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Abstract

We devise an enumeration method for inclusion-wise minimal

hitting sets in hypergraphs. It has delay O(mk∗+1 ·n2) and

uses linear space. Hereby, n is the number of vertices, m the

number of hyperedges, and k∗ the rank of the transversal

hypergraph. In particular, on classes of hypergraphs for

which the cardinality k∗ of the largest minimal hitting set is

bounded, the delay is polynomial. The algorithm solves the

extension problem for minimal hitting sets as a subroutine.

We show that the extension problem is W [3]-complete when

parameterised by the cardinality of the set which is to be

extended. For the subroutine, we give an algorithm that is

optimal under the exponential time hypothesis. Despite these

lower bounds, we provide empirical evidence showing that the

enumeration outperforms the theoretical worst-case guarantee

on hypergraphs arising in the profiling of relational databases,

namely, in the detection of unique column combinations.

1 Introduction

A reoccurring computational task in the design and
profiling of relational databases is the discovery of hidden
dependencies between attributes. This metadata helps
to organise the dataset and subsequently enables further
cleansing and normalisation [1]. For example, unique
column combinations are subsets of attributes (columns)
whose values completely identify any record (row) in the
database. A minimal combination can thus serve as a
fingerprint for the data as a whole, making it a primary
key. Unfortunately, unique column combinations are
equivalent to hitting sets (transversals) which renders
their discovery both NP-hard and W [2]-hard [7, 18, 43].
Moreover, it is usually not enough to decide the existence
of a single, isolated occurrence; instead, one is interested
in compiling a comprehensive list of all dependencies [41].
One thus has to solve the transversal hypergraph problem.

This problem comes in two variants, enumeration
and recognition. To enumerate the transversal hyper-
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graph means computing, from an input hypergraph, the
collection of its inclusion-wise minimal hitting sets. If
necessary, the remaining non-minimal solutions can be
produced by arbitrarily adding vertices. For the recog-
nition variant, one is given a pair of hypergraphs and
the task is to decide whether one comprises exactly the
minimal transversals of the other. The two variants
are intimately connected. For any class of hypergraphs,
there is an output-polynomial algorithm (incremental-
polynomial even) for the enumeration variant if and only
if the transversal hypergraph can be recognised in poly-
nomial time for this class [5]. It is a long-standing open
question whether this decision problem can be solved effi-
ciently for arbitrary inputs. The transversal hypergraph
problem also emerges in a plethora of fields beyond rela-
tional databases, like artificial intelligence [33], machine
learning [20], distributed systems [31], integer linear
programming [10], and monotone logic [24].

While there is currently no efficient method for
general inputs, it is worth exploring the characteristics
of the concrete application at hand in order to find
tractable cases and develop new techniques. For
databases, there are two prominent traits: small
solutions and the need for user feedback. Usually
the largest minimal unique column combination is
significantly smaller than the total number of attributes.
As an example, the call a bike database (see Section 5
for more details) spans 16 columns and a hundred
thousand rows; nevertheless, the largest unique column
combination is of size 4, see also [41, 50]. Although one
can expect the solutions to be small, there is generally
no a priori guarantee on their maximum cardinality.
One thus aims for an algorithm that is suitable for all
hypergraphs and particularly fast on those with small
transversal. A typical use case for the enumeration of
unique column combinations is to present them to a
human user for inspection. This allows to incorporate
domain knowledge that might otherwise be inaccessible.
The human-computer interaction sparks new algorithmic
constraints. The first output should be available quickly
and subsequent ones should follow in regular intervals.
An algorithm with bounded delay is thus preferred over
a mere output-efficient one.
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In this paper, we devise an algorithm for the enumer-
ation of minimal hitting sets. We give a guarantee on
its delay between consecutive outputs. On hypergraphs
for which the size of the largest minimal transversal is
bounded, the guarantee is polynomial. Moreover, our
experiments show that the enumeration is fast on hy-
pergraphs arising in the discovery of unique column
combinations in relational databases.

Contribution and Outline. After introducing basic
concepts and notation in Section 2, we give the general
outline of our enumeration method in Section 3. The
algorithm consists of a backtracking search that is
heavily pruned by an extension oracle for minimal
hitting sets. The underlying extension problem is
discussed in detail in Section 4. It is known to be
NP-complete in general, but efficiently solvable if the set
to be extended is small [8]. To interpolate between
these two extreme cases and better understand the
computational complexity of the extension problem,
we employ techniques commonly summarised as fixed-
parameter tractability [21]. In particular, we prove that
the problem is W [3]-complete, when parameterised by
the cardinality |X| of the set to be extended. To the best
of our knowledge, it is only the third known example
of a natural problem with this property. The first
one was given by Chen and Zhang in the context of
supply chain management [12]; Bläsius, Friedrich, and
Schirneck added the discovery of inclusion dependencies
in relational data [7]. Beyond the W [3]-hardness we
also derive a lower bound based on the exponential
time hypothesis, and give an algorithm for the extension
oracle running in time O(|H||X|+1 · |V |), meeting the
lower bound. Combined with the backtracking algorithm,
this gives a method to enumerate all minimal hitting sets
lexicographically with delay O(|H|k∗+1 · |V |2), where k∗

is the rank of the transversal hypergraph. Beyond these
theoretical bounds, we introduce different techniques
for improving the run time in practice. The empirical
evaluation in Section 5 shows that our algorithm is
capable of efficiently enumerating all unique column
combinations of real-world databases when given the
hypergraph of difference sets as input. We in particular
observe that the run times of the oracle calls (the
only part of our algorithm with super-polynomial run
time) are quite fast in practice. Compared to a simple
brute force enumeration, we achieve huge speed-ups, in
particular for larger instances. The paper is completed
by a discussion of the related work in Section 6 and some
concluding remarks in Section 7.

