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Abstract

We study the fundamental problem of selecting optimal features for model construction.
This problem is computationally challenging on large datasets, even with the use of
greedy algorithm variants. To address this challenge, we extend the adaptive query
model, recently proposed for the greedy forward selection for submodular functions, to
the faster paradigm of Orthogonal Matching Pursuit for non-submodular functions. The
proposed algorithm achieves exponentially fast parallel run time in the adaptive query
model, scaling much better than prior work. Furthermore, our extension allows the use of
downward-closed constraints, which can be used to encode certain fairness criteria into
the feature selection process. We prove strong approximation guarantees for the algorithm
based on standard assumptions. These guarantees are applicable to many parametric
models, including Generalized Linear Models. Finally, we demonstrate empirically that
the proposed algorithm competes favorably with state-of-the-art techniques for feature
selection, on real-world and synthetic datasets.

1 Introduction

We study the fundamental problem of selecting a few features out of many for a given modeling
problem, while satisfying additional side constraints. An an application, we also study how
this setup can be used to encode certain notions of fairness in feature selection in a principled
way.! Formally, given a function [ : R® — R+ expressing the goodness of fit, we search for a
set of features S maximizing the function

£(S) =1(B®) - (0). (1)

Here, 0 represents the n-dimensional zero vector, and ,8(5) is a vector maximizing [(-) with
support in S. If we denote by Z the set of all acceptable solution sets that satisfy the side
constraints, then the feature selection optimization problem with side constraints can be
formalized as

argmax f(S) = argmax [(8®)) — [(0), (2)
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'In this paper, we consider several fairness constraints proposed in the literature, but there may be other
notions of fairness which do not fall within our theoretical framework.



where [n] is the index set of all the features. Often, Z corresponds to an r-sparsity constraint,
i.e., a solution S is feasible if it contains at most r features. Several algorithms have been
proposed for feature selection under sparsity constraints. Some examples include forward
step-wise selection methods [Elenberg et al., 2018, Qian and Singer, 2019], the Orthogonal
Matching Pursuit [Elenberg et al., 2018, Needell and Tropp, 2010, Sakaue, 2020|, forward-
backward methods [Jalali et al., 2011, Liu et al., 2014|, Pareto optimization [Qian et al., 2015,
2020], Exponential Screening [Rigollet and Tsybakov, 2010], and gradient-based methods |Jain
et al., 2014, Yuan et al., 2017|. The aforementioned algorithms, however, are computationally
inefficient on large datasets. Furthermore, there are a limited number of studies that take
into account additional side concerns (e.g. by encoding them as matroids [Chen et al., 2018,
Gatmiry and Gomez-Rodriguez, 2018]), which can be crucial when deploying machine learning
systems in the real world.

Recently, there has been a growing effort towards developing fair algorithms for many funda-
mental problems, such as regression and classification [Agarwal et al., 2018, Feldman et al.,
2015, Grgic-Hlaca et al., 2018b, Kim et al., 2018, Zafar et al., 2017a|, matching [Chierichetti
et al., 2019], and summarization [Halabi et al., 2020|. Several definitions of fairness can be
incorporated in the learning process as additional side constraints [Agarwal et al., 2018, 2019,
Chierichetti et al., 2019, Donini et al., 2018, Grgic-Hlaca et al., 2016, Grgic-Hlaca et al., 2018a,b,
Halabi et al., 2020, Woodworth et al., 2017, Zafar et al., 2017a]. Motivated by this line of
research, we consider the following question: How can we efficiently perform feature selection,
while taking into account additional constraints such as fairness?

We address this question by proposing a novel algorithm that combines the paradigms of
matching pursuit and the adaptive query model for the problem (2). This algorithm is much
faster than previously known techniques. At the same time, it allows incorporation of certain
notions of fairness in the learning process, via a reduction to the p-system side constraints (see
Jenkyns [1976] and Section 2.2).

We recognize that quantifying the full meaning of the notion of fairness with its societal context,
as understood by human beings, may be hard to achieve through mathematical formalism
alone [Selbst et al., 2019]. Indeed, p-systems may not explicate all current or future codifications
of fairness. Our claim is not to solve the problem of fairness itself, but rather to provide a
theoretically sound framework for some of its currently accepted manifestations, with the hope
of serving as a blueprint for further developments along similar lines.

Optimization problems as in (2) under general side constraints are computationally challenging
in practice. A major bottleneck lies in the evaluation of 3 for a given set S, since this
operation requires to re-train the model onto every candidate set S. Another challenge is
enforcing the side constraint Z that encodes the selection criteria, except in the trivial cases
where the protected classes are known a priori [Beutel et al., 2019, Lahoti et al., 2020]. Our
proposed algorithm is efficient with respect to these challenges.

Our Contribution. We propose a novel matching pursuit algorithm for the constrained
feature selection problem (2). This algorithm uses oracle access to the gradient VI (ﬁ(s)), and
to an oracle for the evaluation of the feasibility of an input solution set. The feasibility oracle
is well-aligned with previous related work [Elenberg et al., 2018, Sakaue, 2020].

Our algorithm is based on a general technique called adaptive sequencing, that was recently



proposed for submodular functions [Balkanski et al., 2019, Breuer et al., 2020]. However,
previously proposed adaptive sequencing algorithms fail on problem (2), as shown in Appendix A.
On the other hand, our algorithm converges after poly-logarithmic rounds in the adaptive
query model. In each round, calls to the oracle functions can be performed in parallel, resulting
in a dramatic speed-up.

The main technical contributions of this paper are two-fold: (i) we extend the adaptive query
model to a class of non-submodular objectives using the paradigm of gradient based pursuit
algorithms; (ii) we incorporate general downward-closed constraints in the optimization process
beyond the standard sparsity constraints. Our main result can be stated as follows.

Theorem 1.1 (informal). Denote with OPT the global mazximum of the function f(-) as in (2).

There exists a randomized algorithm that outputs a set of features S* such that

S*
OO e a1 97)),

for tolerance 0 < e < 1. Here, p is a parameter that depends on I, and « is a parameter that
depends on I(-). For n total number of features, this algorithm uses O (5_2 log n) rounds of

calls to Vl(ﬁ(s)). Furthermore, this algorithm uses expected O (5*2\/77105;{ n) rounds of calls to
the oracle for the feasibility of an input solution set, where r is the size of the largest feasible
solution.

To the best of our knowledge, our algorithm is the fastest known algorithm for the general
setting of maximizing non-submodular functions with side constraints, with provable guarantees
and strong empirical performance (see Section 5). Qian and Singer [2019] propose another
algorithm for maximizing non-submodular functions that converges after poly-logarithmic
rounds. However, their algorithm cannot handle general side constraints Z beyond sparsity
by design. Hence, the algorithm of Qian and Singer [2019] is unsuitable for more complex
applications such as learning with fairness constraints [Grgic-Hlaca et al., 2018b|. Furthermore,
for the standard r-sparsity constraint, we improve upon their approximation guarantee (see
Theorem 4.1).

Technical Overview. In our analysis, we face two major technical challenges. The first
challenge is that of re-purposing the adaptive sequencing for functions that are not submodular,
without a significant loss in the approximation guarantee. Adaptive sequencing has been so far
employed only for maximizing submodular functions. Interestingly, it is known that standard
adaptive sampling techniques do not guarantee constant factor approximation for functions
with weak diminishing returns, which are typically invoked for feature selection theoretical
studies [Elenberg et al., 2018|.

The second challenge consists of integrating a constrained selection process based on orthogonal
projections in the above adaptive sequencing framework. Common objective functions for
feature selection do not have certain desirable properties (e.g., an antitone gradient) and
the standard analysis for adaptive sequencing fails in our setting. To resolve these issues,
we build upon the work of Elenberg et al. [2018] to establish a connection between gradient
evaluations of functions that are restricted strong concave, and their marginal contributions to
the optimization cost. This connection allows us to bound the gradient evaluations in terms of
a discrete function, which is in turn used in the analysis to obtain the desired approximation
guarantees. See Theorem 4.1 for the formal result and Appendix G for the proof.



2 Preliminaries

Notation. We denote with n the number of features, i.e., the dimension of the domain of I(-),
and we define [n] :={1,2,...,n}. For any s € [n], we denote with e, the unit vector, with a 1
for the coefficient indexed by s, and 0 otherwise. Feature sets are represented by sans script
fonts, i.e., S, T. Vectors are represented by lower-case bold letters as x, y, 8 and matrices are
represented by upper-case bold letters, i.e., X, Y, X. For a feature set S, we denote with
,8(5) a vector maximizing [(-) with non-zero entries indexed by the set S. For a feature set T
and a parameter vector 3, we define VI(8)7 = (VI(8),> o1 es). We denote with OPT the
optimal value attained by the function f(-) as in (2). We denote with Z the p-system side
constraint, and with r its rank, as defined in Section 2.1. The notation Cond(T) denotes the
set {se€ [n]\T: TU{s} € Z}.

