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Abstract. In inductive inference, we study learners (computable devices) in-
ferring formal languages. In particular, we consider semantically witness-based
learners, that is, learners which are required to justify each of their semantic mind
changes. This natural requirement deserves special attention as it is a specializa-
tion of various important learning paradigms. As such, it has already proven to
be fruitful for gaining knowledge about other types of restrictions.
In this paper, we provide a thorough analysis of semantically converging, seman-
tically witness-based learners, obtaining normal forms for them. Most notably,
we show that set-driven globally semantically witness-based learners are equally
powerful as their Gold-style semantically conservative counterpart. Such results
are key to understanding the, yet undiscovered, mutual relation between various
important learning paradigms of semantically converging learners.

1 Introduction

Computably learning formal languages from a growing but finite amount of informa-
tion thereof is referred to as inductive inference or language learning in the limit [5],
a branch of (algorithmic) learning theory. Here, a learner h (a computable device) is
successively presented all and only the information from a formal language L (a com-
putably enumerable subset of the natural numbers). We call such a list of elements of L
a text of L. With every new datum, the learner h makes a guess (a description for a c.e.
set) about which language it believes to be presented. Once these guesses converge to a
single, correct hypothesis explaining the language, the learner successfully learned the
language L on this text. We say that h learns L if it learns L on every text of L.

We refer to this as explanatory learning as the learner, in the limit, provides an
explanation of the presented language. If we drop the requirement to converge to a
single correct hypothesis and allow the learner to oscillate between arbitrarily many
correct ones, we refer to this as behaviourally correct learning [3,13] and denote it as1

TxtGBc. Since a learner which always guesses the same language can learn this very
language, we study classes of languages which can be TxtGBc-learned by a single
learner. We denote the set of all such classes with [TxtGBc], which we refer to as the
learning power of TxtGBc-learners.
? This work was supported by DFG Grant Number KO 4635/1-1.
1 Here, Txt indicates that the information is given from text, G stands for Gold-style learning,

where the learner has full information on the elements presented to make its guess, and, lastly,
Bc refers to behaviourally correct learning.
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Additional restrictions, modelling various learning strategies, may be imposed on
the learner. By studying these we discover how seemingly intuitive strategies affect the
learning power. For example, it may seem evident to only make semantic mind changes
when seeing a new datum justifying this mind change. However, it is known that fol-
lowing such a strategy, referred to as semantically witness-based learning (SemWb,
[9,10]), severely lessens the obtainable learning power.

Besides being intuitive yet restrictive, this restriction proved to be important in the
literature. Together with target-cautious learning [8], where learners may not overgener-
alize the target language, this paradigm encloses various important learning restrictions.
Exemplary for explanatory learning, in settings where (syntactically) witness-based
learning, as specialization or lower bound, and target-cautious learning, as generaliza-
tion or upper bound, permit equivalent learning power, the three enclosed but seemingly
incomparable restrictions, namely conservativeness [1], weak monotonicity [7,17] and
cautiousness [12], are equivalent as well [9].

The still undiscovered mutual relation between the mentioned restrictions in the be-
haviourally correct setting makes it worthwhile to study semantically witness-based
learning in this setting as well. The previous literature indicates analogous equali-
ties to be possible. Particularly, semantically witness-based learners and, a generaliza-
tion thereof, semantically conservative learners (SemConv, [10]), which keep their
guesses while they are consistent with the data given, are shown to be equally power-
ful [10]. This equality holds true regardless of the amount of information given, partic-
ularly, it holds true for both Gold-style and set-driven learners (Sd, [16]), which base
their hypotheses solely on the set of elements given. We enhance the analogy by show-
ing that the learners perform equally well regardless of the amount of information given,
drawing parallels to target-cautious learning, where Gold-style and set-driven learners
are also equally powerful [4].

The latter result already provides a powerful normal form. It states that semanti-
cally witness-based learners do not need to know the order and amount of the infor-
mation given. This significantly extends the result [10] that such set-driven learners are
as powerful as partially set-driven ones [2,15]. Note that the latter learners base their
hypotheses on the content and amount of information given, but have no access to the
order in which the information came. Another normal form shows that witness-based
learners display such behaviour also globally, that is, on arbitrary text. This means that
the learners always display a “decent” behaviour regardless whether the information
given belongs to a language they actually learn. Lastly, semantically witness-based and
semantically conservative learning is interchangeable also when required globally.

