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Abstract
While most research in Gold-style learning focuses on learning formal languages, we consider the
identification of computable structures, specifically equivalence structures. In our core model the
learner gets more and more information about which pairs of elements of a structure are related and
which are not. The aim of the learner is to find (an effective description of) the isomorphism type
of the structure presented in the limit. In accordance with language learning we call this learning
criterion InfEx-learning (explanatory learning from informant).

Our main contribution is a complete characterization of which families of equivalence struc-
tures are InfEx-learnable. This characterization allows us to derive a bound of 0′′ on the com-
putational complexity required to learn uniformly enumerable families of equivalence structures.
We also investigate variants of InfEx-learning, including learning from text (where the only infor-
mation provided is which elements are related, and not which elements are not related) and finite
learning (where the first actual conjecture of the learner has to be correct). Finally, we show how
learning families of structures relates to learning classes of languages by mapping learning tasks
for structures to equivalent learning tasks for languages.
Keywords: Gold style learning, learning from informant, equivalence structures, finite seperability

1. Introduction

Consider a learner observing (a countably infinite number of) different items to be equivalent or not
equivalent. The learner would like to arrive at a conjecture about the structure of this equivalence re-
lation, that is, the learner would like to determine the isomorphism type of the equivalence structure
embodied by the items. For example, the learner could see more and more groups of 5 equivalent
objects, and no groups of other sizes, and announces as a conjecture “infinitely many equivalence
classes of size 5 and no equivalence classes of other sizes”. If the first guess has to be correct, we
call the setting finite learning (denoted Fin), if the conjecture may be changed an arbitrary (but
finite) number of times before stabilizing on a correct conjecture, we call the setting explanatory
learning (denoted Ex). In each case, the data available to the learner is a complete accurate list of
which elements of the structure are equivalent and which are not. Following standard convention
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in inductive inference, we call this learning from informant (Inf ), where both positive and negative
information is available.

In general, this style of learning is called learning in the limit or inductive inference, and dates
back to (Gold, 1967). Most work in inductive inference concerns either learning of formal languages
or learning of total functions (see the text books (Osherson et al., 1986; Jain et al., 1999)), the case of
learning other structures has first been considered by (Glymour, 1985) and is surveyed by (Martin
and Osherson, 1998). More recently, researchers investigated the case in which the languages to
be learned correspond to substructures of a given structure. For instance, (Stephan and Ventsov,
2001), (Harizanov and Stephan, 2007), and (Merkle and Stephan, 2004) considered learnable ideals
of rings, subgroups and submonoids of groups, subspaces of vector spaces and isolated branches on
uniformly computable sequences of trees. They showed that different types of learnability of various
families of computable or computably enumerable structures can be characterized algebraically.

With the present paper, we want to strengthen the connection between algorithmic learning the-
ory and computable structure theory by developing a learning framework in which one can formalize
the intuition of learning an arbitrary structure in the limit (the interested reader can consult (Ash and
Knight, 2000) for a classical introduction to computable structure theory). To this end, equivalence
structures represent an ideal case-study. Although being fairly basic from an algebraic point of
view, equivalence structures exhibit many deep effective properties, and thus they attracted much
attention from computable theorists. We offer just few examples: (Calvert et al., 2006) classified
computable equivalence structures that possess a unique computable presentation up to computable
isomorphism; (Downey et al., 2017) studied the complexity of listing computable equivalence struc-
tures with no repetitions; and recently there has been an increasing interest in analyzing the effective
content of computably enumerable equivalent relations, as in (Andrews et al., 2014).

In what follows, we denote by ω the set of natural numbers and we use a convenient short hand
to denote isomorphism types. For any function f : ω ∪ {ω} → ω ∪ {ω} we denote by [f ] the
isomorphism type of exactly f(a) many equivalence classes of size a, and if only finitely many
values of f are non-zero, then we can list all these values as [n0 : f(n0), . . . , nk : f(nk)]. For
example, [5 : ω] denotes the isomorphism type of infinitely many equivalence classes of size 5 and
no others. Note that, to learn a structure A, we must learn any presentation of A with members of
the natural numbers.

Trivially, a single structure, or also a single isomorphism type, is always learnable by a learner
which constantly outputs a correct conjecture. Thus, we are interested in which families of structures
can be learned by a single learner. Thus, we consider families A of equivalence relations on ω and
ask whether there is a single learner M such that M can learn any A ∈ A when given more
and more (accurate and, in the limit, complete) information about A. We will mostly consider
arbitrary functions as learners, but we will also discuss the computational complexity of learning.
The following example illustrates the concept of learning families of structures.

Example 1 [5 : ω, 6 : 2] and [5 : ω, 7 : 1] are simultaneously InfFin-learnable (finitely learnable
from informant): If there is ever an equivalence class of size 7 in the input, then the second structure
is the only possibility, while once there are two classes of size 6 are in the input, the first structure
is the only possibility.

It is most interesting to see what parts of the learning setting influence the learning power, and
in what way. For example, we might wonder whether the ability to change the hypothesis arbitrarily
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often (as in explanatory learning) gives an advantage over finite learning. The next example shows
that the learning power of finite learning is indeed smaller than that of explanatory learning.

Example 2 [5 : ω], [6 : ω] are not simultaneously InfFin-learnable, but InfEx-learnable: Re-
garding the negative part, any finite information about an instance of [5 : ω] can be extended to an
instance of [6 : ω], so at no time can the learner commit to a hypothesis. An explanatory learner on
the other hand can conjecture [5 : ω] until any equivalence class of size 6 appears in the input and
then change to [6 : ω].

This shows that InfFin-learning is unreasonably weak, only very restricted families of struc-
tures are learnable in this sense (we characterize finite learning in two ways in Theorem 11). Note
that a common way of restricting the learner even less than in InfEx-learning is by not requiring
syntactic convergence to a final hypothesis, but only semantic convergence; that is, from some point
on, all conjectures are correct, just not necessarily the same. The corresponding learning criteria re-
place Ex by Bc (behaviorally correct). We are mostly interested in learnability by arbitrary learners
which can check for equivalence of conjectures (which is typically undecidable), so for our setting
this relaxation does not make a difference. Thus, in this paper, we are interested in understanding
the InfEx learning criterion.

So far we have seen examples of families that are InfEx-learnable. In order to establish that
some families are not learnable, we turn to the concept of locking sequences, which is used exten-
sively to show nonlearnability in the setting of learning formal languages. A locking sequence is a
sequence of inputs σ for the target concept such that the learner does not change its mind regardless
of how σ is extended with information for the target concept. Since we only want to learn up to
isomorphism and the original concept of locking sequences is adjusted to exact learning, we get a
slightly different notion of locking sequence (see the appendix for details). With this we can get
the following result: there are two structures which are bi-embeddable (i.e., there is an embedding
from any of the two structures into the other), but not simultaneously learnable. Clearly, if we only
required learning up to bi-embeddability, then the two structures would be simultaneously learnable
(by a constant learner). We use InfEx∼= to denote learning up to ismorphism and InfEx≈ for
learning up to bi-embeddability1. This result is summarized in the following example.

