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Abstract
This paper introduces and studies a notion of algorithmic randomness for subgroups of rationals.
Given a randomly generated additive subgroup (G,+) of rationals, two main questions are addressed:
first, what are the model-theoretic and recursion-theoretic properties of (G,+); second, what
learnability properties can one extract from G and its subclass of finitely generated subgroups? For
the first question, it is shown that the theory of (G,+) coincides with that of the additive group
of integers and is therefore decidable; furthermore, while the word problem for G with respect to
any generating sequence for G is not even semi-decidable, one can build a generating sequence β
such that the word problem for G with respect to β is co-recursively enumerable (assuming that
the set of generators of G is limit-recursive). In regard to the second question, it is proven that
there is a generating sequence β for G such that every non-trivial finitely generated subgroup of G is
recursively enumerable and the class of all such subgroups of G is behaviourally correctly learnable,
that is, every non-trivial finitely generated subgroup can be semantically identified in the limit
(again assuming that the set of generators of G is limit-recursive). On the other hand, the class
of non-trivial finitely generated subgroups of G cannot be syntactically identified in the limit with
respect to any generating sequence for G. The present work thus contributes to a recent line of
research studying algorithmically random infinite structures and uncovers an interesting connection
between the arithmetical complexity of the set of generators of a randomly generated subgroup of
rationals and the learnability of its finitely generated subgroups.
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1 Introduction

The concept of algorithmic randomness, particularly for strings and infinite sequences, has
been extensively studied in recursion theory and theoretical computer science [6, 15, 19]. It
has also been applied in a wide variety of disciplines, including formal language and automata
theory [14], machine learning [29], and recently even quantum theory [20]. An interesting
and long open question is whether the well-established notions of randomness for infinite
sequences have analogues for infinite structures such as graphs and groups. Intuitively,
it might be reasonable to expect that a collection of random infinite structures possesses
the following characteristics: (1) randomness should be an isomorphism invariant property;
in particular, random structures should not be computable; (2) the collection of random
structures (of any type of algebraic structure) should have cardinality equal to that of the
continuum. The standard random infinite graph thus does not qualify as an algorithmically
random structure; in particular, it is isomorphic to a computable graph and has a countable
categorical theory. Very recently, Khoussainov [12, 13] defined algorithmic randomness for
infinite structures that are akin to graphs, trees and finitely generated structures.

This paper addresses the following three open questions in algorithmic randomness: (A)
is there a reasonable way to define algorithmically random structures for standard algebraic
structures such as groups; (B) can one define algorithmic randomness for groups that are not
necessarily finitely generated; (C) what are the model-theoretic properties of algorithmically
random structures? The main contribution of the present paper is to answer the first two
questions positively for a fundamental and familiar algebraic structure, the additive group of
rationals, denoted (Q,+), and to answer the third question with respect to this structure.
Prior to this work, question (A) was answered for structures such as finitely generated
universal algebras, connected graphs, trees of bounded degree and monoids [12]. Concerning
question (C), it is still unknown whether the first order theory of algorithmically random
graphs (or trees) is decidable. In fact, it is not even known whether any two algorithmically
random graphs (of the same bounded degree) are elementarily equivalent [12].

As mentioned earlier, one goal of this work is to formulate a notion of randomness for
subgroups of (Q,+). This is a fairly natural class of groups to consider, given that the
isomorphism types of its subgroups have been completely classified, as opposed to the current
limited state of knowledge about the isomorphism types of even rank 2 groups. As has been
known since the work of Baer [1], the subgroups of (Q,+) coincide, up to isomorphism, with
the torsion-free Abelian groups of rank 1. Moreover, the group (Q,+) is robust enough that
it has uncountably many algorithmically random subgroups (according to our definition of
algorithmically random subgroups of (Q,+)), which contrasts with the fact that there is a
unique standard random graph up to isomorphism. At the same time, the algorithmically
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random subgroups of (Q,+) are not too different from one other in the sense that they are
all elementarily equivalent (a fact that will be proven later), which is similar to the case of
standard random graphs being elementarily equivalent.

The properties of the subgroups of (Q,+) were first systematically studied by Baer [1]
and then later by Beaumont and Zuckerman [3]. Later, the group (Q,+) was studied in the
context of automatic structures [28]. An early definition of a random group is due to Gromov
[10]. According to this definition, random groups are those obtained by first fixing a set of
generators, and then randomly choosing (according to some probability distribution) the
relators specifying the quotient group. An alternative definition of a general random infinite
structure was proposed by Khoussainov [12, 13]; this definition is based on the notion of a
branching class, which is in turn used to define Martin-Löf tests for infinite structures entirely
in analogy to the definition of a Martin-Löf test for sequences. An infinite structure is then
said to be Martin-Löf random if it passes every Martin-Löf test in the preceding sense.