2.1 Problem Formulation

We study optimization tasks as in the problem (2) under some additional assumptions on
I(-), which are often satisfied in practical applications (see Appendix C). Define an r-sparse
subdomain as a set of the form , = {(z,y) € R" x R": ||z|lo <, ||yllo < 7, || — yllo < 7}
We now define the notions of Restricted Strong Concavity (RSC) and Restricted Smoothness
(RSM) of a function.

Definition 2.1 (RSC, RSM [Negahban et al., 2010]). A function I(-) is said to be restricted

strong concave (RSC) with parameter m and restricted smooth (RSM) with parameter M on a

subdomain €, iff, for all (x,y) € €, it holds that — |y —z|]2 > l(y) —l(x) — (Vi(x),y —x) >
M

—5lly —=|2.

We say that [ is (M, m)-(smooth, restricted concave), if it fulfills the conditions as in Definition
2.1 with parameters M and m. RSC/RSM often hold in practice, we refer the reader to
Appendix C for further discussion of these properties.

We model the side constraints as p-systems. In order to give an axiomatic definition of p-
systems, we introduce additional terminology. Given a collection of feasible solutions Z over a
ground set [n] and a set T C [n], we denote with Z |7, the restricted feasible solution set, as the
collection consisting of all sets S C T s.t. S € Z. We define Cond(T) as the set of all s € [n]\ T
such that TU{s} € Z. A set T is a maximal independent set if it holds that Cond(T) =0 A
base for Z is any maximal set T € Z.

Definition 2.2 (p-Systems [Jenkyns, 1976]). A p-system Z over [n] is a collection of subsets
of [n] such that: (i) @ € Z; (ii) for any two sets SC T C [n], if T € Z then S € TZ; (iii) for any
set T C [n] and any bases S,U € Z |t it holds S| < p|U].

The second defining axiom is commonly referred to as subset-closure or downward-closed
property. The rank r of a p-system 7 is defined as the maximum cardinality of any feasible
solution T € Z.

Armed with these definitions, we can re-visit the problem 2 with additional assumptions, where
the set of feasible solutions Z is a p-system, and [(-) is restricted strong concave and smooth.
Our problem formulation is a strict generalization of previous related works [Chierichetti et al.,
2019, Elenberg et al., 2018, Sakaue, 2020| which considered the r-sparsity constraints encoded
as Z = {T C [n]: |T| < r} which is a special case of the more general p-system constraints.



Further, p-systems are also a strict generalization of the matroid-type constraints considered
in submodular literature [Chen et al., 2018, Gatmiry and Gomez-Rodriguez, 2018].

2.2 Embedding Fairness via p-Systems

In our framework, the p-system Z enumerates which sets of features are considered “fair”. That
is, a set of features S is acceptable as fair if and only if S € Z. Our framework is very flexible,
and can handle a large variety of constraints, including many constraints used to enumerate
notions of fairness (see, e.g., Section 4 by Chierichetti et al. [2019] and Section 2 by Grgic-Hlaca
et al. [2018b]). Non-trivial examples of p-systems side constraints are also found in the context
of data summarization [Feldman et al., 2017, Mirzasoleiman et al., 2016, 2018, Quinzan et al.,
2021]. We now describe how some additional well-established notions of fairness can also be
embedded as p-systems.

Procedural fairness metrics: Procedural fairness focuses on selecting features based on
perceived notion of fairness as envisioned by human beings during the process of decision
making, rather than on the fairness of the outcome. It is measured by gauging “the degree
to which people consider various features to be fair" [Grgic-Hlaca et al., 2016|. This is in
contrast to measuring fairness of the outcomes of such decisions, for example, by down weighing
decisions that affect users of protected groups (e.g., race, gender).

In this work, we consider measures for procedural fairness studied by Grgic-Hlaca et al. [2016]
and Grgic-Hlaca et al. [2018b]. However, our framework is not specific to these definitions.
These measures consist of monotone set functions & : 2[") — [0,1]. For an input feature set
T C [n], the value h(T) quantifies the perceived fairness of T, with h(T) = 0 corresponding to
maximum fairness and h(T) = 1 corresponding to maximum unfairness. We can take a specific
example, where h(-) is the feature-apriori unfairness Grgic-Hlaca et al. [2016]. For a given
feature s € [n], denote with U the set of users that perceive a feature to be fair. For a set of
features T C [n], Grgic-Hlaca et al. [2016] define the feature-apriori unfairness as

_ ‘HSETUS‘_

h(T) =1 U

Sets of features T C [n] are selected only if the value h(T) is below a certain threshold. Given
a monotone set function h as described above, we can enumerate “fair” sets of features as
Tice = {T € [n]: K(T) < A}. Here, A € [0,1] is a user-defined parameter, which determines
the trade-off between fairness and accuracy. Since, we require h(-) to be monotone, the Ty
satisfies the downward closed property and is a p-system (see Definition 2.2). The similar
notions of feature-disparity fairness and feature-accuracy fairness can be embedded as p-systems
in a similar fashion. While procedural fairness may not imply fairness of the outcome, it has
been observed that in some cases procedurally fair feature sets maintain good outcome fairness
[Grgic-Hlaca et al., 2016, Grgic-Hlaca et al., 2018b].

Feature partitions: Our proposed approach also includes as a special case the framework
proposed by Celis et al. [2018|. Here, features are grouped into disjoint clusters [n] = X;U- - -UX,.
The constraints are specified using A; which encodes the maximum number of features that
can be selected from cluster X;. In other words, features T C [n] is then feasible if the number
of data-points intersecting a class X; does not exceed the corresponding threshold A;. Formally,



we define the set of constraints Iél ={T C[n]: |TNX;| < A; Vj € [{]}. This set of constraints
is a matroid, which is a p-system with p = 1.

A generalization of the aforementioned partition matroid was considered by Halabi et al. [2020].
For each element in any partition set X;, we are given a lower- and an upper-bound on the
number of elements that can be selected from this set. Bounds are denoted by ¢; and u; respec-
tively. The set of constraints can be written as Ip == {T C [n]: £; < [TNX;| < ¢ Vj € [{]}.
This set of constraints is, in general, not a p-system. However, Halabi et al. [2020] show that
one can consider a relaxation of the constraint set Zp := {T C [n]: T C S for any set S € Zp},
which is equivalent from the optimization perspective. Any monotone optimization objective
(as in (1)) yields the same solution sets on Zp and Zp. The set of constraints Zp, is a matroid,
i.e., a p-system with p = 1 [Edmonds, 1970].

2.3 The Computational Model

We assume access to an oracle that returns VI (B(T)), for a given input set T. Elenberg et al.
[2018] highlight the benefits of using this oracle model for feature selection, since access to the
gradient is available from the inner optimization. In the case of a linear model, the gradient
Vl(ﬁ(T)) can be easily estimated for various metrics | expressing the goodness of fit. For
instance, if [ is the log-likelihood function, then the gradient can be computed in explicit
form. For more complex models, stochastic lower-bounds of log ]P’ﬂ(S) (x) can be used, and
then differentiated [Bamler et al., 2017, Nowozin, 2018]. Similar considerations hold for other
metrics, such as the R? objective [Elenberg et al., 2018].

We also assume access to the independence oracle of the underlying p-system Z. The inde-
pendence oracle takes as input a set T, and returns as output a Boolean value, true if T € Z
and false otherwise. This oracle is often assumed for optimizing functions over p-systems
[Mirzasoleiman et al., 2016, Quinzan et al., 2021|. Our method also works assuming access
to a rank oracle, or a span oracle. We refer the reader to [Chekuri and Quanrud, 2019] for a
description of these oracle models.

We evaluate performance using the notion of adaptivity. The adaptivity refers to the number
of sequential rounds of the algorithm, wherein polynomial number of parallel queries are made
in each round [Balkanski and Singer, 2018|. Formally, given an oracle f, an algorithm is
r-adaptive if every query ¢ to the oracle f occurs at a round i € [r] such that ¢ is independent
of the answers f(q¢’) to all other queries ¢’ at round i. This notion is closely related to the
Parallel Random Access Machines (PRAM) model, as shown in Appendix D. We evaluate
empirical speedup by the adaptivity of the oracle to evaluate VI (ﬂ(T)). We also evaluate the
adaptivity of the independence oracle for the p-system 7.

3 Algorithmic Overview

Our algorithm, which we call FASTomp, is presented in Algorithm 1. This algorithm is based
on a technique called adaptive sequencing [Balkanski et al., 2019, Breuer et al., 2020], which
was recently proposed for highly scalable maximization of submodular functions.

