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Abstract

The phenomenon of residential segregation was captured by Schelling’s famous segregation
model where two types of agents are placed on a grid and an agent is content with her
location if the fraction of her neighbors which have the same type as her is at least τ , for
some 0 < τ < 1. Discontent agents simply swap their location with a randomly chosen other
discontent agent or jump to a random empty cell.

We analyze a generalized game-theoretic model of Schelling segregation which allows
more than two agent types and more general underlying graphs modeling the residential
area. For this we show that both aspects heavily influence the dynamic properties and the
tractability of finding an optimal placement. We map the boundary of when improving
response dynamics (IRD), i.e., the natural approach for finding equilibrium states, are guar-
anteed to converge. For this we prove several sharp threshold results where guaranteed IRD
convergence suddenly turns into the strongest possible non-convergence result: a violation
of weak acyclicity. In particular, we show such threshold results also for Schelling’s original
model, which is in contrast to the standard assumption in many empirical papers. Further-
more, we show that in case of convergence, IRD find an equilibrium in O(m) steps, where m
is the number of edges in the underlying graph and show that this bound is met in empirical
simulations starting from random initial agent placements.

1 Introduction

Residential segregation is a well-known and remarkable phenomenon in many major metropoli-
tan areas. There, local and myopic location choices by many individuals with preferences over
their direct residential neighborhood yield cityscapes which are severely segregated along racial
and ethnical lines (see Fig. 1(a)). Hence, local strategic choices on the micro level lead to
an emergent phenomenon on the macro level. This paradigm of “micromotives” versus “mac-
robehavior” [33] was first investigated and modeled by Thomas Schelling who proposed a very
simple stylized model for analyzing residential segregation [31, 32]. With the use of two types
of coins as two types of individual agents and graph paper serving as residential area, Schelling
demonstrated the emergence of segregated neighborhoods under the simple assumption of the
following threshold behavior: agents are content with their current location if the fraction of
agents of their own type in their neighborhood is at least τ , where 0 < τ < 1 is a global pa-
rameter which applies to all agents. Content agents do not move, but discontent agents will
swap their location with some other random discontent agent or perform a random jump to
an unoccupied place. Given this, Schelling demonstrated by experiment that starting from a
uniformly random distribution of the agents (see Fig. 1(b)) the induced random process yields a
residential pattern which shows strong segregation (see Fig. 1(c)). While this is to be expected
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(a) New York City (b) Random grid placement (c) Stable grid placement

Figure 1: (a) Residential segregation in New York City, color-coded by ethnicity. Every dot
corresponds to a citizen. Shown is a snippet from the Racial Dot Map [10] based on data
from the 2010 US Census. (b) Initial random placement on a grid in Schelling’s model. (c)
Equilibrium found for the instance in (b) with τ = 1

2 via improving response dynamics.

for intolerant agents, i.e., τ > 1
2 , the astonishing finding of Schelling was that this also hap-

pens for tolerant agents, i.e., τ ≤ 1
2 . This counter-intuitive observation explains why even in

a very tolerant population segregation along racial/ethnical, religious or socio-economical lines
can emerge.

Schelling’s elegant model became one of the landmark models in sociology and it spurred
a significant number of research articles which studied and motivated variants of the model,
e.g. the works by Clark [12], Alba & Logan [1], Benard & Willer [5], Henry et al. [26] and
Bruch [9], to name only a few. Interestingly, also a physical analogue of Schelling’s model
was found by Vinković & Kirman [35] but it was argued by Clark & Fosset [13] that such
models do not enhance the understanding of the underlying social dynamics. In contrast, they
promote simulation studies via agent-based models where the agents’ utility function is inspired
by real-world behavior. Schelling’s model as an agent-based system can be easily simulated
on a computer and many such empirical simulation studies were conducted to investigate the
influence of various parameters on the obtained segregation, e.g. see the works by Fossett [17],
which use the simulation framework SimSeg [18], Epstein & Axtell [16], Gaylord & d’Andria [21],
Pancs & Vriend [30], Singh et al. [34] and Benenson et al. [6].

All these empirical studies consider essentially an induced random process, i.e., that discon-
tent agents are activated at random and active agents then swap or jump to other randomly
selected positions. In some frameworks, like SimSeg [18] or the model by Pancs & Vriend [30],
agents only change their location if this yields an improvement according to some utility func-
tion. This assumption of having rational agents which act strategically matches the behavior of
real-world agents which would only move if this improves their situation.

This paper sets out to explore the properties of such strategic dynamic processes and the
tractability of the induced optimization problems.

1.1 Related Work

Recently, a series of papers by Young [37], Zhang [38, 39], Gerhold et al. [24], Brandt et al. [8, 27],
Barmpalias et al. [2, 3] and Bhakta et al. [7] initiated a rigorous analysis of stochastic processes
induced by Schelling’s model. In these processes either two randomly chosen unhappy agents
of different type swap positions [37, 38, 39] or a randomly chosen agent changes her type with
a certain probability [8, 2, 7, 3, 27]. It is worth noticing that both types of processes are
closely related but not identical to Schelling’s original model where discontent agents move to
different positions until they become content with their current location. The focus of the above
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mentioned works is on investigating the expected size of the obtained homogeneous regions, but
it is also shown that the stochastic processes starting from a uniform random agent placement
converge with high probability to a stable placement. The convergence time was considered
by Mobius & Rosenblat [28] who observe that the Markov chain analyzed in [37, 38, 39] has a
very high mixing time. Bhakta et al. [7] show in the two-dimensional grid case a dichotomy in
mixing times for high τ and very low τ values.

To the best of our knowledge, only a few papers have investigated game-theoretic models
of Schelling segregation. Pancs & Vriend [30] used different types of utility functions for their
agents in extensive simulation experiments. On the theory side, Zhang [39, 40] analyzed a model
where the agents are endowed with a noisy single peaked utility function, which is a departure
from the threshold behavior proposed by Schelling. Grauwin et al. [25] generalized the results.
In contrast, the behavior of the original model is closely captured by a game-theoretic model
which was proposed in a recent paper by Chauhan et al. [11]. They employ a utility function
which depends on the type ratio in the neighborhood and which increases linearly with the
fraction of agents of the own type in the neighborhood until a fraction of τ is reached. The
authors of [11] investigate the convergence behavior of the induced sequential game for the
cases where discontent agents are restricted either to performing only improving location swaps
(called the Swap Schelling Game (SSG)) or where discontent agents are only allowed to jump
to empty locations to improve on their situation (called the Jump Schelling Game (JSG)). This
corresponds to analyzing IRD, whose analysis is also our main contribution. Their main result is
a proof that IRD in the SSG converge if τ ≤ 1

2 for any underlying connected graph as residential
area. If the underlying graph is regular then IRD convergence is guaranteed for arbitrary τ .
For the JSG they prove guaranteed IRD convergence on 2-regular graphs. We improve on these
results in various ways by exactly characterizing when IRD convergence is ensured. In [11] also
an extension of Schelling’s model is considered, where agents also have preferences over the
different locations in the residential area and agents additionally strive for being close to their
favorite position. For this augmented version, they show for the JSG with 1

3 < τ ≤ 2
3 that

improving response cycles exist, i.e., that convergence is not guaranteed.
Very recently, Elkind et al. [15] studied a variant of the model by Chauhan et al. [11], where

the agents are partitioned into stubborn and strategic agents. The former agents do not move
and the latter agents try to maximize the fraction of same-type agents in their neighborhood
by jumping to a suitable empty location. This corresponds to a variant of the JSG with τ = 1.
They show that equilibria are not guaranteed to exist and that deciding equilibrium existence
or the existence of an agent placement with certain social welfare is NP-hard. This relates to
our hardness results for computing socially optimal states. They also prove that the price of
anarchy and the price of stability can be unbounded.