Like Gromov’s definition of a random group, the one adopted in the present work is
syntactic, in contrast to the semantic and algebraic definition due to Khoussainov. However,
rather than selecting the relators at random according to a prescribed probability distribution
for a fixed set of generators, our approach is to directly encode a Martin-Löf random binary
sequence into the generators of the subgroup. More specifically, we fix any binary sequence
R, and define the group GR as that generated by all rationals of the shape p−ni

i , where pi
denotes the (i+ 1)-st prime and ni is the number of ones occurring between the i-th and
(i + 1)-st occurrences of zero in R; n0 is the number of starting ones, and if there is no
(i+ 1)-st zero then nj is defined to be zero for all j greater than i and GR is generated by
all p−ni′

i′ with i′ less than i and all p−n
′

i such that n′ is any positive integer. GR is then
said to be randomly generated if and only if R is Martin-Löf random. In order to derive
certain computability properties, it will always be assumed in the present paper that any
Martin-Löf random sequence associated to a randomly generated subgroup of (Q,+) is also
limit-recursive. It may be observed that no finitely generated subgroup of (Q,+) is randomly
generated in the sense adopted here; this corresponds to the intuition that in any “random”
infinite binary sequence R, the fraction of zeroes in the first n bits should tend to a number
strictly smaller than one as n grows to infinity.

The first main part of this work is devoted to the study of the model-theoretic and
recursion-theoretic properties of randomly generated subgroups of (Q,+). It is shown that
the theory of any randomly generated subgroup coincides with that of the integers with
addition (denoted (Z,+)), and is therefore decidable1. Next, we define the notion of a
generating sequence for a randomly generated group GR; this is an infinite sequence β such
that GR is generated by the terms of β. We then consider the word problem for GR with
respect to β: this is the problem of determining, given any two finite integer sequence
representations σ and τ of elements of GR with respect to β, whether or not σ and τ

represent the same element of GR. We show that the word problem for GR with respect to
any generating sequence β is never recursively enumerable (r.e.); on the other hand, one can
construct a generating sequence β′ for GR such that the corresponding word problem for
GR is co-r.e. Moreover, one can build a generating sequence β′′ for GR such that the word
problem for the quotient group of GR by Z with respect to β′′ is r.e.

The second main part of this paper investigates the learnability of non-trivial finitely
generated subgroups of randomly generated subgroups of (Q,+) from positive examples, also

1 For a proof of the decidability of the theory of (Z,+), often known as Presburger Arithmetic, see [16,
pages 81–84].
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known as learning from text. Stephan and Ventsov [25] examined the learnability of classes
of substructures of algebraic structures; the study of more general classes of structures was
undertaken in the work of Martin and Osherson [17, Chapter III]. The general objective is
to understand how semantic knowledge of a class of concepts can be exploited to learn the
class; in the context of the present problem, semantic knowledge refers to the properties of
every finitely generated subgroup of any randomly generated subgroup of rationals, such as
being generated by a single rational [1]. It may be noted that the present work considers
learning of the actual representations of finitely generated subgroups, as opposed to learning
their structures up to isomorphism, as is considered in the learning framework of Martin
and Osherson [17]. Various positive learnability results are obtained: it will be proven, for
example, that for any randomly generated subgroup GR of (Q,+), there is a generating
sequence β for GR such that the set of representations of every non-trivial finitely generated
subgroup of GR with respect to β is r.e.; furthermore, the class of all such representations
can be identified in the limit up to semantic equivalence. On the other hand, it will be seen
that the class of all such representations can never be learnable in the limit. Similar results
hold for the class of non-trivial finitely generated subgroups of the quotient group of GR
by Z. Thus this facet of our work implies a connection between the limit-recursiveness of
the set of generators of a randomly generated subgroup of (Q,+) and the learnability of its
non-trivial finitely generated subgroups.

2 Preliminaries

Any unexplained recursion-theoretic notation may be found in [22, 24, 21]. For background
on algorithmic randomness, we refer the reader to [6, 19]. We use N = {0, 1, 2, . . .} to denote
the set of all natural numbers and Z to denote the set of all integers. The (i+ 1)-st prime
will be denoted by pi. Z<ω denotes the set of all finite sequences of integers. Throughout
this paper, ϕ0, ϕ1, ϕ2, . . . is a fixed acceptable programming system of all partial recursive
functions and W0,W1,W2, . . . is a fixed acceptable numbering of all recursively enumerable
(abbr. r.e.) sets of natural numbers. We will occasionally work with objects belonging to
some countable class X different from N; in such a case, by abuse of notation, we will use the
same symbol We to denote the set of objects obtained from We by replacing each member x
with F (x) for some fixed bijection F between N and X.

Given any set S, S∗ denotes the set of all finite sequences of elements from S. By
D0, D1, D2, . . . we denote any fixed canonical indexing of all finite sets of natural numbers.
Cantor’s pairing function 〈 · , · 〉 : N × N → N is given by 〈x, y〉 = 1

2 (x + y)(x + y + 1) + y

for all x, y ∈ N. The symbol K denotes the diagonal halting problem, i.e., K = {e | e ∈
N, ϕe(e) converges}. The jump of K, that is, the relativised halting problem {e | e ∈
N;ϕKe (e)↓}, will be denoted by K ′.