This paper is structured as follows. In Section 2 we introduce all necessary notation
and preliminary results. In Section 3, we show that three normal forms can be assumed
simultaneously. Our main result (Theorem 1) states that semantically conservative G-
learners may be assumed (a) globally (b) semantically witness-based and (c) set-driven.

2 Language Learning in the Limit

In this section we introduce notation and preliminary results used throughout this paper.
Thereby, we consider basic computability theory as known [14]. We start with the math-
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ematical notation and use ( and ⊆ to denote the proper subset and subset relation be-
tween sets, respectively. We denote the set of all natural numbers as N = {0, 1, 2, . . . }
and the empty set as ∅. Furthermore, we let P and R be the set of all partial and to-
tal computable functions p : N → N. Next, we fix an effective numbering {ϕe}e∈N
of all partial computable functions and denote the e-th computably enumerable set as
We = dom(ϕe) and interpret the number e as an index or hypothesis thereof.

We learn recursively enumerable sets L ⊆ N, called languages, using learners,
that is, partial computable functions. By # we denote the pause symbol and for any
set S we denote S# := S ∪ {#}. Then, a text is a total function T : N → N ∪ {#}
and the collection of all texts is denoted as Txt. For any text (or sequence) T we
define the content of T as content(T ) := range(T ) \ {#}. Here, range denotes the
image of a function. A text of a language L is such that content(T ) = L. We denote
the collection of all texts of L as Txt(L). Additionally, for n ∈ N, we denote by
T [n] the initial sequence of T of length n, that is, T [0] := ε (the empty string) and
T [n] := (T (0), T (1), . . . , T (n− 1)). For a set S, we call the sequence (text) where all
elements of S are presented in strictly increasing order without interruptions (followed
by infinitely many pause symbols if S is finite) the canonical sequence (text) of S. On
finite sequences we use ⊆ to denote the extension relation. Given two sequences σ and
τ we write σ_τ or (if readability permits) στ to denote the concatenation of these.

We use the following system to formalize learning criteria [11]. An interaction op-
erator β takes a learner h ∈ P and a text T ∈ Txt as argument and outputs a pos-
sibly partial function p. Intuitively, β provides the information for the learner to make
its guesses. We consider the interaction operators G for Gold-style or full-information
learning [5] and Sd for set-driven learning [16]. Define, for any i ∈ N,

G(h, T )(i) := h(T [i]),

Sd(h, T )(i) := h(content(T [i])).

Intuitively, a Gold-style learner has full information on the elements presented, while a
set-driven learner bases its guesses solely on the content, that is, set of elements, given.

Given a learning task, we can distinguish between various criteria for successful
learning. A first such criterion is explanatory learning (Ex, [5]), where the learner is
expected to converge to a single, correct hypothesis in order to learn a language. Allow-
ing the learner to oscillate between arbitrarily many semantically correct, but possibly
syntactically different hypotheses we get behaviourally correct learning (Bc, [3,13]).
Formally, a learning restriction δ is a predicate on a total learning sequence p, that is, a
total function, and a text T ∈ Txt. For the mentioned criteria we have

Ex(p, T ) :⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T ),

Bc(p, T ) :⇔ ∃n0∀n ≥ n0 : Wp(n) = content(T ).

We impose restrictions on the learners. In particular, we focus on semantically witness-
based learning (SemWb, [9,10]), where the learners need to justify each of their se-
mantic mind changes. A generalization thereof is semantically conservative learning
(SemConv, [1]). Here, the learners may not change their mind while their hypotheses
are consistent with the information given. A hypothesis is consistent if it contains all the
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information it is based on and if we require the learners to output consistent hypotheses
we speak of consistent learning (Cons, [1]). Formally, we define the restrictions as

SemWb(p, T ) :⇔ ∀n,m : (∃k : n ≤ k ≤ m ∧Wp(n) 6=Wp(k))⇒
⇒ (content(T [m]) ∩Wp(m))\Wp(n) 6= ∅,

Cons(p, T ) :⇔ ∀n : content(T [n]) ⊆Wh(T [n]),

SemConv(p, T ) :⇔ ∀n,m :
(
n < m ∧ content(T [m]) ⊆Wp(n)

)
⇒

⇒Wp(n) =Wp(m).