All mentioned works, with SimSeg [18] and the work by Elkind et al. [15] as exceptions,
assume that exactly two types of agents exist. In SimSeg and [15], agents only differentiate
between agents of their own type and agents of other types. As we will discuss later, this is a
very restricted point of view and this will correspond to our “one-versus-all” version.

1.2 Model and Notation

We consider a network G = (V,E), where V is the set of nodes and E is the set of edges, which is
connected, unweighted and undirected. The network G serves as the underlying graph modeling
the residential area in which the agents will select a location. If every node in G has the same
degree ∆, i.e., the same number of incident edges, then we say that G is a ∆-regular graph. Let
degG(v) be the degree of a node v ∈ V in G and for a given node u ∈ V let ΓG(u) denote the
set of nodes v 6= u so that an edge {u, v} exists in E. We call ΓG(u) the neighborhood of u in
network G. Let A be the set of agents and P (A) = {T1, T2, . . . , Tk} be any partition of A into
k non-empty distinct sets, called types, which model racial/ethnic, religious or socio-economic
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groups. For k = 2 this corresponds to Schelling’s original model [31, 32] with two different types
of agents. Let t : A 7→ P (A) be a surjective function such that t(a) = T if a ∈ T . We say that
agent a is of type t(a). A state of our games is defined by an injective placement pG : A 7→ V
which assigns every agent to a node in the network G and we call pG(a) agent a’s location under
placement pG. Two agents a, b ∈ A are neighbors under placement pG if pG(b) ∈ ΓG(pG(a)) and
we denote the set of neighbors of a under placement pG as NpG(a). For any agent a ∈ A, we
define NT

pG
(a) = {b ∈ T | b ∈ NpG(a)}, as the set of agents of type T in the neighborhood of

agent a under placement pG.
For any agent a ∈ A in a placement pG, we define agent a’s positive neighborhood N+

pG
(a)

as N
t(a)
pG (a). For agent a’s negative neighborhood, we define two different versions, called the

one-versus-all and one-versus-one versions. In the one-versus-all version an agent wants a
certain fraction of agents of her own type in her neighborhood, regardless of the specific types
of neighboring agents with other types, so N−pG(a) is NpG(a)\N+

pG
(a). In contrast to this, in the

one-versus-one version an agent only compares the number of own-type agents to the number of
agents in the largest group of agents with different type in her neighborhood. Thus, we define the
negative neighborhood of an agent a under placement pG as the set of neighboring agents of the
type T 6= t(a) that make up the largest proportion among all neighbors, i.e., N−pG(a) = NT

pG
(a)

such that T ∈ P (A) \ {t(a)} and |NT
pG

(a)| ≥ |NT ′
pG

(a)| for all T ′ ∈ P (A) \ {t(a)}. Notice that
the one-versus-all and one-versus-one version coincide for k = 2, thus both versions generalize
the two type case. If an agent a has no neighboring agents, i.e., NpG(a) = ∅, we say that a is
isolated, otherwise a is un-isolated.

Let τ ∈ (0, 1) be the intolerance parameter. Similar to Schelling’s model we say that an agent
a is content with placement pG if agent a is un-isolated and at least a τ -fraction of the agents in
agent a’s positive and negative neighborhood under pG are in agent a’s positive neighborhood.

Hence, agent a is content if she is un-isolated and
|N+

pG
(a)|

|N+
pG

(a)|+|N−pG (a)| ≥ τ , otherwise a is discontent

with placement pG. We call the ratio pnrpG(a) =
|N+

pG
(a)|

|N+
pG

(a)|+|N−pG (a)| the positive neighborhood

ratio of agent a. An agent’s aim is to find a node in the given network where she is content or, if
this is not possible, where she has the highest possible positive neighborhood ratio. Therefore,
and analogous to [11], we define the cost function of an agent a in a placement pG for network
G as follows:

costpG(a) =

{
max{0, τ − pnrpG(a)}, if a is un-isolated,

τ, if a is isolated.

Thus, agent a is content with placement pG, if and only if costpG(a) = 0. The placement cost,
denoted costpG(A), of a placement pG in a network G is simply the number of all discontent
agents: costpG(A) = |{a ∈ A | costpG(a) 6= 0}|.

The Strategic Games: The strategy space of an agent is the set of all nodes in the network
G. An agent can change her strategy either via swapping with another agent who agrees or via
jumping to another unoccupied node in network. This yields the Swap Schelling Game (SSG)
and the Jump Schelling Game (JSG).

For the SSG we will assume that all nodes of G are occupied. A location swap, or swap, of
two agents a, b ∈ A under placement pG is to exchange the occupied nodes of both agents. This
yields a new placement p′G with p′G(a) = pG(b), p′G(b) = pG(a) and pG(x) = p′G(x), for any other
agent x ∈ A\{a, b}. Two agents a, b ∈ A would only agree to such a swap if it strictly decreases
the cost of both agents, i.e., costp′G(a) < costpG(a) and costp′G(b) < costpG(b). Hence, swapping
agents are always of different types. If for some placement pG no improving swap exists, then
we say that pG is swap-stable.
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In the JSG we assume that there exist empty nodes in the underlying graph and an agent can
change her strategy to any currently empty node, which we denote as a jump to that node. An
agent will only jump to another empty node, if this strictly decreases her cost. An equilibrium
placement in the JSG where no agent can improve via jumping is called jump-stable.

If the game is clear from the context, we will simply say that a placement pG is stable. If we
have more than two different agent types we denote the one-versus-all version of the SSG and
the JSG as 1-k-SSG and 1-k-JSG, respectively and the one-versus-one version of both games
as 1-1-SSG and 1-1-JSG, respectively.

Improving Response Dynamics and Potential Games: We analyze whether improving
response dynamics (IRD), i.e., the natural approach for finding equilibrium states where agents
sequentially try to change towards better strategies until no agent can further improve, will
converge. For showing this we employ ordinal potential functions. Such a function Φ maps
placements to real numbers such that if an agent (or a pair of agents) under placement pG can
improve by a jump (or a swap) which results in placement p′G then Φ(pG) > Φ(p′G) holds. That
is, any improving strategy change also decreases the potential function value. The existence
of an ordinal potential function shows that a game is a potential game [29], which guarantees
the existence of pure equilibria and that IRD must terminate in an equilibrium. In contrast,
an improving response cycle (IRC) is a sequence of improving strategy changes which visits
the same state of the game twice. The existence of an IRC directly implies that a potential
function cannot exist and thus, that IRD may not terminate. However, even with existing IRCs
it is still possible, that from any state of the game there exists a finite sequence of improving
strategy-changes which leads to an equilibrium. In this case the game is weakly acyclic [36].
Thus, the strongest possible non-convergence result is a proof that a game is not weakly acyclic.

1.3 Our Contribution

Our main contribution is a thorough investigation of the convergence behavior of improving
response dynamics in variants of Schelling’s model. Previous work, including Schelling’s original
papers and all the mentioned empirical simulation studies, assume that IRD always converge to
an equilibrium. We challenge this basic assumption by precisely mapping the boundary of when
IRD are assured to find an equilibrium. We show that IRD behave radically different in the
swap version compared to the jump version. Moreover, we show that this contrasting behavior
can even be found within these two variants. We demonstrate the extreme cases of guaranteed
IRD convergence, i.e., the existence of an ordinal potential function, and the strongest possible
non-convergence result, i.e., that even weakly acyclicity is violated. For this, we provide sharp
threshold results where for some τ∗ IRD are guaranteed to convergence for τ ≤ τ∗ and we have
non-weak-acyclicity for τ > τ∗, depending on the underlying graph. See Table 1.

