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The Weisfeiler-Leman Dimension of ConjunctiveQueries∗
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A graph parameter is a function 𝑓 on graphs with the property that, for any pair of isomorphic graphs 𝐺1

and𝐺2, 𝑓 (𝐺1) = 𝑓 (𝐺2). The Weisfeiler–Leman (WL) dimension of 𝑓 is the minimum 𝑘 such that, if𝐺1 and𝐺2

are indistinguishable by the 𝑘-dimensional WL-algorithm then 𝑓 (𝐺1) = 𝑓 (𝐺2). The WL-dimension of 𝑓 is ∞
if no such 𝑘 exists. We study the WL-dimension of graph parameters characterised by the number of answers

from a fixed conjunctive query to the graph. Given a conjunctive query 𝜑 , we quantify the WL-dimension of

the function that maps every graph 𝐺 to the number of answers of 𝜑 in 𝐺 .

The works of Dvorák (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023)

have answered this question for full conjunctive queries, which are conjunctive queries without existentially

quantified variables. For such queries 𝜑 , the WL-dimension is equal to the treewidth of the Gaifman graph

of 𝜑 .

In this work, we give a characterisation that applies to all conjunctive queries. Given any conjunctive

query 𝜑 , we prove that its WL-dimension is equal to the semantic extension width sew(𝜑), a novel width

measure that can be thought of as a combination of the treewidth of 𝜑 and its quantified star size, an invariant

introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of 𝜑 are

connected with the free variables. Using the recently established equivalence between the WL-algorithm and

higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence

that the function counting answers to a conjunctive query 𝜑 cannot be computed by GNNs of order smaller

than sew(𝜑).
The majority of the paper is concerned with establishing a lower bound of the WL-dimension of a query.

Given any conjunctive query 𝜑 with semantic extension width 𝑘 , we consider a graph 𝐹 of treewidth 𝑘

obtained from the Gaifman graph of 𝜑 by repeatedly cloning the vertices corresponding to existentially

quantified variables. Using a modification due to Fürer (ICALP 2001) of the Cai-Fürer-Immerman construction

(Combinatorica 1992), we then obtain a pair of graphs 𝜒 (𝐹 ) and 𝜒 (𝐹 ) that are indistinguishable by the (𝑘 − 1)-
dimensional WL-algorithm since 𝐹 has treewidth 𝑘 . Finally, in the technical heart of the paper, we show

that 𝜑 has a different number of answers in 𝜒 (𝐹 ) and 𝜒 (𝐹 ). Thus, 𝜑 can distinguish two graphs that cannot be

distinguished by the (𝑘 − 1)-dimensional WL-algorithm, so the WL-dimension of 𝜑 is at least 𝑘 .
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1 INTRODUCTION
The Weisfeiler–Leman (WL) algorithm [38] and its higher dimensional generalisations [9] are

amongst the most well-studied heuristics for graph isomorphism. This algorithm works as follows.

For each positive integer 𝑘 , the 𝑘-dimensional WL-algorithm iteratively maps 𝑘-tuples of vertices

of a graph to multisets of colours. Two graphs 𝐺 and 𝐺 ′
are said to be 𝑘-WL-equivalent, denoted

𝐺 �𝑘 𝐺
′
, if this algorithm returns the same vertex colouring for 𝐺 and 𝐺 ′

, up to consistently

renaming the colours. For the specific case 𝑘 = 1 the WL-algorithm is equivalent to the colour-

refinement algorithm, which is a widely used and efficiently-implementable heuristic for graph

isomorphism (see e.g. [2, 21]).

In addition to applications to graph isomorphism, recent works have shown that the express-

iveness of Graph Neural Networks (GNNs) and their higher order generalisations is precisely

characterised by the WL-algorithm [30, 39]. This result has sparked a flurry of research with the

objective of determining which graph parameters are invariant on graphs that are indistinguishable

by the WL-algorithm [3, 4, 7, 12, 25, 29, 31]. We refer the reader to the survey by Grohe [20] for

further reading.

Over the years, surprising alternative characterisations of 𝑘-WL-equivalence have been estab-

lished.

(I) 𝐺 �1 𝐺
′
if and only if 𝐺 and 𝐺 ′

are fractionally isomorphic (see [36, 37]).

(II) For each positive integer 𝑘 ,𝐺 �𝑘 𝐺
′
if and only if there is no first-order formula with counting

quantifiers that uses at most 𝑘 + 1 variables and that can distinguish 𝐺 and 𝐺 ′
[9, 23].

(III) For each positive integer 𝑘 , 𝐺 �𝑘 𝐺
′
if and only if, for each graph 𝐻 of treewidth at most 𝑘 ,

the number of graph homomorphisms from 𝐻 to 𝐺 is equal to the number of graph homo-

morphisms from 𝐻 to 𝐺 ′
[15, 18]. This is the characterisation of 𝑘-WL-equivalence that will

be used in this work (see Definition 19).

The characterisation in (III) has ignited interest in studying theWL-dimension of counting graph

homomorphisms and of counting related patterns [3, 7, 12, 25, 31].

A graph parameter 𝑓 is a function from graphs that is invariant under isomorphisms. The WL-

dimension of a graph parameter 𝑓 is the minimum positive integer 𝑘 such that 𝑓 cannot distinguish

𝑘-WL-equivalent graphs (see Definition 20). Building upon the works of Dvorák [18], Dell, Grohe

and Rattan [15], Roberson [33], and Seppelt [35], it has very recently been shown by Neuen [31]

that the WL-dimension of the graph parameter that counts homomorphisms from a fixed graph

𝐻 is exactly the treewidth of 𝐻 . It is well known that counting homomorphisms is equivalent to

counting answers to conjunctive queries without existentially quantified variables (see e.g. [32]);

such conjunctive queries are also called full conjunctive queries. In this work, we consider all

conjunctive queries including those that have existentially quantified variables and we answer the

fundamental question: What is the WL-dimension of the graph parameter that counts answers to

fixed conjunctive queries?

To state our results, we first introduce some central concepts.

1.1 ConjunctiveQueries and Semantic Extension Width
A conjunctive query 𝜑 consists of a set of free variables 𝑋 = {𝑥1, . . . , 𝑥𝑘 } and a set of (existentially)

quantified variables 𝑌 = {𝑦1, . . . , 𝑦ℓ }, and is of the form 𝜑 (𝑥1, . . . , 𝑥𝑘 ) = ∃𝑦1, . . . , 𝑦ℓ : 𝐴1 ∧ · · · ∧𝐴𝑚 ,

such that each 𝐴𝑖 is an atom 𝑅(®𝑧) where 𝑅 is a relation symbol and ®𝑧 is a vector of variables in
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𝑋 ∪ 𝑌 . Since we focus in this work on undirected graphs without self-loops, in our setting there is

only one binary relation symbol 𝐸, so all atoms are of the form 𝐸 (𝑧1, 𝑧2). An answer to 𝜑 in a graph

𝐺 is an assignment 𝑎 from the free variables 𝑋 to 𝑉 (𝐺) such there is an assignment ℎ from 𝑋 ∪ 𝑌
to 𝑉 (𝐺) which agrees with 𝑎 on 𝑋 and has the property that, for each atom 𝐸 (𝑧1, 𝑧2), the image

{ℎ(𝑧1), ℎ(𝑧2)} is an edge of 𝐺 .