Given two restrictions δ and δ′, the juxtaposition δδ′ denotes their combination, that is,
intersection. Finally, the always true predicate T denotes the absence of a restriction.

Now, a learning criterion is a tuple (α, C, β, δ), where C is a set of admissible learn-
ers, typically P orR, β is an interaction operator and α and δ are learning restrictions.
We denote this learning criterion as τ(α)CTxtβδ. In the case of C = P , α = T or
δ = T we omit writing the respective symbol. For an admissible learner h ∈ C we say
that h τ(α)CTxtβδ-learns a language L if and only if on arbitrary text T ∈ Txt
we have α(β(h, T ), T ) and on texts of the target language T ∈ Txt(L) we have
δ(β(h, T ), T ). With τ(α)CTxtβδ(h) we denote the class of languages τ(α)CTxtβδ-
learned by h and the set of all such classes we denote with [τ(α)CTxtβδ].

Lastly, we discuss Bc-locking sequences, the semantic counterpart to locking se-
quences [2]. Intuitively, a Bc-locking sequence is a sequence where the learner cor-
rectly identifies the target language and does not make a semantic mind change anymore
regardless what information of the language it is presented. Formally, given a language
L and a G-learner h, a sequence σ ∈ L∗# is called a Bc-locking sequence for h on L
if and only if for every sequence τ ∈ L∗# we have that Wh(στ) = L [6]. When talking
about Sd-learners, we call a finite set D a Bc-locking set of L if and only if for all D′,
with D ⊆ D′ ⊆ L, we have Wh(D′) = L.

While for each G-learner h there exists a Bc-locking sequence on every language
it learns [2], not every text may contain an initial segment which is a Bc-locking se-
quence. Learners which do have a Bc-locking sequence on every text of a language they
learn are called strongly Bc-locking [8]. Formally, a learner is strongly Bc-locking if on
every language L it learns and on every text T ∈ Txt(L) there exists n such that T [n]
is a Bc-locking sequence for h on L. The transition to set-driven learners is immediate.

3 Semantic Witness-based Learning

In this section, we provide a normal form for semantically witness-based learners,
namely that τ(SemWb)TxtSdBc-learners are as powerful as TxtGSemConvBc
ones (Theorem 1). We prove this normal form stepwise. We start by showing that each
TxtGSemConvBc-learner may be assumed semantically conservative on arbitrary
text (Theorem 2). Afterwards, we prove that such learners base their guesses solely on
the content given (Theorem 3). Lastly, we observe that they remain equally powerful
when being globally semantically witness-based (Theorem 4).

Theorem 1. We have that [τ(SemWb)TxtSdBc] = [TxtGSemConvBc].
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We make a TxtGSemConvBc-learner h globally semantically conservative first.

Theorem 2. We have that [τ(SemConv)TxtGBc] = [TxtGSemConvBc].

Proof. The inclusion [τ(SemConv)TxtGBc] ⊆ [TxtGSemConvBc] is immedi-
ate. For the other, let h be a consistent learner [10] and L = TxtGSemConvBc(h).
We provide a learner h′ which τ(SemConv)TxtGBc-learns L.

We do so with the help of an auxiliary τ(SemConv)TxtGBc-learner ĥ, which
only operates on sequences without repetitions or pause symbols. For convenience, we
subsume these using the term duplicates. When h′ is given a sequence with duplicates,
say (7, 1, 5, 1, 4,#, 3, 1), it mimics ĥ given the same sequence without duplicates, that
is, h′(7, 1, 5, 1, 4,#, 3, 4) = ĥ(7, 1, 5, 4, 3). First, note that this mapping of sequences
preserves the ⊆-relation on sequences, thus making h′ also a τ(SemConv)-learner.
Furthermore, it suffices to focus on sequences without duplicates since consistent, se-
mantically conservative learners cannot change their mind when presented a datum they
have already witnessed (or a pause symbol). Thus, ĥ will be presented sufficient infor-
mation for the learning task, which then again is transferred to h′. With this in mind,
we only consider sequences without duplicates, that is, without repetitions or pause
symbols, for the entirety of this proof. Sequences where duplicates may potentially still
occur (for example when looking at the initial sequence of a text) are also replaced as
described above. To ease notation, given a set A, we write S(A) for the subset of A∗

where the sequences do not contain duplicates. Now, we define the auxiliary learner ĥ.