Example 3 [5 : ω, 2 : 1], [5 : ω] are not simultaneously InfEx∼=-learnable, but InfEx≈-
learnable: Since the structures are bi-embeddable, a constant learner can InfEx≈-learn both.
Proving that these two structures are not InfEx∼=-learnable is a bit harder: intuitively, the problem
is that any finite fragment of the two structures can be extended into a finite fragment of the other, in
such way that a potential learner would be forced to change its mind infinitely often (see Theorem 5
and Theorem 12).

Interestingly, Example 3 shows that there is a class containing only finitely many different learning
targets (in this case two), but it is still not InfEx∼=-learnable; this is in contrast to language learning,
where learning finitely many different learning targets can always be distinguished.

Learning up to bi-embeddability is also of independent interest. In recent years, the relation of
bi-embeddability received much attention in descriptive set theory and computable structure the-
ory. In particular, bi-embeddability is of fundamental interest for classifying the complexity of
equivalence relations in terms of Borel reducibility, as in (Friedman and Ros, 2011), and the effec-
tive countepart of Borel reducibility discussed, e.g., in (Fokina et al., 2012). See also (Bazhenov

1. We use ∼= to denote isomorphism of structures and ≈ for bi-embeddability of structures.
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et al., 2018) for a full classification of computable presentations of equivalence structures up to
bi-embeddability.

In our examples so far we have never exploited the information that two elements are not related
(the negative information). Learning without negative information is called learning from text (as
opposed to learning from informant) and is denoted by Txt instead of Inf . In fact we can show
that, for learning structures neither of which has an equivalence class of size ω, informant and text
learning are equivalent (see Theorem 13). The following example shows that this does not extend
to structures which contain equivalence classes of size ω.

Example 4 [ω : 1], [ω : 2] is InfEx∼=-learnable, but not TxtEx∼=-learnable: Regarding the
positive part, conjecture [ω : 1] until two elements are known to not be in the same equivalence
class, then conjecture [ω : 2]. The negative part is based on the concept of locking sequences, see
Theorem 14.

These examples already give a good impression of what is learnable and what is not learnable
with which kind of strategies. To further extend our intuition on what is InfEx∼=-learnable and
what is not, we consider the following example.

Example 5 The infinite class of structures {[5 : n, 1 : ω] | n ∈ ω} ∪ {[5 : ω]} is not InfEx∼=-
learnable: Intuitively, when a learner tries to learn [5 : ω] and stops making mind changes after
having seen some finite number n of equivalence classes of size k, the learner cannot successfully
learn [5 : n, 1 : ω], since any extension to a finite part of [5 : n, 1 : ω] can be extended to [5 : ω].

We use these intuitions in Section 3 to give a characterization of InfEx∼=-learning which we call
finite separability. Intuitively, a class of structures A is finitely separable if nonisomorphic structures
of A that are finitely bi-embeddable can be distinguished by looking at some finite fragment of them.
This characterization now completely informs about which families of structures are learnable. This
simplifies proofs and furthermore allows us to give a bound on the complexity of learning c.e.
enumerations of structures (see Section 3.1). Note that the notion of finite separability is similar to
the existence of tell-tales as used for characterizing learnable classes of languages (Angluin, 1980).

With this characterization we were able to approach the complexity of InfEx∼=-learning and
show that, for uniformly enumerable sets of InfEx∼=-learnable structures, 0′′-computable learners
are sufficient for learning, while computable learners are not.

For the reader familiar with language learning we provide two embeddings of learning of equiv-
alence structures into the setting of language learning in Section 5. For both InfEx∼= and InfEx≈
we can map families of structures in an intuitive way to classes of languages such that a class of
structures can be learned iff its image under the corresponding map is TxtEx-language-learnable,
provided that the structure of learning equivalence classes is in some sense a substructure of learning
languages from text.

Note that, compared with language learning, learning of structures provides interesting new
settings in which targets do not have to be learned exactly, but only up to some equivalence relation
on structures (such as isomorphism). Furthermore, learning up to isomorphism has the advantage
that “coding tricks” from language learning (making classes of languages learnable by having each
language “encode” a correct hypothesis artificially in the data) are somewhat avoided. See (Jain
et al., 1999, §13) for a discussion on coding tricks.
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2. Learning of Structures

Our object of study is the class E of the equivalence structuresA on natural numbers. For the benefit
of exposition, we assume that all our equivalence structures are of the form (ω,E), where E is an
equivalence relation on ω. We say that A is an ω-presentation ofM if A ∼=M and A has domain
ω. Note that the choice of limiting our focus to ω-presentations of equivalence structures is not a
strong restriction: given any infinite equivalence structureM = (M,E), with M = {m0,m1, . . .},
one can use the bijection i 7→ mi to get an equivalence structure A that is an ω-presentation ofM.

The atomic diagram of A is the set of atomic formulas and negations of atomic formulas true
of A.

An equivalence structureA is computably presentable ifA is isomorphic to a computable equiv-
alence structure. To formally define our learning framework, we rely on some effective enumeration
of the computable structures from E, up to isomorphism. This can be done in many ways; for in-
stance, (Downey et al., 2017) showed, with a rather involved proof, that such an enumeration can
be constructed which is a Friedberg enumeration, i.e., with no repetitions of the isomorphism types.
For our interests, it is enough to fix some computable sequence of equivalence relations (Ei)i∈ω,
where Ei is an equivalence relation on ω, such that any infinite computable equivalence structure is
isomorphic toMi = (ω,Ei), for some i (see (Downey et al., 2017) for more details). We say that
e is a conjecture forMe.

Recall that we aim at modeling a learner that receives larger and larger finite pieces of informa-
tion about some equivalence structure A.

A text is a function T : ω → ω2 ∪ {#}, where # is a special symbol denoting a pause, that
is, no new information. We let content(T ) = range(T ) \ {#} be the content of T . For any text
T and equivalence structure A = (ω,E), we say T is a text for A iff content(T ) = E (that is,
content(T ) is all and only the positive information aboutA). Note that pause symbol is required so
that the structure [1 : ω], where no element is related to any other, has a text. By Txt(A) we denote
the set of all texts for A.

An informant is a function I : ω → ω2 × {0, 1} such that, for any (x, y) ∈ ω2, either
((x, y), 0) ∈ range(I) or ((x, y), 1) ∈ range(I) (but never both). We denote the positive content
of I by content+(I) = {(x, y) | ((x, y), 1) ∈ range(I)}. Intuitively, an informant eventually lists,
for each pair of elements, whether they are related or whether they are unrelated. For any informant
I and equivalence structure A = (ω,E), we say I is an informant for A iff content+(T ) = E. By
Inf(A) we denote the set of all informants for A.