In case of IRD convergence, we show that this happens after O(|E|) many jumps/swaps
on an underlying graph G = (V,E). We show via experiments that instances with randomly
chosen initial placements meet this upper bound.

Besides analyzing IRD, we start a discussion about segregation models with more than two
agent types. Besides the simple generalization of differentiating only between own type and
other types, i.e., the 1-k-SSG and 1-k-JSG, we propose a more natural alternative, called the
1-1-SSG and the 1-1-JSG, where agents compare the type ratios only with the largest subgroup
in their neighborhood. The idea here is that a minority group mainly cares about if there is a
dominant other group within the neighborhood.

Moreover, we investigate the influence of the underlying graph on the hardness of computing
an optimal placement. We show that computing this is NP-hard for arbitrary underlying graphs
if τ = 1

2 or if τ is close to the maximum degree in the graph. In contrast to this, we provide an
efficient algorithm for computing the optimum placement on a 2-regular graph with two agent
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1-k-SSG 1-1-SSG 1-k-JSG 1-1-JSG

reg. X(Thm.2) X(Thm.4) τ ≤ 1
∆ X(Thm.7) τ ≤ 2

∆ X(Thm.10) τ ≤ 1
∆

o (Thm.5) τ ≥ 6
∆ o (Thm.8) τ > 2

∆ o (Thm.11) τ > 2
∆

arb. X[11] k = 2, τ ≤ 1
2 ×(Thm.6) ×(Thm.9) ×(Thm.12)

×(Thm.1&3) ow.

Table 1: Results regarding IRD. “reg.” stands for ∆-regular graphs, “arb” for arbitrary graphs,
which model the residential area. “X” denotes that IRD converge to an equilibrium, “o” denotes
the existence of an IRC. “×” denotes that the version is not weakly acyclic. If τ is omitted, the
result holds for any 0 < τ < 1.

types. The number of agent types also has an influence: we establish NP-hardness even on
2-regular graphs if there are sufficiently many agent types.

2 Schelling Dynamics for the Swap Schelling Game

In the following section we analyze the convergence behavior of IRD for the strategic segregation
process via swaps. Chauhan et al. [11] already proved initial results in this direction, in particular
that the SSG for two types of agents converges for the whole range of τ , i.e τ ∈ (0, 1), on ∆-
regular graphs and for τ ≤ 1

2 on arbitrary graphs. We close the gap and present a matching
non-convergence bound in the SSG on arbitrary graphs.

The 1-k-variant seems to be a straightforward generalization of the two type case. An
agent simply compares the number of neighbors of her type with the total number of neighbors.
Interestingly, our IRD convergence results for the 1-k-SSG with k > 2 for arbitrary networks
for τ ≤ 1

2 are in sharp contrast to the results for k = 2: On arbitrary networks with tolerant
agents, i.e., with τ ≤ 1

2 , and k > 2 types IRD convergence is no longer guaranteed.
For the 1-1-variant an agent compares the number of neighboring agents of her type with the

size of the largest group of agents with a different type in her neighborhood. This captures the
realistic setting where agents simply try to avoid being in a neighborhood where another group
of agents dominates. We will show that even on a ∆-regular network an improving response
cycle exists for the 1-1-SSG for sufficiently high τ .

2.1 IRD Convergence for the One-versus-All Version

For SSGs with k = 2 on regular networks and arbitrary networks with τ ≤ 1
2 the existence of

a potential function was shown before in [11]. We show that this bound is tight, i.e., that for
τ > 1

2 IRD may not converge.

Theorem 1. IRD are not guaranteed to converge in the SSG with k = 2 for τ ∈
(

1
2 , 1
)

on
arbitrary networks. Moreover, weak acyclicity is violated.

Proof. We prove the statement by providing an improving response cycle where in every step
exactly one improving swap is possible. The construction is shown in Fig. 2 and we assume that

x is sufficiently large, e.g., x = max
(
d 1
τ−0.5e, d

1
2−2τ e

)
.

We have orange agents of type T1 and blue agents of type T2. The orange agents in the
groups ui and the blue agents in the groups vi, respectively, with 1 ≤ i ≤ 4 are interconnected
and form a clique.
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a c db

(1)

v2 v3 v4

u4u3u2

2x︷︸︸︷ x−2︷︸︸︷ x+1︷︸︸︷

︸︷︷︸
2x−2

︸︷︷︸
2x2

︸︷︷︸
x−2

u1

v1

(a) Initial placement

acd b

(2)

v2 v3 v4

u4u3u2

2x︷︸︸︷ x−2︷︸︸︷ x+1︷︸︸︷

︸︷︷︸
2x−2

︸︷︷︸
2x2

︸︷︷︸
x−2

u1

v1

(b) Placement after
the first swap

a cd b

(3)

v2 v3 v4

u4u3u2

2x︷︸︸︷ x−2︷︸︸︷ x+1︷︸︸︷

︸︷︷︸
2x−2

︸︷︷︸
2x2

︸︷︷︸
x−2

u1

v1

(c) Placement after
the second swap

a cdb

(4)

v2 v3 v4

u4u3u2

2x︷︸︸︷ x−2︷︸︸︷ x+1︷︸︸︷

︸︷︷︸
2x−2

︸︷︷︸
2x2

︸︷︷︸
x−2

u1

v1

(d) Placement after
the third swap

Figure 2: An IRC for the SSG with x = max
(
d 1
τ−0.5e, d

1
2−2τ e

)
for τ ∈

(
1
2 , 1
)
. The agents types

are marked orange and blue. Multiple nodes in series represent a clique of nodes of the stated
size. Edges between cliques or between a clique and single nodes represent that all involved
nodes are completely interconnected.

During the whole cycle the agents in ui and vi, respectively, are content. An orange agent
z ∈ ui has 4x neighbors and at most one neighbor is blue. Hence, the positive neighborhood
ratio of agent z is larger than τ . The same applies for a blue agent y ∈ vi. The agent y has
4x− 3 neighbors and at most one neighbor is orange. Therefore, an agent z ∈ ui and an agent
y ∈ vi, respectively, never have an incentive to swap their position with another agent, since
they are content.

In the initial placement (Fig. 2(a)), both agents a and d are discontent. By swapping their
positions, agent a can decrease her cost from τ − 1

3 to τ − x−1
2x and agent d decreases her cost

from τ − x+1
2x to max

(
0, τ − 2

3

)
. This is the only possible swap since neither b nor c have the

opportunity to improve their costs via swapping with c, d, and a, b, respectively. However, after
the first swap (Fig. 2(b)) agent a is still not content. Swapping with agent c decreases agent a’s
cost to τ − 2x−1

4x , and agent c can decrease her cost from τ − 2x+1
4x to τ − x+1

2x . Again, no other
swap is possible since agent b would increase her cost by swapping with agent c or d. After this
(Fig. 2(c)), agent b and d have the opportunity to swap and decrease their cost from τ − x+1

2x
to max

(
0, τ − 2

3

)
and τ − 1

3 to τ − x−1
2x , respectively. Once more there is no other valid swap.