As is common in the literature (see e.g. [10, 11, 16, 32]), we can equivalently express the answers

of 𝜑 in a graph 𝐺 as partial homomorphisms to 𝐺 . Let 𝐻 be the graph with vertex set 𝑋 ∪ 𝑌 that

has as edges the pairs of variables in 𝑋 ∪𝑌 that occur in a common atom. Then the answers of 𝜑 in

𝐺 are the mappings 𝑎 : 𝑋 → 𝑉 (𝐺) that can be extended to a homomorphism from 𝐻 to 𝐺 . For this

reason, following the notation of [16], we will from now an refer to a conjunctive query as a pair

(𝐻,𝑋 ) where 𝐻 is a graph and 𝑋 is a subset of vertices of 𝐻 corresponding to the free variables.

We will say that (𝐻,𝑋 ) is connected if 𝐻 is a connected graph. We will write Ans((𝐻,𝑋 ),𝐺) for
the set of answers of (𝐻,𝑋 ) in 𝐺 ; this is made formal in Section 2.1. The WL-dimension of a

conjunctive query (𝐻,𝑋 ) is the WL-dimension of the graph parameter that maps every graph 𝐺 to

|Ans((𝐻,𝑋 ),𝐺) |.

Semantic Extension Width. Let (𝐻,𝑋 ) be a conjunctive query and let 𝑌 = 𝑉 (𝐻 ) \ 𝑋 . The graph
Γ(𝐻,𝑋 ) is obtained from 𝐻 by adding an edge between each pair of vertices 𝑢 ≠ 𝑣 in 𝑋 if and only

if there is a connected component in 𝐻 [𝑌 ] that is adjacent to both 𝑢 and 𝑣 . We then define the

extension width of (𝐻,𝑋 ) as the treewidth of Γ(𝐻,𝑋 ); the definition of treewidth can be found in

Section 2.2.

The semantic extension width of a conjunctive query (𝐻,𝑋 ), denoted by sew(𝐻,𝑋 ) is then themin-

imum extension width of any conjunctive query (𝐻 ′, 𝑋 ′) that is counting equivalent to (𝐻,𝑋 ), i.e.,
any conjunctive query (𝐻 ′, 𝑋 ′) such that, for every graph𝐺 , |Ans((𝐻,𝑋 ),𝐺) | = |Ans((𝐻 ′, 𝑋 ′),𝐺) |.
A discussion of counting equivalence and counting minimal conjunctive queries can be found in

Section 2.1.

Before stating our main result, we provide an example of a conjunctive query and its semantic

extension width: Let (𝑆𝑘 , 𝑋𝑘 ) be the 𝑘-star query: 𝑋𝑘 = {𝑥1, . . . , 𝑥𝑘 } and 𝑆𝑘 has vertices 𝑋𝑘 ∪ {𝑦}
and edges {𝑥𝑖 , 𝑦} for all 𝑖 ∈ [𝑘]. Note that the answers of (𝑆𝑘 , 𝑋𝑘 ) in a graph 𝐺 are precisely the

assignments from𝑋𝑘 to𝑉 (𝐺) such that the vertices all of the images of vertices in𝑋𝑘 have a common

neighbour. The 𝑘-star query is acyclic (i.e., 𝑆𝑘 has treewidth 1) and it has played an important role as

a base case for complexity classifications regarding counting answers to conjunctive queries [10, 16].

The graph Γ(𝑆𝑘 , 𝑋𝑘 ) is the (𝑘 +1)-clique which has treewidth 𝑘 . Since it is also minimal with respect

to counting equivalence, we have sew(𝑆𝑘 , 𝑋𝑘 ) = 𝑘 .

1.2 Our Contributions
We now state our main result.

Theorem 1. Let (𝐻,𝑋 ) be a connected conjunctive query with 𝑋 ≠ ∅. Then the WL-dimension of

(𝐻,𝑋 ) is equal to its semantic extension width sew(𝐻,𝑋 ).

In Theorem 1, the WL-dimension of (𝐻, 𝑥) is captured by its semantic extension width rather

than by its extension width, which is the treewidth of Γ(𝐻,𝑋 ). This is because 𝐻 [𝑌 ] may contain

a high-treewidth subgraph that does not influence the number of answers.

As an immediate corollary of Theorem 1, we obtain the following alternative characterisation of

WL-equivalence.

Corollary 2. For each positive integer 𝑘 , two graphs 𝐺 and 𝐺 ′
are 𝑘-WL-equivalent if and only if,

for each connected conjunctive query (𝐻,𝑋 ) with 𝑋 ≠ ∅ and sew(𝐻,𝑋 ) ≤ 𝑘 , |Ans((𝐻,𝑋 ),𝐺) | =
|Ans((𝐻,𝑋 ),𝐺 ′) |.
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As the following sections show, our classification of the WL-dimension of conjunctive queries

has further strong consequences regarding the expressive power of graph neural networks (GNNs),

the parameterised complexity of counting answers to conjunctive queries, and the WL-dimension

of first-order formulas with universal quantifiers such as the formula corresponding to dominating

sets.

GNNs and Conjunctive Queries. Over the last decade, GNNs have received increasing attention

due to their application to computations involving graph structured data (see [25]). Motivated by

the fact that the number of occurrences of small patterns can capture interesting global information

about graphs, and can therefore be used to compare graphs [1, 24, 28], researchers have studied the

extent to which GNNs (and their higher order generalisations [30]) are able to count selected small

patterns such as homomorphisms [25], subgraphs [7], and induced subgraphs [12].

Following [30] but simplifying the notation for our needs, we represent a 𝑡-layer order-𝑘 GNN

𝑁 as a tuple 𝑁 = (𝐺,𝑊1, . . . ,𝑊𝑡 , 𝑓0, . . . , 𝑓𝑡 ) where 𝐺 is a graph, each𝑊𝑖 is a set of weights, and

each 𝑓𝑖 assigns a feature vector to each 𝑘-tuple of nodes. The GNN specifies how 𝑓𝑖 is computed

from 𝐺,𝑊1, . . . ,𝑊𝑖−1, 𝑓0, . . . , 𝑓𝑖−1. We use 𝑓𝑁 (𝐺) to denote the final feature vector so 𝑓𝑁 (𝐺) = 𝑓𝑡 .

The feature vector 𝑓𝑁 (𝐺) induces a partition on the 𝑘-tuples of vertices of𝐺 , which we call 𝑃𝑁 (𝐺).
We next explain what we mean when we say that a GNN can “compute” a function on graphs.

So far, this has been studied in a somewhat limited context. Namely, we say that a GNN can

“compute” a function 𝐴𝑁 (𝐺) if 𝐴𝑁 (𝐺) can be computed in polynomial time from 𝑃𝑁 (𝐺). Thus,
when we say that a GNN can count small patterns, we mean that the number of such patterns can

be efficiently computed from 𝑃𝑁 (𝐺). We do not address the issue of whether the GNN can itself do

the polynomial-computation that is needed to compute 𝐴𝑁 (𝐺) from 𝑃𝑁 (𝐺). Issues of dimension

are also beyond the scope of this paper — in our setting the feature vector induces a partition on the

𝑘-tuples of vertices of 𝐺 — for a brief discussion about how the dimension can be reduced see [30].

We say that a GNN 𝑁 = (𝐺,𝑊1, . . . ,𝑊𝑡 , 𝑓0, . . . , 𝑓𝑡 ) is “fully refined” if there is no GNN 𝑁 ′ =

(𝐺,𝑊 ′
1
, . . . ,𝑊 ′

𝑡 , 𝑓0, 𝑓
′
1
, . . . , 𝑓 ′

𝑡 ′ ) such that 𝑃𝑁 ′ (𝐺) strictly refines 𝑃𝑁 (𝐺).
In this setting, Morris et al. [30] established an equivalence between the expressive power of

fully-refined order-𝑘 GNNs and the 𝑘-dimensional WL algorithm. For this, let N𝑘 be the set of

fully-refined order-𝑘 GNNs. Propositions 3 and 4 of [30] give the following proposition.