For σ ∈ (N ∪ {#})∗ and n ∈ N we write σ(n) to denote the element in the n-th position
of σ. Further, σ[n] denotes the sequence σ(0), σ(1), . . . , σ(n− 1). Given a number a ∈ N and
some fixed n ∈ N, n ≥ 1, we denote by an the finite sequence a, . . . , a, where a occurs exactly
n times. Moreover, we identify a0 with the empty string ε. For any finite sequence σ we use
|σ| to denote the length of σ. The concatenation of two sequences σ and τ is denoted by σ ◦ τ ;
for convenience, and whenever there is no possibility of confusion, this is occasionally denoted
by στ . For any sequence β (infinite or otherwise) and s < |β|, β �s denotes the initial segment
of β of length s+ 1. For any m ≥ 1 and p ∈ Z, Im(p) denotes the vector of length m whose
first m− 1 coordinates are 0 and whose last coordinate is p. Furthermore, given two vectors
α = (ai)0≤i≤m and β = (bi)0≤i≤m of equal length, α ·β denotes the scalar product of α and β,
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that is, α · β :=
∑m
i=0 aibi. For any c ∈ Z and σ := (bi)0≤i≤m ∈ Z<ω, cσ denotes the vector

obtained from σ by coordinatewise multiplication with c, that is, cσ := (cb0, cb1, . . . , cbm).
For any non-empty S ⊆ Q, 〈S〉 denotes {

∑k
i=0 cisi | k ∈ N ∧ ci ∈ Z ∧ si ∈ S}.

Cantor space, the set of all infinite binary sequences, will be denoted by 2ω. The set of
finite binary strings will be denoted by 2<ω. For any binary string σ, [σ] denotes the cylinder
generated by σ, that is, the set of infinite binary sequences with prefix σ. For any U ⊆ 2<ω,
the open set generated by U is [U ] :=

⋃
σ∈U [σ]. The Lebesgue measure on 2ω will be denoted

by λ; that is, for any binary string σ, λ([σ]) = 2−|σ|. By the Carathéodory Theorem, this
uniquely determines the Lebesgue measure on the Cantor space.

3 Randomly Generated Subgroups of Rationals

We first review some basic definitions and facts in algorithmic randomness which in our
setting is always understood w.r.t the Lebesgue measure. An r.e. open set R is an open
set generated by an r.e. set of binary strings. Regarding We as a subset of 2<ω, one has an
enumeration [W0], [W1], [W2], . . . of all r.e. open sets. A uniformly r.e. sequence (Gm)m<ω of
open sets is given by a recursive function f such that Gm = [Wf(m)] for each m. As infinite
binary sequences may be viewed as characteristic functions of subsets of N, we will often use
the term “set” interchangeably with “infinite binary sequence”; in particular, the subsequent
definitions apply equally to subsets of N and infinite binary sequences.

Martin-Löf [18] defined randomness based on tests. A Martin-Löf test is a uniformly
r.e. sequence (Gm)m<ω of open sets such that (∀m < ω)[λ(Gm) ≤ 2−m]. A set Z ⊆ N fails
the test if Z ∈

⋂
m<ω Gm; otherwise Z passes the test. Z is Martin-Löf random if Z passes

each Martin-Löf test. Schnorr [23] showed that Martin-Löf random sets can be described
via martingales. A martingale is a function mg : 2<ω → R+ ∪ {0} that satisfies for every
σ ∈ 2<ω the equality mg(σ ◦ 0) + mg(σ ◦ 1) = 2mg(σ). For a martingale mg and a set Z, the
martingale mg succeeds on Z if supnmg(Z(0) . . . Z(n)) =∞.

I Theorem 1. [23] For any set Z, Z is Martin-Löf random iff no r.e. martingale succeeds
on Z.

The following characterisation of all subgroups of (Q,+) forms the basis of our definition of
a random subgroup.

I Theorem 2. [3] Let G be any subgroup of (Q,+). Then there is an integer z, as well

as a sequence (ni)i<ω with ni ∈ N ∪ {∞} such that G =
{

a · z
Πk
i=0p

mi
i

| a ∈ Z ∧ k ∈ N ∧ (∀i ≤

k)[mi ∈ N ∧mi < ni]}.

I Definition 3. Let R ∈ 2ω be a real in the Cantor space, i.e. an infinite sequence of 0’s
and 1’s. Then the group GR is the subgroup of the rational numbers (Q,+) generated by
a0, a1, . . . with ai = 1

p
ni
i

for all i ∈ N, where for each i ∈ N, by pi we denote the (i + 1)-st
prime and by ni the number of consecutive 1’s in R between the i-th and (i+ 1)-st zero in R,
with which we let n0 count the number of starting 1’s. If there is no (i+ 1)-st zero, we let
ni :=∞, meaning that for all n the fraction 1

pn
i
is in GR.

Clearly, (Z,+) is always a subgroup of GR and 1
pi

/∈ GR if and only if the i-th and
(i + 1)-st zero in R are consecutive. Thus, if R ends with infinitely many zeros, then GR
is isomorphic to (Z,+). Moreover, there is a prime pi such that 1

pj
/∈ GR for all j > i and

1
pn

i
∈ GR for all n ∈ N, for short pi infinitely divides GR, if and only if R ends with an

infinite sequence of 1’s.