Agent a does not want to swap with agent d and agent b not with agent c. Finally (Fig. 2(d)),
agent a and d swap and both agents decrease their costs to τ − 1

2 . Neither does agent b want
to swap with agent c nor can agent c improve by swapping with agent a. After the fourth step
the obtained placement is equivalent to the initial placement (Fig. 2(a)), only the blue agents a
and b, and the orange agents c and d, respectively, have exchanged positions.

Since all the executed swaps were the only possible strategy changes, this proves that the
SSG is not weakly acyclic, since, starting with the given initial placement, there is no possibility
to reach a stable placement via improving swaps.

We now generalize the results from [11] by showing that convergence is guaranteed for the
1-k-SSG for any k ≥ 2.

Theorem 2. IRD are guaranteed to converge in O(|E|) moves for the 1-k-SSG with τ ∈ (0, 1)
on any ∆-regular network G = (V,E).

Proof. We show that Φ(pG) = 1
2

∑
a∈A |N−pG(a)| is an ordinal potential function. An agent a

has no incentive to swap if she is content and she will never swap with an agent who has her
own type, since this cannot be an improvement for both agents. Therefore, there will only be
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swaps between discontent agents of different types. Since we consider a ∆-regular network we
have |NpG(a)| = |N+

pG
(a)|+ |N−pG(a)| = ∆ for all a ∈ A.

A swap between two agents a and b changes the current placement pG only in the locations
of the involved agents and yields a new placement p′G. Since a swap is an improvement for the
agent a who swaps, it holds that

|N+
pG

(a)|
∆

<
|N+

p′G
(a)|

∆
.

The same is true for the other agent b. Thus the following holds for agent a (and agent b
likewise)

|N+
pG

(a)| < |N+
p′G

(a)| ⇐⇒ ∆− |N−pG(a)| < ∆− |N−
p′G

(a)| ⇐⇒ |N−
p′G

(a)| < |N−pG(a)|.

It follows that Φ(pG) − Φ(p′G) > 0 and therefore the potential function value decreases if two
agents swap their current position.

Since Φ(pG) ≤ m where m is the number of edges in the underlying network and Φ(pG)
decreases after every swap by at least 1 the IRD find an equilibrium in O(m).

We contrast the above result by showing that guaranteed IRD convergence is impossible for any
τ on arbitrary networks. This emphasizes the influence of the number of agent types on the
convergence behavior of the IRD.

Theorem 3. IRD are not guaranteed to converge in the 1-k-SSG with k > 2 for τ ∈ (0, 1) on
arbitrary networks. Moreover, weak acyclicity is violated.

Proof. We give an example of an improving response cycle, where in every step exactly one
improving swap exists, for any τ ≤ 0.5. Together with the improving response cycle given in
Theorem 1 for τ > 0.5 this yields the statement.

Consider Fig. 3 with a sufficiently high x, e.g., x > 3
4τ − 1 and τ ≤ 0.5. We have orange

agents of type T1, blue agents of type T2 and gray agents of type T3. The agents in one group
ui and vj , respectively, with 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2 are interconnected and form a clique.

During the whole cycle the agents in ui and vj , respectively, are content. An agent in ui∪vj
has at most two neighboring agents of different type and at least two agents of her type. Since
τ ≤ 0.5 these agents are content. Therefore they have no incentive to swap. In the initial
placement (Fig. 3(a)), agents a and d are discontent and want to swap. Agent a decreases her
cost from τ to τ− 1

4(x+1) while agent d becomes content after the swap. This is the only possible
swap. Agent c does not want to swap with agent a or b since she increase her cost, as well agent
b cannot improve by swapping with c or d. Then (Fig. 3(b)), agent a is still discontent and
willing to swap her position with another agent. Swapping with agent c decreases her cost to
τ − 3

8(x+1) while c can improve from τ − 5
8(x+1) to τ − 3

4(x+1) . Again, this is the only possible

swap, since d is content and c still doesn’t want to swap with b. After this (Fig. 3(c)), agent d
has no neighbor of her type, so she swaps with agent b who becomes content. Agent d reduces
her cost from τ to τ− 1

4(x+1) . Agent a does not want to swap with d and agent b not with c since

both a and b would have no agent of their own type in their neighborhood. Finally (Fig. 3(d)),
agents a and d want to swap. Agent d decreases her cost to τ − 1

2(x+1) and agent a decreases

her cost from τ − 3
8(x+1) to τ − 1

2(x+1) . No other two agents have any incentive to swap their
position, since neither agent c nor d want to swap with agent b since they would not have a
neighboring agent of their type. For the same reason agent a is not interested in swapping with
c. The resulting placement is equivalent to the initial one, only the blue agents a and b and the
orange agents c and d exchanged positions.

Since all swaps are the only ones possible, this shows that the 1-k-SSG is not weakly acyclic
as there is no possibility to reach a stable placement.
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Figure 3: An IRC for the 1-k-SSG with x > 3
4τ − 1 for any τ ∈ (0, 0.5]. Agent types are marked

orange, blue and gray. Multiple nodes in series represent a clique of nodes of the stated size.
Edges between cliques or between a clique and single nodes represent that all involved nodes
are completely interconnected.

2.2 IRD Convergence for the One-versus-One Version

Remember, that in the 1-1-SSG and 1-1-JSG, respectively, an agent only considers the largest
group of neighboring agents of one type, which is different from her own type. We start with a
simple positive result for the 1-1-SSG.

Theorem 4. IRD are guaranteed to converge in O(|A|) moves, where A is the set of agents,
for the 1-1-SSG with τ ≤ 1

∆ on any ∆-regular network G = (V,E).

Proof. Any agent a of type T who has a neighbor b of the same type is content, since τ ≤ 1
∆ .

Since b has a as a neighbor, b will also be content. Since both agents are content, neither of
them will consider to swap positions, and therefore both will remain content.

Any agent a who is discontent can’t have a neighbor of the same type, otherwise a would
be content. The cost of a must be τ in this case. Since a only considers a swap that decreases
her cost, after swapping the cost of a can be at most max(0, τ − 1

∆), which means a is content
and will continue to be so, as we showed before.

Since agents are content at least after their first swap, and agents that are content will never
swap again, each agent will participate in at most one swap. Therefore, the game converges
after at most |A| swaps.

If τ is high enough, then the 1-1-SSG is no longer a potential game.

Theorem 5. IRD are not guaranteed to converge in the 1-1-SSG for τ ≥ 6
∆ on ∆-regular

networks.

Proof. We use a similar instance as in the proof of Theorem 6. Consider Fig. 4 with x > 5(1−τ)
6τ .

We omit the edges between the cliques u1, u2 and u3, of gray agents. Now, the highest degree
in the graph is 6(x + 1). In order to make the graph regular, we insert new nodes filled with
agents such that each new agent is the only agent of its type, and connect these new nodes with
existing nodes and each other as needed.

In the initial placement (Fig. 4(a)) agent a and d are discontent and want to swap. Agent a
decreases her cost from τ to τ − 1

3x+1 while agent d becomes either content after the swap or,

if τ > 1
2 , has costs of τ − 1

2 . Then (Fig. 4(b)), agent a is still discontent. Swapping with agent
c decreases her cost to τ − 2

4x+2 while agent c can improve from τ − 2
4x+2 to τ − 2

3x+2 . In the
next step (Fig. 4(c)), agent d has no neighboring agent of her type. Therefore she swaps with
agent b who becomes content, if τ ≤ 1

2 , as a result of the swap or has costs equal τ − 1
2 . Agent
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d reduces her cost from τ to τ − 1
6x+1 . Finally (Fig. 4(d)) agent a and agent d want to swap.

Agent d has the possibility to decrease her cost to τ − 1
4x+1 and agent a can decrease her own

cost from τ − 3
4x+3 to τ − 5

6x+5 .