2 Preliminaries

Hypergraphs and Hitting Sets. A hypergraph is
a finite vertex set V together with a system of sets
H⊆P(V ), its (hyper-)edges. We often identify a hyper-
graph with its edges H. The symbol n = |V | denotes the
number of vertices, and m = |H| the number of edges.
The rank of a hypergraph H is the maximum cardinality
of its edges, r(H) = maxE∈H |E|. H is called Sperner
hypergraph if no edge is contained in another.

A transversal or hitting set for H is a vertex set
H ⊆ V such that H has a non-empty intersection with
every edge E ∈ H. A transversal is (inclusion-wise)
minimal if it does not contain any other transversal. The
minimal hitting sets of H form a Sperner hypergraph on
V, called the transversal hypergraph Tr(H). We denote
the number of minimal transversals by Nmin = |Tr(H)|.
It is well-known that a transversal is minimal if and only
if for every x ∈ H, there is an edge Ex ∈ H such that
Ex ∩H = {x} [4, 48]. We call this edge Ex a witness
for x (also known as critical hyperedge [47]).

Relational Databases and UCCs. To describe rela-
tional data, we fix a finite set R, the (relational) schema;
its elements are the attributes or columns. Records or
rows are tuples whose entries are indexed by R, we use
the symbols ri and rj for them. For any subset X ⊆ R
of columns, we let ri[X] denote the subtuple of ri con-
sisting only of the entries indexed by X. A finite set r
of rows is a relation or relational database.

Given a relation r, a set X of columns is a unique
column combination (UCC), or simply a unique, if for any
two distinct tuples ri 6= rj in r, we have ri[X] 6= rj [X].
The combination of values in the entries for X thus fully
identifies any tuple of the relation r. Otherwise, set X is
non-unique. Any superset of a unique is unique and any
subset of a non-unique is again non-unique. A UCC is
(inclusion-wise) minimal if it does not contain another
UCC. There is a one-to-one correspondence between
(minimal) UCCs and the (minimal) transversals; see the
beginning of Section 5 for more details.

Parameterised Complexity and ETH. For an in-
stance I and a parameter k ∈ N+, (I, k) is an instance
of the corresponding parameterised problem. A param-
eterised problem is fixed-parameter tractable (FPT), if
any instance can be solved in time O(f(k) · p(|I|)) where
p is a polynomial and f is a computable function.

Let Π and Π′ be two parameterised problems. A
parameterised reduction from Π to Π′ is a function
computable in FPT-time that maps an instance (I, k) of
Π to an equivalent instance (I ′, k′) of Π′ such that the
parameter k′ depends on k but not on |I|. If there is also
a parameterised reduction in the opposite direction, the
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problems are said to be FPT-equivalent. We often use
a restricted form of parameterised reductions, namely,
a polynomial reduction that preserves the parameter,
k′ = k. Such an reduction transfers the parameterized
and the classical (polynomial) complexity.

The notion of parameterised reduction gives rise
to a hierarchy of complexity classes, the W -hierarchy .
It is defined in terms of Boolean circuits. The depth
of a circuit is the maximum length of any path from
an input to the output node. The weft is the maxi-
mum number of large gates (fan-in larger than 2) on
such a path. Weighted Circuit Satisfiability asks
whether a Boolean circuit has a satisfying assignment
of weight k (k inputs set to true) parameterised by
k. For every integer t > 0, W [t] contains all parame-
terised problems that admit a parameterised reduction
to Weighted Circuit Satisfiability restricted to
circuits of constant depth and weft at most t.

Another source of conditional lower bounds is
the exponential time hypothesis (ETH) [36, 37]. It
conjectures that there is no algorithm solving 3-SAT on
n variables in time 2o(n).

Enumeration Complexity. Enumeration is the pro-
cess of outputting all solutions to a computational prob-
lem without repetition. For hitting sets, there exists a
class of hypergraphs such that the number Nmin of min-
imal transversals growths exponentially in both n = |V |
and m = |H| [5]. This rules out a polynomial algorithm.
Instead, one could ask for an output-polynomial algo-
rithm running in time polynomial in both the input and
output size. A stronger requirement is an incremental
polynomial algorithm, generating the solutions in such
a way that the i-th delay, the time between the i−1-st
and i-th output, is polynomial in the input size and in i.
The strongest form of output-efficiency is that of polyno-
mial delay, where the delay between any two consecutive
solutions is polynomial in the input size only.

3 Enumeration Using Decision Trees

It is a common pattern in the design of enumeration
algorithms to base them on an extension oracle [6, 26,
38, 39, 42, 45, 46, 51, 52]. The oracle decides, for a given
collection of vertices, whether there is a solution using
these vertices (possibly avoiding some other set).

Extension MinHS

Input: (V,H) and sets X,Y ⊆ V ; X ∩ Y = ∅.

Output: true iff there is a minimal hitting set
H ∈ Tr(H) with X ⊆ H ⊆ V \Y.

Parameter: |X|.

We note that |X| is a natural parameter for this problem.

On the one hand, it has been observed that it can be
solved faster for small |X| [8]. On the other hand, |X|
is usually small in instances arising in data profiling.

In this section, we treat the oracle as a black box
and describe how it can be used to solve the transversal
hypergraph problem. In Section 4, we then give an
algorithm to actually solve Extension MinHS. The
idea to use oracles in enumeration is usually attributed
to Lawler [42]. His original technique, however, required
exponential space. Thus, modifications are necessary for
practical use, cf. [46, 52]. For transversals, this space
reduction can achieved via a decision tree pruned by the
extension oracle. This is known in the literature as the
backtracking method [51] or the flashlight technique [45].