Say X is the complete set of candidate features, and S is the current solution. Starting from
S « (), the FASToMp iteratively generates a random sequence of features {aq,ao, ..., a;} with
the RNDSEQ sub-routine (details in Appendix E), such that the set {ai,as,...,a;} US is a



Algorithm 1 FASToMP
S «+ 0
while the number of iterations is less than e and Cond(S) # () do
X< {sen]: {s}US e}
t (1—2) izl VIBD) 13 with T € X maximizing | VI(85)7[|3 s.t. [T| < 7;
while X # () and Cond(S) # () do
{a1,as,...,a} < RNDSEQ (X,S) and define S; <~ SU {a1,...,q;};
observe X; « {s € X: (VI(BS)),e,)2 >t and s € Cond(S;)};
g% = ming{j: [X;] < (1= e) [X]};
X <= X+ and S <= Sj+;

end
end
return S;

maximal independent set of Z. After a sequence is generated, the FASTonp identifies a prefix
{a1,...,a;+} that is added to the current solution. The index j* defining this prefix is chosen
such that it holds |X;| > (1 —¢) |X|, for all 0 < j < j*. This inequality ensures that any point
added to the current solution yields <VZ(B(S)), es)? >t in expected value. Finally, the ground
set X is updated as to include only those points that yield a good improvement to the new
solution. The RNDSEQ sub-routine used to generate {aj,as,...,ax} corresponds to Algorithm
A by Karp et al. [1988]. Here, k is the size of the independent set returned in the current
iteration.

Adaptive sequencing via matching projections. Our proposed algorithm differs from
previous adaptive sequencing techniques, since it does not use queries to the function f as
defined in (1). Instead, our algorithm uses oracle access to the function VI(8)), and features
s € [n] are added to the current solution if it holds (VI(853)), e,) > t in expected value, with
t a threshold updated during run time. As such, our approach extends the applicability of
adaptive sequencing to gradient-based pursuit methods, as opposed to the standard value-oracle
based methods in earlier works. Finding optimal solutions with this technique requires much
less computation than the previous approach [Balkanski et al., 2019|, by which points s are
selected if it holds f(S; U {s}) > t. This is because it is usually much faster to compute an
inner product, than evaluating f(-) for every candidate S.

Implicit estimates of OPT. All algorithms based on adaptive sampling techniques proposed
so far require an estimate of OPT, the value of the optimal solution set. This value is typically
not known a priori. To circumvent this problem, previous algorithms perform multiple runs
for various guesses of OPT [Breuer et al., 2020], or they use additional preprocessing steps
[Fahrbach et al., 2019]. Our algorithm has the significant advantage that OPT is estimated
implicitly. For a function [(-) that is (m, M)-(smooth, restricted concave), we have that
max(T. |T|<k} IV1(8®))7]|2 > 2m (0PT — £(S)). A proof of this result is deferred to Appendix
G, and it is based on Elenberg et al. [2018]. Hence, the FASToMp estimates OPT with a single
oracle valuation, and it does not require multiple runs or preprocessing steps.



Finding the set X;-. Common optimization functions [(-) for feature selection lack certain
desirable properties, such as an antitone gradient. Hence, in contrast to the submodular case,
the sequence {|X;|}; as in Line 7 of Algorithm 1 is not monotonic. For this reason, it is not
possible to estimate the index j* with a binary search, as other adaptive sequencing algorithms
do [Breuer et al., 2020]. We require O (r) phases of re-training to estimate j*, whereas the
general adaptive sequencing technique would require O (rn) phases of re-training [Balkanski
et al., 2019], due to the different oracle model.

4 Approximation Guarantees

In this section, we study the approximation guarantees for Algorithm 1, when solving Prob-
lem (2).

Theorem 4.1. Define the support selection function f(-) as in (1), for the given function I(-)
that is (M,m)-(restricted smooth, restricted strong concave), on the sparse sub-domain Q.
Consider a p-system I of rank r over [n], and let S* be the output of Algorithm 1 while OPT is
the optimum solution set for the Problem 2. Then,

S )]

for all 0 < e < 1. Furthermore, in the specific case when T is r-sparsity constraint over [n],

then, Iil‘[é‘r(j*)} > <1 _exp{_(l —5)2]\7222}> :

A full proof of this theorem is deferred to Appendix G. We remark that, if Z is a r-sparsity
constraint, then the approximation guarantee of Theorem 4.1 is asymptotically better than the
guarantee attained by other parallel algorithms for this problem, such as the DAsH [Qian and
Singer, 2019|. Specifically, as proven in Theorem 1 by Qian and Singer [2019], the DASH yields
an approximation of 1 — exp{m*/M*} — ¢ on this problem. Furthermore, the DASH cannot
handle general p-system side constraints.

The parameter p in Theorem 4.1 is always upper-bounded by the maximum number of features
r that we wish to select for model construction. This upper-bound still holds if one assumes
additional underlying fairness constraints. Additional assumptions on the p-system may yield
an improved bound on p. Finally, previous related work |[Halabi et al., 2020| reduces some
fairness constraints to a matroid, in which case our analysis applies with p = 1. We also
provide bounds for the run time of the FASToMp as follows.

Theorem 4.2. Algorithm 1 terminates after O (5_2 log n) rounds of calls to the oracle function,
and it uses at most O (5_2rlog n) oracle queries. Furthermore, Algorithm 1 requires expected
O (8_2\/7710g n) independent calls to the oracle for the p-system I, and the total expected
number of calls to the oracle for the p-system T is O (e_znr log n)

The proof of Theorem 4.2 is deferred to Appendix H. The estimates on the rounds of adaptivity
extends to the PRAM model. If we denote with d; the depth required to evaluate the oracle
function on a set, then the FAsSToymp has O (E_2dl log n) depth. Note that the rounds of
independent calls to the oracle are sub-linear, but not poly-logarithmic in the problem size.
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Figure 1: Results on the Synthetic Unconstrained Dataset (top row), the Synthetic Dataset
with Constraints (mid row), and the Pan-Cancer Dataset (bottom row), as in Section 5.

The reason is that the RNDSEQ sub-routine requires expected O (y/n) rounds of independent
calls to the oracle for the p-system (see Appendix E).

Some authors have proposed non-adaptive techniques for feature selection. If 7 is an r-sparsity
constraint, then Elenberg et al. [2018], Sakaue [2020] provide an algorithm that require O (1)
sequential oracle calls. This algorithm selects r best points s € [n] independently, according to
the values f({s}), or the value of the inner product (VI(0), es;). However, oblivious feature
selection techniques for general p-system side constraints require £2(r) sequential calls to the
independence oracle. These techniques are impractical on large dataset, when the feasibility of
a solution set is computationally expensive.

5 Experiments

In this section, we present empirical evidence of the efficacy of the proposed algorithm. We
provide extensive experiments on both synthetic and real world datasets. All experiments are
performed on Python 3 on a server that runs Linux with Intel Xeon E5-2630 v4 with 40



CPUs at 2.2GHz. We also tested our algorithms
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Figure 2: Experiments on the COMPAS signed to ensure that 10% of the features are
Dataset, as detailed in Section 5. For the highly correlated with the response, and the
FASToue we perform multiple runs and we remaining features have low correlation with
report on the sample mean. On this dataset, the response variable. We then add poste-
the variance in accuracy and outcome fairness rior uniform noise, and normalize the obser-
is negligible for FASToyp. vations.

The CGARN Pan-Cancer Dataset. This dataset has about 2 x 10* features and 804
observations, with size ~ 201MB [Cancer Genome Atlas Research Network et al., 2013]. In this
dataset, the features embed information on the genome sequences of 802 patients affected with
cancer, and the observations consists of a pseudo-Boolean array, with 1 if the corresponding
patient has PRAD cancer and 0 otherwise.

The ProPublica COMPAS DataSet. We consider the well-known ProPublica COMPAS
dataset, which is a pretrial risk assessment instrument [Larson et al., 2016]. It was constructed
in 2016, using data of defendants from Broward County, FL, who had been arrested in 2013
or 2014. This dataset was intended to be used to predict if a criminal was likely to re-offend,
based on previous arrest charges and demographic information. Predictions based on the
COMPAS datasets were found to be racially biased [Angwin et al., 2016, Berk et al., 2021]
(see Appendix J for details).

We use the COMPAS dataset to reproduce the experiments by Grgic-Hlaca et al. [2018b].
These experiments use the COMPAS dataset to predict if a defendant faces risks of recidivism,
and study the trade-off between fairness and accuracy achieved by the feature-apriori accuracy,
feature-accuracy fairness, and feature-disparity fairness (see Section 2.2). Our interest in using
the COMPAS dataset is only to quantitatively compare our algorithm with previous related
work. We do not claim that normalizing the task of recidivism prediction is something that
can be made “fair” with this approach.