From x > 5(1−τ)
6τ as our only limitation and ∆ = 6(x+ 1) we obtain τ ≥ 6

∆ , where equality
is reached if x is chosen as low as possible.

The situation is much worse on arbitrary graphs as the following theorem shows.

Theorem 6. IRD are not guaranteed to converge in the 1-1-SSG for τ ∈ (0, 1) on arbitrary
networks. Moreover, weak acyclicity is violated.

Proof. We show the statement by giving an example for an improving response cycle where in

every step exactly one improving swap exists. Consider Fig. 4 with x > max
(

5(1−τ)
6τ , τ

1−τ

)
. We

have orange agents of type T1, blue agents of type T2 and gray agents of type T3. The agents in
one group ui and vi, respectively, with i ∈ {1, 2, 3, 4, 5} are interconnected and form a clique.

During the whole cycle the agents in ui and vi, respectively, are content. Agent v2 has at
most 2 neighbors of any type other than T1 and at least 3x neighbors of her own type. All the
other agents in ui ∪ vi have at most one neighbor of another type and at least x neighboring
agents of their own type. Therefore the positive neighborhood ratio pnr of an agent z ∈ ui ∪ vi
is larger than τ for x > 1 and z has no incentive to swap. In the initial placement (Fig. 4(a))
agent a and d are discontent and want to swap. Agent a decreases her cost from τ to τ − 1

3x+1
while agent d becomes content after the swap. This is the only possible swap. Agent c does
not want to swap with agent a or b since she would be worse off and agent b cannot improve by
swapping with d. Then (Fig. 4(b)), agent a is still discontent. Swapping with agent c decreases
her cost to τ − 2

4x+2 while agent c can improve from τ − 2
4x+2 to τ − 2

3x+2 . Again, this is the
only possible swap, since d is content and c would not improve by swapping with agent b. In
the next step (Fig. 4(c)), agent d has no neighboring agent of her type. Therefore she swaps
with agent b who becomes content as a result of the swap. Agent d reduces her cost from τ to
τ − 1

6x+1 . Agent a does not want to swap with d since at the new position she wouldn’t have a
neighboring agent of her own type and agent b not with c since this wouldn’t be an improvement
for b. Finally (Fig. 4(d)) agent a and agent d want to swap. Agent d has the possibility to
decrease her cost to τ − 1

4x+1 and agent a can decrease her own cost from τ − 3
4x+3 to τ − 5

6x+5 .
No other two agents have the incentive to swap their position, since agent c does not want to
swap with agent a or b. We end up in a placement which is equivalent to the initial one, only
the blue agents a and b and the orange agents c and d exchanged positions.

Since all swaps were the only ones possible, this shows that the 1-1-SSG is not weakly acyclic
as there is no possibility to reach a stable placement.

3 Schelling Dynamics for the Jump Schelling Game

We now analyze the convergence behavior of IRD for the strategic segregation process via
jumps. Chauhan et al. [11] proved that the JSG converges for τ ∈ (0, 1) on 2-regular graphs.
Furthermore they showed that there exists an IRC for τ ∈

(
1
3 ,

2
3

]
on a 8-regular grid if the agents

have a favorite location, i.e., a node to whom an agent a wants to be as close as possible without
increasing her costs. In particular such a favorite location is necessary for their IRC. We show
that convergence is not guaranteed even without a favorite location on arbitrary graphs and
sharp the threshold for ∆-regular graphs at τ = 2

∆ .
We first turn our focus to the 1-k-JSG, where an agent only distinguishes between own and

other types. Hence, an agent simply compares the number of neighbors of her type with the
total number of neighbors.

10



a c db

(1)
u1

4x︷︸︸︷

︸︷︷︸
252

u2

6x︷︸︸︷

v1︸︷︷︸
222

v3v2 v4

u4

2︷︸︸︷
u3

3x︷︸︸︷
u5

3x︷︸︸︷

︸︷︷︸
2x2

v5

(a) Initial placement

acd b

(2)

u1

4x︷︸︸︷

︸︷︷︸
252

u2

6x︷︸︸︷

v1︸︷︷︸
222

v3v2 v4

u4

2︷︸︸︷
u3

3x︷︸︸︷
u5

3x︷︸︸︷

︸︷︷︸
2x2

v5

(b) Placement after
the first swap

a cd b

(3)

u1

4x︷︸︸︷

︸︷︷︸
252

u2

6x︷︸︸︷

v1︸︷︷︸
222

v3v2 v4

u4

2︷︸︸︷
u3

3x︷︸︸︷
u5

3x︷︸︸︷

︸︷︷︸
2x2

v5

(c) Placement after
the second swap

a cdb

(4)

u1

4x︷︸︸︷

︸︷︷︸
252

u2

6x︷︸︸︷

v1︸︷︷︸
222

v3v2 v4

u4

2︷︸︸︷
u3

3x︷︸︸︷
u5

3x︷︸︸︷

︸︷︷︸
2x2

v5

(d) Placement after
the third swap

Figure 4: An IRC with exactly one improving swap per step for the 1-1-SSG with x >

max
(

5(1−τ)
6τ , τ

1−τ

)
for any τ ∈ (0, 1). Agents types are marked orange, blue and gray. Multiple

nodes in series represent a clique of nodes of the stated size. Edges between cliques or between
a clique and single nodes represent that all involved nodes are completely interconnected.

3.1 IRD Convergence for the One-versus-All Version

In [11] only for the JSG on 2-regular graphs the existence of an ordinal potential function was
shown. In contrast, we prove a sharp threshold result, with the threshold being at τ = 2

∆ , for
the convergence of IRD for the 1-k-JSG on ∆-regular graphs, for any ∆ ≥ 2. Moreover, we
show that the game is not weakly acyclic on arbitrary graphs.

Theorem 7. IRD are guaranteed to converge in O(|E|) steps for the 1-k-JSG with τ ≤ 2
∆ on

any ∆-regular network G = (V,E).

Proof. For any ∆-regular network G we define the weight wpG(e) of any edge e = {u, v} ∈ E
as:

wpG(e) =


1, if u and v are occupied by agents of different types for pG,

c, if either u or v, but not both, are empty for pG,

0, otherwise,

with 1
2 −

1
2∆ < c < 1

2 . We prove that Φ(pG) =
∑

e∈E wpG(e) is an ordinal potential function.
Note that τ is sufficiently small, so that an agent becomes content if she has two neighbors of

her type. Therefore, an agent who is willing to jump to another node has at most one neighbor
of the same type. Without loss of generality, we assume the existence of a discontent agent y
for placement pG. Let p′G be a placement that results from a jump of y. Let a = |N+

pG
(y)|,

b = |N−pG(y)| and let ε be the number of empty nodes in the neighborhood of pG(y). Let

a′ = |N+
p′G

(y)| and b′ = |N−
p′G

(y)| be the number of agents of the same type and of different type,

respectively, and let ε′ be the number of empty nodes in the neighborhood of p′G(y). We will
show that if an agent jumps, Φ changes it holds that

Φ(pG)− Φ(p′G) =
(
0a+ 1b+ cε+ ca′ + cb′ + 0ε′

)
−
(
ca+ cb+ 0ε+ 0a′ + 1b′ + cε′

)
= −ca+ (1− c)b+ cε+ ca′ + (c− 1)b′ − cε′ > 0,

and therefore Φ decreases for every improving jump of an agent.
There is no incentive for agent y to decrease the number of neighbors of the same type

because decreasing this number would mean that either a ≥ 2, i.e., agent y is content and does
not want to jump, or a = 1 and therefore a′ = 0 which is never an improvement. Hence, we
have to distinguish between two cases:

If a < a′, then agent y increases the number of neighbors of the same type. Since we
consider a ∆-regular network, we have a+ b+ ε = ∆ and a′+ b′+ ε′ = ∆, so b = ∆− a− ε and
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b′ = ∆− a′ − ε′. Hence,

− ca+ (1− c)b+ cε+ ca′ + (c− 1)b′ − cε′

= − ca+ (1− c)(∆− a− ε) + cε+ ca′ + (c− 1)(∆− a′ − ε′)− cε′

= − ca+ (1− c)(−a− ε) + cε+ ca′ + (c− 1)(−a′ − ε′)− cε′

= − ca− a− ε+ ca+ cε+ cε+ ca′ − ca′ − cε′ + a′ + ε′ − cε′

= (2c− 1)ε+ (1− 2c)ε′ − a+ a′

≥ (2c− 1)ε− a+ a′,

since 1− 2c > 0 and ε′ ≥ 0. If ε = 0, we obtain (2c− 1)ε− a+ a′ = −a+ a′ > 0. If ε > 0, we
have

(2c− 1)ε− a+ a′ >

(
2

(
1

2
− 1

2∆

)
− 1

)
ε− a+ a′ =

−ε
∆
− a+ a′ ≥ 0,

since ε
∆ ≤ 1 ≤ a′ − a.

If a = a′, then the number of same type neighbors of agent y stays the same. Since y improves
her positive neighborhood ratio and since a = a′ the number of different type neighbors of y
has to decrease and therefore b′ < b. We denote the difference as δ with b = b′ + δ. Therefore
it holds that δ > 0. Since we consider a ∆-regular network, it follows that ε′ = ε+ δ. Hence,

− ca+ (1− c)b+ cε+ ca′ + (c− 1)b′ − cε′

= − ca+ (1− c)(b′ + δ) + cε+ ca′ + (c− 1)b′ − c(ε+ δ)

= − ca+ (1− c)δ + ca′ − cδ
= (1− c)δ − cδ
= (1− 2c)δ > 0,

where the second to last equality holds since a = a′.
Since Φ(pG) ≤ m where m is the number of edges in the underlying graph and Φ(pG)

decreases after every jump by at least (1− 2c) the IRD find an equilibrium in O(m).

Actually Theorem 7 is tight and convergence is not guaranteed if τ > 2
∆ .

Theorem 8. The 1-k-JSG for τ > 2
∆ on ∆-regular graphs is no potential game.

Proof. We prove the statement by providing an improving response cycle. See Fig. 5. If we
have more than two types of different agents, all agents of types dissimilar from T1 and T2 can
be placed outside of the neighborhood of the agents a, b and c who are involved in the IRC.

Let τ > 2
∆ . In the initial placement, agent a is discontent and has cost of τ− 2

∆ . By jumping
next to agent c she becomes content. Because of this jump, agent b becomes isolated. Jumping
next to the agents d and y decreases her costs from τ to τ − 1

∆−1 . After the second step, the
obtained placement is equivalent to the initial placement. Only agents a, b, and c changed their
roles. Hence, the next two jumps from agents c and a are like the first two: First, agent c jumps
next to agent b to become content, then agent a jumps next to the agents c and z to avoid an
isolated position. We end up in an equivalent placement to the initial one.

If the underlying network is an arbitrary network the situation is worse.

Theorem 9. IRD are not guaranteed to converge in the 1-k-JSG for τ ∈ (0, 1) on arbitrary
networks. Moreover, weak acyclicity is violated.
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Figure 5: An IRC for the JSG for τ > 2
∆ on a ∆-regular network. Empty nodes are white,

agents of type T1 are orange, type T2 agents are blue. Multiple nodes in series represent a clique
of ∆ − 2 nodes. An edge between a clique and a single node denotes that each clique node is
connected to that single node. An edge between two cliques represents that each clique node
as exactly one neighbor in the other clique. With this the network is indeed ∆-regular: Each
node is connected to all nodes of exactly one group of size ∆− 2 and to two other nodes.
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Figure 6: An IRC with exactly one improving jump per step for the JSG for x > max
(

2
τ ,

1
1−τ

)
for any τ ∈ (0, 1). Agents of type T1 are orange, type T2 agents are blue. Multiple nodes in a
series represent a clique of nodes of the stated size. Edges between cliques or between a clique
and single nodes represent that all involved nodes are completely interconnected.

Proof. We show the statement by giving an example of an improving response cycle where in
every step exactly one agent has exactly one improving jump. Consider Fig. 6. We assume that

x is sufficiently high, e.g. x > max
(

2
τ ,

1
1−τ

)
. If we have more than two different types of agents,

all agents of types dissimilar to T1 and T2 can be placed in cliques outside of the neighborhood
of all of the agents involved in the IRC. If these cliques are placed inside network components
which are neither connected to the IRC nodes, nor to each other, the agents of these types will
never become discontent. Hence, the jumps of the given IRC are the only ones possible.
In the construction we have four orange agents, a, b, c, d, of type T1 and 2x+ 1 blue agents in
the sets u and v and f of type T2 and one white empty node. All nodes which are occupied by
the blue agents are interconnected and form a clique.

During the whole cycle, all blue agents are content. A blue agent z ∈ T2 has 2x+2 neighbors
of whom at least 2x are of the same type. Hence, the positive neighborhood ratio of an agent
z is larger than τ and she has no incentive to jump to another currently empty node. Also the
orange agent d remains content during the entire cycle since she is never isolated and has never
a neighboring agent of a different type. In the initial placement (Fig. 6(a)), the orange agent
a is discontent, since her only neighboring agent f is blue. Therefore, a jumps to the empty
node. Agent b and, depending on the value of τ , agent c are discontent. However, jumping to
the empty node next to agent d is not an improvement for them. Now (Fig. 6(b)) agent b is
discontent, since x is chosen sufficiently high that the positive neighborhood ratio of b is smaller
than τ . Hence, jumping to the empty node next to agent a improves the cost of b from τ − 2

x+2
to max (0, τ − 0.5). Again, this is the only valid jump, since agent c would still have exactly
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one blue agent and one orange agent in her neighborhood by jumping next to agent a. After
two further jumps (Fig. 6(c) and 6 (d)) by agents c and a, which are equivalent to those shown
in Fig. 6(a) and Fig. 6(b), restore the initial placement.

Since all executed jumps were the only ones possible, this shows that the JSG is not weakly
acyclic as there is no possibility to reach a stable placement via improving jumps.

3.2 IRD Convergence for the One-versus-One Version

Now we turn to the 1-1-JSG. By using the same proof as in Theorem 4 with jumps instead of
swaps we get the following positive result.

Theorem 10. IRDs are guaranteed to converge in O(|A|) moves for the 1-1-JSG with τ ≤ 1
∆

on ∆-regular networks.

The same IRC which proves Theorem 8 for the 1-k-JSG yields the next result.

Theorem 11. IRD may not converge in the 1-1-JSG for τ > 2
∆ on ∆-regular graphs.

Finally the proof of Theorem 9 works for the following result as well.

Theorem 12. IRD are not guaranteed to converge in the 1-1-JSG for τ ∈ (0, 1) on arbitrary
networks and weakly acyclicity is violated.

4 Computational Hardness of Finding Optimal Placements

Here, we investigate the computational hardness of computing an optimal placement, i.e., a
placement where as many agents as possible are content.