Proposition 3. For all 𝑁 ∈ N𝑘 , 𝑃𝑁 (𝐺) is exactly the the same as the partition 𝑃WL (𝐺) on 𝑘-tuples
of vertices that is computed by 𝑘-WL when it is run with input 𝐺 and the initial partition induced by

the initial feature vector 𝑓0 of 𝑁 .

Building upon Proposition 3, the works of Dvorák [18], Dell, Grohe and Rattan [15], and Lan-

zinger and Barcelo [25] determine the expressiveness of fully refined GNNs in the context of

homomorphism counting. Essentially, order-𝑘 GNNs can count homomorphisms from a graph 𝐻

if and only if the treewidth of 𝐻 is at most 𝑘 . The “if” direction has already been used implicitly

in [15, 18]. It follows explicitly from [25, Theorem 6 and Lemma 7]. The “only if” direction follows

by combining Proposition 3 with the upper and lower bounds on the WL dimension of counting

homomorphisms [15, 18, 25, 33]. Specifically, Lanzinger and Barcelo [25] show that homomorph-

isms from 𝐻 to 𝐺 can be efficiently computed from the vertex refinement produced when WL-𝑘 is

run on input 𝐺 starting from the partition in which each 𝑘-tuple is assigned a part based on the

subgraph that induces.

Our classification (Theorem 1) provides a similar picture in the context of counting answers to

conjunctive queries. First, we will show that if (𝐻,𝑋 ) is a conjunctive query with sew(𝐻,𝑋 ) = 𝑘
then for all graphs 𝐺 there is a fully refined GNN 𝑁 ∈ N𝑘 with underlying graph 𝐺 that computes

|Ans((𝐻,𝑋 ),𝐺) |. This follows from the following two observations.
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(1) From [25, Theorem 6] and Proposition 3, for all 𝑘 , all sequences 𝐹1, . . . , 𝐹𝑛 of graphs of

treewidth at most 𝑘 , all sequences 𝜇1, . . . , 𝜇𝑘 of rational numbers, and all graphs 𝐺 there is a

fully refined GNN 𝑁 ∈ N𝑘 with underlying graph 𝐺 such that

∑𝑛
𝑖=1 𝜇𝑖 |Hom(𝐹𝑖 ,𝐺) | can be

efficiently computed from 𝑃𝑁 (𝐺).
(2) From our work (see Observation 23), for all graphs 𝐺 there is a finite sequence of graphs

𝐹1, . . . , 𝐹𝑛 of treewidth at most 𝑘 , such that |Ans((𝐻,𝑋 ),𝐺) | can be written as such as sum.

For the other direction we will show that if a fully refined GNN can compute the number of

answers from (𝐻,𝑋 ) then the order of this GNN is at least sew(𝐻,𝑋 ). The proof is based on the

following two observations.

(1) From Proposition 3, for all graphs𝐺 ′
and𝐺 ′′

such that𝐺 ′ �𝑘 𝐺
′′
and all GNNs 𝑁 ′, 𝑁 ′′ ∈ N𝑘

with underlying graphs 𝐺 ′
and 𝐺 ′′

, and any function 𝐴𝑁 (𝐺) that is efficiently computable

from 𝑃𝑁 (𝐺), 𝐴𝑁 ′ (𝐺 ′) = 𝐴𝑁 ′′ (𝐺 ′′).
(2) Let (𝐻,𝑋 ) be a conjunctive query with sew(𝐻,𝑋 ) = 𝑘 . From our Theorem 1, there are graphs

𝐺 and 𝐺 ′
such that 𝐺 �𝑘−1 𝐺

′
and |Ans((𝐻,𝑋 ),𝐺) | ≠ |Ans((𝐻,𝑋 ),𝐺 ′) |.

We can use these two facts to show that if a fully refined GNN can compute the number

of answers from (𝐻,𝑋 ) then its order is at least sew(𝐻,𝑋 ). In particular, consider (𝐻,𝑋 ) with
sew(𝐻,𝑋 ) = 𝑘 . Suppose for contradiction that, for some 𝑗 < 𝑘 , some GNN 𝑁 ∈ N𝑗 can compute

𝐴𝑁 (𝐺) = |Ans((𝐻,𝑋 ),𝐺) |. For all𝐺 and𝐺 ′
with𝐺 �𝑘−1 𝐺

′
we have𝐺 �𝑗 𝐺

′
so from (1), we have

|Ans((𝐻,𝑋 ),𝐺) | = |Ans((𝐻,𝑋 ),𝐺 ′) |, contradicting (2).

Parameterised counting of answers to conjunctive queries. The next consequence of our main

result reveals a surprising connection between the complexity of counting answers to conjunctive

queries and their WL-dimension. Given a class of conjunctive queries Ψ, the counting problem

#CQ(Ψ) takes as input a pair consisting of a conjunctive query (𝐻,𝑋 ) ∈ Ψ and a graph 𝐺 and

outputs |Ans((𝐻,𝑋 ),𝐺) |. We say that a class of conjunctive queries has bounded WL-dimension

if there is a constant 𝐵 that upper bounds the WL-dimension of all queries in the class. The

assumption FPT ≠𝑊 [1] is the central (and widely accepted) hardness assumption in parameterised

complexity theory (see e.g. [19]). We say that a conjunctive query is counting minimal if it is a

minimal representative with respect to counting equivalence (see Definition 9). Theorem 1 implies

Corollary 4.

Corollary 4. Let Ψ be a recursively enumerable class of counting minimal and connected conjunctive

queries with at least one free variable. The problem #CQ(Ψ) is solvable in polynomial time if and only

if the WL-dimension of Ψ is bounded; the “only if” is conditioned under the assumption FPT ≠𝑊 [1].

Quantum Queries and the WL dimension of counting dominating sets. Our main result also enables

us to classify the WL-dimension of more complex queries including unions of conjunctive queries

and conjunctive queries with disequalities and negations over the free variables. The statement of

this classification requires the consideration of finite linear combinations of conjunctive queries (also

known as quantum queries; see Definition 29). A quantum query is of the form𝑄 =
∑ℓ

𝑖=1 𝑐𝑖 · (𝐻𝑖 , 𝑋𝑖 )
where, for all 𝑖 ∈ [ℓ], 𝑐𝑖 ∈ Q \ {0}. The (𝐻𝑖 , 𝑋𝑖 ) are connected and pairwise non-isomorphic

conjunctive queries where each (𝐻𝑖 , 𝑋𝑖 ) is counting minimal and 𝑋𝑖 ≠ ∅.
It is well known [11, 16] that unions of conjunctive queries, existential positive queries, and

conjunctive queries with disequalities and negations over the free variables all have (unique)

expressions as quantum queries, that is, the number of answers to those more complex queries can

be computed by evaluation the respective quantum query according to the definition |Ans(𝑄,𝐺) | :=∑ℓ
𝑖=1 𝑐𝑖 · |Ans((𝐻𝑖 , 𝑋𝑖 ),𝐺) |. For this reason, understanding the WL-dimension of linear combination

of conjunctive queries allows us to also understand the WL-dimension of more complex queries.
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Defining the hereditary semantic extension width of a quantum query 𝑄 , denoted by hsew(𝑄), as
the maximum semantic extension width of its terms, we obtain the following.