5.1 Benchmarks.

In this section, we describe the benchmark algorithms we use for comparison against the
proposed framework. Our goal in empirical evaluation is to illustrate the accuracy vs speedup
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trade-off that follows from our computational model of adaptive sampling based matching
pursuit under constraints. The main purpose of using a technique like adaptive sampling is to
obtain speedups by reducing the number of oracle evaluations compared to their non-adaptive
counterparts, with some admissible loss in accuracy [Balkanski et al., 2019]. Indeed, there
are many other feature selection algorithms. We choose feature selection benchmarks that
help us illustrate the said speedup obtained when using our method while ensuring graceful
degradation in accuracy in simulated and real-world use-cases. These algorithms include
popular selection methods [Elenberg et al., 2018, Grgic-Hlaca et al., 2018b, Kalimeris et al.,
2019, Krause and Cevher, 2010]. Other popular algorithms for feature selection include the
Maximum Relevance Minimum Redundancy (mRMR) [Ding and Peng, 2005, Zhao et al., 2019
and the Conditional Mutual Information Maximisation (CMIM) filters [Torkkola, 2003] among
others. These algorithms iteratively adds features by maximizing suitable objectives, such as
scores based on the F-statistic, or Mutual Information gain. However, these algorithms for
general p-system side constraints require {2(r) sequential calls to the independence oracle for a
solution size of r. Thus, such methods are impractical and will be trivially too slow compared
to our method. We consider the following algorithms to compare against:

e SDSp\A: Starting from the empty set, this algorithm adds feasible points to the current
solution in a greedy fashion |[Elenberg et al., 2018, Krause and Cevher, 2010]. This
algorithm uses oracle access to the function f as in (1).

e SDSomMmp: Starting from the empty set, this algorithm iteratively adds a feature s to the
current solution S if it maximizes the dot product (VI(8®)),e,) [Elenberg et al., 2018,
Krause and Cevher, 2010].

e DAsH: This algorithm follows a computationally similar model, and achieves strong
approximation guarantees on the subset selection problem, under the RSC/RSM assump-
tion |Qian and Singer, 2019]. It also uses oracle access to the function f but can only
handle r-sparsity constraints.

e Isk: This algorithm is the iterated submodular-cost knapsack algorithm proposed by Iyer
and Bilmes [2013]. It was used by Grgic-Hlaca et al. [2018b] to perform feature selection
on the ProPublica COMPAS dataset. The ISk can only handle r-sparsity constraints,
and it has no known guarantees for the problem (2).

e Lasso: We also compare against the popular Lasso regression. Tuning Lasso to obtain a
solution of a desired size is hard [Mairal and Yu, 2012|. In our experiments, we vary the
parameter manually and benchmark against the resulting solution size.

e Random: This simple algorithm outputs a maximum independent set of Z chosen
uniformly at random. We use the RNDSEQ to generate this set (see Appendix E).
5.2 Results

In this section, we present extensive empirical evidence that validates our theory that the
proposed algorithm FASTop\p is significantly faster and more scalable than the baselines, while
maintaining competitive performance in accuracy.

Unconstrained Synthetic Dataset. We consider a sparse linear regression task on the
small synthetic dataset (~ 10MB), where the goal is to search for a set of few features
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maximizing the R? objective. Figure 1(a) showcases the run time of each algorithm for a fixed
number of features selected. We observe that our algorithm significantly outperforms baselines.
In Figure 1(b), we fix an upper-bound of £ = 150 on the number of features selected, and we
compare the solution accuracy of each algorithm, for a given time budget. We observe that the
FasTomp outperforms the non-oblivious algorithms. Furthermore, we observe that the SDSy A
yields significantly worse performance than baselines. In Figure 1(c) we display the solution
quality versus the number of features selected. We observe that the FASToMp, the SDSoMmP,
the DASH, the Lasso achieve similar solution quality. The SDSya vields best performance, but
it is much slower than the other algorithms.

Synthetic Dataset with Constraints. We search for a set of features maximizing the
R? objective, for the large synthetic dataset (~ 19GB). We consider a randomly generated
p-system on top of the features. We do not report on the results for the SDSy A, because it
was too slow on account of the dataset being too large. We do not test the DASH, the ISK,
and the Lasso since they cannot handle p-system side constraints by design.

To illustrate scalability on such a large dataset, we compare speed of feature selection while
satisfying the side constraints (Figure 1(d)) and the corresponding solution accuracy with
respect to time spent (Figure 1(e)) for selecting upto & = 300 features. We observe that
our algorithm FASTo\p is significantly faster while maintaining a good quality solution
when compared to the SDSoMmp and the Random. In Figure 1(f), we further observe that the
FasTomp and the SDSonmp achieve similar solution quality for a given number of features.

CGARN Pan-Cancer Dataset We use the logistic regression to predict if patients have
PRAD cancer, or other types of cancer. We enforce a randomly generated p-system on the
features. We search for features maximizing the normalized log-likelihood. Again, SDS\A was
too slow on this dataset and we do not report on the results for it. We also do not test the
DasH, the ISk, and the Lasso since they cannot handle p-systems by design.

To illustrate the scalability and speed of FASToMp, we show that it is much faster in selecting a
given number of features (Figure 1(g)) and achieves much better accuracy for a given run time
(1(h)) compared to the baselines. Figure 1(h) is presented till selection of k& = 50 features, since
adding more features did not improve the metric by much as seen in Figure 1(i) which shows
that the algorithms FASToMp and SDSoMmp perform similarly in terms of the log-likelihood for
a given number of selected features.

ProPublica COMPAS Dataset. In this section, we reproduce the experiments by Grgic-
Hlaca et al. [2018b] on the COMPAS dataset. We use regularized logistic regression to predict
the recidivism risk and use fairness constraints given by the feature-apriori accuracy |Grgic-
Hlaca et al., 2018b]. These constraints are encoded as p-system side constraints Zace as
described in Section 2.2. We report on the outcome fairness of each output feature set, by
estimating the racial bias of the corresponding classifier. Following Grgic-Hlaca et al. [2018D],
Kleinberg et al. [2017], Zafar et al. [2017a], we examine the false positive (FPR) and false
negative (FNR) rates for whites (w) and non-whites (nw) as

outcome fairness = — |FPRy, — FPR,,,| — [FNRy, — FNRy | .

This measure of fairness varies between —2 and 0, with —2 corresponding to maximum
unfairness and 0 to maximum fairness.
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The results for this set of experiments are displayed in Figure 2, where we plot the accuracy
and outcome fairness as a function of the parameter A for the constraints Zj... We compare
the solution quality and fairness of the FASTonmp, against the ISk, and the solution with
best possible accuracy (optimum). We observe that the FASTonp achieves nearly optimal
solution. Although the outcome fairness inevitably decreases for increasing process unfairness,
the FASToMp maintains a more graceful degradation than the other algorithms.

6 Conclusion and Ethics Discussion

We have extended the adaptive sequencing framework, first proposed for maximizing submodular
functions, to the setting of feature selection, via the matching pursuit paradigm. Our analysis
yields strong performance and approximation guarantees, which are better than previously
known results. Furthermore, our proposed formulation is more general than previously
considered, as it can handle p-system constraints. While our main contributions are theoretical
and algorithmic, we apply these results for fair feature selection. Our framework ensures
approximation guarantees, as long as the constraints can be encoded as p-systems.

A major hurdle in further research into fair learning is the lack of gold standard benchmarks.
The COMPAS dataset is used for empirical evaluations in several studies However, its use for
benchmarking has also been criticized [Bao et al., 2021b|. Furthermore, over-tuning notions of
fairness for a single dataset could be problematic.

Fairness criteria should also take into account the contextual grounding of the dataset, and
the trained model that operates within. As such, the mathematical formalism of fairness as
constraints may evolve. We hope that our framework motivates further research into addressing
the above concerns about fairness in an algorithmically scalable way.
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Appendix

A Motivating Example

In this section, we motivate our analysis by showing that the adaptive sequencing prototype
by Balkanski et al. [2019] does not work for feature selection. this example can also be used
to show that similar algorithms, such as FAST [Breuer et al., 2020| do not work for feature
selection.

The adaptive sequencing prototype is presented in Algorithm 2. We refer to this algorithm
as the FAST. Starting from the empty set, the FAST generates at every iteration a uniformly
random sequence {aj,...,ar} of the elements X not yet discarded. This sequence can be
sampled uniformly at random, or using the RNDSEQ sub-routine described in Appendix E.
Afterwards, the FAST filters elements that have a high marginal contribution, when added to
S, and it determines the prefix of {a1,...,ax} that is added to the current solution S. This
prefix has the property that there is a large fraction of elements in X with high contribution to
the current solution S.