MFCS 2019



25:6 Random Subgroups of Rationals

I Lemma 4. If R ∈ 2ω is Martin-Löf random, then ni is finite for every i ∈ N, where ni is
defined as in Definition 3. In other words, the group GR is not infinitely divisible by any
prime.

Proof. This is an easy observation, as in no Martin-Löf random w.r.t the Lebesgue measure
only finitely many 0’s occur. J

A similar argument shows that for Martin-Löf random R there are infinitely many primes
occurring as basis of a denominator of a generator.

I Definition 5. Fix a probability distribution µ on the natural numbers and let X = (Xi)i∈N
be a sequence of iid random variables taking values in N with distribution Xi ∼ µ for all
i ∈ N. Denote by HX the subgroup of (Q,+) generated by {p−Xi

i | i ∈ N}, where pi denotes
the (i+ 1)-st prime.

The so obtained random group might follow a more uniform process.

I Lemma 6. If µ is the distribution on N assigning 0 probability 1
2 , 1 probability 1

4 , 2
probability 1

8 and n probability 2−n−1, then with probability 1 holds HX = GR for some
Martin-Löf random R.

Proof. This follows immediately, as the set of ML-randoms has measure 1 with respect to
the Lebesgue measure. From X0 = n0, X1 = n1, . . ., Xi = ni, . . . we obtain an infinite
binary sequence R ∈ 2ω by recursively appending 1ni0 in step i to the already established
initial segment of R, starting with the empty string. By definition the Lebesgue measure
assigns probability 1

2n+1 to having the (intermediate) subsequence 1n0 in R. This is exactly
the probability of the event Xi = n. J

A generating sequence for GR is an infinite sequence (bi)i<ω such that 〈bi | i < ω〉 = GR. We
will often deal with generating sequences rather than minimal generating sets for GR, mainly
due to the fact that if the terms of a sequence β are carefully chosen based on a limiting
recursive programme for R (so that β itself is limiting recursive), then, as will be seen later,
the set of representations of elements of GR with respect to β can have certain desirable
computability properties, such as equality being co-r.e.

I Proposition 7. Suppose R ≤T K is Martin-Löf random. Then there does not exist any
strictly increasing recursive enumeration i0, i1, i2, . . . such that for each j, there is some
nij ≥ 1 with p

−nij

ij
∈ GR.

I Theorem 8. If R ≤T K is Martin-Löf random, then (GR,+) is co-r.e., meaning that + is
recursive and there is a generating sequence with respect to which equality is co-r.e.

Proof. For a fixed generating sequence (qi)i<ω of GR there is an epimorphism from the
set of finite sequences of integers Z<ω to GR by identifying σ = (σ(0), . . . , σ(|σ| − 1)) with
x =

∑|σ|−1
i=0 σ(i)qi. We call σ a representation of x w.r.t. (qi)i<ω or (qi)i<n+1.

Obviously, for any generating sequence of GR addition is recursive as only the components
of the representations have to be added as integers.

In order to prove that equality is co-r.e., we construct a specific generating sequence
(bi)i<ω. Based on the result Rs of the computation of R after s steps, we are going to define
finite sequences βs of rational numbers recursively, such that |βs| = s + 1 and inequality
on {−s − 1, . . . , s + 1}s+1 ⊆ Zs+1, interpreted as representations w.r.t. βs, is decided and
extends the inequalities on {−s, . . . , s}s, even though they originate from an interpretation
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as representations according to βs−1. With this in the limit we obtain a generating sequence
of GR, meaning that for every i there is some si > i such that for all s ≥ si the i-th element
of βs is the same as the i-th element of βsi

, which we denote by bi. Further, (bi)i∈N generates
GR and for this generating sequence equality will be co-r.e.

In the following we write ni,s for ni according to Rs, i.e. the number of 1’s between
the i-th and (i+ 1)-st zero in Rs, as introduced in Definition 3. As Rs does not end with
infinitely many 1’s, ni,s can be computed in finitely many steps for every i and s.

s = 0. Let β0 = (1).
s s+1. Check for every i ≤ s whether ni,s = ni,s+1. If ni,s = ni,s+1 let βs+1(i) = βs(i).
Replace all 1

p
ni,s
i

occurring in βs with ni,s 6= ni,s+1 by some respective integer, for which
existence we argue below, such that

∆(qi)i<s+1 = { (σ0, σ1) ∈ ( {−s− 1, . . . , s+ 1}s+1 )2 |
σ0, σ1 represent different elements w.r.t. (qi)i<s+1 }

stays the same or enlarges if (qi)i<s+1 equals the first s+ 1 entries of βs+1 instead of βs.
Further, let

βs+1(s+ 1) = 1
p
nj,s+1
j

,

where j ≤ s + 1 is minimal such that 1
p

nj,s+1
j

is an element of GRs+1 and does not yet

occur in βs+1 �(s+ 1). If there is no such j, let βs+1(s+ 1) = 1.