Corollary 5. The WL-dimension of a quantum query 𝑄 is equal to hsew(𝑄).

As a final corollary of our main result we take a look at a concrete graph parameter, the WL-

dimension of which was not known so far: the parameter that maps each graph𝐺 to the number of

size-𝑘 dominating sets in𝐺 . Here, a dominating set of a graph𝐺 is a subset of vertices 𝐷 of𝐺 such

that each vertex of𝐺 is either contained in 𝐷 or is adjacent to a vertex in 𝐷 . With an easy argument,

we show that counting dominating sets of size 𝑘 can be expressed as a linear combination of the

𝑘-star queries (𝑆𝑘 , 𝑋𝑘 ). Using Theorem 1 and Corollary 5, we obtain the following corollary.

Corollary 6. For each positive integer 𝑘 , the WL-dimension of the graph parameter that maps each

graph 𝐺 to the number of size-𝑘 dominating sets in 𝐺 is equal to 𝑘 .

1.3 Discussion and Outlook
We stated and proved our result for the case of connected conjunctive queries with at least one free

variable over graphs. However, our result can easily be extended to the following.

(A) For disconnected queries, the WL-dimension will just be the maximum of the semantic

extension widths of the connected components.

(B) If no variable is free, then counting answers of a conjunctive query becomes equivalent to

deciding the existence of a homomorphism. The WL-dimension of the corresponding graph

parameter is equal to the treewidth of the query modulo homomorphic equivalence, which

for queries without free variables is the same as semantic extension width. This can be proved

along the lines of the analysis of Roberson [33].

(C) Barceló et al. [4], and Lanzinger and Barceló [25] have shown very recently that the WL-

algorithm (and the notions of WL-equivalence and WL-dimension) readily extend from

graphs to knowledge graphs, i.e., directed graphs with vertex labels and edge labels; parallel

edges with distinct labels are allowed, but self-loops are not allowed. It is not hard to see that

our analysis applies to knowledge graphs as well.

Since the technical content of this paper is already quite extensive, we decided to defer the formal

statement and proofs of (A)–(C) to a future journal version.

Finally, extending our results from graphs to relational structures is more tricky, since it is not

known yet whether and how WL-equivalence can be characterised via homomorphism indistin-

guishability from structures of higher arity.
1
However, recent works by Böker [6] and by Scheidt

and Schweikardt [34] provide first evidence that homomorphism counts from hypergraphs of

bounded generalised hypertreewidth might be the right answer. We leave this for future work.

1.4 Organisation of the Paper
We start by introducing further necessary notation and concepts in Section 2. Afterwards, we prove

the upper bound of the WL-dimension in Section 3; the proof of the lower bound is deferred to the

full version [22]. Finally, we prove Theorem 1, as well as its consequences, in Section 5.

2 PRELIMINARIES
Given a set 𝑆 , we write Bij(𝑆) for the set of all bijections from 𝑆 to itself. Given a function 𝑓 : 𝐴 → 𝐵

and a subset 𝑋 ⊆ 𝐴, we write 𝑓 |𝑋 : 𝑋 → 𝐵 for the restriction of 𝑓 on 𝑋 . We write 𝜋1 for the

1
A characterisation for the special case of constant arity 𝑟 ≥ 2 was recently established independently by Butti and

Dalmau [8], and by Dawar, Jakl, and Reggio [14].
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projection of a pair to its first component, that is, 𝜋1 (𝑎, 𝑏) = 𝑎. Given a positive integer ℓ we set

[ℓ] = {1, . . . , ℓ}.
All graphs in this paper are undirected and simple (without self-loops and without parallel edges).

Given a graph 𝐺 = (𝑉 , 𝐸), a vertex 𝑢 ∈ 𝑉 and a subset 𝑈 of 𝑉 , 𝑁 (𝑢) = {𝑣 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸} and
𝑁 (𝑈 ) = ∪𝑢∈𝑈𝑁 (𝑢). We say that a connected component𝐶 of a graph 𝐻 is adjacent to a vertex 𝑣 of

𝐻 if there is a vertex 𝑢 ∈ 𝐶 that is adjacent to 𝑣 . Given a subset 𝑆 of vertices of a graph𝐺 , we write

𝐺 [𝑆] for the graph induced by the vertices in 𝑆 .

A homomorphism from a graph 𝐻 to a graph 𝐺 is a function ℎ : 𝑉 (𝐻 ) → 𝑉 (𝐺) such that,

for all edges {𝑢, 𝑣} ∈ 𝐸 (𝐻 ), {ℎ(𝑢), ℎ(𝑣)} is an edge of 𝐺 . We write Hom(𝐻,𝐺) for the set of all
homomorphisms from 𝐻 to 𝐺 . An isomorphism from 𝐻 to 𝐺 is a bijection 𝑏 : 𝑉 (𝐻 ) → 𝑉 (𝐺) such
that, for all 𝑢, 𝑣 ∈ 𝑉 (𝐻 ), {𝑢, 𝑣} ∈ 𝐸 (𝐻 ) if and only if {ℎ(𝑢), ℎ(𝑣)} ∈ 𝐸 (𝐺). We say that 𝐻 and 𝐺

are isomorphic, denoted by 𝐻 � 𝐺 , if there is an isomorphism from 𝐻 to 𝐺 . An automorphism of a

graph 𝐻 is an isomorphism from 𝐻 to itself, and we write Aut(𝐻 ) for the set of all automorphisms

of 𝐻 .

2.1 ConjunctiveQueries
As stated in the introduction, we focus on conjunctive queries on graphs. This allows us to follow

the notation of [16].

Definition 7. A conjunctive query is a pair (𝐻,𝑋 ) where 𝐻 is the underlying graph and 𝑋 is the

set of free variables. When 𝐻 and 𝑋 are clear from context we will use 𝑌 to denote 𝑉 (𝐻 ) \ 𝑋 . We

say that a conjunctive query (𝐻,𝑋 ) is connected if 𝐻 is connected.

It is well known (see e.g. [10, 11, 16]) that the set of answers of a conjunctive query in a graph𝐺

is the set of assignments from the free variables to the vertices of 𝐺 that can be extended to a

homomorphism.

Definition 8. Let (𝐻,𝑋 ) be a conjunctive query and let𝐺 be a graph. The set of answers of (𝐻,𝑋 )
in 𝐺 is given by Ans((𝐻,𝑋 ),𝐺) = {𝑎 : 𝑋 → 𝑉 (𝐺) | ∃ℎ ∈ Hom(𝐻,𝐺) : ℎ |𝑋 = 𝑎}.

We say that two conjunctive queries (𝐻1, 𝑋1) and (𝐻2, 𝑋2) are isomorphic, denoted by (𝐻1, 𝑋1) �
(𝐻2, 𝑋2) if there is an isomorphism from 𝐻1 to 𝐻2 that maps 𝑋1 to 𝑋2.

Throughout this work, we will focus on counting minimal conjunctive queries.

Definition 9 (Counting Equivalence and Counting Minimality). We say that two conjunctive

queries (𝐻1, 𝑋1) and (𝐻2, 𝑋2) are counting equivalent, denoted by (𝐻1, 𝑋1) ∼ (𝐻2, 𝑋2), if for each
graph𝐺 , |Ans((𝐻1, 𝑋1),𝐺) | = |Ans((𝐻2, 𝑋2),𝐺) |. A conjunctive query is said to be countingminimal

if it it is minimal (with respect to taking subgraphs) in its counting equivalence class.