Given a pair (X,Y ) of disjoint sets of vertices, we
want to enumerate the minimal hitting sets that comprise
all of X but no vertex from Y. If X ∪ Y = V , this can
only be X itself. Otherwise, we recursively compute the
solutions given by the pairs (X∪{v}, Y ) and (X,Y ∪{v}),
where v is some vertex not previously contained in X
or Y. This leads to a binary decision tree. Every node
in the tree is labelled with the respective pair (X,Y );
every level in the tree corresponds to some new vertex v.
The algorithm branches, in every node of a level, on the
decision whether to add v to X or to Y , in the latter
case excluding it from the future search.

Algorithm 1: Recursive enumeration algo-

rithm. Initial call: enumerate(∅, ∅, V ).

Data: Ordered hypergraph (V,<,H).

Input: Partition (X,Y,R) of the vertex set V .

1 Procedure enumerate(X,Y ,R):

2 if R = ∅ then output X; return;

3 v ← min<R;

4 if extendable(X ∪ {v}, Y ) then

enumerate(X ∪ {v}, Y , R\{v});

5 if extendable(X, Y ∪ {v}) then

enumerate(X, Y ∪ {v}, R\{v});

Algorithm 1 recursively traverses the decision tree
when given access to the hypergraph (V,H). Subroutine
extendable(X,Y ) is the extension oracle. The proce-
dure enumerate receives the sets X and Y as well as the
remaining vertices R = V \(X ∪ Y ) as input and checks
whether a leaf has been reached. If not, it branches on
the assignment of some vertex of R to X or Y. The
initial call of the recursion is enumerate(∅, ∅, V ). As
a technical detail, we assume the vertex set V to be
equipped with some total order <.
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Lemma 3.1. Assuming subroutine extendable solves
the Extension MinHS problem, then Algorithm 1 on
input (V,<,H) enumerates Tr(H). That is, it outputs
every minimal hitting set of H exactly once.

Our enumeration procedure is similar to the back-
tracking method by Elbassioni, Hagen, and Rauf [26,
Figure 1]. The main difference is the search for new
solutions. Besides the partial solution X, the nodes in
the decision tree of Algorithm 1 also maintain the set
Y of already excluded vertices. The (somewhat arbi-
trarily chosen) vertex v is added to one of the two sets
depending on whether X or X ∪ {v} are extendable. In
contrast, the algorithm in [26] only works on the partial
solution–there denoted by S –and explicitly computes
a new vertex extending S which is potentially expen-
sive. Also, their check whether S is already a minimal
transversal is redundant since this information can be
obtained as a by-product of a careful implementation of
the extension oracle itself (see Lemma 4.9 below).

We note that always choosing the <-smallest ver-
tex results in the leaves being lexicographically ordered1

from left to right. The pre-order traversal of the decision
tree transfers this ordering also to the outputs. This can
be utilized in the context of databases to output “inter-
esting” UCCs first. Suppose the attributes are ranked by
importance, then the enumeration naturally starts with
those UCCs that contain many important attributes. On
the other hand, this raises some complexity theoretic is-
sues. Computing the lexicographically smallest minimal
hitting set is known to be NP-hard [22, 38]. Therefore,
Algorithm 1 having polynomial delay on all ordered hy-
pergraphs would imply P = NP. From a practical point
of view, this raises the interesting question which impact
the order has on the run time; also see Section 5.

4 The Extension Problem

We now discuss the extension problem for minimal
hitting sets. We first show that it is W [3]-complete,
one of the first natural examples being so. Thus,
there is probably no FPT-algorithm for Extension
MinHS. We prove an even stronger lower bounds under
the exponential time hypothesis. Then, we give an
algorithm for the extension problem whose worst-case
run time meets the lower bound under ETH. Finally,
in combination with the decision tree, we give some
strategies for improving the run time and derive a bound
on the delay of Algorithm 1.

4.1 Hardness of the Extension Problem. Boros,
Gurvich, and Hammer showed that Extension MinHS

1A set S ⊆ V is lexicographically smaller than another subset
T if the <-first element in which S and T differ is in S, cf. [38].

is NP-complete [8]. In the same article, they reduced it
to a certain covering problem in hypergraphs. We extend
this result by proving that the two problems are in fact
equivalent under polynomial and parameterised reduc-
tions. We use this to establish the W [3]-completeness of
Extension MinHS, when parameterised by the cardi-
nality |X| of the set that is to be extended.

We call this cover problem Multicoloured Inde-
pendent Family. It formalises the following computa-
tional task: given k lists of sets–each list representing a
colour–as well as an additional collection of forbidden
sets, one has to select a set of each colour such that their
union does not completely cover any forbidden set.

Multicoloured Independent Family

Input: A (k+1)-tuple (S1, . . . ,Sk, T ) of systems of
sets over a common finite universe U.

Output: true iff there are sets S1 to Sk, Si ∈ Si,
such that ∀T ∈ T : T *

⋃k
i=1 Si.

Parameter: k.

It will be convenient to also have a single-coloured variant
of the problem featuring only a single list.

Independent Family

Input: Two systems S, T of subsets of a finite
universe U and a positive integer k.

Output: true iff there are sets S1, . . . , Sk ∈ S
such that ∀T ∈ T : T *

⋃k
i=1 Si.

Parameter: k.

The problems generalise the Independent Set
problem in hypergraphs, which asks for k vertices such
that they do not cover any hyperedge, parameterised by
k, cf. [17, 27]. For Independent Family, we instead
select sets of vertices such that their union is independent
(for the hypergraph T ). Thus, Independent Set is the
special case of system S consisting entirely of singletons.

Note that S1, . . . , Sk, S, and T each fit the definition
of a hypergraph (over the common universe). However,
to avoid confusion with the other hypergraph problems
considered in this paper, we use the term set system
in this context. The next two lemmas establish the
equivalence of both variants of the covering problem
with the extension problem for minimal hitting sets.

Lemma 4.1. The problems Extension MinHS and
Multicoloured Independent Family are equivalent
under polynomial reductions that preserve the parameter.