Following and example provided by Elenberg et al. [2018], we show that the FAST fails on a
simple linear regression task with three features. For a fixed parameter z > 0, consider the
following variables:

y = [1,0,0 X9 = [2,V/1 —22,0]"

x1 = [0, 1,0]T x3 = [02,0,V1— 5222]T

Note that all variables have unit norm. Our goal is to choose two of the three variables
{x1,%2,%3} that best estimate y, with respect to the R? objective. To this end, we introduce
additional notation. For a given index set S C [3], we denote with Xgs the matrix whose
columns consists of the features indexed by S. For instance, for S = {1, 3} it holds

0 0z
X = | 1 0
0 V1—6222

With this notation, we define the objective function for our problem as
F(S) = R*(B®)) — R*(0) = (y" Xs)(XEXs) ' (X{y), (3)

with R2(-) the R? objective evaluated on the model for an input parameter vector BS). Using
this formula, one can easily see that it holds

f{1}) =0 f{1,2h) =1
f({2}) =2 F({1,3}) = 6222
f({3}) =6%2° FH2,30) = (14 6)2% + 6224

Clearly, the optimal solution is f({1,2}). However, on this instance the FAST outputs the
solution S = (), attaining an f-value of f(S) = 0. The following lemma holds.
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Algorithm 2 FAST

S0, t < max.cp, f(e);

for A iterations do

X < [n];

while X # () do
{a1,as9,...,ar} <+ RNDSEQ (X, S);
Xi « {e € X: fsufar,..a3(€) = t and SU{aq,...,a;,e} € I} % < min{i: [X;| <
(1= 2) X}
S+ Su{ay,...,a;};

end

t+ (1—e)t;

end
return S;

Lemma A.1. Consider the FAST optimizing the function f(S) as in (3), over sets S C [3] of
size at most |S| < k with k = 2. Then, for any constant € > 0, the FAST outputs either the
solution {1,3} or the solution {2,3} with probability at least 1 — (2/3)5_110g Y8 In particular,
the expected approximation guarantee of FAST converges to zero, for 6,z — 0.

Proof. At the beginning of the optimization process, the constant ¢ is set to t = 6222 and a
sequence {ai,as}. This sequence yield {a;} = {3} at least with probability 1/3. If {a1} = {3}
sequence is sampled, then the point {3} is added to the current solution. Otherwise, the value
t decreases of a multiplicative factor of (1 — ¢), and a new sequence is sampled. As long as
t > 22, the FAST can only output a solution that contains the point {3}. Hence, the solution
{1,2} can only be sampled after ¢ decreases to a value ¢ < z, which requires at least e ! log 1/
iterations of the outer loop. Hence, the probability of sampling the solution {1,2} can be
upper-bounded by the probability that no sequence with {a;} = {3} is sampled during the
first e~ log 1/6 iterations of the outer-loop. This probability can be estimated as 2/3f1 log1/4
Hence, the FAST outputs either the solution {1,3} or the solution {2,3} with probability at
least 1 — (2/3)c ' log1/d, O

We remark that in this example, the FASTonp outputs the optimal solution in one iteration,
at least with constant probability. We can bound the optimal parameters and in Line 4 of
Algorithm 1 in a similar fashion as in Proposition C.5, and obtain that m and M are bounded
asm >1—+v1—2z2and M < 1++1— 22. It follows that the parameter in Line 4 of Algorithm
1 is upper-bounded as t < (1 —¢)(1 — V1 — 22)/2 < 22, for § sufficiently small. Suppose now
that at the beginning of the iteration, a sequence {a1,as} = {2,1}. Since t < 2%, then the
entire sequence is added to the current solution {2, 1} and the algorithm outputs the optimum.
Note that the desired sequence is sampled with probability 1/6. It follows that the FASToMmp
outputs the optimum at least with constant probability. Hence, the FASTo)p maintains a
constant-factor approximation guarantee.
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B Weak Submodularity

Consider a function [ that is restricted smooth and restricted strong concave . It is well known
that the corresponding function f as in (1) has weak diminishing return properties. These
diminishing returns property is called weak submodularity, and it was first introduced by Das
and Kempe [2011] to study statistical subset selection problems. Functions that exhibit weak
submodularity, i.e., weakly submodular functions, are defined in terms of the submodularity
ratio, as follows.

Definition B.1 (Weak submodularity, Definition 2.3 by Das and Kempe [2011]). Consider a
function f: 2" — R>p. The submodularity ratio is defined as the largest scalar v such that

S T(FLU{G) = f(L) =7 (FLUS) = £(L),

jJEes
for all sets L,S € [n] such that LN'S # (. We say that f is 7~ weakly submodular if its
submodularity ratio is ~.

There is a well-known connection between weak submodularity and Problem 2. This connection
was discovered by Elenberg et al. [2018], and it can be formalized as follows.

Theorem B.2 (Theorem 1 by Elenberg et al. [2018]). Define f as in (1), with a function
that is (m)y|k, Mju|+x)-(strongly concave, smooth) on Qy|4r, and Miy41 smooth on Qy|41-
Fiz a set U € [n], and denote with vy i, the largest scalar such that

STLU{Y = £(L) = ok (FLUS) = £(L),

jJES
for all sets L,S € [n]| such that LNS # 0,L C U,[S| < k. Then, the constant vy is

lower-bounded as
MR YU

Myi41 — Mjujss

NUlk =

C Restricted Strong Concavity and Smoothness

Given a set of observations and a parametric family of distributions {p( - ; 3) | 8 € Q} with
Q) C R™, we wish to identify a vector of parameters 8 maximizing the goodness of fit for
these observation, according to a chosen measure . For generalized linear models, common
measures for feature selection are restricted strong concave and restricted smooth. We study
the log-likelihood and the coefficient of determination, although analogous results hold for
other similar statistics [Das and Kempe, 2011, Qian and Singer, 2019].

Maximizing the log-conditional. Assuming that the response follows a distribution in an
exponential family, the log-conditional can be written as

logp(y | X;8) =h~'(1) = Z(X,8) + gy, 7) (4)

with Z the log-partition function, and 7 the dispersion parameter. The log-conditional is
commonly used for learning. In the case of the simple linear model, it is possible to derive
approximation guarantees in terms of the eigenvalues of X. Additional assumptions on the
random design of X ensure that the log-conditional objective is restricted smooth and restricted
strong concave. We refer the reader to Appendix C.1 for a discussion on these results.
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Maximizing the R? objective. Consider a linear model with a normalized response variable
y. The R? objective is defined as

R%(,y(ﬁ) =1-E [ (y - <X,,@>)2 ] . (5)

This function is a popular measure for the goodness of fit. The function R%{ y(ﬂ) is restricted
strong concave and restricted smooth, with parameters depending on the properties of the
matrix X. A discussion on these results is deferred to Appendix C.2.

C.1 Restricted Strong Concavity and Smoothness of the Log-Conditional

In this section we discuss results concerning the (M, m)-(smotheness, strong concavity) of
the log-conditional for generalized linear models. Consider a feature matrix X € R™*?% and
response variable y. Assuming that the response follows a distribution in an exponential family,
the log-conditional can be written as

logp(y | X;8) =h~'(1) — Z(X,8) + gy, ) (6)

with Z the log-partition function, and 7 the dispersion parameter. We give approximation
guarantees for the objective

1(8) =logp(y | X; B) — nllB|3, (7)

for some parameter n > 0. We show that the function [ is restricted smooth and restricted
strong concave under various assumptions. We start discussing the simplest case of a logistic
regression. We then study the general case as in (6), under the assumption that [ has a
non-zero regularization term. We then conclude with the general case, i.e., no assumptions on
the regularization term.

Logistic regression. The log-likelihood function for the logistic regression is defined as
1BS) == 3" yi(Xs, B) — log (1 - eXs), ®)

with Xg the matrix of all features indexed by S and y; the i-th observation, i.e., the i-th
coefficient of the response y. For this class of log-likelihood functions, the following result
holds.

Proposition C.1. The log-likelihood function | for the logistic regression as in (8), is (m, M)-
(restricted smooth, restricted strong concave) with parameters

m = Insin )\min(Xng) and M = max )\maX(Xng).

Log-conditional with non-zero regularization term. We now study log-conditional
functions as in (6), under the assumption that the corresponding objective [ has a regularization
term with parameter n > 0. We introduce additional notation to this end. For any feature set
T C [n], denote with Pt an operator that takes as input vectors x € R™, and it replaces all
indices in [n] \ T of x by 0. For any vector x € RP, we define xT1 := Py(x). We consider the
following assumption on the distribution of the features.

22



Assumption C.2 (Assumption by Bahmani et al. [2013]). For fixed constants r, R > 0, we
make the following assumption on the feature matrix X € R™*P. The rows x of X are generated
i.i.d., such that the following additional conditions hold. For any set T C [p] of size |T| <,

o [xtll2 < R;
e none of the matrices PrE [ xx T ] Pt are the zero matrix.

Following this notation, define

¢max = Fﬁz}; )\max(PTCPT) Dmin = ‘I_II‘HSIZ )\max(PTCPT)a

with Apax(+) the largest eigenvalue. The following corollary holds.

Proposition C.3 (Corollary 4 by Elenberg et al. [2018]). Consider a function ! as in (7), and
suppose that n > 0. Suppose that Assumption C.2 holds with parameters r, R, and suppose that
the number of samples s is lower-bounded as

R(logr +r(1 +log & — logd))
Gmin(l +¢)log(l+¢) —¢

s >

Then, with probability at least 1 — & the function 1 is (m, M)-(smooth, restricted concave),
for all B with at most r non-zero coefficients. The parameters m and M are defined as
m = q(1 + &)pmax + 1 and M = n, with q a constant fulfilling ¢ > max; h=*(7)Z"(8,x%;) for
h=Y(), Z(-,-) as in (6).