It is known that all counting minimal conjunctive queries within a counting equivalence class

are isomorphic [11, 16]. If a query has no existential variables so that 𝑋 = 𝑉 (𝐻 ) then counting

equivalence is the same as isomorphism. If all variables are quantified so that 𝑋 = ∅ then counting

equivalence is the same as homomorphic equivalence (also called semantic equivalence).

2.2 Treewidth and Extension Width
We start by introducing tree decompositions and treewidth.

Definition 10. Let 𝐻 be a graph. A tree decomposition of 𝐻 is a pair consisting of a tree 𝑇 and a

collection of sets, called bags, B = {𝐵𝑡 }𝑡 ∈𝑉 (𝑇 ) , such that the following conditions are satisfied:

(T1) For all 𝑣 ∈ 𝑉 (𝐻 ) there is a bag 𝐵𝑡 with 𝑣 ∈ 𝐵𝑡 .
(T2) For all 𝑣 ∈ 𝑉 (𝐻 ) the subgraph of𝑇 induced by the vertex set {𝑡 ∈ 𝑉 (𝑇 ) | 𝑣 ∈ 𝐵𝑡 } is connected.
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(T3) For all 𝑒 ∈ 𝐸 (𝐻 ), there is a bag 𝐵𝑡 with 𝑒 ⊆ 𝐵𝑡 .

The width of (𝑇,B) is max𝑡 ∈𝑉 (𝑇 ) |𝐵𝑡 | − 1 and a tree decomposition of minimum width is called

optimal. The treewidth of 𝐻 , denoted by tw(𝐻 ), is the width of an optimal tree decomposition of 𝐻 .

The treewidth of a conjunctive query (𝐻,𝑋 ), denoted by tw(𝐻,𝑋 ), is the treewidth of 𝐻 .

Next we introduce the extension width of a conjunctive query.

Definition 11 (Γ(𝐻,𝑋 ) and Extension Width). Let (𝐻,𝑋 ) be a conjunctive query. The exten-

sion Γ(𝐻,𝑋 ) of (𝐻,𝑋 ) is a graph with vertex set 𝑉 (𝐻 ) and edge set 𝐸 (𝐻 ) ∪ 𝐸′, where 𝐸′ is the
set of all {𝑢, 𝑣} such that 𝑢, 𝑣 ∈ 𝑋 , 𝑢 ≠ 𝑣 , and there is a connected component of 𝐻 [𝑌 ] which is

adjacent to both 𝑢 and 𝑣 in 𝐻 . The extension width of of a conjunctive query (𝐻,𝑋 ) is defined by

ew(𝐻,𝑋 ) := tw(Γ(𝑋,𝐻 )).

We will often restrict our analysis to counting minimal conjunctive queries. This requires us to

lift the notion of extension width as follows.

Definition 12 (Semantic Extension Width). The semantic extension width of a conjunctive query

(𝐻,𝑋 ), denoted by sew(𝐻,𝑋 ), is the extension width of a counting minimal conjunctive query

(𝐻 ′, 𝑋 ′) with (𝐻,𝑋 ) ∼ (𝐻 ′, 𝑋 ′).

Note that the semantic extension width is well-defined since all counting minimal (𝐻 ′, 𝑋 ′) with
(𝐻,𝑋 ) ∼ (𝐻 ′, 𝑋 ′) are isomorphic.

2.3 The ℓ-copy 𝐹ℓ (𝐻,𝑋 )
One of the most central operations on conjunctive queries invoked in this work is a cloning

operation on existentially quantified variables, defined as follows.

Definition 13 (𝐹ℓ (𝐻,𝑋 )). Let (𝐻,𝑋 ) be a conjunctive query and let ℓ be a positive integer. The

ℓ-copy 𝐹ℓ (𝐻,𝑋 ) is defined as follows. The vertex set of 𝐹ℓ (𝐻,𝑋 ) is 𝑋 ∪ (𝑌 × [ℓ]). Let 𝐸𝑋 = {{𝑢, 𝑣} ∈
𝐸 (𝐻 ) ∩ 𝑋 2}, 𝐸𝑋,𝑌 = {{𝑢, (𝑣, 𝑖)} | 𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌, 𝑖 ∈ [ℓ], {𝑢, 𝑣} ∈ 𝐸 (𝐻 )}, and 𝐸𝑌 = {{(𝑢, 𝑖), (𝑣, 𝑖)} |
{𝑢, 𝑣} ∈ 𝐸 (𝐻 ) ∩ 𝑌 2, 𝑖 ∈ [ℓ]}. The edge set of 𝐹ℓ (𝐻,𝑋 ) is 𝐸𝑋 ∪ 𝐸𝑋,𝑌 ∪ 𝐸𝑌 .

There is a natural homomorphism from 𝐹ℓ (𝐻,𝑋 ) to 𝐻 which we denote by 𝛾 [𝐻,𝑋, ℓ].

Definition 14. Let (𝐻,𝑋 ) be a conjunctive query and let ℓ be a positive integer. Define the map

𝛾 [𝐻,𝑋, ℓ] : 𝑉 (𝐹ℓ (𝐻,𝑋 )) → 𝑉 (𝐻 ) as follows. 𝛾 [𝐻,𝑋, ℓ] (𝑢) = 𝑢 if 𝑢 ∈ 𝑋 and 𝛾 [𝐻,𝑋, ℓ] (𝑢) = 𝜋1 (𝑢)
if 𝑢 ∈ 𝑌 × [ℓ]. We will just write 𝛾 = 𝛾 [𝐻,𝑋, ℓ] if (𝐻,𝑋 ) and ℓ are clear from the context.

Observation 15. The function 𝛾 is a homomorphism from 𝐹ℓ (𝐻,𝑋 ) to 𝐻 .

Next, we relate the treewidth of the graph 𝐹ℓ (𝐻,𝑋 ) to the extension width of (𝐻,𝑋 ).

Lemma 16. Let (𝐻,𝑋 ) be a conjunctive query and let ℓ be a positive integer. The treewidth of 𝐹ℓ (𝐻,𝑋 )
is at most ew(𝐻,𝑋 ).

Proof. Let Γ = Γ(𝐻,𝑋 ) and let 𝐶1, . . . ,𝐶𝑚 be the connected components of 𝐻 [𝑌 ]. For each
𝑖 ∈ [𝑚], let 𝛿𝑖 = 𝑁 (𝐶𝑖 ) ∩ 𝑋 and let 𝐶𝑖 = 𝐶𝑖 ∪ 𝛿𝑖 . Since 𝛿𝑖 is a clique in Γ, there is an optimal tree

decomposition (T𝑖 ,B𝑖 ) of Γ [𝐶𝑖 ] with 𝛿𝑖 as a bag. For 𝑗 ∈ [ℓ], let (T 𝑗

𝑖
,B 𝑗

𝑖
) be a copy of (T𝑖 ,B𝑖 )

where 𝐵
𝑗

𝑖
is the bag corresponding to 𝛿𝑖 .

Let (T𝑋 ,B𝑋 ) be an optimal tree decomposition of Γ [𝑋 ]. Choose (T𝑋 ,B𝑋 ) such that there is a

bag 𝐵𝑋,𝑖 corresponding to each 𝛿𝑖 .

Finally, construct a tree decomposition (T ,B) of 𝐹ℓ (𝐻,𝑋 ) by identifying 𝐵𝑋,𝑖 and 𝐵
𝑗

𝑖
for each

𝑖 ∈ [𝑚] and 𝑗 ∈ [ℓ]. This tree decomposition shows that tw(𝐹ℓ (𝐻,𝑋 )) ≤ tw(Γ). □

8



The WL-dimension of ConjunctiveQueries PODS ’24, June 10–13,2024, Santiago, Chile

The following lemma follows implicitly from [5]. For completeness, we included a proof in the

full version [22].

