dn many
values for some constant d, while the number of the sequences of the given form is an
exponential of a quadratic function. Thus, for large enough n, there exist two distinct
such sequences σ = (x1, x2, . . . , xn−3) and ρ = (y1, y2, . . . , yn−3) with xm, ym from the set
0n−m−210{0, 1}m such that the learner has the same memory after seeing σ and after seeing
ρ. There is an m ∈ {1, 2, . . . , n − 3} for which xm 6= ym, say xm < ym. One can view ym
as a binary number h and ym ∈ Lh+1 but ym /∈ Lh. Now let τ be a sequence containing

16

Automatic Learning from Repetitive Texts

all the words in Lh. In the limit the learner behaves the same way on στ#∞ as on ρτ#∞

although these are texts for the two distinct languages Lh and Lh+1. Thus, no automatic
learner can learn the given family from arbitrary text.

Proposition 5.2:
The family of Example 5.1 is also automatically learnable from k-text, fat text, balanced
text, exponential text and thick text. Furthermore, the family is verifiable from arbitrary
text.

Proof. The k-text learner would just have two counters, a first counter which counts the
data modulo k and a second counter h which increments whenever the first counter goes
from k − 1 modulo k to 0 modulo k. The value h of the second counter converges to the
index of the language to be learnt as in Example 5.1.

The fat text learner can be implemented easily by starting with h = 1 and always
incrementing h when an example outside Lh has been seen. When learning Lh′ with h′ > 0,
as long as h < h′, there is an element x ∈ Lh′ − Lh, which will be observed eventually in
the fat text and therefore h will be incremented again; however, once h has reached h′ it
will stay with this value forever.

The balanced text learner maintains several variables: The number k of times the first
word in the text was seen, the number ` of words (different from #) seen so far, an index h
which is initialised as 1 and is incremented whenever an element outside Lh appears in the
data. Also number m is maintained which indicates the number of elements seen until h was
last updated. If k > m then the learner conjectures h else the learner conjectures the most
recent value of `/k that was computed and is an integer. On a k′-text with 1 ≤ k′ ≤ ∞ for
Lh′ , the following four cases can arise.

• Case k′ > m and h < h′: The learner will eventually see an element outside Lh as
some x ∈ Lh′−Lh has not been seen k′ times. Therefore h will be increased eventually;

• Case k′ ≤ m, h < h′ and the learner sees eventually again a datum outside Lh: as in
the previous case, h will be increased eventually;

• Case k′ ≤ m and the learner does not see again a datum outside Lh: In this case, k will
stay below m and `, k will eventually take their final values and their quotient `/k
will converge to h′ so that the learner learns in this case.

• Case h = h′ and k′ > m: In this case, k will be eventually above m and from then
onwards the learner will conjecture h, so the learner learns also in this case.

Since eventually only the third or fourth case applies the learner learns the family.
For exponential text, note that there is a finite learner from informant which waits for the

first word v to be found such that the informant evaluates v to 0 but its length-lexicographic
predecessor to 1. For this v there is a unique h with vh = v and the learner conjectures
this h. By Theorem 4.1 the family is also automatically learnable from exponential text.

For thick text, the usual algorithm for learning automatic families satisfying the tell-tale
condition can be used.

17

Automatic Learning from Repetitive Texts

The verifier for Lh with h > 0 would automatically compute vh, wh and then monitor
whether (a) some word of length |vh| has been observed, whether (b) neither vh nor wh

have yet been observed and whether (c) the length-lexicographic predecessor of vh has
been observed. If all three conditions (a), (b), (c) are currently true then the verifier also
conjectures yes else the verifier conjectures no.

6. Conclusion

Gold (1967) observed already that the class of all recursively enumerable languages is learn-
able from primitive recursive text and subsequent studies have investigated the influence
of various types of text on learning. For example, it is known that learning from fat text
is helpful for the case of iterative learning. This transfers to automatic learning, as Jain
et al. (2012) have proven that fat text overcomes the limitations of memorisation in au-
tomatic learning. Furthermore, Jia (2013) has shown that certain automatic families are
automatically learnable from one-one text although they are not automatically learnable
from arbitrary text. The present work expands on these results by studying in detail what
bearing the level of repetitiveness in texts has on learnability using automatons. Table 1
summarises the main results; recall that (partial) learnability implies (partial) verifiability.