Log-conditional with no assumptions on the regularization term. We now study
log-conditional functions as in (6), with no additional assumption on the regularization term.
For simplicity, we consider functions [ as in (6) with n = 0. However, these results can easily
be extended to the general case. The following lemma holds.

Lemma C.4 (Corollary 2 by Elenberg et al. [2018]). Denote with r an upper-bound on the
sparsity of the feature sets. Following the notation introduced above, suppose that the feature
matriz X consists of samples drawn from a sub-Gaussian distribution with parameter o2 and
covariance matriz 3. Then, for n = 0 the function | as in (7) is (M, m)-(smooth, restricted
concave) with parameters

2 252 k1
M = ayAmax(X) <3+nr> and m:ag—ca ogn7

s 1e%, s

with high probability, for s > 0 sufficiently large. The constant oy depends on (02,%) and k;
the constant oy, yields ay, > max; h=1(7) 12" (B,%;), with h=1(-), Z(-,-) as in (6).
C.2 Restricted Strong Concavity and Smoothness of the R? Objective

In this section, we prove guarantees for the R? objective. To this end, given a feature matrix
consisting of n features and k observations, the R? objective with regularization can be written
as

8) = Ry (8) =1~ Ity — (X, B3 ©

The following lemma, similar to Lemma C.1, holds.
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Algorithm 3 RNDSEQ (X, S)

A + 0 while X # () do
Let {z1,...,2,} be a permutation of X chosen uniformly at random j* <— max{j: SUAU
{$1,...,l‘i}i§j EI} A(—AU{xl,...,xj*} X(—{QEX\(SUA) SUAUGGI}

end

return A

Proposition C.5. The R? objective | for the linear regression as in (9), is (m, M)-(restricted
smooth, restricted strong concave) with parameters

m = msin )\min(Xng) and M = msax )\maX(Xng).
This lemma can easily be extended to the case of an R? objective with regularization term.

D Adaptivity and the PRAM Model

Recall that the adaptivity is defined as follows [Balkanski and Singer, 2018].

Definition D.1 (Adaptivity). Given an oracle f, an algorithm is r-adaptive if every query ¢
to the oracle f occurs at a round ¢ € [r] such that ¢ is independent of the answers f(¢') to all
other queries ¢’ at round 7.

The notion of adaptivity is closely related to other models such as Parallel Random Access
Machines (PRAM). The PRAM model consists of a set of processors, that communicate via
a single shared memory and a memory access unit. The adaptivity extend to PRAM via the
notion of depth. The depth is the number of parallel steps in an algorithm or the longest chain
of dependencies. We remark that the PRAM model assumes that the input is loaded in memory,
whereas the adaptive complexity model only assumes access to an oracle function.

E The RNDSEQ Sub-Routine

The RNDSEQ sub-routine is presented in Algorithm 3. This algorithm correspond to Algorithm
A by Karp et al. [1988]. This algorithm solves the problem of sampling a maximum independent
set of Z uniformly at random. To our knowledge, no other algorithm is known for this problem,
with better adaptivity than Algorithm 3. Given as input a ground set X, a current solution
S, and a p-system Z, this algorithm finds a random set A such that SU A is a maximum
independent set for Z. This algorithm iteratively shuffles the set X, and then it identifies the
longest prefix of this sequence that can be added to S, without violating side constraints. This
prefix is then added to A. This algorithm terminates when SUA € Z is a maximal independent
set.

This algorithm uses parallel calls to the independence oracle of Z. In fact, the evaluations for
the feasibility of prefixes of A can be preformed in parallel. Hence, with this algorithm the
adaptivity of the independence oracle corresponds to the number of iterations until convergence.
It is well-known that this algorithm converges after expected O (y/r) iterations, with r the
rank of Z (see Theorem 6 by Karp et al. [1988]). This implies that the adaptivity of the
independence oracle is O (y/r). Although it is not known if this upper-bound on the adaptivity
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is tight, it is known that there is no algorithm that finds a maximum independent set of Z
with less then Q(n'/?) rounds (see Theorem 7 by Karp et al. [1988]).

F Parameter Tuning for Algorithm 1

If 1 is the log-likelihood of a linear model, or the R? objective of a linear model with normalized
response variable, then m and M can be estimated in terms of the design of the feature matrix
(see Appendix C.1-C.2). These estimates need not be tight, and certifying bounds for m and
M is NP-hard |Bandeira et al., 2013]. In general, the constant m/M in Line 4 of Algorithm
1 requires tuning by making multiple runs of the algorithm. We remark that other known
parallel algorithms for feature selection also require estimates of these parameters [Qian and
Singer, 2019].

Parallel algorithms that estimate the rank are known for several p-systems. For instance, the
rank of a graphic matroid can be estimated with parallel algorithms that compute spanning
trees. Furthermore, parallel rank oracles are known for matroids that can be represented
as independent sets of vectors in a given field [Borodin et al., 1982, Chistov, 1985, Ibarra
et al., 1980, Mulmuley, 1987]. These algorithms can also be used to estimate the rank of more
complex constraints, such as the intersection of matroids or p-matchoids.

G Proof of Theorem 4.1

We prove the following theorem.

Theorem 4.1. Define the support selection function f(-) as in (1), for the given function I(-)
that is (M, m)-(restricted smooth, restricted strong concave), on the sparse sub-domain ;.
Consider a p-system I of rank r over [n], and let S* be the output of Algorithm 1 while OPT is
the optimum solution set for the Problem 2. Then,

S L (1m0

for all 0 < e < 1. Furthermore, in the specific case when I is r-sparsity constraint over [n],

then,
E[C])CS"*” > (1 —exp{—(l —5)2;}22}> :

The proof of this theorem is based on a few lemmas and propositions, which we discuss in
Appendix G.1 before proving Theorem 4.1. On a high level, the proof of Theorem 4.1 is split
into two separate cases. First we prove that Theorem 4.1 holds when Algorithm 1 terminates
after e~! iterations of the outer While-loop of Algorithm 1. Then, we prove Theorem 4.1
under the assumption that Algorithm 1 finds a solution of size k. The first part of the proof is
discussed in Appendix G.3 (see Theorem G.8), and the second case is discussed in Appendix
G.2 (see Theorem G.5).

G.1 Preliminary Results

Our analysis is based on a few preliminary result, which we discuss in this section.
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Theorem G.1. Suppose the l is (M,m)-(smooth, strongly concave) on Qay. Then, for each
subsets S, T C [p] of size at most k it holds

2M > fs(5) = IVIBD)rll5 = 2m > f5(5)

JeET JET
Proof. We start proving the first inequality. Fix a point j € T. Then, for any scalar « it holds

fs(7) = 1BPYIN) —1(B5)) > 1(B®) + aej) —1(B8®)  (maximality of BN

M
> (VI(B®)), ae;) — 7042, (restricted smoothness)  (10)

By substituting o = ﬁ(V[(B(S)),ej) in (10), we get
MY s() = 3 (VUB) e = V18R,
JET JET
and the first inequality follows. To conclude the proof, note that it holds
fs(4) = 1B —1(8®))
< (VI(B®S), g — )y %H,B(SU‘U}) —B®)|2  (restricted strong concavity)

<  max (VI(B®),v—-p3O) - %Hv — B2 (maximality of v) (11)

ViVisu{ip=o
By setting v = 3 + %(VZ(B(S)), e;) in (11) we get
VI(B5))s- |2 . ,
T (g 52 - ygse0m) ~18) = £5().
m
By taking the sum over all j € T and rearranging we get
\V| IB(S) o 2
vy = W s e » 57 )
JET JET

and the claim follows. O

In our analysis, we also use the following well-known result.

Theorem G.2 (Theorem 1 by Elenberg et al. [2018]). Suppose the 1 is (M ,m)-(smooth,
strongly concave) on Qop. Then, for each subsets S, T C [p] of size at most k it holds

2M fs(T) > [|VI(B®)r]3 = 2mfs(T).

By combining Theorem G.1 with Theorem G.2, we get the following corollary.

Corollary G.3. Suppose the | is (M ,m)-(smooth, strongly concave) on Q. Then, for each
subsets S, T C [p] of size at most k it holds

*fs ) > fs(4) (T).

JeT
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We also make use of the following technical proposition.

Proposition G.4 (Proposition 2.2. by Nemhauser et al. [1978]). Let {x1,...,znm} and
{y1,...,ym} be two sequences of non-negative real numbers. Suppose that it holds Zj z; <1

for all j € [m]. Then,
PRED I
=1 =1

G.2 If Algorithm 1 Outputs a Maximum Independent Set

We now prove Theorem 4.1, assuming that Algorithm 1 outputs a solution S of maximum size,
before performing ¢~! iterations of the outer While-loop of Algorithm 1. Formally, we prove
the following theorem.