Lemma 17. Let (𝐻,𝑋 ) be a conjunctive query. There exists a positive integer ℓ such that ew(𝐻,𝑋 ) ≤
tw(𝐹ℓ (𝐻,𝑋 )).

In combination, Lemmas 16 and 17 provide an alternative characterisation of the extension width,

which we will be using for the remainder of the paper.

Corollary 18. Let (𝐻,𝑋 ) be a conjunctive query. Then ew(𝐻,𝑋 ) = max{tw(𝐹ℓ (𝐻,𝑋 )) | ℓ ∈ Z>0}.

Proof. The corollary follows immediately from Lemmas 16 and 17. □

2.4 Weisfeiler-Leman Equivalence, Invariance and Dimension
In order to make this work self-contained, we will use the characterisation of Weifeiler-Leman (from

now on just “WL”) equivalence via homomorphism indistinguishability due to Dvorák [18] and

Dell, Grohe and Rattan [15]. We recommend the survey of Arvind for a short but comprehensive

introduction to the classical definition using the WL-algorithm [2].

Definition 19 (WL-Equivalence). Let 𝑘 be a positive integer. Two graphs 𝐺 and 𝐺 ′
are 𝑘-WL-

equivalent, denoted by𝐺 �𝑘 𝐺
′
, if for every graph𝐻 of treewidth at most 𝑘 we have |Hom(𝐻,𝐺) | =

|Hom(𝐻,𝐺 ′) |.

Note that WL-equivalence is monotone in the sense that 𝐺 �𝑘 𝐺
′
implies that for every 𝑘 ′ ≤ 𝑘 ,

𝐺 �𝑘 ′ 𝐺 ′
. A graph parameter 𝑓 is called 𝑘-WL-invariant if, for every pair of graphs 𝐺,𝐺 ′

with

𝐺 �𝑘 𝐺
′
, 𝑓 (𝐺) = 𝑓 (𝐺 ′). Observe that, for 𝑘 ≥ 𝑘 ′, every 𝑘 ′ -WL-invariant graph parameter is also

𝑘-WL-invariant. Thus, following the definition of Arvind et al. [3], we define the WL-dimension of

a graph parameter 𝑓 as the minimum 𝑘 for which 𝑓 is 𝑘-WL-invariant, if such a 𝑘 exists, and ∞
otherwise.

Definition 20 (WL-dimension of conjunctive queries). Let (𝐻,𝑋 ) be a conjunctive query. The
WL-dimension of (𝐻,𝑋 ) is the WL-dimension of the function 𝐺 ↦→ |Ans((𝐻,𝑋 ),𝐺) |.

3 UPPER BOUND ON THEWL-DIMENSION
The goal of this section is to prove the following upper bound.

Theorem 21. Let (𝐻,𝑋 ) be a conjunctive query. Then the WL-dimension of (𝐻,𝑋 ) is at most

ew(𝐻,𝑋 ).

For the proof of Theorem 21 we will use the following interpolation argument.

Lemma 22. Let (𝐻,𝑋 ) be a conjunctive query. Let𝐺1 and𝐺2 be graphs. Suppose that, for all positive in-

tegers ℓ , |Hom(𝐹ℓ (𝐻,𝑋 ),𝐺1) | = |Hom(𝐹ℓ (𝐻,𝑋 ),𝐺2) |. Then |Ans((𝐻,𝑋 ),𝐺1) | = |Ans((𝐻,𝑋 ),𝐺2) |.

Proof. Let 𝐺 be a graph and let 𝜎 : 𝑋 → 𝑉 (𝐺). Define Ext(𝜎) = {𝜌 : 𝑌 → 𝑉 (𝐺) | 𝜎 ∪ 𝜌 ∈
Hom(𝐻,𝐺)}. Let Ω be the set of functions from 𝑌 to 𝑉 (𝐺) and consider any Υ ⊆ Ω. Define
𝐻𝐺 (Υ) = {ℎ ∈ Ans((𝐻,𝑋 ),𝐺) | Ext(ℎ) = Υ} and 𝐻̂𝐺

ℓ (Υ) = {ℎ ∈ Hom(𝐹ℓ (𝐻,𝑋 ),𝐺) | Ext(ℎ |𝑋 ) =
Υ}. First observe that for any Υ ⊆ Ω, |𝐻̂𝐺

ℓ (Υ) | = |𝐻𝐺 (Υ) | · |Υ |ℓ . Moreover, |Ans((𝐻,𝑋 ),𝐺) | =∑
∅≠Υ⊆Ω |𝐻𝐺 (Υ) |, and |Hom(𝐹ℓ (𝐻,𝑋 ),𝐺) | =

∑
∅≠Υ⊆Ω |𝐻̂𝐺

ℓ (Υ) |. Now let 𝐺1 and 𝐺2 be graphs with

|Hom(𝐹ℓ (𝐻,𝑋 ),𝐺1) | = |Hom(𝐹ℓ (𝐻,𝑋 ),𝐺2) | for all positive integers ℓ .
Let Ω1 be the set of functions from 𝑌 to𝑉 (𝐺1) and let Ω2 be the set of functions from 𝑌 to𝑉 (𝐺2).

Let 𝑛̂ = max{|Ω1 |, |Ω2 |}. For every positive integer ℓ ,
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|Hom(𝐹ℓ (𝐻,𝑋 ),𝐺1) | = |Hom(𝐹ℓ (𝐻,𝑋 ),𝐺2) |

⇔
∑︁

∅≠Υ⊆Ω1

|𝐻̂𝐺1

ℓ
(Υ) | −

∑︁
∅≠Υ⊆Ω2

|𝐻̂𝐺2

ℓ
(Υ) | = 0

⇔
∑︁

∅≠Υ⊆Ω1

|𝐻𝐺1 (Υ) | · |Υ|ℓ −
∑︁

∅≠Υ⊆Ω2 )
|𝐻𝐺2 (Υ) | · |Υ|ℓ = 0

⇔
𝑛̂∑︁
𝑖=1

𝑖ℓ ·
( ∑︁
Υ⊆Ω1

|Υ |=𝑖

|𝐻𝐺1 (Υ) | −
∑︁
Υ⊆Ω2

|Υ |=𝑖

|𝐻𝐺2 (Υ) |
)
= 0

Note that this yields a system of linear equations. For each positive integer ℓ , we have the equation∑𝑛̂
𝑖=1 𝑐𝑖 · 𝑖ℓ = 0 where

𝑐𝑖 =

( ∑︁
Υ⊆Ω1

|Υ |=𝑖

|𝐻𝐺1 (Υ) | −
∑︁
Υ⊆Ω2

|Υ |=𝑖

|𝐻𝐺2 (Υ) |
)
.

The matrix corresponding to this system of equations is a Vandermonde matrix, so it is invertible.

Thus 𝑐𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑛}. Therefore

|Ans((𝐻,𝑋 ),𝐺1) | =
∑︁

∅≠Υ⊆Ω1

|𝐻𝐺1 (Υ) | =
𝑛̂∑︁
𝑖=1

∑︁
Υ⊆Ω1

|Υ |=𝑖

|𝐻𝐺1 (Υ) |

=

𝑛̂∑︁
𝑖=1

∑︁
Υ⊆Ω2

|Υ |=𝑖

|𝐻𝐺2 (Υ) | =
∑︁

∅≠Υ⊆Ω2

|𝐻𝐺2 (Υ) |

= |Ans((𝐻,𝑋 ),𝐺2) |.