Algorithm 1: The auxiliary τ(SemConv)-learner ĥ.
Parameter: TxtGSemConv-learner h.
Input: Finite sequence σ ∈ S(N).
Semantic Output: Wĥ(σ) =

⋃
t∈NEt.

Initialization: t′ ← 0, E0 ← content(σ) and, for all t > 0, Et ← ∅.
1 for t = 0 to∞ do
2 if ∃σ′ ( σ : content(σ) ⊆W t

ĥ(σ′)
then

3 Σ′
t ← {σ′ ( σ | content(σ) ⊆W t

ĥ(σ′)
}

4 Et+1 ← Et ∪
⋃
σ′∈Σ′

t
W t
ĥ(σ′)

5 else if ∀σ′ ( σ : content(σ) 6⊆W t
h(σ′) then

6 S(σ, t′)← S
(
W t′

h(σ) \ content(σ)
)

7 if ∀τ ∈ S(σ, t′) :
⋃
τ ′∈S(σ,t′)W

t′
h(στ ′) ⊆W t

h(στ) then
8 Et+1 ← Et ∪W t′

h(σ)

9 t′ ← t′ + 1

10 else
11 Et+1 ← Et

Consider the learner ĥ as in Algorithm 1 with parameter h. Given some input σ, the
intuition is the following. Once ĥ, on any previous sequence σ′, is consistent with the
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currently given information content(σ), the learner only enumerates the same as such
hypotheses (lines 2 to 4). While no such hypothesis is found, ĥ does a forward search
(lines 5 to 9) and only enumerates elements if all visible future hypotheses also witness
these elements. As already discussed, ĥ operates only on sequences without repetitions
or pause symbols, thus making it possible to check all necessary future hypotheses.

First we show that for any L ∈ L and any T ∈ Txt(L) we have, for n ∈ N,

Wĥ(T [n]) ⊆Wh(T [n]). (1)

Note that, while the (infinite) text T may contain duplicates, the (finite) sequence T [n]
does not by our assumption. Now, we show Equation (1) by induction on n. The case
n = 0 follows immediately. Assume Equation (1) holds up to n. As content(T [n +
1]) ⊆ Wh(T [n+1]) by consistency of h and as, for n′ ≤ n, Wh(T [n′]) = Wh(T [n+1])

whenever content(T [n+ 1]) ⊆Wh(T [n′]), we get

Wĥ(T [n+1]) ⊆
⋃
n′≤n,

content(T [n+1])⊆Wĥ(T [n′])

Wĥ(T [n′]) ∪Wh(T [n+1]) ⊆Wh(T [n+1]).

The first inclusion follows as the big union contains all previous hypotheses found
in the first if-clause (lines 2 to 4) and as Wh(T [n+1]) contains all elements possibly
enumerated by the second if-clause (lines 5 to 9). Note that the latter also contains
content(T [n+1]), thus covering the initialization. The second inclusion follows by the
induction hypothesis and semantic conservativeness of h.

We continue by showing that ĥ TxtGBc-learns L. To that end, let L ∈ L and
T ∈ Txt(L). We distinguish the following two cases.

1. Case: L is finite. Then there exists n0 with content(T [n0]) = L. Let n ≥ n0. By
SemConv and consistency of h, we haveL =Wh(T [n]). By Equation (1), we have
Wh(T [n]) ⊇ Wĥ(T [n]) and, by consistency of ĥ, Wĥ(T [n]) ⊇ content(T [n]) = L.
Altogether we have Wĥ(T [n]) = L as required.

2. Case: L is infinite. Let n0 be minimal such that Wh(T [n0]) = L. Then, as h is
semantically conservative, T [n0] is a Bc-locking sequence for h on L and we have

∀i < n0 : content(T [n0]) 6⊆Wh(T [i]).