Proof. The first part has already been proven in [8], we
restate the reduction from Extension MinHS to Multi-
coloured Independent Family for later use. Due to
space restrictions, the correctness is only sketched.
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W.l.o.g., we assume that the set Y of vertices
we have to avoid is empty. Let (V,H, X) be an
instance of Extension MinHS. If X = ∅ is empty,
we output a trivial true-instance of Multicoloured
Independent Family iff ∅ /∈ H; otherwise, a false-
instance. From now on, we assume X 6= ∅.

Recall that, if H is a minimal hitting set, then every
element x ∈ H has a witness, i.e., there is an edge
E ∈ H such that E ∩H = {x}. Therefore, X can only
be extendable if, for each x ∈ X, there is an edge E ∈ H
with E ∩ X = {x}. If some element x ∈ X has no
witness, we return a trivial false-instance of Multi-
coloured Independent Family. Otherwise, the set
systems Sx = {E ∈ H | E ∩ X = {x}} of potential
witnesses are non-empty for all x.

Next, we characterise the conditions under which
a selection of potential witnesses actually implies the
existence of a minimal extension of X. To this end, we
collect in set system T those edges of H that share no
element with X. Edges that intersect X in more than
one vertex can be cast aside. We claim that X can
be extended to a minimal transversal of H if and only
if there is a selection (Ex)x∈X of potential witnesses,
Ex ∈ Sx, such that T *

⋃
x∈X Ex holds for all T ∈ T .

This is the case iff the instance ((Sx)x∈X , T ) of Multi-
coloured Independent Family evaluates to true.
Note that the reduction preserves the parameter k = |X|.

We now treat the converse reduction from Multi-
coloured Independent Family to Extension
MinHS. First, observe that above transformation re-
mains valid if we redefine the set systems via punc-
tured edges instead, i.e., Sx = {E\{x} | E ∩X = {x}}.
It now suffices to demonstrate that this modified re-
duction is capable of producing any given instance
J = (S1, . . . ,Sk, T ) of the Multicoloured Indepen-
dent Family problem. �

In the next step, we show that the multi- and single-
coloured variants of the independent family problem are
essentially the same. The proof uses standard techniques
regularly employed to reduce between parameterised
problems and their multicoloured variants [17, 27].

Lemma 4.2. The problems Multicoloured Indepen-
dent Family and Independent Family are equivalent
under polynomial reductions that preserve the parameter.

To show membership in W [3] for Independent
Family, we construct a polynomial parameter-preserving
reduction to a circuit of bounded depth and weft 3.
Selecting some set in system S corresponds to setting an
input node to true, the covering constraint is modelled
via large gates representing the elements of the union,
the sets in T and a final large (negated) OR-gate.

Lemma 4.3. Independent Family is in W [3].

For the hardness, we reduce form the W [3]-complete
problem Weighted Circuit Satisfiability for anti-
monotone 3-normalised formulas [21], which are conjunc-
tions of DNF-subformulas with only negative literals.

Lemma 4.4. Independent Family is W [3]-hard.

Theorem 4.5. Extension MinHS and (Multi-
coloured) Independent Family are W [3]-complete.

Theorem 4.5 excludes algorithms for the extension prob-
lem running in time f(|X|)p(m,n) for any computable
function f and polynomial p, unless FPT =W [3]. Under
the assumption of the exponential time hypothesis, we
now show a stronger lower bound implying that the expo-
nent of the worst-case runtime of any such algorithm is
at least linear in |X|. That is, we disprove the existence
of an algorithm having a run time of f(|X|)(m+n)o(|X|).

There is an established connection between ETH and
the complexity of parameterised intractable problems,
cf. [17, Chapter 14]. This connection is anchored at
the W [1]-complete Independent Set problem [15].
The lower bound on the complexity of Independent
Set in terms of both the input size and the parameter
k is transferred to other parameterised problems via
polynomial parameter-preserving reductions [13–15].

Proposition 4.6. ([13–15, 17]) Unless ETH fails,
there is no algorithm for Independent Set running in
time f(k)no(k), for any computable function f. If there
is a polynomial parameter-preserving reduction from In-
dependent Set to a parameterised problem Π, there is
no algorithm solving (I, k′)∈Π in time f(k′) |I|o(k′).

Proposition 4.6 also rules out any f(k)·(m+n)o(k)-time
algorithm for Independent Set since the number m
of edges in a graph is at most quadratic in n. Clearly,
the bound also applies to the generalised Independent
Family problem. Composing this with the reductions
in Lemmas 4.1 and 4.2 yields the following theorem.

Theorem 4.7. Unless ETH fails, there is no algorithm
solving Extension MinHS in time f(|X|)·(m+n)o(|X|)

for any computable function f . Furthermore, Indepen-
dent Family, resp. Multicoloured Independent
Family cannot be solved in time f(k)·(|S|+|T |+|U |)o(k),
resp. in time f(k)·(

∑k
i=1 |Si|+|T |+|U |)o(k).

4.2 Solving the Extension Problem. We still have
to solve the extension problem. Justified by the reduc-
tions in [8] and Lemma 4.1, we approach it via Multi-
coloured Independent Family; see Algorithm 2.
First, it treats the special case of an empty set X.
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Then, in lines 6 to 10, the resulting instance of Multi-
coloured Independent Family is constructed. Two
sanity checks in lines 11 and 12 assess whether the in-
stance is trivial. We will see later that in practice many
calls of the oracle are already decided here. If the checks
are inconclusive, we solve the instance by brute force
(lines 13–16). The algorithm decides the existence of a
minimal extension without explicitly computing one. As
shown in Section 3, this is enough for the enumeration.

Algorithm 2: Alg. for Extension MinHS.