4.1 Hardness Properties for Two Types

We start with two types of agents and show that finding an optimal placement for the SSG in
an arbitrary network G is NP-hard by giving a reduction from the Balanced Satisfactory
Problem (BSP), which was introduced in [22, 23] and proven to be NP-hard in [4]. This result
directly implies that finding an optimal placement for the JSG with no empty nodes is NP-hard
as well.

Theorem 13. Finding an optimal placement of agents for the two types SSG in a network G
is NP-hard for τ = 1

2 .

Proof. We prove the statement by giving a reduction from the BSP. Given a network G = (V,E)
with an even number of nodes. Let v ∈ V and V ′ ⊆ V . We denote by degV ′(v) the number
of nodes in V ′ which are adjacent to v. A balanced satisfactory partition exists if there is a
non-trivial partition V1, V2 of the nodes V with V1 ∪ V2 = V , V1 ∩ V2 = ∅ and |V1| = |V2| such

that each node v ∈ Vi with i ∈ {1, 2} has at least degVi(v) ≥ degG(v)
2 , i.e., each node has at least

as many neighbors in its own part as in the other. If such a partition exists, we can find it by
computing an optimal placement p∗G in the network G for two different types of agents of size
|V |
2 and τ = 1

2 .
The cost of a placement pG is the number of discontent agents. Obviously, a placement

pG without discontent agents and thus the placement cost costpG(A) = 0 is optimal. For
a content agent a ∈ A we have pnrpG(a) ≥ 1

2 = τ and thus, if there are no empty nodes

we know N+
pG

(a) ≥ degG(pG(a))
2 . If we have a placement where all agents are content we can

gather all nodes which are occupied by agents of type T1 to the subset V1 and all agents
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which are occupied by agents of type T2 to the subset V2. It holds for every a ∈ A that
degVi(p

∗
G(a)) = N+

pG
(a) ≥ degG(pG(a))

2 . Hence, calculating an optimal placement must be NP-
hard.

The above proof relies on the fact that there are no empty nodes. The computational hardness of
the JSG changes if many empty nodes exist. Obviously, it is easy to find an optimal placement
if there are enough empty nodes to separate both types of agents completely and a suitable
separator is known. Mapping the boundary for the transition from NP-hardness to efficient
computation is a challenging question for future work.

Next we show that finding an optimal placement is hard for high τ via a reduction from
Minimum Cut Into Equal Size (MCIES) which was proven to be NP-hard in [19].

Theorem 14. Finding an optimal placement in the SSG on an arbitrary network G = (V,E)
with maximum node degree ∆G = max{degG(v) | v ∈ V } is NP-hard for τ > 3∆G

3∆G+1 .

Proof. We prove the statement by giving a reduction from MCIES. Given a network G = (V,E)
and an integer W ∈ N. MCIES is the decision whether there is a non-trivial partition V1, V2

with V1 ∪V2 = V , V1 ∩V2 = ∅ and |V1| = |V2| such that |{{v1, v2} ∈ V | v1 ∈ V1, v2 ∈ V2}| ≤W ,
i.e., there are at most W edges between the two parts.

Let ∆G = max{degG(v) | v ∈ V } be the maximum node degree in G. We create a network
G′ = (V ′, E′) in which every node v ∈ V is replaced by a clique Cv in G′ of size 3∆G + 1. Each
edge {u, v} ∈ E will be replaced by an edge {u′, v′} between two nodes u′ ∈ Cu and v′ ∈ Cv such
that each node in G′ has at most one neighbor outside its clique. Therefore, the degree of nodes
in G′ is either 3∆G or 3∆G + 1, and so the maximum node degree ∆G′ in G′ is 3∆G + 1. We

have two different agent types, each consisting of |V
′|

2 agents. Let τ >
∆G′−1

∆G′
= 3∆G

3∆G+1 . Because

of this, an agent is content in G′ if she has no neighbors of a different type. For a placement
pG′ to be optimal, all cliques C have to be uniform, i.e. assign agents of the same type to each
node in C. Otherwise another non-uniform clique C ′ has to exist and we can re-assign the
agents in both cliques in a placement p′G′ to make C uniform. In pG′ all agent of both cliques
are discontent, while in p′G′ at least 2∆G + 1 agents in C that have no neighbors outside C are
content. Since each clique is only connected to at most ∆G other nodes, at most 2∆G agents
are discontent in p′G′ that were content in pG′ . Therefore, pG′ would not be optimal.

If we have an optimal placement with 2W ′ discontent agents, we can gather all v ∈ V where
Cv is occupied by agents of type T1 into V1, and similarly into V2 for T2. We then have W ′ edges
between the two sets V1 and V2. Hence, a placement with 2W ′ discontent agents correspond to
an MCIES with W = W ′ edges between the partitions and vice versa.

For the above theorems, we used a placement cost function which counts the number of discon-
tent agents. However, we remark that even if we change this definition into summing up the
cost of all agents, i.e., cost′pG(A) =

∑
a∈A costpG(a), like social cost, the above hardness results

still hold. This relates to the hardness results from Elkind et al. [15] which hold for the JSG
with τ = 1 in the presence of stubborn agents which are unwilling to move.

We contrast the above results by providing an efficient algorithm for computing an optimal
placement for the SSG and the JSG on a 2-regular network with two different agent types by
employing a well-known dynamic programming algorithm for Subset Sum [14, 20].

Theorem 15. Finding an optimal placement of agents of two types in the SSG on a 2-regular
network with n nodes can be done in O(n2) for τ > 1

2 .

Proof. Let G = (V,E) be a 2-regular network, consisting of m rings. Ring i has ri nodes. Given
a partition of the agents P (A) = {T1, T2} with |T1| = n1 and |T2| = n2.

For finding a placement that minimizes costpG(A), we take the multiset r1, . . . , rm as elements
and n1 as target sum as an instance of Subset Sum. Which we can solve in O(n2) since n1 ≤ n.
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In case of a Yes-instance, we can place the agents of type T1 on the rings indicated by the selected
elements. Thus no agents of different types are on the same ring.

If the instance is a No-instance, then in the optimal placement there is exactly one ring with
agents of different type. This implies that at least 3 and at most 4 agents are discontent. To
check if an optimal placement with 3 discontent agent is possible, we solve the Subset Sum
instance with target sum n1 +1. If this is possible, then we place the n1 agents on the respective
rings such that exactly one node is empty. Then all empty nodes are filled with type T2 agents.
If the instance with target sum n1 +1 is a No-instance, we greedily fill the rings with consecutive
type T1 agents such that we get one ring with empty spots. Then we fill all the empty spots
with type T2 agents to obtain exactly 4 discontent agents.

Optimal placements for the JSG can be found with an analogous algorithm.

4.2 Hardness Properties for More Types

Compared to the previous subsection we now show that also the number of different agent types
has an influence on the computational hardness of finding an optimal placement. We establish
NP-hardness even on 2-regular networks if there are sufficiently many agent types by giving a
reduction from 3-Partition which was proven to be NP-hard in [20].

Theorem 16. Finding an optimal placement of agents of an arbitrary number of types in the
1-1-SSG and 1-k-SSG on a 2-regular network with τ > 1

2 is NP-hard.

Proof. We prove the statement by giving a polynomial time reduction from 3-Partition. Given
a multiset S of 3k positive integers. 3-Partition concerns whether S can be partitioned into k
disjoint sets Si with i ∈ {1, . . . , k} of size three, such that the sum of the numbers in each subset
is equal, i.e.,

∑
si∈S1

si =
∑

si∈S2
si = · · · =

∑
si∈Sk

si. As these sets are disjoint, we already

know that each of them sums up to

∑
si∈S

si

k . 3-Partition keeps its NP-hardness if the integers

in S are encoded unary. Moreover, it remains NP-hard if we assume

∑
si∈S

si

4k < si <

∑
si∈S

si

2k
for all si ∈ S.