For any function f defined on natural numbers (such as texts and informants) and n ∈ ω we let
f [n] denote the finite sequence f(0), . . . , f(n− 1).

A learner is a function mapping initial segments of texts or informants to conjectures (elements
of ω ∪ {?}). The learning sequence of a learner M on a text or informant f is p : ω → ω ∪ {?}
such that p(n) = M(f [n]).

For any finite sequence σ which is an initial part of an informant, we letAσ be the finite structure
encoded by σ by using as universe all elements mentioned either positively or negatively in σ, taking
the transitive closure of all positively mentioned pairs and assuming all other relations to be negative.
We denote by A[s] the finite substructure of A with domain {0, . . . , s− 1}.

Any predicate on learning sequences and E is called a learning restriction. We use the following
learning restrictions.
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Definition 1 Let ∼ be any equivalence relation on structures.2 We define the learning restriction
Ex∼ on a learning sequence p and A ∈ E such that

Ex∼(p,A)⇔ ∃e∀∞n : p(n) = e ∧ A ∼Me.

Further, we define the learning restriction corresponding to finite learning by

Fin∼(p,A)⇔ ∃e : {e} ⊆ range(p) ⊆ {e, ?} ∧ A ∼Me.

Definition 2 A learning criterion is a triple of a set C of (partial) functions ω → ω (the set of
admissible learners), an operator α returning, for a given structure, a set of presentations for that
structure (either all texts or all informants) and a learning restriction δ. We also write C-αδ for
the learning criterion (C, α, δ). The class of C-αδ-learnable structures contains all those sets A of
structures such that there is a learner M ∈ C such that, for all A ∈ A, all ω-presentations A∗ of
A, and all f ∈ α(A∗), δ(n 7→M(f [n]),A∗).

Note, in the above definition, that to learn a structure A, a learner should learn all the ω-
presentations of A. Sometimes we will denote by M(A) the limit conjecture (if exists) of the
learner M on input A and by M(A[s]) the conjecture M produces when given a string encoding
A[s].

2.1. Notation Regarding Equivalence Structures

The character char(A) of A is

char(A) = {〈k, i〉 : A has at least i equivalence classes of size k, for k ∈ ω ∪ {ω}}.

We call any element of char(A) a component of A. Sometimes, we will approximate the character
of A as follows

char(A[s]) = {〈k, i〉 : A[s] has at least i equivalence classes of size k, for k ∈ ω}.

Let A = (ω,EA) and B = (ω,EB) be in E. A embeds into B (notation: A ↪→ B) if there is
a injection f : ω → ω such that, for all i, j ∈ ω, iEAj ⇔ f(i)EBf(j). A finitely embeds into B
(notation: A ↪→fin B) if A[s] ↪→ B, for all s ∈ ω. A and B are bi-embeddable (notation: A ≈ B)
if they embeds in each other. A and B are finitely bi-embeddable (notation: A ≈fin B) if they
finitely embeds in each other. A and B are isomorphic (notation: A ∼= B) if A ↪→ B via a bijection
f : ω → ω.

3. Characterizing InfEx∼=

Our main focus is on the class InfEx∼=. To help the reader get acquainted with our framework,
we stress that some A ∈ InfEx∼= if there is a learner M (of arbitrary complexity) such that, for
any ω-presentation A∗ of a structure A ∈ A, M(A∗) ∼= A. In this section we characterize which
families of equivalence structures are InfEx∼=-learnable. For the ease of presentation, we focus on
equivalence structures with no infinite classes. Yet, it is not hard to modify the forthcoming analysis
in order to obtain a full characterization of InfEx∼=; this will be done in future work.

2. The equivalence relation ∼ intuitively defines that [A]∼ is the target at which a learner M is supposed to aim
(typically ∼ is ∼= or ≈).
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Definition 3 Let A be a family of equivalence structures with no infinite classes, and S an equiva-
lence structure.

1. If A has finitely many isomorphism types, then S is a limit of A if there is A ∈ A such that

A 6∼= S ∧ A ↪→fin S,

and char(S) ⊆ char(A).

2. If A has infinitely many isomorphism types, S is a limit of A if

(∀A ∈ A)(A 6∼= S ∧ A ↪→fin S)

and char(S) ⊆ {〈k, i〉 : A contains infinitely many B’s with 〈k, i〉 ∈ char(B)}.

A is finitely separable if, for all B ⊆ A, B has no limits in A.

To clarify the above notion of limit, together with the corresponding one of finite separability,
let us compare it with known examples of failure of InfEx∼=-learning.

Condition 1. is designed to deal with cases such as Example 3: It says that S cannot be finitely
separated fromA ifA finitely embeds in S and any component of S is a component ofA. Intuitively,
this makes impossible to InfEx∼=-learn {A,S} because we can build an ω-presentation S∗ of S
such that S∗ has arbitrarily large fragments that resemble A, and this forces any potential learner
M to have infinitely many mind changes if attempting to learn S∗.

The infinite case is handled by Condition 2. and turns out to be more delicate. But the idea is
the same and it aims at formalizing cases such as Example 5: If S is the limit of an infinite family
of pairwise nonisomorphic structures A, then we can construct an ω-presentation of S that, for
infinitely many initial segments, looks like some structure of A. In doing so, we eventually obtain a
structure isomorphic to S because each component of S is witnessed by infinitely many structures
of A.

We make the latter observations more precise by proving that finite separability coincides with
InfEx∼=-learnability.

Remark 4 In the following proof, we introduce the formal notion of separators (of a given struc-
ture) that justify the terminology “finite separability” and the underlying intuition that, if A is
finitely separable, then structures from A can be distinguished by looking at only finite fragments of
them.

Theorem 5 Let A be a family of equivalence structures with no infinite classes. We have that

A is finitely separable⇔ A ∈ InfEx∼=.

Proof (⇒) : Assume that A = {Ai}i∈ω is finitely separable. To show that A ∈ InfEx∼=, we
first prove that there is a learner M that learns the ≈fin-type of any given A ∈ A. Assume that M
reads Az and, for all stages s, let Bs ⊆ A be the class of equivalence structures in which Az[s] is
finitely embeddable and that are minimal with respect to ↪→fin. We define M as follows: at stage
s, M outputs the ≈fin-type of the equivalence structure in Bs with least index in the enumeration
{Ai}i∈ω.
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We claim that via this procedure M learns the ≈fin-type of Az . In particular, we prove that
[Az]≈fin

⊇
⋂
i∈ωBi.,

It is clear that Az ∈
⋂
i∈ωBi. Towards a contradiction, suppose that there is Aw 6≈fin Az such

that Aw ∈
⋂
i∈ωBi. We distinguish three cases.

a) If Aw and Az are ↪→fin-incomparable, then there must be a component of Az that is not a
component ofAw. So, there exists a stage s such thatAz[s] does not embed inAw. Therefore,
Aw /∈

⋂
i≥sBi.

b) If Aw ↪→fin Az , then there must be a component of Az witnessing the fact that Az 6↪→fin Aw.
So, there exists again a stage s such that Az[s] does not embed in Aw. Therefore, Aw will be
eventually outside from the Bs’s.

c) If Az ↪→fin Aw, then, for all s, Aw ∈ Bs only if Az /∈ Bs. This is because Bs contains only
structures that are minimal with respect to ↪→fin. But we already know that Az ∈

⋂
i∈ωBi.