Input: Hypergraph (V,H) and disjoint sets

X,Y ⊆ V , where

X = {x1, x2, . . . , x|X|}.
1 Output: true iff there is a minimal hitting set

2 H of H, with X ⊆ H ⊆ V \Y .

3 if X = ∅ then
4 if V \Y is a hitting set then return true;

5 else return false;

6 initialise set system T = ∅;
7 foreach x ∈ X do initialise set system Sx = ∅;
8 foreach E ∈ H do

9 if E ∩X = {x} then add E\Y to Sx;

10 if E ∩X = ∅ then add E\Y to T ;

11 if ∃x ∈ X : Sx = ∅ then return false;

12 if T = ∅ then return true;

13 foreach (Ex1
, . . . , Ex|X|) ∈ Sx1

× · · · × Sx|X|
do

14 W ←
⋃|X|

i=1Exi
;

15 if ∀T ∈ T : T *W then return true;

16 return false;

We now give a bound on the worst-case run time,
which matches the lower bound in Theorem 4.7. Recall
that |X| denotes the cardinality of the set to be extended.

Lemma 4.8. Algorithm 2 solves Extension MinHS in
time O((m/|X|)|X| ·mn) and linear space.

4.3 Improved Enumeration. So far, we are solving
the extension problem in a vacuum. We can improve
upon this by also taking into consideration the interplay
with the decision tree of the enumeration procedure. We
are looking for the minimal transversals, but the Exten-
sion MinHS problem is indifferent to the distinction
between sets that are themselves minimal solutions and
those that still need extending vertices. As it turns out,
the algorithm can tell the two apart.

Lemma 4.9. Let H 6= ∅ be non-empty and X,Y ⊆ V
two disjoint sets of vertices. Then, X ∈ Tr(H) if and
only if Algorithm 2 on input (V,H, X, Y ) returns true
by breaking in line 12.

We can trivially check whether H is empty, i.e.,
whether the empty set is the only minimal transversal,
before invoking the enumeration algorithm. Therefore,
we always assumeH 6= ∅ in what follows. The subroutine,
on input (X,Y ), breaking in line 12 flags the fact that
we have found a minimal solution. If so, we know the
outcome of every oracle call in the subtree rooted in the
current node: Adding further vertices to X can never
lead to a set that is extendable; conversely, adding to
Y does not change X and yields true deterministically.
The subtree rooted in node (X,Y, V \(X∪Y )) has exactly
one leaf that holds a minimal solution, which is the node
(X,V \X, ∅). We can thus safely shortcut the recursion
and immediately output solution X.

Another possible improvement stems from the obser-
vation that the two extension checks of the enumeration
procedure, line 4 and 5 of Algorithm 1, cannot return
false at the same time. We only enter a node once we
verified that at least one leaf of its subtree holds a mini-
mal solution. That leaf is a descendent of either the left
or the right child. Thus, if the first check fails, we do not
need to execute the second one. Note that this does not
interfere with the above flagging mechanism. We entered
the current node because X is extendable but not yet
a minimal solution. The call extendable(X, Y ∪ {v})
has the same first argument, and thus Algorithm 2 com-
puting that call would also not break in line 12.

Finally, we prove a guarantee on the maximum delay
between consecutive outputs of Algorithm 1. The key to
this is that between two leafs of the decision tree, we visit
only O(n) inner nodes. Moreover, the size |X| of sets we
try to extend is bounded by the rank of the transversal
hypergraph r(Tr(H)), which we denote with k∗. For
bounded k∗ we achieve polynomial delay.

Theorem 4.10. Consider Algorithm 1 combined with
the (improved) Algorithm 2 as oracle, running on input
(V,<,H). It enumerates Tr(H) with delay O(mk∗+1n2),
where k∗= r(Tr(H)). The method uses linear space.

Note that the rank k∗ is not known to the algorithms,
the input consists only of the hypergraph itself. In
fact, it has been shown recently by Bazgan et al. that
computing k∗ is W [1]-hard (parameterised by k∗); also,
it cannot be approximated with a factor of n1−ε for any
ε > 0, unless P = NP [3]. The upper bound on the delay
holds regardless of the knowledge of k∗. In particular,
on hypergraphs for which the size of the largest minimal
hitting set is constant, Algorithm 1 has polynomial delay.
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5 Enumerating Unique Column Combinations

We apply our enumeration algorithm to hypergraphs aris-
ing in the profiling of relational databases. Specifically,
we want to enumerate all minimal UCCs. There is a
folklore polynomial reduction from the detection of min-
imum UCCs to the hitting set problem, cf. e.g. [18, 43].
Let r be a relation over a schema R. Intuitively, for any
two rows ri, rj ∈ r, any UCC must contain at least one
attribute in which ri and rj disagree; otherwise, these
rows would be indistinguishable. The set of vertices in
which ri and rj disagree is called their difference set.
This reduction is parsimonious in that it translates all
UCCs into hitting sets while also preserving the inclusion
relationships. Since there is also a parsimonious reduc-
tion in the opposite direction, listing minimal UCCs is
as hard as the general enumeration problem [7].

This reduction implies a two-phased approach. First,
generate the hitting set instance. Second, enumerate
the minimal transversals. Clearly, the first phase can
be done in time polynomial in the size of the database.
The second phase, which is the focus of our paper, has
exponential complexity in general. In the following, we
thus assume, that the Sperner hypergraph of the minimal
difference sets is given as input.