□

The proof of Lemma 22 immediately implies the following observation, Observation 23. Note

that the graphs 𝐹ℓ (𝐻,𝑋 ) that are referred to in Lemma 22 have treewidth at most ew(𝐻,𝑋 ) by
Lemma 16. In Observation 23 there are two possibilities. If we start with a query (𝐻,𝑋 ) that is
counting minimal, we can apply directly the proof of Lemma 22. Otherwise, we apply the proof of

Lemma 22 to a counting-equivalent counting-minimal query.

Observation 23. Let (𝐻,𝑋 ) be a conjunctive query of semantic extension width 𝑘 and let𝐺 be a graph.

There is a finite sequence of graphs 𝐹1, . . . , 𝐹𝑛 of treewidth at most 𝑘 , such that |Ans((𝐻,𝑋 ),𝐺) | can be
computed via Gaussian elimination from the homomorphism counts |Hom(𝐹ℓ ,𝐺) | for ℓ ∈ {1, . . . , 𝑛}.

Proof of Theorem 21. Let (𝐻,𝑋 ) be a conjunctive query. Let 𝑘 = ew(𝐻,𝑋 ). We wish to show

that the WL-dimension of (𝐻,𝑋 ) is at most 𝑘 which is equivalent to showing that the function

𝐺 ↦→ |Ans((𝐻,𝑋 ),𝐺) | is 𝑘-WL invariant. To do this, we show that, for any pair of graphs𝐺 and𝐺 ′

with 𝐺 �𝑘 𝐺
′
, |Ans((𝐻,𝑋 ),𝐺) | = |Ans((𝐻,𝑋 ),𝐺 ′) |.

Consider 𝐺 and 𝐺 ′
with 𝐺 �𝑘 𝐺 ′

. This implies that for every graph 𝐻 with treewidth at

most 𝑘 , |Hom(𝐻,𝐺) | = |Hom(𝐻,𝐺 ′) |. From the definition of ew(𝐻,𝑋 ) and Corollary 18, for

every positive integer ℓ , the treewidth of 𝐹ℓ (𝐻,𝑋 ) is at most 𝑘 . Therefore, |Hom(𝐹ℓ (𝐻,𝑋 ),𝐺) | =
|Hom(𝐹ℓ (𝐻,𝑋 ),𝐺 ′) |. The claim then follows directly by Lemma 22. □
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4 LOWER BOUND ON THEWL-DIMENSION
The lower bound for the WL-dimension is significantly more challenging; it reads as follows.

Theorem 24. Let (𝐻,𝑋 ) be a counting minimal conjunctive query such that 𝐻 is connected, and

∅ ⊊ 𝑋 ⊊ 𝑉 (𝐻 ). Then the WL-dimension of (𝐻,𝑋 ) is at least ew(𝐻,𝑋 ).

In order to prove Theorem 24, we will find so-called CFI graphs
2 𝐺 and 𝐺 ′

such that 𝐺 �𝑘−1 𝐺
′
,

where 𝑘 = ew(𝐻,𝑋 ), and |Ans((𝐻,𝑋 ),𝐺) | is different from |Ans((𝐻,𝑋 ),𝐺 ′) |. Due to the space

constraints and the extensive technical requirements necessary for our construction, we defer the

proof of Theorem 24 to the full version [22].

5 MAIN RESULT AND CONSEQUENCES
With upper and lower bounds established, we are now able to proof Theorem 1, which we restate

for convenience.

Theorem 1. Let (𝐻,𝑋 ) be a connected conjunctive query with 𝑋 ≠ ∅. Then the WL-dimension of

(𝐻,𝑋 ) is equal to its semantic extension width sew(𝐻,𝑋 ).

Proof. We first consider the special case where (𝐻,𝑋 ) is a full conjunctive query, that is, no
variable of (𝐻,𝑋 ) is existentially quantified so 𝑋 = 𝑉 (𝐻 ). In this case, (𝐻,𝑋 ) is counting minimal,

since counting equivalence is the same as isomorphism in this case [16]. Moreover, Γ(𝐻,𝑋 ) = 𝐻 .
Thus sew(𝐻,𝑋 ) = tw(𝐻 ). Since Ans((𝐻,𝑋 ),𝐺) = Hom(𝐻,𝐺) for 𝑋 = 𝑉 (𝐻 ), counting answers

to (𝐻,𝑋 ) is the same as counting homomorphisms from 𝐻 , and the WL-dimension of counting

homomorphisms is tw(𝐻 ) as shown by Neuen [31].

Now consider the case where 𝑋 ≠ 𝑉 (𝐻 ) and let (𝐻 ′, 𝑋 ′) be a counting minimal conjunctive

query with (𝐻 ′, 𝑋 ′) ∼ (𝐻,𝑋 ). Then, |Ans((𝐻,𝑋 ),𝐺) | = |Ans((𝐻 ′, 𝑋 ′),𝐺) | for every graph 𝐺 and

thus (𝐻,𝑋 ) and (𝐻 ′, 𝑋 ′) have the same WL-dimension. Furthermore, since (𝐻,𝑋 ) is connected, so
is (𝐻 ′, 𝑋 ′) — see [17, Section 6]. Theorems 21 and 24 now state that the WL-dimension of (𝐻 ′, 𝑋 ′)
is equal to ew(𝐻 ′, 𝑋 ′). Finally, by definition of semantic extension width, we have sew(𝐻,𝑋 ) =
ew(𝐻 ′, 𝑋 ′), concluding the proof. □

For the remainder of the paper, we will discuss the most important consequences of our main

result; due to the space constraints, the proofs of this section, except for the proof of Corollary 6

are deferred to the full version [22].

5.1 Homomorphism Indistinguishability and ConjunctiveQueries
Given a class of graphs F , two graphs𝐺 and𝐺 ′

are called F -indistinguishable, denoted by𝐺 �F 𝐺
′

if for all 𝐹 ∈ F we have |Hom(𝐹,𝐺) | = |Hom(𝐹,𝐺 ′) | . If F is the class of all graphs, then a classical

result of Lovász states that �F coincides with isomorphism (see e.g. Theorem 5.29 in [26]). Recent

years have seen numerous exciting results on the structure of F -indistinguishability, depending on

the classF : For example, Dvorák [18], andDell, Grohe and Rattan [15] have shown that �F coincides

with �𝑘 , i.e., with 𝑘-WL-equivalence, if F is the class of all graphs of treewidth at most 𝑘 , and

Mancinska and Roberson have shown that �F coincides with what is called quantum-isomorphism

if F is the class of all planar graphs [27].

To state our first corollary, we extend the notion of homomorphism indistinguishability to

conjunctive queries.

Definition 25. LetΨ be a class of conjunctive queries. Two graphs𝐺 and𝐺 ′
areΨ-indistinguishable,

denoted by 𝐺 �Ψ 𝐺
′
, if for all queries (𝐻,𝑋 ) ∈ Ψ we have |Ans((𝐻,𝑋 ),𝐺) | = |Ans((𝐻,𝑋 ),𝐺 ′) |.

2
Named after Cai, Fürer, and Immerman [9]
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Then, using the notion of conjunctive query indistinguishability, we obtain a new characterisation

of 𝑘-WL-equivalence.

Corollary 26 (Corollary 2, restated). Let 𝑘 be a positive integer and let Ψ𝑘 be the set of all connected

conjunctive queries with at least one free variable and with semantic extension width at most 𝑘 . Then

for any pair of graphs 𝐺 and 𝐺 ′
, 𝐺 �𝑘 𝐺

′
if and only if 𝐺 �Ψ𝑘 𝐺

′
.