For example, if the tape after stage s = 2 started with 1111010 . . ., after 3 steps contained
1101010 . . . and β2 = (1, 1

24 ,
1
3 ), then in β3 we would have to replace 1

24 by an integer w such
that for arbitrary integers u0, u1, u2, v0, v1, v2 between −3 and 3 we have

u0 + u1
1
24 + u2

1
3 6= v0 + v1

1
24 + v2

1
3 ⇒ u0 + u1w + u2

1
3 6= v0 + v1w + v2

1
3

and β3(3) would be 1
22 .

We proceed by showing that there is always such an integer w.

B Claim 9. For every s ∈ N in step s+ 1 it is possible to alter finitely many entries of βs to
obtain βs+1 �(s+ 1) such that ∆βs

⊆ ∆βs+1�(s+1).

Proof of the Claim. Let s ∈ N. It suffices to show that one entry can be replaced in this
desired way. As the argument does not depend on the position, we further assume that it is
the last entry. For all (σ0, σ1) ∈ ∆βs

we want to prevent

s−1∑
i=0

σ0(i)βs(i) + σ0(s)w =
s−1∑
i=0

σ1(i)βs(i) + σ1(s)w.

This is a linear equation having zero or one solution in Q. As there are only finitely many
choices for the pair (σ0, σ1), an integer not fulfilling any of these equations can be found in a
computable way. C

We continue by proving that the entries of the βs stabilize, such that in the limit we
obtain a sequence (bi)i<ω of elements of GR.

MFCS 2019



25:8 Random Subgroups of Rationals

B Claim 10. For every i ∈ N there is some si ≥ i such that for all s ≥ si we have βs(i) = bi,
with bi = βsi

(i).

Proof of the Claim. Let i ∈ N. If there is si > i such that the entry βsi−1(i) had to be
changed, then βsi(i) is an integer and thus, it will never be changed lateron. In case this
does not happen, we obtain βs(i) = βi(i) for all s ≥ i and therefore si = i. C

By the next claim the just constructed sequence generates the random group.

B Claim 11. The sequence (bi)i<ω generates GR.

Proof of the Claim. Let i ∈ N and ai as in Definition 3. We argue that there is some j with
ai = bj . Let mi be the position of the (i+1)-st zero in the Martin-Löf random R. Then there
is s′ such that after s′ computation steps R�(mi+ 1) is not changed any more. Thus, after at
most i additional steps all generators of GR having one of the first i primes as denominator
are in the range of βs′+i. C

Finally, we observe that w.r.t. the generating sequence (bi)i<ω all pairs of unequal elements
of GR can be recursively enumerated.

B Claim 12. Equality in (GR,+) is co-r.e.

Proof of the Claim. We run the algorithm generating (bi)i<ω and in step s return all elements
of the finite set ∆βs

. As inequalities w.r.t βs yield inequalities w.r.t. (bi)i<ω, we only
enumerate correct information. Further, for every two elements x, y of GR fix representations
w.r.t. (bi)i<ω and s′ large enough such that not more than the first s′ of the bi occur in
these representations, all of these have stabilized up to stage s′ and all coefficients in the
representations take values between −s′ − 1 and s′ + 1. Then x 6= y if and only if the tuple
of their representations is in ∆βs′ . C

This finishes the proof of the theorem. J

As there are K-recursive Martin-Löf random reals, we obtain the following corollary.

I Corollary 13. There exists a co-r.e. random subgroup of the rational numbers.

I Remark 14. Proposition 7 implies, in particular, that if R ≤T K is Martin-Löf random,
then there cannot exist any generating sequence for GR with respect to which equality of
members of GR is r.e. Indeed, suppose that such a generating sequence β did exist, so that
E := {(σ, τ) ∈ Z<ω × Z<ω | σ · β � |σ|−1 = τ · β � |τ |−1} is r.e. Fix any σ0 ∈ Z<ω such that
σ0 · β|σ0|−1 = 1 (since 1 ∈ GR, such a σ0 must exist). Then there is a strictly increasing
recursive enumeration i0, i1, i2, . . . such that for all j, ij is the first ` found for which the
following hold: (i) ` > ij′ whenever j′ < j; (ii) there are n` ≥ 1 and relatively prime positive
integers q, r with p` - q and p` - r such that for some m, (qσ0, Im(rpn`

` )) ∈ E. Note that

(qσ0, Im(rpn`

` )) ∈ E ⇔ q = (qσ0) · β|σ0|−1 = Im(rpn`

` ) · βm−1 = rpn`

` bm−1

⇔ bm−1 = qp−n`

` r−1.

The Martin-Löf randomness of R implies that β contains infinitely many terms of the form
q′

r′p
n′

`′
`′

with n′`′ ≥ 1, q′ and r′ relatively prime and positive, p`′ - q′ and p`′ - r′. Thus ij is

defined for all j, and by Proposition 7 this contradicts the Martin-Löf randomness of R.
Further, a variation of the algorithm yields that equality of the proper rational part is r.e.

on random groups.
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I Theorem 15. If R ≤T K is Martin-Löf random, then equality modulo 1 on (GR,+) is r.e.
with respect to some generating sequence.