Therefore, Aw /∈
⋂
i∈ωBi.

This shows that M correctly learns the ≈fin-type of any givenAz . Call j the limit conjecture of
M .

Now we construct a learner M∗ that learns the isomorphism type of Az . To choose among the
structures in [Mj ]≈fin

, M∗ adopts the following procedure: For C ∈ [Mj ]≈fin
, let sep(C) be the

separator of C defined as

sep(C) =
⋃

S∈[Mj ]≈fin

{min(char(C) \ char(S))}.

First, note that separators of pairwise nonisomorphic structures form an anti-chain with respect
to ⊆. This follows from the fact that char(C) \ char(S) 6= ∅, for all C 6∼= S in [Mj ]≈fin

. Otherwise,
C would be a limit of {S}, since char(C) ⊆ char(S) and S ↪→fin C, and this would contradict the
finite separability of A.

Second, we claim that separators are all finite. Towards a contradiction assume that, for given
C ∈ [Mj ]≈fin

, sep(C) is infinite. Denote by char(C) �i the finite set consisting of the first i elements
of char(C). Let

Si = {S 6∼= C ∈ [Mj ]≈fin
: char(C) �i ⊆ char(S)}.

We have that Si is nonempty, for all i. Otherwise, if k is the least such Sk = ∅, we would obtain
that sep(C) ⊆ char(C) �k, against the hypothesis that sep(C) is infinite. Suppose that

⋂
i∈ωSi is

nonempty and contains a structure C∗. It immediate to see that char(C) ⊆ char(C∗). Recall that
C∗ ↪→fin C, since C∗ ≈fin C. It follows that C is a limit of {C∗}, which is impossible because of the
finite separability of A.

But if all the Si’s are nonempty, it follows that

char(C) ⊆
⋃
i∈ω

⋂
S∈Si

char(S),

and this contradicts the finite separability of A. Thus, we conclude that, for all C ∈ [Mj ]≈fin
,

sep(C) is finite.
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We aim at making use of the finiteness of separators to show that M∗ can eventually learn the
isomorphism type of Az . We say that a finite equivalence structure S[t] realizes a given separator
sep(S) if sep(S) ⊆ char(S[t]). Denote by SEP(S[t]) the class of the separators realized by S[t].
Note that Az eventually realizes its own separator, i.e., there is s such that, for all t ≥ s, sep(Az) ∈
SEP(Az[t]). The problem is that SEP(Az[t]) might consist of more than one separator for infinitely
many stages, i.e., for infinitely many t, there might be Aw 6∼= Az and Aw ≈fin Az such that
sep(Aw) ∈ SEP(Az[t]). Nonetheless, if any such sep(Aw) is realized by someAz[t], there must be
t∗ > t such that sep(Aw) /∈ SEP(Az[t∗]) (otherwise, by definition of separator, min(char(Aw) \
char(Az)) would belong to char(Az), which is impossible). So, at some given stage t, M∗ can
choose the oldest separator in SEP(Az[t]), i.e., the separator that belongs to⋂

i≤s≤t
(SEP(Az[s])) (1)

for the least i.

To sum up, to learn any structure S ∈ A the learner M∗ does the following: At any given stage
t, M∗ takes the output of M(S[t]) as the current guess of the ≈fin-type of S. Within the latter type
M∗ considers only the structures whose separators are realized by S[t] and outputs the isomorphism
type of the one with the oldest realized separator. By this procedure, M∗ InfEx∼=-learns A.

(⇐) : This implication can be proved via locking sequences. But instead of crudely applying
Theorem 18, we take here the opportunity of illustrating with some details how to dynamically build
structures that serve as a counterexample to a given learning condition.

Assume that A is not finitely separable. We show that A /∈ InfEx∼=. Towards a contradiction,
suppose that M learns A and let A ∈ A be a limit of A. We construct an ω-presentation B of
some structure in A that M cannot learn. We start by constructing B as an ω-presentation of A
and we continue until M , on input B[s] for some s, outputs an index of A. If this never happen,
we obviously win: M fails to learn an ω-presentation of A, and therefore M does not InfEx∼=-
learn A. Otherwise, let s be a stage such that A ∼= M(B[s]). Since A is a limit of A, there must
be some S0 ∈ A such that S0 ↪→fin A S0 6∼= A, and char(B[s]) ⊆ char(S0). We now extend
B[s] as an ω-presentation of S0, with the caution of not expanding the equivalence classes already
defined in B[s] (this can always be done since char(B[s]) ⊆ char(S0)). We continue building B
as an ω-presentation of S0 until we find some stage t such that M correctly guesses our plan, i.e.,
M(B[t]) ∼= S0. If this happens, we now go back to A and extend B[t] as an ω-presentation of A.
We can do that because S0 ↪→fin A.

By iterating this reasoning, and possibly defining many Si’s, it is not hard to see that we can
force M to either fail at learning some structure in A (this structure being either A or some Si) or
have infinitely many mind changes. If the latter case happens, the above caution of never expanding
already defined B-classes when we need to make B an ω-presentation of some Si guarantees that
we eventually obtain an ω-presentation of A.

A nice consequence of our characterization theorem is that we can separate families of equiv-
alence structures consisting of finitely many isomorphism types from those consisting of infinitely
many isomorphism types by means of the following partial analogous of Compactness.

Corollary 6 The following hold.
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1. If A/∼= is finite, then A ∈ InfEx∼= if and only if the structures of A are pairwise InfEx∼=-
learnable.

2. There is A /∈ InfEx∼= with A/∼= is infinite such that, for all B ⊆ A, if B/∼= is finite, then
B ∈ InfEx∼=.

Proof (1) follows immediately from item (1) of Definition 3 and Theorem 5.

For (2), let Ai = [j : 1 − δij ], where δij =

{
1, if i = j;
0, otherwise,

and let A = {Ai}i∈ω. We have

that, for i 6= j, Ai and Aj can be finitely separated, by using [j : 1] as a separator for Ai and
[i : 1] as a separator for Aj . From item (1) of the present corollary, it then follows that any subset
of A which consists of finitely many isomorphism types is InfEx∼=-learnable. Yet, by Theorem 5,
A /∈ InfEx∼=, since Ai is a limit of A \ Ai for all i.