Type of Text
Automatic

learnability of all
automatic families

Automatic learnability
of automatic families

with tell-tale condition

Reference

Fat Partially learnable Learnable Jain et al. (2012)

One-one Partially verifiable Verifiable Theorems 3.4, 3.7

Balanced Partially verifiable Verifiable Theorems 3.4, 3.7

Exponential Partially learnable
Learnable if finitely

learnable from informant
by a recursive learner

Theorem 4.1

Thick Partially Learnable Learnable Theorem 4.2

Table 1: Overview of results

The task of verification is easier than learning. For example, the family of all languages
Le = {0, 1}|e| \ {e} with e ∈ {0, 1}+ is verifiable from arbitrary text but not automatically
learnable from arbitrary text. However it is an open problem whether all automatic fami-
lies satisfying Angluin’s tell-tale condition are automatically learnable from one-one texts,
balanced texts and exponential texts. Nonetheless, texts of these types are helpful; for
example, it is possible to learn the family of all sets of the form Le = {0, 1}|e| \ {e} with
e ∈ {0, 1}+∪{2}+ from such texts while it is impossible to verify it from arbitrary text, see
Theorem 3.5.

18

Automatic Learning from Repetitive Texts

Acknowledgments

Karen Seidel was partially supported by the German Research Foundation (DFG) through
grant KO 4635/1-1 (SCL). Sanjay Jain was supported in part by NUS grant C252-000-
087-001. Furthermore, Sanjay Jain and Frank Stephan have been supported in part by the
Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019
/ R146-000-234-112.

Part of this work was done while Frank Stephan was on sabbatical leave to the Univer-
sität Bonn in April 2017 and to the Bundeswehr University Munich in June 2017.

References

Klaus Ambos-Spies, Serikzhan Badaev and Sergey Goncharov. Inductive inference and
computable numberings. Theoretical Computer Science, 412(18):1652–1668, 2011.

Dana Angluin. Inductive inference of formal languages from positive data. Information and
Control 45:117–135, 1980.

Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21(1):46–62, 1980.

Dana Angluin. Inference of reversible languages. Journal of the ACM, 29:741–765, 1982.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87–106, 1987.

Achilles A. Beros. Anomalous vacillatory learning. The Journal of Symbolic Logic,
78(4):1183–1188, 2009.

Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

Achim Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.

Achim Blumensath and Erich Grädel. Automatic structures. 15th Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 51–62, IEEE Computer Society, 2000.

John Case, Sanjay Jain, Trong Dao Le, Yuh Shin Ong, Pavel Semukhin and Frank Stephan.
Automatic Learning of Subclasses of Pattern Languages. Information and Computation,
218:17–35, 2012.

John Case, Sanjay Jain, Yuh Shin Ong, Pavel Semukhin and Frank Stephan. Automatic
learners with feedback queries. Journal of Computer and System Sciences, 80(4):806–820,
2014.

John Case, Sanjay Jain, Samuel Seah and Frank Stephan. Automatic functions, linear time
and learning. Logical Methods in Computer Science, 9(3), 2013.

John Case and Timo Kötzing. Difficulties in forcing fairness of polynomial time inductive
inference. Algorithmic Learning Theory, Twentieth International Conference, ALT 2009,
Porto, Portugal, 3–5 October 2009. Proceedings. Springer LNAI, 5809:263–277, 2009.

19

Automatic Learning from Repetitive Texts

Henning Fernau. Identification of function distinguishable languages. Theoretical Computer
Science, 290:1679–1711, 2003.

Rusins Freivalds, Efim Kinber and Carl H. Smith. On the impact of forgetting on learning
machines. Journal of the ACM, 42:1146–1168, 1995.

William I. Gasarch and Carl H. Smith. Learning via queries. Journal of the ACM, 39(3),
649–674, 1992.

Michael Geilke and Sandra Zilles. Learning Relational Patterns. Algorithmic Learning
Theory, Twentysecond International Conference (ALT 2011), Springer LNAI 6925:84–98,
2011.

E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

Gunter Grieser. Reflective inductive inference of recursive functions. Theoretical Computer
Science, 397(1-3):57–69, 2008.

Tom Head, Satoshi Kobayashi and Takashi Yokomori. Locality, reversibility, and beyond:
learning languages from positive data. Algorithmic Learning Theory, Ninth International
Conference, (ALT 1998). Springer LNAI 1501:191–204, 1998.

Jeffrey Heinz, Anna Kasprzik and Timo Kötzing. Learning in the limit with lattice-
structured hypothesis spaces. Theoretical Computer Science, 457:111–127, 2012.

Bernard R. Hodgson. On direct products of automaton decidable theories. Theoretical
Computer Science, 19:331–335, 1982.

Rupert Hölzl, Sanjay Jain and Frank Stephan. Inductive inference and reverse mathematics.
Annals of Pure and Applied Logic 167:1242–1266, 2016.