The next main result is concerned with the model-theoretic properties of random subgroups
of rationals. We recall that two structures (in the model-theoretic sense) M and N with
the same set σ of non-logical symbols are elementarily equivalent (denoted M ≡ N) iff they
satisfy the same first-order sentences over σ; the theory of a structure M (denoted Th(M)) is
the set of all first-order sentences (over the set of non-logical symbols of M) that are satisfied
by M . The reader is referred to [16] for more background on model theory. We will prove
a result that may appear a bit surprising: even though Martin-Löf random subgroups of
(Q,+) (viewed as classes of integer sequence representations) are not computable, any such
subgroup is elementarily equivalent to (Z,+) - the additive group of integers - and thus has a
decidable theory. In other words, the incomputability of a random subgroup of rationals, at
least according to the notion of “randomness” adopted in the present work, has little or no
bearing on the decidability of its first-order properties. We begin by showing that the theory
of any subgroup G of rationals reduces to that of the subgroup of (Q,+) generated by the set
of all rationals either equal to 1 or of the shape p−n, where p is a prime infinitely dividing G
and n ∈ N. Our proof of this fact rests on a sufficient criterion due to Szmielew [27] for the
elementary equivalence of two groups; this result will be stated as it appears in [11].

I Theorem 16. ([27], as cited in [11]) Let p be a prime number and G be a group. For
all n ≥ 1, k ≥ 1 and elements g1, . . . , gk ∈ G, define G[pn] := {x ∈ G | pnx = 0} and the
following predicate C(p; g1, . . . , gk):

C(p; g1, . . . , gk)⇔ the images g′1, . . . , g′k of g1, . . . , gk in the factor group G := G/G[pn]are
such that g′1 + pG, . . . , g′k + pG are linearly independent in G/pG.

Define the parameters αp,n(G), βp(G) and γp(G) as follows.

αp,n(G) := sup{k ∈ N | G contains Zkpn as a pure subgroup},
βp(G) := inf{sup{k ∈ N | Zkpn is a subgroup of G} | n ∈ N},
γp(G) := inf{sup{k ∈ N | (∃x1, . . . , xk)C(p;x1, . . . , xk)} | n ∈ N}.

(Here pG := {pg | g ∈ G} and Zkpn is the k-th power of the primary cyclic group on pn

elements, that is, it consists of all elements (a0, . . . , ak−1) such that a0, . . . , ak−1 ∈ Zpn .)
Then any two groups H and L are elementarily equivalent iff αq,m(H) = αq,m(L), βq(H) =
βq(L) and γq(H) = γq(L) for all primes q and all m ≥ 1.

The definition of a pure subgroup will not be used in the proof of the subsequent theorem; it
will be observed that if G is a subgroup of the rationals, then for k ≥ 1 and n ≥ 1, it cannot
contain Zkpn as a subgroup in any case, so that αp,n(G) = βp(G) = 0.

I Theorem 17. Let G be a subgroup of (Q,+). Then G ≡ [Z]P (G), where P (G) := {i ∈ N |
(∀x ∈ G)(∀n ∈ N)[ xpn

i
∈ G]} denotes the set of all primes infinitely dividing G and for a set

of primes P we write [Z]P for the subgroup of (Q,+) generated by {1} ∪ { 1
pk | p ∈ P, k ∈ N}.

Note that Th([Z]K ,+) is undecidable; in contrast, for R Martin-Löf random we have
P (GR) = ∅, so the promised corollary follows.

I Corollary 18. Let R ∈ 2ω be Martin-Löf random. Then (GR,+) and (Z,+) have the same
theories.
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One may ask whether this still holds for richer structures. This is not the case, as for example
the theory of (G,+, <) is different from Th(Z,+, <), as in the latter x = 1 is a satisfying
assignment for the formula x+ x > x ∧ ∀y < x ¬y + y > y. There does not exist an x ∈ GR
with this property for a ML-random R.

4 Learning Finitely Generated Subgroups of a Random Subgroup of
Rationals

In this section, we investigate the learnability of non-trivial finitely generated subgroups of
any group GR generated by a Martin-Löf random sequence R such that R ≤T K. First, we
introduce some additional notation.

I Notation 19. Let R ≤T K be Martin-Löf random and let β := (bi)i<ω be any generating
sequence of GR. For any subgroup F of GR, Fβ denotes the set of all representations of
elements of F with respect to β, that is, Fβ := {σ ∈ Z<ω |

∑|σ|−1
i=0 σ(i)bi ∈ F}. Furthermore,

define Fβ := {Fβ | F is a non-trivial finitely generated subgroup of GR}.

We will consider learning from texts, where a text is an infinite sequence that contains all
elements of Fβ for the F to be learnt and may contain the symbol #, which indicates a pause in
the data presentation and thus no new information. For any text T and n ∈ N, T (n) denotes
the (n+1)-st term of T and T [n] denotes the finite sequence T (0), . . . , T (n−1), i.e., the initial
segment of length n of T ; content(T [n]) denotes the set of non-pause elements occurring in
T [n]. A learner M is a recursive function mapping (Z<ω ∪ {#})∗ into N ∪ {?}; the ? symbol
permits M to abstain from conjecturing at any stage. A learner is fed successively with
growing initial segments of the text and it produces a sequence of conjectures e0, e1, e2, . . .,
which are interpreted with respect to a fixed hypothesis space. In the present paper, we
stick to the standard hypothesis space, a fixed Gödel numbering W0,W1,W2, . . . of all r.e.
subsets of Z<ω. In our setting from the generator q