3.1. Bounding the Complexity of the Learners

The procedure described above for learning any finitely separable family is obviously noneffective.
It is natural to ask how much information is needed to perform it. More generally, we want to
investigate what can be learned by learners of fixed complexity.

Definition 7 A family A of computably presentable structures is uniformly enumerable by f if f is
a total computable function such that {Mf(i)}i∈ω is a one-to-one enumeration of all structures of
A, up to isomorphism.

The next theorem shows that computable learners fail to learn all finitely separable families,
even if we restrict to uniformly enumerable ones.

Theorem 8 There is a uniformly enumerable A ∈ InfEx∼= such that A 6∈ 0-InfEx∼=.

Proof We construct in a uniform way a family A = {Ae,Be : e ∈ ω} of computable structures
which is finitely separable, but cannot be InfEx∼=-learned by any computable learner.

INFORMAL STRATEGY

For all e, we want to diagonalize against the learner ϕe by building in stages a pair of equivalence
structures Ae,Be that satisfy the following properties at all stages s,

• there exists n such that Ae[s] has isomorphism type [e : n, 1 : t0] and Be[s] has isomorphism
type [e : n+ 1, 1 : t1],

• and Ae[s] ⊆ Be[s].

The idea of the construction is that we want to force ϕe to either fail at learning {Ae,Be} or have
infinitely mind changes if attemping to learn a particular ω-presentation of [e : ω, 1 : ω]. To do so,
we wait that ϕe produces different outputs onAe and Be, and while waiting we extendAe and Be as
to make their isomorphism types, in the limit, to be respectively [e : n, 1 : ω] and [e : n+ 1, 1 : ω].
If ϕe(Ae) ↓6= ϕe(Be) ↓ never happens, then ϕe does not InfEx∼=-learns {Ae,Be} since Ae 6∼= Be.
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Otherwise, if at some stage we obtain ϕ(Ae) ↓6= ϕ(Be) ↓, we add to Ae two new equivalence
classes of size e and to Be the same two equivalence classes and an additional one of size e. By
iterating this reasoning we obtain that, ifAe and Be have eventually isomorphism type [e : ω, 1 : ω],
then we can produce an ω-presentation of [e : ω, 1 : ω] on which ϕe have infinitely many mind
changes.

THE CONSTRUCTION

We build in stages strings σ and τ such that Ae = ∪sσs and Be = ∪sτs, and a string ν. During the
construction we distinguish between expansionary and nonexpansionary stages and we make use of
a counter l that keeps track of the last expansionary stage.

Stage 0: Let σ0 = τ0 = ν0 = the empty string λ, and set l := 0.

Stage s + 1: Assume that we have built σs and τs with dom(σs) = dom(τs) and let zs be
max(dom(σs)) + 1. We distinguish two cases.

1. If there exists l ≤ v ≤ s such that ϕe,s+1(σv) ↓6= ϕe,s+1(τv) ↓, call s + 1 an expansionary
stage and set l := s+ 1. For k ∈ {0, 1, 2}, let

Ik = {zs + ke, zs + ke+ 1, . . . , zs + ke+ e− 1}.

Let σs+1 and τs+1 be the following strings with domain {x : 0 ≤ x ≤ zs + 3e},

σs+1(〈x, y〉) =


σs(〈x, y〉) x, y ∈ dom(σs),
1 x = y ∨ (∃k ∈ {0, 1})(x, y ∈ Ik),
0 otherwise.

and

τs+1(〈x, y〉) =


τs(〈x, y〉) x, y ∈ dom(τs),
1 x = y ∨ (∃k ∈ {0, 1, 2})(x, y ∈ Ik),
0 otherwise.

Finally, recall that ϕe,s+1(σv) ↓6= ϕe,s+1(τv) ↓. Without loss of generality, assume that
ϕe,s+1(νl) 6= ϕe,s+1(σv). Define νs+1 = σs+1 (the construction of σ and τ guarantees that
νs+1 ⊇ νs).

2. Otherwise, let σs+1 ⊇ σs be the only string such that dom(σs+1) = dom(σs) ∪ {zs},
σs+1(〈zs, zs〉) = 1, and σs+1(〈x, y〉) = 0 if either x = zs or y = zs. We define τs+1 in
the same way. Finally, let νs+1 = νs.

THE VERIFICATION

It is immediate to see that Ae = ∪sσs and Be = ∪sτs are computable. We now distinguish two
cases.

First, suppose that there exist only finitely many expansionary stages. If so, it follows from the
construction that there is a number n such that Ae has isomorphism type [e : n, 1 : ω] and Be has
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isomorphism type [e : n + 1, 1 : ω]. Towards a contradiction, suppose that ϕe InfEx∼=-learns
{Ae,Be}. If so, we have there areMa

∼= Ae andMb
∼= Be, withMa 6∼=Mb, such that ϕe on input

Ae eventually converges to a, and on input Be eventually converges to b. This means that there is a
stage s such that, for all t ≥ s,

ϕe(σt) = a 6= b = ϕe(τt).

But this immediately implies that there are infinitely many expansionary stages, contradicting the
initial hypothesis. Hence, ϕe does not InfEx∼=-learn {Ae,Be}.

Second, suppose that there are infinitely many expansionary stages. From the construction, it
follows thatAe and Be are isomorphic and they have isomorphism type [e : ω, 1 : ω]. The existence
of infinitely many singletons in Ae and Be comes from the fact that, if s is an expansionary stage,
then the number zs + 3e is a singleton of Ae and a singleton of Be. Let Ce = ∪sνs. We have
that also Ce has isomorphism type [e : ω, 1 : ω], since at any expansionary stage new Ce-classes
of size e are defined and they never expand later. If ϕe InfEx∼=-learns {Ae,Be}, then ϕe has to
learn Ce as well, since Ce is an ω-presentation of Ae and Be. So, there must be some Mc

∼= Ce
such that ϕe on input Ce eventually converges to c. This means that there is a stage s such that,
for all t ≥ s, ϕe(νt) = c. But this is impossible, since ν is constructed in such a way that, if t1
and t2 are consecutive expansionary stages, then ϕe(νt1) 6= ϕe(νt2). We conclude that ϕe does not
InfEx∼=-learn Ce, and thus does not learn {Ae,Be}.

Next, we want to consider the computational complexity of learning. For this we employ the
standard notation about relative computability, see (Soare, 1987). In particular, recall that 0 denotes
the class of computable functions, and 0(n+1) denotes the class of functions that are computable
relatively to the halting problem for 0(n)-computable functions.