5.1 Data and Experimental Setup. We evalu-
ated our enumeration algorithms on a total of twelve
databases. These are the abalone, echocardiogram,
hepatitis, and horse dataset from the UCI Machine
Learning Repository2, uniprot from the Universal Pro-
tein Resource3, civil service4, ncvoter allc5 and
flight 1k6 provided by the respective authorities of the
City of New York, North Carolina, and the federal gov-
ernment of the US, call a bike of the German railway
company Deutsche Bahn7, as well as amalgam1 from
the Database Lab of the University of Toronto8. They
are complemented by two randomly generated datasets
fd reduced 15 and fd reduced 30 using the dbtesma
data generator9. Databases with more than 100k rows
were cut by choosing 100k rows uniformly at random.
After computing the Sperner hypergraph, we removed
vertices not appearing in any edge, as these are not rele-
vant for the enumeration of minimal hitting sets. Thus,
the number of vertices of the hypergraph can be smaller
than the number of columns in the database. Table 1

2archive.ics.uci.edu/ml
3uniprot.org
4data.cityofnewyork.us
5ncsbe.gov
6transstats.bts.gov
7data.deutschebahn.com
8dblab.cs.toronto.edu/∼miller/amalgam/
9sourceforge.net/projects/dbtesma

dataset cols. rows |V | |H| k∗ Nmin

call a bike 16 100k 13 6 4 23
abalone 9 4177 9 30 6 29
echocardiogr. 12 132 12 30 5 72
civil serv. 20 100k 14 19 7 81
horse 28 300 25 39 11 253
uniprot 40 19 999 37 28 10 310
hepatitis 20 155 20 54 9 348
fd red. 15 15 100k 15 75 3 416
amalgam1 87 50 87 70 4 2737
fd red. 30 30 100k 30 224 3 3436
flight 1k 70 1000 53 161 8 26 652
ncvoter allc 88 100k 82 448 15 200 907

Table 1: The databases used in the evaluation ordered by
the number Nmin of minimal UCCs. Columns and rows
denote the respective dimension of the database, |V | and |H|
refer to the resulting hypergraph of difference sets, k∗ is the
cardinality of the largest minimal UCC.

lists the data together with some basic features. The ta-
ble is sorted by the number Nmin of minimal hitting sets,
i.e., the solution size. All plots shown in the following
use the same order. In our box plots, the boxes range
from the first to the third quartile, with the median
indicated as horizontal line. The whiskers represent the
lowest datum within 1.5 interquartile range (IQR) of the
lower quartile and the highest datum within 1.5 IQR of
the upper quartile. Everything beyond that counts as
outlier and is indicated as small cross.

All algorithms were implemented10 in C++ and
run on a Ubuntu 16.04 machine using two Intel Xeon
E5-2690 v3 2.60Ghz CPUs and 256GB RAM. For some
experiments, we collected run times of intermediate steps,
e.g., for the oracle calls in Section 5.3. To not interfere
with the overall run time measurements, we used separate
runs for these experiments. Moreover, we reduced the
noise of our run time measurements by averaging over
multiple runs. See the corresponding sections for details.

5.2 Vertex Order and Overall Run Time. Recall
from Section 3 that our algorithm branches on the
vertices of the hypergraph in a certain order. Although
the order does not matter for the theoretical bounds,
changing it results in a different decision tree, which
impacts the practical run time. As a heuristic, we
(descendingly) sort the vertices according to the number
of different values that appear in the corresponding
column of the database. The logic behind this is that
columns with many different values are more expressive
and thus more likely to appear in many minimal UCCs.
Including an expressive vertex makes many other vertices

10The code is available at hpi.de/friedrich/research/enumdat.
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Figure 1: Run times of our enumeration algorithm. The box
plots show the run times for 1000 random vertex orders. The
filled circles correspond to our heuristic vertex order.

obsolete, which leads to early pruning in the tree.
Conversely, excluding expressive vertices makes it likely
that no hitting set remains, which also prunes the tree
early. Note that reducing the size of the decision tree,
and thus the number of oracle calls, does not guarantee a
reduced run time, as different oracle calls have different
run times. We discuss this aspect in more detail in
Section 5.3. Moreover, we note that sorting the vertices
by their degree (the number of edges they appear in)
resulted in similar but slightly worse run times.

Besides using our heuristic vertex order, we eval-
uated the algorithms also on 1000 random orders per
dataset. The only exception is the ncvoter allc in-
stance, where the higher run time did not permit that
many random orders. We report on ncvoter allc sepa-
rately. The run times, averaged over 10 measurements
for each data point, are shown in Figure 1. The instances
are sorted by the number of hitting sets. Clearly, the
total run time scales with the solution size. The only
exceptions seemed to be the two generated instances
fd reduced 15 and fd reduced 30. For most instances,
the order of the vertices had only a minor impact. In
any case, our heuristic order, outperforming the median
random order for all instances, seemed to be a solid
choice. On some instances, the heuristic led to lower run
times than any of the random orders.

For ncvoter allc, the influence of the vertex order
was much stronger. Using the heuristic, the enumeration
completed in 26 min. However, on four out of eleven
random orders, the processes finished after 59.7 h,
105.3 h, 113.7 h, and 167.7 h, respectively. The other
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Figure 2: Delays between consecutive outputs of minimal
hitting sets for our heuristic vertex order.

seven runs exceeded the time limit of 168 h (one week).
Figure 2 shows the delays between consecutive

solutions when using the heuristic order. Each data
point was obtained by averaging over 100 runs. While
there is a high variance in the delays on some instances,
e.g., between 10−1 ms and 103 ms for ncvoter allc,
the maximum delay is always less than 2 s, which is
reasonably low. In the following section, we investigate
the delays more closely by looking at the run time
distribution of the oracle calls.

5.3 Oracle Calls. In Section 4.3, we showed that the
number of oracle calls between two consecutive outputs is
linear in the number of vertices in the hypergraph. Thus,
the only part potentially leading to a super-polynomial
delay are the oracle calls themselves. It is thus interesting
to see how many oracle calls we need and how long these
calls actually take in practice.