Thus, elements enumerated by Wĥ(T [n0])
cannot be enumerated by the first if-

clause (lines 2 to 4) but only by the second one (lines 5 to 9). We showWĥ(T [n0])
=

L. The⊆-direction follows immediately from Equation (1). For the other direction,
let t′ be the current step of enumeration. As T [n0] is a Bc-locking sequence, we
have, for all τ ∈ S(T [n0], t′) = S

(
W t′

h(T [n0])
\ content(T [n0])

)
,⋃

τ ′∈S(T [n0],t′)

W t′

h(T [n0])_τ ′ ⊆Wh(T [n0]_τ) = L.

Thus, at some step t, Et+1 ←W t′

h(T [n0])
and, then, the enumeration continues with

t′ ← t′ + 1. In the end we have L ⊆Wĥ(T [n0])
and, altogether, L =Wĥ(T [n0])

.
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We now show that, for any n > n0, L = Wĥ(T [n]) holds. Note that at some
point content(T [n]) ⊆ Wĥ(T [n0])

will be witnessed. Thus, Wĥ(T [n]) will enu-
merate the same as Wĥ(T [n0])

= L, and it follows that L ⊆ Wĥ(T [n]). By Equa-
tion (1), Wĥ(T [n]) will not enumerate more than Wh(T [n]) = L, that is, Wĥ(T [n]) ⊆
Wh(T [n]) = L, concluding this part of the proof.

It remains to be shown that ĥ is SemConv on arbitrary text T ∈ Txt. The problem
is that when a previous hypothesis becomes consistent with information currently given,
the learner may have already enumerated incomparable data in its current hypothesis.
This is prevented by closely monitoring the time of enumeration, namely by waiting
until the enumerated data will certainly not cause such problems. We prove that ĥ is
τ(SemConv) formally. Let n < n′ be such that content(T [n′]) ⊆ Wĥ(T [n]). We
show that Wĥ(T [n]) =Wĥ(T [n′]) by separately looking at each inclusion.

⊆: The inclusion Wĥ(T [n]) ⊆ Wĥ(T [n′]) follows immediately since by assumption
content(T [n′]) ⊆ Wĥ(T [n]), meaning that at some point the first if-clause (lines 2
and 4) will find T [n] as a candidate and then Wĥ(T [n′]) will enumerate Wĥ(T [n]).

⊇: Assume there exists x ∈ Wĥ(T [n′]) \Wĥ(T [n]). Let x be the first such enumerated
and let tx be the step of enumeration with respect to h(T [n′]), that is, x ∈W tx

h(T [n′])

but x /∈ W tx−1
h(T [n′]). Furthermore, let tcontent be the step where content(T [n′]) ⊆

Wĥ(T [n]) is witnessed for the first time. Now, by the definition of ĥ, we have

Wĥ(T [n′]) ⊆W
tcontent−1
h(T [n′]) ∪Wĥ(T [n]),

as Wĥ(T [n′]) enumerates at most W tcontent−1
h(T [n′]) until it sees the consistent prior hy-

pothesis, namely ĥ(T [n]). This happens exactly at step tcontent − 1, at which
Wĥ(T [n′]) stops enumerating elements from W tcontent−1

h(T [n′]) and continues to follow
Wĥ(T [n]). Now, observe that tx < tcontent since x ∈ Wĥ(T [n′]) but x /∈ Wĥ(T [n]).

But then, with S(T [n], tcontent) = S
(
W tcontent
h(T [n]) \ content(T [n])

)
,

x ∈
⋃

τ ′∈S(T [n],tcontent)

W tcontent
h(T [n]_τ ′) ⊆Wĥ(T [n]),

which must be witnessed in order for Wĥ(T [n]) to enumerate content(T [n′]) via
the second if-clause (lines 5 to 9), that is, to get content(T [n′]) ⊆ Wĥ(T [n]). This
contradicts x /∈Wĥ(T [n]), concluding the proof. ut

This result proves that h may be assumed semantically conservative on arbitrary
text. Next, we show that h does not rely on the order or amount of information given.

Theorem 3. We have that [τ(SemConv)TxtSdBc] = [τ(SemConv)TxtGBc].