Although computable learners do not have enough power to grasp all finitely separable families
that are uniformly enumerable, two jumps suffice to learn equivalence structures with no infinite
classes.

Theorem 9 Let A be uniformly enumerable and such that no equivalence structure from A has
infinite equivalence classes. The following are equivalent.

1. A is finitely separable.

2. A ∈ InfEx∼=.

3. A ∈ 0′′-InfEx∼=

Proof “(1) ⇔ (2)” is the content of Theorem 5. The direction “(3) ⇒ (2)” is trivial. We prove
“(2)⇒ (3)”.

Assume that A ∈ InfEx∼= is uniformly enumerable by f . Let M and M∗ be defined as in
the proof of Theorem 5; in particular, recall that M∗ InfEx∼=-learns A. We follow the steps of
the proof of Theorem 5 to show that there are 0′′-computable N and N∗ such that N eventually
coincides with M and N∗ eventually coincides with M∗. Fix A ∈ A.

Note that, for all s, the following set is 0′′-computable

Xs = {i ≤ s : A[s] ↪→fin Mf(i) ∧ (∀j ≤ s)(Mf(j) 6↪→fin Mf(i))}.
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This follows from the fact that, given any two computable structures A,B ∈ E, A ↪→fin B holds if
and only if (∀s∃t)(A[s] ↪→ B[t]), and 0′′ can decide this Π0

2 formula. Define N(n) = min(Xn).
By reasoning as in the proof of Theorem 5, it is not difficult to see that

⋂
n∈ωMN(n) is contained

in the ≈fin-type of A.
We now observe that the family of separators of computable structures in [MN(n)]≈fin

is uni-
formly c.e. in 0′′. Indeed, givenMf(z) ∈ [MN(n)]≈fin

, by definition of separator we obtain

x ∈ sep(Mf(z))⇔ (∃j)[Mf(j) ≈fin Mf(z) ∧ x = min(char(Mf(z)) \ char(Mf(j)))].

Since all theMf(i)’s have no infinite equivalence classes, char(Mf(z)) \ char(Mf(j)) is a Σ0
2

set. Moreover, as already observed, to ask whetherMf(j) ≈fin Mf(z) holds is a Π0
2 question. So,

the overall condition is Σ0
3, and thus c.e. in 0′′. We can conveniently approximate such separators as

follows. At stage s, N∗ chooses the structure in Fn = [MN(n)]≈fin
∩{Mf(i)}i≤n whose separator,

restricted to the elements of Fn, is the oldest realized by An (notice that to check whether a given
separator is realized by A[s] can be done effectively, since any separator is finite). N∗ so defined is
0′′-computable and eventually outputs the same value of M∗, hence N∗ InfEx∼=-learns A.

The next question is left open.

Question 10 Is there a uniform enumerable family A ∈ InfEx∼= \ 0′-InfEx∼=?

4. Related Learning Settings

In this section we consider several learning criteria related to InfEx∼= and show how they compare.
This provides us with many examples of families of structures which are learnable in one setting,
but not another.

First, we characterize which finite collections of equivalence structures can be finitely learned.

Theorem 11 Let A be a family of equivalence relations such that A/∼= is finite. The following are
equivalent.

1. A ∈ InfFin∼=.

2. ∀A,B ∈ A : A ↪→fin B ⇒ A ∼= B.

3. A/∼= is an anti-chain with respect to ↪→fin.

Proof Suppose first A ∈ InfFin∼=, witnessed by some learner M . Let A,B ∈ A with A ↪→fin

B. Let σ describe a part of A such that M makes a (correct) conjecture for A on σ. Without
loss of generality, suppose that all mentioned items of σ which are equivalent in A are mentioned
equivalent in σ. We have Aσ (the finite structure coded by σ) is now a finite substructure of A, so,
by supposition, Aσ ↪→ B. This shows that σ can be extended to an informant I for (an isomorphic
copy of) B. Since M already makes an output on σ, the output of M on I is M(σ). This shows that
M(σ) is a correct conjecture for B, which gives

A ∼=MM(σ)
∼= B.

Suppose now ∀A,B ∈ A : A ↪→fin B ⇒ A ∼= B. For each A ∈ A, let K(A) be a finite
substructure of A such that, for all B ∈ A with A 6∼= B, K(A) 6↪→ B (which exists since A contains
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only finitely many ∼=-types). Then, for all A,B ∈ A with A 6∼= B we have that neihter K(A) is
embeddable into K(B) nor vice versa. This is equivalent to 3.

Using such a list of pairwise incomparable finite substructures, we can define a learner M such
that, on input σ, M(σ) is a conjecture for A ∈ A if K(A) ↪→ Aσ with an embedding which may
not map elements from different equivalence classes ofK(A) into elements of different equivalence
classes of Aσ, unless σ explicitly contains the information that these equivalence classes are differ-
ent. If no such A exists (which would be necessarily unique), then M(σ) =?. Clearly, this learner
InfFin∼=-learns A.

Note that the above proof extends to any equivalence relation on structures in place of ∼=.

Next we show that that there is a class of two structures which is learnable up to bi-embeddability,
but not up to isomorphism, showing Example 3 formally.

Theorem 12 The following holds

InfEx∼= ⊂ InfEx≈.

Proof It is obvious that any family that is learnable up to isomorphism is also learnable up to bi-
embeddability. This show that InfEx∼= ⊆ InfEx≈. To see that InfEx≈ * InfEx∼=, let A be
a structure of type [5 : ω] and B a structure of type [5 : ω, 2 : 1]. We have that A ≈ B and thus,
trivially, {A,B} ∈ InfEx≈ by a learner that always conjectures the isomorphism type of A. On
the other hand, A is clearly a limit of B (see Definition 3), and so {A,B} is not finitely separable.
By Theorem 5, this means that {A,B} /∈ InfEx∼=.

Finally we consider learning without negative information, that is, learning from text rather than
from informant. We establish with Theorem 13 that these two settings are the same as long as only
families of structures without infinite equivalence classes are considered; Theorem 14 then shows
that, for families of structures with infinite equivalence classes, we get a separation of learning
power.

Theorem 13 Let ∼ be any equivalence relation on E. Let A be such that none of the elements of
A has an infinite equivalence class. The following are equivalent.

1. A is InfEx∼-learnable.

2. A is TxtEx∼-learnable.

Proof The direction “(2)⇒ (1)” is immediate. Regarding “(1)⇒ (2)”, let M be a strong informant
locking InfEx∼-learner for A (see Theorem 21). We now descirbe how A can be learned from
text. Given an initial part of a text σ we reorder this information as follows. First comes all positive
information regarding the “first” equivalence class, defined as the equivalence class of 0. Then
comes the positive information regarding the second smallest equivalence class, the class containing
1 (unless 1 was already covered by the equivalence class of 0, then we take 2 and so on). Then
comes all the negative information between the first and second class (this is not present in σ, just
assumed). Then all positive information of the third class, followed by the negative information
between the third class on the one hand and the first and second class on the other hand, and so on,
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until all elements mentioned in σ are covered. The resulting partial informant we call σ. We can
now define a learner M ′ learning from text as M ′(σ) = M(σ).