m of F we can immediately derive an
index e for Fβ and therefore in the proofs we argue for learning q and m. The learner is said
to behaviourally correctly (denoted Bc) learn the representation Fβ of a finitely generated
subgroup F with respect to a fixed generating sequence β for GR iff on every text for Fβ ,
the sequence of conjectures output by the learner converges to a correct hypothesis; in other
words, the learner almost always outputs an r.e. index for Fβ [7, 5, 2]. If almost all of the
learner’s hypotheses on the given text are equal in addition to being correct, then the learner
is said to explanatorily (denoted Ex) learn Fβ (or it learns Fβ in the limit) [9].

A useful notion that captures the idea of the learner converging on a given text is that of a
locking sequence, or more generally that of a stabilising sequence. A sequence σ ∈ (N∪ {#})∗
is called a stabilising sequence [8] for a learner M on some set L if content(σ) ⊆ L and for all
τ ∈ (L ∪ {#})∗, M(σ) = M(σ ◦ τ). A sequence σ ∈ (N ∪ {#})∗ is called a locking sequence
[4] for a learner M on some set L if σ is a stabilising sequence for M on L and WM(σ) = L.

The following proposition due to Blum and Blum [4] will be occasionally useful.

I Proposition 20. [4] If a learner M explanatorily learns some set L, then there exists a
locking sequence for M on L. Furthermore, all stabilising sequences for M on L are also
locking sequences for M on L.

Clearly, also a Bc-version of Proposition 20 holds.
It is not clear in the first place whether or not every finitely generated subgroup of a

randomly generated subgroup of (Q,+) can even be represented as an r.e. set. This will be
clarified in the next series of results. We recall that a finitely generated subgroup F of GR is
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any subgroup of GR that has some finite generating set S, which means that every element
of F can be written as a linear combination of finitely many elements of S and the inverses
of elements of S. F is trivial if it is equal to {0}; otherwise it non-trivial. Furthermore, if
GR is a subgroup of (Q,+), then any finitely generated subgroup F of GR is cyclic, that is,
F =

〈 q
m

〉
for some q ∈ N and m ∈ N with gcd(q,m) = 1 (see, for example, [26, Theorem

8.1]). The latter fact will be used freely throughout this paper. For any generating sequence
β for GR and any finitely generated subgroup F of GR, the set of representations of elements
of F with respect to β will be denoted by Fβ .

I Theorem 21. Let R ≤T K be Martin-Löf random. Then there is a generating sequence
(bi)i<ω of GR such that for every non-trivial finitely generated subgroup F of GR the set Fβ
is r.e.

I Remark 22. The statement of Theorem 21 excludes the trivial subgroup because for any
generating sequence β := (bi)i<ω for GR, 〈0〉β cannot be r.e. To see this, suppose, by way of
contradiction, that 〈0〉β were r.e. Given any σ, σ′ ∈ Z<ω, set ` = max({|σ|− 1, |σ′|− 1}), and
for all i ∈ {0, . . . , `}, wi = σ(i) if i ≤ |σ| − 1 and 0 otherwise, and vi = σ′(i) if i ≤ |σ′| − 1
and 0 otherwise. Then σ · β � |σ|−1 = σ′ · β � |σ′|−1 ⇔ σ · β � |σ|−1 − σ′ · β � |σ′|−1 = 0 ⇔∑`
i=0(wi − vi)bi = 0⇔ (w0 − v0, w1 − v1, . . . , w` − v`) ∈ 〈0〉β . Thus if 〈0〉β were r.e., then

equality with respect to β would also be r.e., which, as was shown earlier, is impossible.

We note that there cannot be any generating sequence β for GR such that there are finitely
generated subgroups F, F ′ of GR with Fβ r.e. and F ′β co-r.e.

I Theorem 23. Let R ≤T K be Martin-Löf random. Let β be any generating sequence for
GR. Then for any finitely generated subgroups F and F ′ of GR, one of the following holds:
(i) both Fβ and F ′β are r.e., (ii) both Fβ and F ′β are co-r.e., or (iii) at least one of Fβ and
F ′β is neither r.e. nor co-r.e.

I Theorem 24. Let R ≤T K be Martin-Löf random. Then there is a generating sequence β
of GR such that Fβ is r.e. for every non-trivial finitely generated subgroup F of GR and Fβ
is Bc-learnable.

The next result shows, in contrast to Theorem 24, that if R ≤T K is Martin-Löf random,
then, given any generating sequence β for GR such that Fβ is r.e. for every non-trivial finitely
generated subgroup F of GR, the class Fβ is not explanatorily learnable.

I Theorem 25. Let R ≤T K be Martin-Löf random. Suppose β := (bi)i<ω is a generating
sequence for GR such that for any non-trivial finitely generated subgroup F of GR, Fβ is r.e.
Then Fβ is not Ex-learnable.