Proof. Let h be a learner and L = τ(SemConv)TxtGBc(h). We may assume h to
be globally consistent [10]. We provide a learner h′ which τ(SemConv)TxtSdBc-
learns L. To that end, we introduce the following auxiliary notation used throughout
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this proof. For each finite set D ⊆ N and each x ∈ N, let d := max(D), σD be the
canonical sequence of D and D<x := {y ∈ D | y < x}. Note that the definition of
D<x can be extended to ≤, > and ≥ as well as infinite sets in a natural way. Now, let
h′ be such that, for each finite set D,

Wh′(D) = D ∪
(
Wh(σD)

)
>d
∪
{
x ∈

(
Wh(σD)

)
<d

: D ∪ {x} ⊆Wh(σ(D<x))

}
.

Intuitively, h′(D) simulates h assuming it got the information in the canonical order,
that is, h′(D) simulates h(σD). All elements x ∈ Wh(σD) such that x > d can be
enumerated, as any later, consistent hypothesis will do so as well. If x < d, then we
check whether the learner h given the canonical sequence up to x is consistent with
D ∪ {x}, that is, whether D ∪ {x} ⊆ Wh(σ(D<x)). If so, we enumerate x as it will be
done by the previous hypotheses as well. Note that, for each finite D ⊆ N, we have

Wh′(D) ⊆Wh(σD). (2)

We proceed by proving that h′ τ(SemConv)TxtSdBc-learns L. First, we show
the TxtSdBc-convergence. The idea here is to find a Bc-locking sequence of the
canonical text. Doing so ensures that even if elements are shown out of order they will
be enumerated as h will not make a mind change and thus the consistency condition
will be observed. To that end, let L ∈ L. We distinguish whether L is finite or not.

1. Case: L is finite. We show that Wh′(L) = L. By definition of h′, we have L ⊆
Wh′(L). For the other inclusion, note that as h is consistent and semantically conser-
vative (which in particular implies it being target-cautious), we have thatWh(σL) =
L. Then, by Equation (2), we have Wh′(L) ⊆Wh(σL) = L, concluding this case.

2. Case: L is infinite. Let Tc be the canonical text of L, and let σ0 be a Bc-locking
sequence for h on Tc. Such a Bc-locking sequence exists, as h is strongly Bc-
locking [10, Thm. 7]. Let D0 := content(σ0). For any input D ⊆ L such that D ⊇
D0, we show that Wh′(D) = L. By Equation (2), we get Wh′(D) ⊆ Wh(σD) = L.
To show L ⊆Wh′(D), let x ∈ L. We distinguish the relative position of x and d.

x > d: In this case we have x ∈Wh′(D) by definition of h′.
x ≤ d: In this case either x ∈ D and we immediately get x ∈ Wh′(D), or we have

to check whether D ∪ {x} ⊆ Wh(σ(D<x)). Since σ0 is an initial segment of
the canonical text of L, it holds that x > max(content(σ0)) and, thus, we get
σ0 ⊆ σ(D<x). Now Wh(σ(D<x)) = L, meaning that D ∪ {x} ⊆ Wh(σ(D<x))

will be observed at some point in the computation. Thus, x ∈Wh′(D).

Altogether, we get Wh′(D) = L and thus TxtSdBc-convergence. It remains to be
shown that h′ is τ(SemConv). Let D′ ⊆ D′′ and D′′ ⊆ Wh′(D′). The trick here is
that upon checking for consistency with elements shown out of order, the learner has
to check the same, minimal sequence regardless whether the input is D′ or D′′. We
proceed with the formal proof. Therefore, we expand the initially introduced notation
of this proof. For any x ∈ N define σ′ := σD′ , d′ := max(D′) and σ′<x := σ(D′

<x)
.

Analogously, we use σ′′, d′′ and σ′′<x whenD′′ is the underlying set. First, we show that
Wh(σ′) = Wh(σ′′). Since Wh′(D′) enumerates D′′, that is, D′′ ⊆ Wh′(D′), we have for
all y ∈ (D′′ \D′)<d′ that D′ ∪ {y} ⊆Wh(σ′

<y)
by definition of h′. Thus, we have

Wh(σ′
<y)

=Wh(σ′). (3)
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Note that, if (D′′ \D′)<d′ = ∅, then σ′<d′+1 = σ′. Thus, Equation (3) also holds for

m :=

{
min(D′′<d′ \D′), if D′′<d′ \D′ 6= ∅,
d′ + 1, otherwise.