For any given A ∈ A, there is an informant I which presents the data in the form described
above. Let k be the largest size for which there are infinitely many equivalence classes of that size
inA. Since M is strong informant locking, there is n such that I[n] is a strong locking sequence for
M onA. For any Text T , there is now an n′ such that T [n′] contains (a) all the positive information
contained in I[n]; (b) all positive information about the equivalence classes of A that are larger
than k; and (c) all positive information about all equivalence classes containing elements that are
numerically smaller than any of the elements mentioned in (a) or (b). This gives that, for allm > n′,
we have that T [n′] is extensible to an isomorphic copy ofA. Thus, using that I[n] is a strong locking
sequence, for all m > n′ we have that M ′(T [m]) = M(I[n]) as desired.

In contrast to this result, infinite equivalence classes quickly lead to differences between text-
and informant-learning.

Theorem 14 Let A = {[ω : 1], [ω : 2]}. Then we have the following.

1. A is InfEx∼=-learnable.

2. A is not TxtEx≈-learnable.

Proof Regarding (1), the learner conjectures [ω : 1] while no negative data was given, and [ω : 2]
afterwards.

Regarding (2), suppose by contradiction that a TxtEx≈-learner M for A exists. Using Theo-
rem 23, there is a strong locking sequence σ of M on [ω : 1] with corresponding embedding f . We
can extend σ to a sequence τ for [ω : 2] for which M(τ) is a correct conjecture for [ω : 2]. Since
we can extend f trivially to Aτ , we get a contradiction.

5. Relation to Language Learning

In this section we compare InfEx∼=-learning to the cardinal learning criterion of formal languages,
TxtEx-learning. The formal definition of this criterion can be found for example in (Jain et al.,
1999), we will here use the following characterization (see (Angluin, 1980)). A collection L of
formal languages is TxtEx-learnable iff, for all L ∈ L there is a finite D ⊆ L such that, for all
L′ ∈ L with D ⊆ L′ ⊆ L we have L′ = L. Intuitively, D signals L as the minimal extrapolating
target. We call this characterization Angluin’s tell-tale criterion and the finite sets D are called
tell-tales.

We are now interested in somehow mapping learning tasks for InfEx∼=-learning into learning
tasks for TxtEx-learning. The next theorem shows that there cannot be a mapping taking an
(isomorphism class of a) structure to a single language in order to embed InfEx∼=-learning into
TxtEx-learning.

Theorem 15 Let a mapping Θ be given which takes a structure and returns a language such that
∀A,B ∈ E : Θ(A) = Θ(B)⇔ A ∼= B. Then there is a class of structures A such that

A 6∈ [InfEx∼=] and {Θ(A) | A ∈ A} ∈ [TxtEx].

15



LIMIT LEARNING EQUIVALENCE STRUCTURES

Proof Let A consist of the ∼=-closure of [5 : ω, 2 : 1] and [5 : ω]. We know that A 6∈ [InfEx∼=].
We have {Θ(A) | A ∈ A} contains only two languages, which is trivially TxtEx-learnable by
Angluin’s tell-tale condition.

In order to bypass this phenomenon, instead of associating only one language with any isomor-
phism type of structures, we can associate an infinite set of languages. The next theorem shows that
this way we can derive an embedding. We will use the definition of a finite permutation, which is
any permutation π of ω such that, for all but finitely many x ∈ ω, π(x) = x.

Theorem 16 For any structure A ∈ E we define a set of languages as follows. Let f : ω ∪ {ω} →
ω ∪ {ω} represent the isomorphism type of A, that is, [f ] = [A]∼=. Let gA be any computable
function (where we allow ω as a special symbol output) such that, for all a ∈ ω+ ∪ {ω}, f(a) =
|{i ∈ ω | gA(i) = a}|.3 For any function h : ω → ω ∪ {ω} we let L(h) = {〈i, j〉 | j < h(i)}. We
let LA = {L(gA ◦ π) | π finite permutation}.

Then, for all A ⊆ E closed under ∼=, the following are equivalent.

1. A is InfEx∼=-learnable.

2.
(⋃
A∈A LA

)
is TxtEx-learnable.

Proof Regarding “⇒”, let an InfEx∼=-learner M ′ for A be given. Now we construct a learner M
which is given some sequence of data σ. From this sequence the learner constructs a sequence σ′ for
M so that σ′ encodes the finite structure on the elements mentioned in σ, where 〈i, j〉 is equivalent
to 〈i′, j′〉 iff i = i′. LetA ∈ E be the structure conjectured byM ′ on σ′. In some canonical listing of
all finite permutations, find the minimal finite permutation π such that σ is consistent with L(gA◦π)
and conjecture this language.

Let nowA ∈ A andL ∈ LA and a text T forL be given. Let n0 be large enough such thatM ′ on
σ′ is converged on the structureA. Let π be the minimal finite permutation such that L = L(gA◦π).
It now suffices to show that, for all π′ < π in the canonical listing, L(gA ◦ π′) is inconsistent with
some finite part of L. Let π′ < π be given, and let i be minimal such that gA(π(i)) > gA(π′(i));
such an i has to exist, since either we have for all gA(π(i)) = gA(π′(i)), in which case π was not
chosen minimal as required, or there is a difference, in which case a difference has to be found both
ways, since we only consider permutations. This shows that 〈i, gA(π′(i))〉 ∈ L \ L(gA ◦ π′) as
desired.

Regarding “⇐”, we construct a learner M ′ for A as follows. Given an initial part σ′ of an
informant, we assign each element mentioned in σ′ in order of (first) appearance to some i ∈ ω:
any element x known to be equivalent to a previously assigned element y is assigned to the same
i as y was assigned; any element not thus assigned is assigned to the smallest i not yet used as an
assignment. Let g(i) be the number of elements assigned to i. Then M ′ checks whether there is
a minimal superset of the finite set {〈i, j〉 | j < g(i)} in

(⋃
A∈A LA

)
. If not, the conjecture is ?.

Otherwise, let L(gA ◦ π) be the minimal superset and M ′ conjectures (a canonical index for) A.
Let now A ∈ A be given and let I be an informant for A. Note that, once M ′ conjectures an

index for A, M ′ has converged to A. Otherwise a later conjecture for B would imply the existence
of a finite permutation π such that L(gB ◦ π) is consistent with known data; this would have been
consistent already at the earlier point when the conjecture was A, which would be a contradiction.