Marcus Hutter and Jan Poland. Algorithmic Learning Theory, Fifteenth International
Conference, ALT 2004, Padova, Italy, 2–5 October 2004, Proceedings. Springer LNAI,
3244:279–293, 2004.

Sanjay Jain, Efim Kinber and Rolf Wiehagen. Language learning from texts: degrees
of intrinsic complexity and their characterizations. Journal of Computer and System
Sciences, 63(3):305–354, 2000.

Sanjay Jain, Qinglong Luo and Frank Stephan. Learnability of automatic classes. Journal
of Computer and System Sciences, 78(6):1910–1927, 2012. Special issue on LATA 2010.

Sanjay Jain, Yuh Shin Ong, Shi Pu and Frank Stephan. On automatic families. Proceedings
of the eleventh Asian Logic Conference in honour of Professor Chong Chi Tat on his
sixtieth birthday, pages 94–113, World Scientific, 2012.

Sanjay Jain, Daniel N. Osherson, James S. Royer and Arun Sharma. Systems That Learn.
MIT Press, 2nd Edition, 1999.

20

Automatic Learning from Repetitive Texts

Klaus Peter Jantke. Monotonic and non-monotonic inductive inference. New Generation
Computing, 8(4):349–360, 1991.

Mengchi Jia. Automatic Learning from Specific Text. Bachelor of Science and Bachelor of
Computing Dissertation (Double Degree Programme), National University of Singapore,
2013.

Michael Kearns and Leonard Pitt. A polynomial-time algorithm for learning k-variable
pattern languages from examples. Proceedings of the Second Annual Workshop on Com-
putational Learning Theory, pages 57–71, Morgan Kaufmann Publishers Inc., 1989.

Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. Logical
and Computational Complexity, (International Workshop LCC 1994). Springer LNCS
960:367–392, 1995.

Efim Kinber. Learning regular expressions from representative examples and membership
queries. International Colloquium on Grammatical Inference, ICGI 2010, Springer LNCS
6339:94–108, 2010.

Efim Kinber and Frank Stephan. Language learning from texts: mind changes, limited
memory and monotonicity. Information and Computation, 123:224–241, 1995.

Steffen Lange and Rolf Wiehagen. Polynomial time inference of arbitrary pattern languages.
New Generation Computing, 8:361–370, 1991.

Steffen Lange, Thomas Zeugmann and Sandra Zilles. Learning indexed families of recursive
languages from positive data: a survey. Theoretical Computer Science, 397(1):194–232,
2008.

Eliana Minicozzi. Some natural properties of strong-identification in inductive inference.
Theoretical Computer Science, 2:345–360, 1976.

Wei Luo and Oliver Schulte. Mind change efficient learning. Information and Computation,
204(6):989–1011, 2006.

Yasuhito Mukouchi and Setsuo Arikawa. Towards a mathematical theory of machine dis-
covery from facts. Theoretical Computer Science, 137(1):53–84, 1995.

Daniel Osherson, Michael Stob and Scott Weinstein, Learning strategies. Information and
Control, 53:32–51, 1982.

Daniel Osherson, Michael Stob and Scott Weinstein, Systems That Learn, An Introduction
to Learning Theory for Cognitive and Computer Scientists. Bradford — The MIT Press,
Cambridge, Massachusetts, 1986.

Leonard Pitt. Inductive inference, DFAs, and computational complexity. Analogical and In-
ductive Inference, Proceedings of the Second International Workshop, AII 1989. Springer
LNAI 397:18–44, 1989.

Sasha Rubin. Automatic Structures. Ph.D. Thesis, University of Auckland, 2004.

21

Automatic Learning from Repetitive Texts

Sasha Rubin. Automata presenting structures: a survey of the finite string case. The
Bulletin of Symbolic Logic, 14:169–209, 2008.

Gisela Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien.
Dissertation. Rheinisch-Westfälische Technische Hochschule Aachen, 1984.

Takeshi Shinohara and Hiroki Arimura. Inductive inference of unbounded unions of pattern
languages from positive data. Theoretical Computer Science, 241(1–2):191–209, 2000.

Frank Stephan and Yuri Ventsov. Learning algebraic structures from text. Theoretical
Computer Science, 268(2):221–273, 2001.

Kenneth Wexler and Peter W. Culicover. Formal Principles of Language Acquisition. MIT
Press, 1980.

Rolf Wiehagen, Thomas Zeugmann: Ignoring data may be the only way to learn efficiently.
Journal of Experimental and Theoretical Artificial Intelligence, 6(1):131–144, 1994.

22

	Introduction
	Definitions and notations
	Balanced text
	Exponential and thick text
	Learning by counting the number of words
	Conclusion