For our heuristic vertex order, we measured the
run times of each individual oracle call, averaged over
100 runs to reduce the noise. Figure 3 shows the
complementary cumulative frequencies (CCF) of the
oracle run times, i.e., for each time t (x-axis), it shows the
number of oracle calls with run time at least t (y-axis).
We excluded the artificial instances fd reduced 15 and
fd reduced 30, they are discussed separately. First,
note the horizontal lines on the left. They stem from
the few oracle calls with X = ∅. Those are much faster
since they do not need to construct the Independent
Family instance. Next, we examine the impact of the
total number of oracle calls on the run time. The legend
of Figure 3 orders the instances by enumeration time
from left to right. In comparison, the number of oracle
calls is the y-value of the left endpoint of each curve.
The two orders are almost the same. An interesting
exception is the hepatitis dataset. It has fewer calls
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Figure 3: Complementary cumulative frequencies of oracle
run times over the enumeration process. Our heuristic was
used for the vertex order.

than horse and uniprot, but these calls take more time
on average, leading to a higher overall run time. Instance
amalgam1 needs even more calls, which then outweighs
the smaller average. Similarly, the oracle calls for horse
take more time than those for uniprot, but the higher
number of calls in the latter case causes the longer run
time. In preliminary experiments, we observed these
effects also when comparing different vertex orders of
the same dataset. In general, aiming for the smallest
number of oracle calls is a good strategy, although there
are cases in which a higher number of easier calls leads
to better run times.

Recall that the extension oracle (Algorithm 2) first
checks whether the resulting Independent Family
instance is trivially false or true (lines 11 and 12,
respectively). This way, a significant portion calls
can be solved in polynomial time. Over all instances,
slightly more than half of the oracle calls are solved
like that. In fact, for the three instances with the
most oracle calls, namely, amalgam1, flight 1k, and
ncvoter allc, no more than 32% of the calls entered
the brute-force loop in line 13, which is the only part
that actually requires super-polynomial run time. It
is thus interesting to see specifically the run times of
those calls, their CCF are shown in Figure 4. They are
heterogeneously distributed with many fast invocations
and only few slow ones. In fact, for most instances,
these plots resemble straight lines (in the log-log plot),
which indicates that the oracle run times roughly follow

10−4 10−3 10−2 10−1 100 101 102 103

100

102
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oracle run time (ms)

fr
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call_a_bike abalone echocardiog.

civil_serv. horse uniprot

hepatitis amalgam1 flight_1k

ncvoter_allc

Figure 4: Complementary cumulative frequencies of run times
for oracle calls that enter the loop in line 13 of Algorithm 2.

a power-law distribution. In conclusion, a few calls with
high run times are unavoidable, which is not surprising
for an worst-case exponential algorithm. However, even
the slowest calls are reasonably fast. Moreover, the
majority of oracle calls is far away from the worst case,
leading to a very low run time on average.

Figure 5 shows the CCF of the oracle calls of the two
artificial instances. The behaviour is very different to
the real-world instances. The staircase shape indicates
that there are five different types of oracle calls, with
roughly the same run times for calls of the same type.
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102
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oracle run time (ms)
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u
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cy

fd_red._15 fd_red._30

Figure 5: Complementary cumulative frequencies of oracle
run times over the enumeration process for the artificial
instances. Our heuristic was used for the vertex order.
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5.4 Comparison with Brute Force. We used a
brute-force search for all minimal UCCs as a baseline for
comparison, namely, the Apriori algorithm. Originally
developed for frequent itemset mining [2], it is well-
known that Apriori can also be employed to find
minimal UCCs and hitting sets in general [1, 32, 43].
For level i, it maintains a collection of candidate sets,
all of cardinality i. The candidates of the i+1-st level
are generated by combining any two i-candidates that
differ in exactly one vertex. The new candidates are
then checked whether they are hitting sets of the input
hypergraph. If so, they are output and discarded
from the candidate collection. To avoid generating
unnecessary candidates, i.e., those that are supersets
of smaller transversals, they are checked against the
collection of found solutions. The bottom-up approach
thus ensures that once a hitting set is found, it must be
minimal as all of its subsets have been tested before.

After finding all solutions, Apriori may take some
additional time to terminate as it needs to verify that the
search space of future candidates is in fact empty. It is
generally agreed upon that this is hard to avoid, finding
an efficient stopping criterion here would immediately
yield faster algorithms to compute k∗, see [3] and [28]
for a more detailed discussion. To make this transparent
in our experiments, we measured two run times for the
brute-force algorithm: the enumeration time is the time
it took to find all minimal hitting sets, and the completion
time is the total run time until termination.

Figure 6 shows the run times of our algorithm in
comparison to the enumeration and completion times
of the brute-force algorithm. For the smaller instances,
both algorithms are fast. For larger instances, the brute-
force baseline is clearly outperformed, with the only
exceptions being, again, the two randomly generated
instances fd reduced 15 and fd reduced 30. Beyond
the mere run time, the brute-force algorithm also requires
a lot of memory if the transversal hypergraph is large, it
needs to store all output solution to avoid unnecessary
candidates. We thus set a memory limit of 128 GB and
a time limit of 12 h. On flight 1k and ncvoter allc,
Apriori found 98.6% and 14.6% of the minimal hitting
sets, respectively, before reaching the time limit. For
all other instances, brute force enumerated all solutions
within the limits. However, for uniprot and amalgam1,
the memory limit was exceeded between the output of
the last solution and termination. Still, even if we only
take the enumeration time into account, we achieved
speed-up factors of 4723 and 14 for these two instances.