Theorem G.5. Define the function f as in (1), with a log-likelihood function that is (M, m)-
(smooth, strongly concave) on Qa,. Suppose that Algorithm 1 outputs a solution S* such that
Cond(S*) = 0. Then,

R )}

for all 0 < e < 1. Furthermore, in the specific case when L is r-sparsity constraint over [n],

then,
* m2
]]Z[[J;P("i)] >1 —exp{—(l —6)2}.

The proof of Theorem G.5 is based on the following two additional lemma.

Lemma G.6. At any point during the optimization process it holds

(1- 5)—1%15 > 2m (0PT — £(S)) .

with S the current solution.

Proof. Denote with S a solution of size at most ‘g‘ < r maximizing f(SUS), and let T C [n]

be a set maximizing ||VI(8))1 |3, such that [T| < r and SU {s} € Z for all s € T. Note that

it holds M
1T r
ot = VBl 2 1918, (12)

(1-¢)

where the first inequality follows by the definition of ¢, and the second one follows since |T| < 7.
We first prove the claim when t is updated at the beginning of each iteration of the outer
While-loop of Algorithm 1. It holds

1) ~ 1)
< (VI(BO), BEYS) _ B — %Hﬁ(Sué) — B2 (restricted strong concavity)

< max (VI(B®),v-pO)— %HV — B2, (maximality of v)  (13)

Vi V(sus)#£0
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By setting v = 1360) 4 VZ(B(S))g in the inequality above we get

f(OPT) — f(S) = l(ﬁ(sug)) —1(B8) (maximality of S and monotonicity)
(S)\_112
< VU™ )sllz (substituting v in (13))
2m
(S)\__ (12
< HVZ(,g)T”Q (maximality of T) (14)
m

The claim follows by combining (14) and (12). Suppose now that the current solution S
is updated to S’ during the inner While-loop of Algorithm 1. Then, f(S) > f(S') due to
monotonicity, and the claim holds. O

Lemma G.7. At any given time step, suppose that the current solution S is updated to
Su{ai,...,a;}, and define S; =SU{a1,...,a;} for all j € [j*]. Then it holds

2m2

E[fs;1(8) ] = (=) 75 (OPT—E[ f(S;-1) ).

Proof. Fix all random decisions of Algorithm 1 until the point a; is added to the current
solution. Define the sets X]I- ={ee X\ {a,...,aj-1}: {a1,...,a;-1} U{a} € T}. Then, it
holds

oM

Ea]- [ijA (aj> ] >
1

> mﬂl’aj((Vl(,B(SJ'*l)),ea])2 > )t (Markov’s inequality) (15)

! Eq, [ <Vl(,8(57*1)),ea].>2 (Theorem G.1)

By design of the RNDSEQ subroutine, each point a; is sampled uniformly at random from
the set XZ, ie. a; ~ UXE). Hence, it holds P,, ((VI(BS1)),e,,)? > 1) = |xj_1\/‘x§.).

Combining this observation with (15) we get

1 X1 .
Eq. . N> = by the sub- 1 d

aj [fS]—1(aJ) | > oM ‘X]I‘ , (by the sub-sampling procedure)
1 [X;=

> 2]\4| |jx|1| ; (since X]Z C X)
1

2 (1 —e)gt (since [X;j—1| = (1 =€) [X])

5 m? .

>(1—¢) e (OPT — £(Sj-1)), (by Lemma G.6)
T

The claim follows by taking the expectation on both sides. O

Using this lemma, we can now prove Theorem G.5.

Proof of Theorem G.5. Denote with {a1,...,a;} the first j points added to the solution S*,
sorted in the order that they were added to it, and define the constant ¢ := (1 — &)?m?/r M?2.
Using an induction argument on j, we prove that it holds

E[f({a1,....a;}) ]
OPT

> (1—(1—¢)). (16)
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The base case with j = 0 holds, due to the non-negativity of the function f. For the inductive
case, we have that it holds

E[ f{a1,...,a;}) | > E[ f{a1,...,aj-1}) | +¢(0PT — f({a1,...,aj-1})) (Lemma G.7)
>(1—-c)(1-(1- c)j_l) OPT + cOPT (by induction)
>

(1-(1-¢))opT,

and (16) holds. It follows that for j = |S*| we have

E[f(S")] 5™
DPTZl(lC)lSZlexp{ k c}.

In the case of a r-sparsity constraint we have that |[S*| = r, and the claim follows. In the case
of a p-system constraint, we have that |S*| > pr, hence

E [ f(S*) ] 2 m2 1 2 m3
and the Claim alSO hOldS. D

G.3 If Algorithm lerminates after ¢ !terations

We now prove Theorem 4.1, assuming that the FASToump terminates after e ! iterations of
the outer While-loop of Algorithm 1. Specifically, we prove the following theorem.

Theorem G.8. Define the function f as in (1), with a log-likelihood function that is (M, m)-
(smooth, strongly concave) on Q.. Suppose that Algorithm 1 terminates after e~ iterations of
the outer-While loop. Then,

LU (- -

for all 0 < e < 1. Furthermore, in the specific case when I is r-sparsity constraint over [n],

then, ,
E[Cj;gi)] >1 —exp{—(l —5)2]\732}.

In order to prove this theorem, we introduce additional notation. We denote with S; the
current solution at the beginning of the i-th iteration of the outer While-loop of Algorithm
1. Furthermore, denote with S C T\ S; a feasible set, such that f(SUS;) = OPT, and denote
with a; the j-th element added to the solution S. The proof of this theorem is based on the
following lemma.

Lemma G.9. It holds

M _
fsSu) Y efs(e) 2 e fs(9).
eeS\ Cond(s;)

Proof. Fix all random decision of Algorithm 1, up to the (i + 1)-th iteration of the outer
While-loop of Algorithm 1. Let T C [n] be a set maximizing |VI(3))7|2, such that |T| < r
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and T C Z. Due to the assumption on the stopping criterion, it holds X = ) at the end of
iteration ¢. This means that each point j € (T \'S;) N Cond(S;) was discarded at some point
during the previous iteration. Denote with U; the current solution when j was discarded.
Then, it holds

(1= o (6) > (1 - ) 2 | VIB)r 3 =1 (17)

eeT

where the first inequality follows by Theorem G.1, and the second one follows by the definition of
t. Since the point j was discarded and since j7 € Cond(S;), then it must hold ¢ > (Vl(ﬁg-uj)), ej)2

Note also that by the RSC/RSM properties of the function [ it holds (Vi(84)) e;)? >
(VI(BG#+1)), e;)? [Elenberg et al., 2018]. Combining these observations with (17) we get

(1= 205 fs.(e) = (VIBOD), e5)? = 2m s, (). (18)

eeT

By taking the sum over all points j € (T \ S;) N Cond(S;) and rearranging, we get

(1—e) fsile) = (1—¢) (T S:) ﬁrcond(si) S fs.(e)  (by definition of r)
ecT ecT

> Z fsi1(4) (it follows from (18))  (19)
i€(M\S:)nCond(s;)

By rearranging (19) we get

Y fse) > > efs,(e)

e€Siy1 ec(T\S;)NCond(s;)
> Z efs,(e) (by the definition of S)
eeSnCond(s;)
> Z efs;(e) — Z efs,(e) (by linearity) (20)
e€S ee5\Cond(s;)

Hence, it holds

*fs i+1) Z fsi(e (Corollary G.3)
€€S7,+1

> Zefsi(e) — Z efs,(e) (it follows from (20))

e€S ec5\Cond(s;)

m —

> eﬂfsi(S) - Z efs,(e). (Corollary G.3)

ec5\Cond(s;)

The claim follows by rearranging. O

In order to continue with the proof, we also use the following lemma.
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Lemma G.10. It holds
2

pFS) 2 (1-e)1s Y. fs(o)
ecS\ Cond(s;)

Proof. Fix an index j < |S;|, and fix all random decisions of Algorithm 1 until the point a; is
added to the current solution. For each element a;, define the set D; := (SNCond({ay, ..., aj-1}))\
(SN Cond({a1,...,a;})). Note that these sets consist of all points in S that yield a feasi-
ble solution when added to {ai,...,a;—1}, but that violate side constraints when added to
{ai,...,aj}. Note also that it holds Dy U---UD; = S\ Cond({a1,...,a;}). Furthermore,
define the sets

XJI ={eeX\{ai,...,aj-1}: {ar,...,a;_1} U{a} € T}.