3. Intuitively, each equivalence class ofA is associated with some i ∈ ω, and gA(i) is the size of this equivalence class.
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Let g be as produced in the limit by the construction of M ′ on I . Then there is a permutation π
of ω (not necessarily finite) such that g = gA ◦ π. Using Angluin’s tell-tale condition, let a tell-tale
D for L(gA) be given. This implies that once at least the set {〈π−1(i), j〉 | 〈i, j〉 ∈ D} has been
used in the construction of M ′, the output of M ′ will be a conjecture for A as desired.
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Appendix A. Locking Sequences

Locking sequences are a powerful tool for many theorems in the area of learning theory. We first
explore the concept of weak locking sequences which corresponds to standard locking sequences in
learning languages (and the proof is standard, see (Jain et al., 1999)). Then we consider a strong
variant where locking happens for a much larger class of possible extensions.

A.1. Weak Locking Sequences

We start by considering the classic locking sequences and give a straightforward generalization to
arbitrary equivalence relations on the structures.

Definition 17 Let M be a learner and A a structure. We say that a sequence σ describing a finite
part of A is a weak locking sequence of M on A iff, for every τ ⊇ σ describing a finite part of A,
we have M(σ) = M(τ). We distinguish between weak informant locking sequences which consist
of negative and positive data (and the extensions τ are allowed positive and negative data), and
weak text locking sequence which consist of positive data only (and the extensions τ are also only
allowed positive data).

Theorem 18 Let ∼ be any equivalence relation on E. Suppose M InfEx∼-learns a structure
A ∈ E. Let any sequence σ0 be given which describes a finite part of A. Then there is a finite
sequence σ ⊇ σ0 such that σ is a weak informant locking sequence of M on A. Furthermore,
MM(σ) ∼ A.

Proof Let σ0 be given and suppose no such σ exists. Thus we can fix, for any σ ⊇ σ0 describing a
finite part of A, ext(σ) as an extension of σ which gives a mind change. Let I0 be an informant for
A.

We define inductively

∀i : σ2i+1 = σ2i � I0(i);

∀i : σ2i+2 = ext(σ2i+1).

Finally, let I =
⋃
i σi. Then I is an informant for A on which M does not converge, a contradic-

tion. The “furthermore” clause of the statement follows since M needs to converge to a ∼-correct
conjecture on any informant.

The first application of the locking sequences theorem is to prove a normal form for learners,
which we will define next. This normal form can be very convenient for proofs.

Definition 19 LetM be a learner andA a structure. We callM locking onA iff, for all informants
I forA, there is n such that I[n] is a weak locking sequence for M onA. Let ∼ be any equivalence
relation on E. We call M locking iff M is locking for all A ∈ InfEx∼. Again we distinguish
between informant locking and text locking.

Theorem 20 Let ∼ be any equivalence relation on E and let M be a InfEx∼-learner. Then there
is an informant locking InfEx∼-learner M ′ which learns at least all structures learned by M .
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Proof For an input informant I we define inductively σ0 as the empty sequence and, for all n, σn+1

as σn concatenated with any information τ of I[n] such that M(σn) 6= M(σn � τ). Note that, for
all A which are InfEx∼-learned by M , we get that (σn)n converges. Further note that σn can be
computed from I[n].

We now define a learner M ′ such that M ′(I[n]) = M(σn). Clearly, M ′ InfEx∼-learns any
structure InfEx∼-learned by M . Furthermore, M ′ is strongly locking, since (σn)n converges.

By the analogous proof we get the analogous theorem for texts.

Theorem 21 Let ∼ be any equivalence relation on E. Let M be a TxtEx∼-learner. Then there is
a text locking TxtEx∼-learner M ′ which learns at least all structures learned by M .

A.2. Strong Locking Sequences

The above theorems about locking sequences are already rather powerful and used extensively in
the case of language learning. However, since a learner needs to learn any ω-presentation of struc-
ture, we can get even stronger locking than the ones given by Theorem 18. Here we do not only
lock on extensions from the chosen concept, but also on other sequences which can be considered
equivalent. This was already proven by (Martin and Osherson, 1998).

Recall that, for any σ, σ encodes a finite equivalence relation on the elements mentioned either
positively or negatively by using the transitive closure of all positively mentioned pairs and assuming
all other relations to be negative. This finite equivalence relation we call Aσ.

Definition 22 Let M be a learner and A a structure. We say that a sequence σ describing a
finite part of A is a strong locking sequence of M on A iff there is an embedding f embedding
Aσ into A such that, for any τ extending σ and any g embedding from Aτ to A which extends
f , M(σ) = M(τ). We distinguish between strong informant locking sequences which consist of
negative and positive data (and the extensions τ are allowed positive and negative data), and strong
text locking sequence which consist of positive data only (and the extensions τ are also only allowed
positive data).

Theorem 23 (Martin and Osherson (1998)) Let A be a set of equivalence structures and letA ∈
A. Suppose M InfEx≈-learns A and let any sequence σ0 be given which describes a finite part of
A. Then there is a strong informant locking sequence σ ⊇ σ0 of M on A.

Proof Suppose no such σ, f exist. Thus, for any given σ, f with σ ⊇ σ0, let σ′, f ′ be first extensions
τ, g found in a dovetailing search which lead to a mind change. Furthermore, for any σ ⊇ σ0 and
any embedding f of Aσ into A, we let ext(σ, f, i) denote a pair (τ, g) such that τ extends σ and τ
labels at least all pairs from {0, . . . , i}2, the image of g contains {0, . . . , i} and g is an embedding
of Aτ into A; we denote τ by extseq(σ, f, i) and g by extemb(σ, f, i).

Let f0 be any embedding of Aσ into A. We define inductively

∀i : σi+1 = extseq(σ′i, f
′
i , i);

∀i : fi = extemb(σ′i, f
′
i , i).

Finally, let I =
⋃
i σi, B the structure described by I , and f =

⋃
i fi. Then f witnesses A ∼= B and

I witnesses that M does not learn B, a contradiction.

We can now have the analogous definition about locking learners as for weak locking sequences.
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Definition 24 Let M be a learner and A a structure. We call M strong-locking on A iff, for all
informants I forA, there is n such that I[n] is a strong locking sequence for M onA. Let∼ be any
equivalence relation on E. We call M strong locking iff M is locking for all A ∈ InfEx∼. Again
we distinguish between strong informant locking and strong text locking.

Theorem 25 Let ∼ be any equivalence relation on E and let M be a InfEx∼-learner. Then there
is a strong informant locking InfEx∼-learner M ′ which learns at least all structures learned by
M .

Proof Analogous to the proof of Theorem 20.

21


	Introduction
	Learning of Structures
	Notation Regarding Equivalence Structures

	Characterizing InfEx
	Bounding the Complexity of the Learners

	Related Learning Settings
	Relation to Language Learning
	Locking Sequences
	Weak Locking Sequences
	Strong Locking Sequences


