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—— Abstract

The cluster editing problem is to transform an input graph into a cluster graph by performing a

minimum number of edge editing operations. A cluster graph is a graph where each connected
component is a clique. An edit operation can be either adding a new edge or removing an existing
edge. In this write-up we outline the core techniques used in the exact cluster editing algorithm of
the KaPoCE framework (contains also a heuristic solver), submitted to the exact track of the 2021
PACE challenge.
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1 Preliminaries

Let G = (V, E) be a simple, undirected graph. The cluster editing problem asks to transform
G into a disjoint union of cliques with the least number of edge edit operations. An edit is the
deletion of an existing edge or the insertion of a missing edge. As a graph is a cluster-graph
if and only if it does not contain an induced path on three vertices (a Ps), the problem can
also be seen as Ps-free editing.

2 Solver Summary

The solver is based on a more general F-free solver developed for quasi-threshold editing,
i.e., {Cy4, Ps}-free editing [6]. Its implementation already solves more than half of the public
exact instances in the 2021 PACE challenge without modification. The solver uses a branch-
and-bound algorithm that branches on the edges of a forbidden subgraph. In our adaptation,
branching is simplified following the work of recent FPT algorithms [3, 2] by generalizing to
the weighted cluster editing problem where each vertex pair has an associated integral edit
cost. To find the lowest number of edits, the solver actually uses the decision variant that
asks if it is possible to solve the instance with k edits. The optimization problem is solved

* This is a brief description of one of the highest ranked solvers of PACE Challenge 2021. It has been
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The KaPoCE Exact Cluster Editing Algorithm

by calling the decision variant with increasing values of k. The solver includes a multitude of
known reduction rules [4].

Initially, we split the input graph into connected components and solve them individually.
After applying all possible reduction rules, the solver branches on the most expensive edge.
The edge is marked either as permanent or the vertex pair is forbidden from being connected.
Future edits are prevented from changing the state of the vertex pair by setting its edit cost
to infinity. As outlined in [3], the endpoints of permanent edges are merged to obtain an
equivalent weighted instance of smaller size.

Crucial for the performance of a branch-and-bound algorithm are good lower and upper
bounds to prune branches of the search tree that cannot lead to better solutions. Moreover,
they enable highly effective parameter-dependent reduction rules [4].

3 Upper Bounds

An initial upper bound is obtained with our heuristic solver. Surprisingly, this initial solution
is optimal on all public instances we were able to solve.

4 Lower Bounds

We extend the lower bound from Ps packings used in the F-free solver [6] to packings of
arbitrary structures. We found stars to be particularly effective because they circumvent the
problem that the lower bound from Pj packings cannot be higher than |E|/2. For a detailed
explanation of lower bounds via subgraph packing and related techniques (e.g., local search)
we refer to the F-free solver [6].

5 Reduction Rules

The solver uses the reduction rules 1,2,3 and 5 from [4]. Rule 4, which is based on min-cuts,

was found to be ineffective. We implemented the unweighted 4k kernel based on critical

cliques from [7] and the weighted 2k kernel from [5] which is the smallest known kernel for the

problem. However, the 2k kernel is not used in the final solver since it is mostly dominated

by the other reductions and cannot always be applied when dealing with zero-cost edges.
Additionally, the following four reduction rules are used.

Distance Three Reduction

Two vertices with distance three or more cannot be in the same cluster in an optimal
solution [1]. Therefore, all vertex pairs with distance three or more are initially marked as
forbidden. This does not apply to weighted instances however.

Forced Choices Reduction for all Vertex Pairs

The most effective reduction rule we added is based on lower and upper bounds. If setting
an edge to forbidden or permanent would raise the lower bound above the current upper
bound, then the opposite edit must be performed. In other words, we identify an edge where,
if branched on it, one branch would be pruned immediately.

A naive implementation of this rule is too slow as it requires a quadratic number of lower
bound (i.e. packing) computations. However all these packings are similar. Given a packing
lower bound for the instance, we locally modify the packing for each vertex pair to obtain
the required bounds. Because a packing changes only locally, this can be done significantly
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faster than computing n? packing lower bounds from scratch. Note that this rule dominates
previously known parameter-dependent reduction rules from [4].

Forced Choices Reduction for one Vertex Pair

The locally modified packings from the above reduction are smaller than a heuristically found
packing with local search. Thus, we additionally identify a constant number of edits that
are highly unlikely to be included in the optimal solution and compute lower bounds for all
these edits from scratch. Due to the high quality of the heuristic upper bounds, these two
packing based reductions alone are able to solve most instances without branching.

Clique-Like Subgraph Reduction

We analyze the clusters found by the heuristic solver. Using an exact solver as a subroutine
for a cluster and its neighborhood, we identify some clusters that are present in an optimal
solution. Such clusters can be removed from the initial instance.
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