Then, it holds

1 a a;
Ea, | flornay13(03) | = 5378, | (VI(BUS5=D) 0002 | (by Lemma G.1)
> ﬁpa‘j((vzw({alw-»aﬂ})),eaj.>2 > 1)t (by Markov)  (21)

Note that the RNDSEQ subroutine samples points a; uniformly at random a; ~ U (X]I ). Hence,

Xjal o X5
‘XZ’ X

B, (VU(BS)), e,,)? = t) = (22)

where the last inequality holds, since X]I. C X. Combining this observation with (21) we get

X .
Eo, | farsa (@) | = 537 511 “x“ (it follows by (22))

1—¢

= 2M t (IXj—1l = (1 =) X])
1- {a1 @i —1}) 2 L

= 2M2 |-|—’ HVZ( R ENE o | (by the definition of t)
1- glara1 )y 2 . .

z 2M2 |D |||VZ( B )Dj”27 (T 18 Inaxmlal)

By taking the expected value on both sides in the chain of inequalities above, we get

Z ‘Dj’Eaj [ f_{aly--qaj—l}(aj) } = (1 — )53 2M2 Z E [ "VZ(IB(Si))Dj”g . (23)

J<ISi] J<ISil

In order to continue with the proof, we give an upper-bound on the size of the sum y |D;.
To this end, note that the set S; is a maximum independent set over the ground set

S; U (D1 y---u D|51|) =5;U (g \ Cond(SZ)) .

In fact, the set S; is independent by definition, and that any point s € (S\ Cond(S;)) \ S;
yields S; U {s} ¢ Z. Hence S; is a maximum independent set as claimed. Note also that
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DiU---UDg, C S is an independent set, due to the subset-closure of Z. Since Z is a p-system,
then it holds

IDif + - =|D1U---UDg,| < plSil. (24)

Hence, it holds
p Z oy [f{ah La;13(@g) } Z |D;j| Eq, {f{al, e 1}(%)} (it follows by (24))

J<ISil 3<ISil
m : :
> (1-e)gis > E[IVIB®)o, B ] (it follows by (23))
J<IS4]
m2
>(1- 5)W Z fs,(e) (by Theorem G.1).
6€D1U"'UD|S”

The claim follows since Dy U---UDjg,; =S\ Cond(S;). O

We now have all necessary tools to prove Theorem G.8.

Proof of Theorem G.8. We first prove the claim, assuming that 7 is a general p-system. In
this case, by combining Lemma G.9 with Lemma G.10 it holds

M M?

E[s.(Sir1) | +ep 3B F(S)] 2 (1 - o) B

TE[f5(9)]. (25)

To continue, define the constant ¢ = (1 — g)m3/M3. We prove by induction on i that it holds
(1+eip)E[ £(Si) ] > (1 — (1 —ec)")OPT. (26)

The base case with Sg = () trivially follows, since the function f is non-negative. For the
inductive case, suppose that the claim holds for E [ f(S;—1) ]. Then,

(1 +eip)E[ f(Si) ]
E[ f(Si) ]+ eipE[ f(Si—1) ] (by monotonicity

> )
> B[ f(Si1) |+ 2B [ f5,(5) ] +2(i— DpE [ £(Si1)] (it follows by (25))
>(1—ec)E[ f(Si—1) | +ecOPT +e(i — 1)pE[ f(Si—1) ]  (by monotonicity)
> (1 —¢ec)(1— (1 —ec)"1)OPT + ecOPT (by induction)
> (1 — (1 —ec)")OPT.
Hence, (26) holds. It follows that
E[f(S)]=E] f(Si1/e)) ] (by the stopping criterion)
1 3\ /el ' )
> T/ (1 — (1 —e(1— E)W> ) OPT (it follows by (26))
> 1i <1 — exp {—(1 — 5)Mz }) OPT,
as claimed.
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We conclude by proving the claim in the special case that Z is a r-sparsity constraint. Since
the algorithm terminates before a solution of size r is found, we have that Cond(S;) = [n] \ S;
for all iterations . Hence, D1 U---UD; = () and Lemma G.9 yields

E[ fs,(Sir1) ] 2 e75E [ f5.(5") 1.

With this inequality, we can use an inductive argument similar to the proof for the general
case, and obtain an improved lower-bound on the solution quality. O

H Proof of Theorem 4.2

We conclude by giving upper-bounds on the run time and adaptivity for Algorithm 1. Recall
that the notion of adaptivity is given in Definition D.1. The following theorem holds.

Theorem 4.2. Algorithm 1 terminates after O (5_2 log n) rounds of calls to the oracle function,
and it uses at most O (5*2r10g n) oracle queries. Furthermore, Algorithm 1 requires expected
O (5_2\/7“10g n) independent calls to the oracle for the p-system I, and the total expected
number of calls to the oracle for the p-system T is O (E*Qm“ log n)

In order to prove this result, we use the following well-known estimate on the number of
adaptive rounds of the RNDSEQ sub-routine (see Appendix E).

Theorem H.1 (Theorem 6 by Karp et al. [1988]). Algorithm E terminates after expected
O (\/r) steps, with r the rank of the independent system I.

Note that this theorem implies that the number of adaptive rounds of the independence oracle
for Algorithm E is O (y/r) in expected value. In fact, in each step of Algorithm E, queries to
the independence oracle can be performed in parallel. Using this result, we can now prove
Theorem 4.2.

Proof of Theorem 4.2. We first give upper-bounds for the oracle function that accesses VI(-).
To this end, observe that there are two While-loops in Algorithm 1. The outer while-loop
terminates after at most e ! iteration. The inner While-loop terminates after © (6*1 log n)
iterations, since at each iteration the size of X decreases at least of a multiplicative factor of
1 — €. Hence, the rounds of calls to the oracle function is O (5‘2 log n) Furthermore, at each
iteration of the inner While-loop, at most r parallel calls to Vi(-) are preformed. It follows
that the total number of oracle calls is O (6_2rlog n)

We now estimate the number of adaptive rounds and run time for the calls to the independence
oracle. To this end, note that is oracle is called by the RNDSEQ sub-routine,and it is also
evaluated nr times in parallel during the inner While-loop of Algorithm 1. From Theorem H.1
it follows that the number of adaptive rounds is O (5_2\/77 log n), and that the total number
of calls to the oracle function is O (5‘2m’ log n) as claimed. O

I Feature selection on Non-volatile Memory (NVM)

The emergence of CPU-attached persistent memory technology, such as Intel’s Optane Non-
Volatile Memory (NVM), has opened opportunities for running large datasets on a single server.
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A single server may have up to 6TB of NVM, that can be accessed through the memory bus.
The use of NVM compared to DRAM is beneficial for two reasons. First, due to its large
capacity, it is suitable to handle large datasets. Secondly, as NVM is non-volatile, it can easily
support fault-tolerance and recovery of the computation when a server crashes. Furthermore,
even though NVM latency is slightly slower than DRAM, it has much better latency than SSD
of orders of magnitude.

For running our Python code on NVM, we used MCAS [Waddington et al., 2021a,b] (Memory
Centric Active Storage), which is an advanced client-server in-memory object store designed
from the ground up to leverage persistent memory. MCAS supports “pushdown” operations on
the client-side which are termed Active Data Objects (ADO), and has a Python plugin that
allows zero-copy for Numpy data access. Our benchmark for evaluating feature selection with
persistent memory is done by integrating the algorithms to MCAS as an ADO using the above
mentioned Python plugin. We use an Intel Xeon Gold 6248 server with 80 CPUs at 2.50GHz.
The server is equipped with 384GB DDR4 DRAM and 1512GB Optane DC.

By experimenting with the same datasets with the SDSomp and FASTonp, we observed no
significant variation in run time compared to our DRAM implementation. This is due to the
fact that the time required to copy data from NVM to DRAM is negligible, in comparison
with the compute time of training phases. However, when performing tasks on the DRAM
that use more memory than the DRAM capacity, we might observe a significant decrease in
the performance. For this reason, in future work we intend to investigate the trade-off between
training time on different media (NVM versus DRAM and SSD) of tasks that use more memory
than the DRAM capacity.

J The ProPublica COMPAS Dataset

The ProPublica COMPAS dataset was constructed in 2016, using data of defendants from
Broward County, FL, who had been arrested in 2013 or 2014 and assessed with the COMPAS
risk screening system. ProPublica then collected data on future arrests for these defendants
through the end of March 2016, in order to study how the COMPAS score predicted recidivism
[Angwin et al., 2016]. Based on its analysis, ProPublica concluded that the COMPAS risk
score was racially biased [Berk et al., 2021].

The ProPublica COMPAS data has become one of the key bench-marking datasets for testing
algorithmic fairness definitions and procedures [Chouldechova, 2017, Corbett-Davies et al.,
2017, Corbett-Davies et al., 2017, Cowgill and Tucker, 2019, Rudin et al., 2018, Zafar et al.,
2017b,c|. However, Bao et al. [2021a] notes that there are inaccuracies in the COMPAS dataset.
For instance, COMPAS race categories lack Native Hawaiian or Other Pacific Islander, and it
redefines Hispanic as race instead of ethnicity.

This dataset consists of the following features: “number of prior criminal offenses”, “arrest

charge description”, “charge degree”, “number of juvenile felony offenses”, “juvenile misdemeanor
offenses”, “other juvenile offenses”, “age”, “sex” and ‘race” of the defendant. The dataset also

contains information on whether the defendant recidivated or not.
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