6 Related Work

The topic of enumerating and recognising the transversal
hypergraph efficiently is covered in numerous papers
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Figure 6: Comparing the run time of our algorithm with
the brute-force baseline. The completion time for uniprot

and amalgam1 are not reported, as the brute-force algorithm
exceeded the memory limit prior to termination. The
enumeration and completion time of the brute-force algorithm
exceeded the time limit for flight 1k and ncvoter allc.

over the last three decades, both from a theoretical
and an empirical standpoint. For a detailed overview,
we direct the reader to the survey by Eiter, Makino,
and Gottlob [25] and the textbook by Hagen [34]. It is
usually attributed to Demetrovics and Thi [19] as well as
Mannila and Räihä [44], independently, to raise the issue
of generating all hitting sets. The existence of an output-
polynomial algorithm is unknown. However, Fredman
and Khachiyan gave a quasi-polynomial algorithm [29].
The exponent of its worst-case run time has only a
sub-logarithmic dependence on the combined input and
output size. Besides this general-purpose procedure,
several tractable special cases have been identified. They
exploit structural properties such as bounds on the edge
size or degree [9, 20], conformality [40], or different
notions of acyclicity [23, 24].

There is an imbalance in the theoretical literature re-
garding the generation variant, most of the results focus
on the properties of the input graph instead of the output.
A notable exception is the work of Eiter and Gottlob [23].
They show that the recognition problem is polynomial-
time solvable if the rank of the transversal hypergraph
is bounded. Via an equivalence result by Bioch and

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited139

D
ow

nl
oa

de
d 

01
/2

2/
19

 to
 1

39
.1

9.
61

.1
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Ibaraki [5], this implies an incremental-polynomial algo-
rithm for the enumeration of such hypergraphs. However,
this algorithm necessarily holds the output hypergraph
in memory during the whole computation. We improved
upon this result in showing that there exists an enumera-
tion method that has polynomial delay (if the transversal
hypergraph has bounded rank), outputs the hitting sets
in lexicographical order, and uses space linear in the size
of the input. Our method is similar to the backtracking
technique proposed by Elbassioni, Hagen, and Rauf [26].
In the theoretical analysis of our algorithm, we used tools
from fixed-parameter tractability. In recent years, such
tools have been employed increasingly in the analysis of
enumeration algorithms. Creignou et al. give a general
overview of the field of parameterised enumeration [16].
The parameterised complexity of extension problems
in particular has been treated by Meeks [46] and, very
recently, by Casel et al. [11].

Complementing the theoretical analysis, there are
several surveys reviewing the practical behaviour of enu-
meration algorithms for the transversal hypergraph. For
example, Murakami and Uno compared several methods
on artificial and real-world instances, mostly from fre-
quent itemset mining, highlighting different use cases [47].
Gainer-Dewar and Vera-Licona conducted an exhaustive
study involving more than 20 algorithms on hypergraphs
stemming from various real-world applications [30]. How-
ever, it seems that there is no empirical work focussing
on the structures arising in data profiling, although the
connection to hitting sets is well-known also in prac-
tice [1, 18]. There are some articles on the performance
of discovery algorithms for unique column combinations,
but they do not discuss the topic in the context of
hypergraphs. One example is the presentation of the
DUCC algorithm by Heise et al. [35], where they evaluate
their algorithm also on the ncvoter allc and uniprot,
among others. The running times are not directly com-
parable since we are not measuring the time it takes
to compute the hypergraph of difference sets. Notwith-
standing, they were unable to scale their algorithm be-
yond 60 columns of ncvoter allc due to a timeout after
10 000 s, while our enumeration method can handle all
88 columns. The more recent HyUCC algorithm by Papen-
brock and Naumann [49] also has some overlap with our
work regarding the datasets they look at. Relating their
results with our findings suggest that the run times of
our implementation, working on arbitrary hypergraphs,
is at least competitive with the current domain-specific
state of the art. This is particularly interesting since
they report the space consumption as a major bottleneck
of HyUCC, which is not an issue for our algorithm.

7 Conclusion

In this work, we devised a backtracking algorithm to
enumerate all minimal hitting sets of a hypergraph. We
showed that this algorithm achieves a polynomial delay
on inputs whose traversal hypergraphs have bounded
rank. This makes it particularly suitable for the task of
computing all minimal UCCs of a database, a domain
where the solutions are expected to be small. However,
the degree of the worst-case bound is dependent on the
size of the largest solution. This bears the danger of
running times that are, although output-polynomial, still
prohibitively large in practise.

To check whether our enumeration technique suc-
ceeds within reasonable time frames, we evaluated it on
a collection of publicly available datasets. The experi-
ments showed that our method outperforms the brute-
force baseline as soon as the solution space is non-trivial.
As the total run time depends on the branching order
of the vertices, we gave a heuristic based on the origi-
nal database that achieved good results throughout by
reducing the number of oracle calls. The main reason,
however, for the good run times is the fact that the
oracle calls are very fast on average. In particular, we
can regularly avoid the worst-case behaviour in practise
that leads to the large theoretical run time bound. The
tree-based computation additionally obviates the need
of expensive post-processing. Our algorithm terminates
almost immediately after outputting the last solution.

Another feature of our algorithm is the low memory
consumption. Approaching the enumeration of UCCs
from a hitting set perspective and employing an exten-
sion oracle naturally forgoes the necessity of holding
previous solutions in memory. This, however, seems to
be a common problem even for current state-of-the-art
discovery algorithms like DUCC and HyUCC. Papenbrock
and Naumann, the authors of HyUCC, posed the following
challenge in their conclusion [49].

For future work, we suggest to find novel
techniques to deal with the often huge amount
of results. Currently, HyUCC limits its results if
these exceed main memory capacity [. . .].

While our pure enumeration times are already
competitive, they seem not to be the true bottleneck
of the computation; despite the fact that this is the
NP-hard core of the problem. Instead, the preprocessing
step of preparing the minimal difference sets of the
database as input for the experiments regularly took
longer than actually computing all transversals. Here,
careful engineering has the potential of huge speed-ups
on practical instances. Combining this with the natural
advantages of our enumeration algorithm might yield
the novel technique we are looking for.
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