Furthermore, it holds true that for any x ≤ m we have

σ′<x = σ′′<x. (4)

By Equations (2) and (3), we have D′′ ⊆ Wh′(D′) ⊆ Wh(σ′) = Wh(σ′
<m). As, by

Equation (4), σ′<m = σ′′<m ⊆ σ′′ and h is τ(SemConv), we get

Wh(σ′) =Wh(σ′′). (5)

We conclude the proof by showing that Wh′(D′) = Wh′(D′′). We check each direc-
tion separately by checking every possible position of an element, which is a candidate
for enumeration, relative to the given information D′ and D′′.

⊇: Let x ∈ Wh′(D′′). For x ∈ D′′ we have x ∈ Wh′(D′) by assumption. Otherwise,
by Equations (2) and (5), we get x ∈ Wh(σ′). Thus, x will be considered in the
enumeration of Wh′(D′). We distinguish the relation between x and d′.

x>d′: In this case x ∈ (Wh(σ′))>d′ ⊆Wh′(D′).
x<d′: As d′ ≤ d′′ and since x is enumerated into Wh′(D′′), we have D′′ ∪ {x} ⊆

Wh(σ′′
<x)

. We, again, distinguish the relative position of x and m and get

x < m : D′ ∪ {x} ⊆ D′′ ∪ {x} ⊆Wh(σ′′
<x)

(4)
= Wh(σ′

<x)
,

m < x < d′ : D′ ∪ {x} ⊆ D′′ ∪ {x} ⊆Wh(σ′′
<x)

(∗)
= Wh(σ′′)

(5)
= Wh(σ′)

(3)
=

(3)
= Wh(σ′

<m)
(∗)
= Wh(σ′

<x)
.

We use h being τ(SemConv) in the steps marked by (∗). Thus, x ∈Wh′(D′).
⊆: Let x ∈Wh′(D′). For x ∈ D′′ we have x ∈Wh′(D′′) by definition of h′. Otherwise,

x ∈ D′′ ∪ {x} ⊆Wh′(D′) ⊆Wh(σ′)
(5)
= Wh(σ′′).

Thus, x will be considered in the enumeration of Wh′(D′′). We now distinguish
between the possible relation of x and d′′.

x>d′′: In this case x ∈Wh′(D′′) by definition of h′.
x<d′′: We show that D′′ ∪ {x} ⊆Wh(σ′′

<x)
and, thus, x is enumerated by Wh′(D′′).

x < m : D′′ ∪ {x} ⊆Wh(σ′
<x)

(4)
= Wh(σ′′

<x)
,

m < x < d′ : D′′ ∪ {x} ⊆Wh(σ′
<x)

(∗)
= Wh(σ′

<m)
(4)
= Wh(σ′′

<m)
(∗)
= Wh(σ′′

<x)
,

d′ < x < d′′ : D′′ ∪ {x} ⊆Wh(σ′) =Wh(σ′
<m) =Wh(σ′′

<m)
(4)
= Wh(σ′′

<x)
.

We use h being τ(SemConv) in the steps marked by (∗). In the end, x ∈
Wh′(D′′). ut
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Hence, we may assume h to be τ(SemConv)TxtSdBc. Lastly, we observe that
h may even be assumed globally semantically witness-based. This concludes the proof
of Theorem 1 and, thus, also this section.

Theorem 4. We have that [τ(SemWb)TxtSdBc] = [τ(SemConv)TxtSdBc].

Proof. Let δ ∈ {SemWb,SemConv}. Since δ-learners may be assumed to be con-
sistent [10, Thm. 8], which also holds true when the restrictions are required glob-
ally, we have [τ(Consδ)TxtSdBc] = [τ(δ)TxtSdBc]. Since Cons ∩ SemWb =
Cons ∩ SemConv [10, Lem. 11], the theorem holds. ut
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