The next theorem considers the learnability of the set of representations of any finitely
generated subgroup F of the quotient group GR/Z with respect to the generating se-
quence for GR/Z constructed in the proof of Theorem 15. Slightly abusing the notation
defined in Notation 19, for any generating sequence β for GR/Z, Fβ will denote the set
of representations of any subgroup F of GR/Z with respect to β, and Fβ will denote
{Fβ | F is a finitely generated subgroup of GR/Z}.

I Theorem 26. Suppose R ≤T K is Martin-Löf random. Let GR/Z be the quotient group
of GR by Z. Then there is a generating sequence β for GR/Z such that Fβ is r.e. for all
finitely generated subgroups of GR/Z and Fβ is Bc-learnable.
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As in the case of the collection of non-trivial finitely generated subgroups of GR, the class
Fβ is not explanatorily learnable with respect to any generating sequence β for GR/Z. The
proof is entirely analogous to that of Theorem 25.

I Theorem 27. Let R ≤T K be Martin-Löf random. Suppose β := (bi)i<ω is a generating
sequence for GR/Z such that for any finitely generated subgroup F of GR/Z, Fβ is r.e. Then
Fβ is not Ex-learnable.

A natural question is whether the learnability or non-learnability of a class of representations
for a collection of subgroups of GR is independent of the choice of the generating sequence
for GR. We have seen in Theorem 25, for example, that the non explanatory learnability of
the class of non-trivial finitely generated subgroups of GR holds for any generating sequence
for GR such that Fβ is r.e. whenever F is a finitely generated subgroup. The next theorem
gives a positive learnability result that is to some extent independent of the choice of the
generating sequence: for any generating sequence β for GR such that equality with respect
to β is K-recursive and Fβ is r.e. whenever F is a finitely generated subgroup of GR, the
class Fβ is explanatorily learnable relative to oracle K.

I Theorem 28. Let R ≤T K be Martin-Löf random. Then for any generating sequence β
for GR such that equality with respect to β is K-recursive (in other words, the set Eβ :=
{(σ, σ′) ∈ Z<ω × Z<ω | σ · β|σ|−1 = σ′ · β|σ′|−1} is K-recursive) and Fβ is r.e. for all finitely
generated subgroups of GR, Fβ is Ex[K]-learnable.

We recall from Theorem 15 that there is a generating sequence β := (bi)i<ω for GR such that
equality modulo 1 with respect to β is r.e.; in other words, the set {(σ, σ′) ∈ Z<ω × Z<ω |
σ · β|σ|−1 ≡ σ′ · β|σ|′−1 (mod 1)} is r.e. The next result considers the learnability of a class
that is in some sense “orthogonal” to the class Zβ : the class of all sets of representations of
Z with respect to any generating sequence β′ for GR such that Zβ′ is r.e. In the statement
and proof of the next theorem, for any generating sequence β for GR, let Eβ denote the set
{(σ, σ′) ∈ Z<ω × Z<ω | σ · β|σ|−1 = σ′ · β|σ′|−1 (mod 1)}.

I Theorem 29. Let R ≤T K be Martin-Löf random. Let G0 be the collection of all generating
sequences β for GR such that Eβ is r.e., and define E0 := {Eβ | β ∈ G0}. Then E0 is not
Bc-learnable.

In contrast to Theorem 29, we present a positive learnability result for the collection of all Eβ
such that Eβ is co-r.e. The learnability is with respect to a hypothesis space which uses co-r.e.
indices. That is to say, given any text T , the learner will on T always output an r.e. index
for sets of the form (Z<ω × Z<ω) \ Eβ′ , where Eβ′ is some co-r.e. set. In the statement and
proof of the next theorem, given any generating sequence β for GR such that equality with
respect to β is co-r.e., Eβ will denote the set {(σ, σ′) ∈ Z<ω × Z<ω | σ · β|σ|−1 = σ′ · β|σ′|−1}.

I Theorem 30. Let R ≤T K be Martin-Löf random. Let G1 be the collection of all generating
sequences β for GR such that Eβ is co-r.e., and define E1 := {Eβ | β ∈ G1}. Then E1 is
explanatorily learnable relative to oracle K using co-r.e. indices. That is to say, there is
a K-recursive learner M such that for any Eβ ∈ E1 and any text T for Eβ, M on T will
output an r.e. index for (Z<ω × Z<ω) \ Eβ in the limit.

5 Conclusion and Possible Future Research

This paper introduced a method of constructing random subgroups of rationals, whereby
Martin-Löf random binary sequences are directly encoded into the generators of the group.
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It was shown that if the Martin-Löf random sequence associated to a randomly generated
subgroup G is limit-recursive, then one can build a generating sequence β for G such that
the word problem for G is co-r.e. with respect to β, as well as another generating sequence
β′ such that the word problem for G/Z with respect to β′ is r.e. We also showed that every
non-trivial finitely generated subgroup of G has an r.e. representation with respect to a
suitably chosen generating sequence for G; moreover, the class of all such r.e. representations
is behaviourally correctly learnable but never explanatorily learnable. We did not, however,
extend the definition of algorithmic randomness to all Abelian groups; we suspect that
such a general definition might be out of reach of current methods due to the fact that the
isomorphism types of even rank 2 groups (subgroups of (Q2,+)) are still unknown.
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