Based on a 3-Partition instance, we generate a 2-regular graph, containing a ring for each
si ∈ S with si nodes. Thus our graph has n =

∑
si∈S si nodes in total. We can assume si ≥ 3

for all si ∈ S, since adding a constant to all elements does not change the existence of a solution.
We now take a set of n agents A partitioned into types P (A) = {T1, . . . , Tk}. Each type consists
of n

k agents. Assume we find an optimal placement with costpG(A) = 0 for τ > 1
2 . This means,

that there is no ring that contains agents of different types, since an agent is discontent if she
has a neighboring agent of different type. Thus, we have a disjoint partitioning of the rings,

such that the number of nodes in each partition adds up to n
k =

∑
si∈S

si

k . We also assumed that
n
4k < si <

n
2k , thus all agents of a type Ti have to be placed on exactly three rings. This directly

implies a solution for the 3-Partition instance. If the corresponding 3-Partition instance has
a solution S1, . . . , Sk, this produces a partitioning of the rings, such that each partition contains∑

si∈S
si

k = n
k nodes. Placing the agent types according to this partitioning won’t produce any

ring with agents of different types on it. Such a placement has costpG(A) = 0, which has to be
optimal.

Since our reduction can be done in polynomial time for unary encoded instances of 3-
partition, this proofs the NP-hardness of finding an optimal placement.

To conclude the section on the computational hardness, we want to emphasize that solving
the question whether finding an optimal placement is easy or hard does not allow us to make
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(a) optimal placement p∗G
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(b) Placement pG after the swap

Figure 7: A network where the optimal placement p∗G is not in equilibrium for τ > 0.9. Multiple
nodes in series represent a clique of nodes of the stated size. Edges between cliques or between
a clique and single nodes represent that all involved nodes are completely interconnected.

equivalent statements for computing stable placements. The following example illustrates the
rather counter-intuitive fact that an optimal placement is not necessarily stable.

Theorem 17. For the SSG with two different types of agents there is a network G where no
optimal placement is stable.

Proof. We prove the statement by giving an example. Consider Fig. 7. The pictured network
has two cliques ui and vi with 1 ≤ i ≤ 3 of size ten. Let τ > 0.9. The placement p∗G depicted in
Fig. 7a has costp∗G(A) = 7, and the placement pG in Fig. 7b has costpG(A) = 8. The former is
optimal since every placement p′G other than the given two has to place agents of different types
in at least one of the cliques. This would cause all agents in the clique to become discontent
and thus yield costp′G(A) ≥ 10. However, the agents a and b want to swap in placement p∗G.
Hence, the unique optimal placement p∗G is not stable.

5 Simulation

As a final aspect, we enrich our theoretical results with empirical results for the versions where
IRD convergence is guaranteed. We find that for the versions with two agent types the IRD
starting from uniformly random placements produce an equilibrium in c ·m steps, where c is
a positive constant and m is the number of edges in the underlying network. See Fig. 8. This
meets our upper bound of O(m). Interestingly, IRD convergence is faster on random 8-regular
graphs than on 8-regular toroidal grids. This hints that geometry may influence the convergence
speed. The details of the simulation can be found in the appendix.

5.1 Simulation Set-up.

For our simulations we considered two different network topologies: toroidal grids with the
Moore neighborhood, i.e., the nodes have diagonal edges and all inner nodes have degree 8 and
random 8-regular networks.

We generated grids with 100× 100 up to 300× 300 nodes where the grid sides increased in
steps of 20. To have comparable random 8-regular graphs we generated them with the same
number of nodes. For each configuration we ran the IRD starting from 100 random initial
placements do derive the results depicted in Fig. 8.

To get the initial placements, the agents were placed uniformly at random on the nodes of
the network and we assumed equal proportions of each agent type. For the jump game we used
6% empty nodes. In each round the discontent agents are activated in a random order and each
activated agent iterates randomly over all possible locations for a swap or a jump and chooses
the first location which yields an improvement.
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Figure 8: Number of moves until convergence on 8-regular toroidal grids and 8−regular random
graphs with 10× 10 up to 300× 300 nodes over 100 trials.

6 Conclusion and Open Questions

We conducted a thorough analysis of the dynamic properties of the game-theoretic version
of Schelling’s segregation model and provided tight threshold results for the IRD convergence
for several versions of the game. Furthermore, we found that the number of agent types and
the underlying graph has severe impact on the computational hardness of computing optimal
placements.

It remains open whether IRD always converge for the 1-1-SSG with τ ∈
(

1
∆ ,

6
∆

)
, and for

the 1-1-JSG with τ ∈
(

1
∆ ,

2
∆

)
. Since most versions are not guaranteed to converge via IRD, the

existence of stable placements for all graph types is not given. Elkind et al. [15] showed that
for the 1-k-JSG that stable placements exist if the underlying network is a star or a graph with
maximum degree 2 and τ = 1. Furthermore they proved that if the underlying network is a
tree the existence of a stable placement may fail to exist for τ = 1 in the 1-k-JSG. However, in
general, it remains an open question in terms of different values of τ and for different underlying
networks whether stable placements exist and whether they can be computed efficiently. We
conjecture the following:

Conjecture 1. Equilibria are not guaranteed to exist in all cases for which we constructed
IRCs.

Also the computational hardness of finding optimal placements for some variants deserves
further study and this could be extended to study the existence of other interesting states, e.g.,
stable states with low segregation.

Our IRD convergence results can be straightforwardly adapted to hold for the extended
model by Chauhan et al. [11], where agents also have single-peaked preferences over the locations.
Moreover, we are positive that also our computational hardness results can be carried over.

Last but no least, we emphasize that there are many possible ways to model Schelling
segregation with at least three agent types. For example, types could have preferences over
other types which then yields a rich unexplored setting.
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[35] D. Vinković and A. Kirman. A physical analogue of the schelling model. Proceedings of
the National Academy of Sciences, 103(51):19261–19265, 2006.

20



[36] H. P. Young. The evolution of conventions. Econometrica: Journal of the Econometric
Society, pages 57–84, 1993.

[37] H. P. Young. Individual strategy and social structure : an evolutionary theory of
institutions. Princeton University Press Princeton, N.J, 1998.

[38] J. Zhang. A dynamic model of residential segregation. The Journal of Mathematical
Sociology, 28(3):147–170, 2004.

[39] J. Zhang. Residential segregation in an all-integrationist world. Journal of Economic
Behavior and Organization, 54(4):533–550, 2004.

[40] J. Zhang. Tipping and residential segregation: a unified schelling model. J. of Regional
Science, 51(1):167–193, 2011.

21


	1 Introduction
	1.1 Related Work
	1.2 Model and Notation
	1.3 Our Contribution

	2 Schelling Dynamics for the Swap Schelling Game 
	2.1 IRD Convergence for the One-versus-All Version
	2.2 IRD Convergence for the One-versus-One Version

	3 Schelling Dynamics for the Jump Schelling Game
	3.1 IRD Convergence for the One-versus-All Version
	3.2 IRD Convergence for the One-versus-One Version

	4 Computational Hardness of Finding Optimal Placements 
	4.1 Hardness Properties for Two Types
	4.2 Hardness Properties for More Types

	5 Simulation
	5.1 Simulation Set-up.

	6 Conclusion and Open Questions