In the following corollary, we show that the treewidth of a conjunctive query alone is insufficient

for describing the WL-dimension. This is even the case for treewidth 1, i.e., for acyclic queries.

Corollary 27. The class of acyclic conjunctive queries has unbounded WL-dimension, that is, there is

no 𝑘 such that 𝐺 �𝑘 𝐺
′
if and only if 𝐺 �T 𝐺 ′

, where T is the class of all acyclic conjunctive queries.

Corollary 27 is in stark contrast to the quantifier-free case. The WL-dimension of any acyclic

conjunctive query (𝐻,𝑉 (𝐻 )) is equal to 1 since this case is equivalent to counting homomorphisms

from acyclic graphs [15, 18]. Given Corollary 27 one might ask how powerful indistinguishability

by acyclic conjunctive queries is: Is there any 𝑘 > 1 such that T -indistinguishability is at least as

powerful as 𝑘-WL-equivalence? We provide a negative answer.

Observation 28. Let 2𝐾3 denote the graph consisting of two disjoint triangles and let 𝐶6 denote

the 6-cycle. Let (𝐻,𝑋 ) be a connected and acyclic conjunctive query. Then |Ans((𝐻,𝑋 ), 2𝐾3) | =
|Ans((𝐻,𝑋 ),𝐶6 |.

In other words, acyclic conjunctive queries cannot even distinguish 2𝐾3 and 𝐶6, which are the

most common examples of graphs which are 1-WL-equivalent, but which are not 2-WL-equivalent.

5.2 WL-Dimension and the Complexity of Counting
In this section, we give a connection between WL-dimension and the parameterised complexity of

counting answers to conjunctive queries. Recall that, given a class of conjunctive queries Ψ, the
counting problem #CQ(Ψ) takes as input a pair consisting of a conjunctive query (𝐻,𝑋 ) ∈ Ψ and a

graph 𝐺 and outputs |Ans((𝐻,𝑋 ),𝐺) |.
Recall that a class of conjunctive queries is said to have bounded WL-dimension if there is a

constant 𝐵 that upper bounds the WL-dimension of all queries in the class. We first restate the

classification of #CQ(Ψ).

Corollary 4. Let Ψ be a recursively enumerable class of counting minimal and connected conjunctive

queries with at least one free variable. The problem #CQ(Ψ) is solvable in polynomial time if and only

if the WL-dimension of Ψ is bounded; the “only if” is conditioned under the assumption FPT ≠𝑊 [1].

5.3 Linear Combinations of ConjunctiveQueries
The study of linear combinations of homomorphism counts dates back to the work of Lovász (see the

textbook [26]). Recently, staring with the work of Chen and Mengel [11] and of Curticapean, Dell

and Marx [13], the study of these linear combinations has re-arisen in the context of parameterised

counting complexity theory. Moreover, the works of Seppelt [35], Neuen [31], and Lanzinger and

Barceló [25] have shown that the WL-dimension of a function evaluating a finite linear combination

of homomorphism counts is equal to the maximum WL-dimension of any term in the combination.

Using Theorem 1, we establish a similar result (Corollary 5) for linear combinations of conjunctive

queries. This gives a precise quantification of the WL-dimension of unions of conjunctive queries

and of conjunctive queries with disequalities and negations over the free variables.

Following Lovász’s notion of a “quantum graph”[26, Chapter 6.1], we formalise our linear

combinations as follows.
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Definition 29 (Quantum Query). A quantum query 𝑄 is a formal finite linear combination of

conjunctive queries 𝑄 =
∑ℓ

𝑖=1 𝑐𝑖 · (𝐻𝑖 , 𝑋𝑖 ) such that, for all 𝑖 ∈ [ℓ], 𝑐𝑖 ∈ Q \ {0} and (𝐻𝑖 , 𝑋𝑖 ) is a
connected and counting minimal conjunctive query with 𝑋𝑖 ≠ 0. Moreover, the conjunctive queries

(𝐻𝑖 , 𝑋𝑖 ) are pairwise non-isomorphic. We call the queries (𝐻𝑖 , 𝑋𝑖 ) the constituents of𝑄 . The number

of answers of 𝑄 in a graph 𝐺 is defined as |Ans(𝑄,𝐺) | := ∑ℓ
𝑖=1 𝑐𝑖 · |Ans((𝐻𝑖 , 𝑋𝑖 ),𝐺) |.

Chen and Mengel [11], and Dell, Roth, and Wellnitz [16] have shown that for every union 𝜑 of

(connected) conjunctive queries with at least one free variable there is a quantum query 𝑄 [𝜑] such
that, for all graphs 𝐺 , the number of answers of 𝜑 in 𝐺 is equal to |Ans(𝑄 [𝜑],𝐺) |. Moreover, 𝑄 [𝜑]
is unique up to reordering terms (and up to isomorphim of the constituents). They have also shown

a similar result when 𝜑 is a conjunctive query with disequalities and negations.

Definition 30 (Hereditary Semantic Extension Width). The hereditary semantic extension width of

a quantum query 𝑄 =
∑ℓ

𝑖=1 𝑐𝑖 · (𝐻𝑖 , 𝑋𝑖 ) is hsew(𝑄) = max{sew(𝐻𝑖 , 𝑋𝑖 ) | 𝑖 ∈ [ℓ]}.

We define the WL-dimension of a quantum query 𝑄 as the WL-dimension of the graph para-

meter 𝐺 ↦→ |Ans(𝑄,𝐺) |. A classification of the WL-dimension of quantum queries was shown by

Seppelt [35] in the special case of homomorphisms, i.e., the case in which each constituent (𝐻𝑖 , 𝑋𝑖 )
satisfies𝑋𝑖 = 𝑉 (𝐻𝑖 ). We provide the full picture; our classification is restated below for convenience:

Corollary 5. The WL-dimension of a quantum query 𝑄 is equal to hsew(𝑄).

5.4 StarQueries and Dominating Sets
In this final section we use Theorem 1 to determine the WL-dimension of counting dominating

sets (proving Corollary 6).

Definition 31 (Dominating Set). Let 𝐺 be a graph and let 𝑘 be a positive integer. A dominating

set of 𝐺 is a subset 𝐷 ⊆ 𝑉 (𝐺) such that each vertex of 𝐺 is either contained in 𝐷 or adjacent to a

vertex in 𝐷 . The set Δ𝑘 (𝐺) contains all size-𝑘 dominating sets of 𝐺 .

For analysing the WL-dimension of counting size-𝑘 dominating sets we will consider, as an

intermediate step, the 𝑘-star-query.

Definition 32. Let 𝑘 be a positive integer. The 𝑘-star is the conjunctive query (𝑆𝑘 , 𝑋𝑘 ) where
𝑋𝑘 = {𝑥1, . . . , 𝑥𝑘 }, 𝑉 (𝑆𝑘 ) = 𝑋 ∪ {𝑦}, and 𝐸 (𝑆𝑘 ) = {{𝑥𝑖 , 𝑦} | 𝑖 ∈ [𝑘]}.

The 𝑘-star is often written in the more prominent form 𝜑 (𝑥1, . . . , 𝑥𝑘 ) = ∃𝑦 :

∧𝑘
𝑖=1 𝐸 (𝑥𝑖 , 𝑦). It is

well known that (𝑆𝑘 , 𝑋𝑘 ) is counting minimal (see e.g. [16]). Moreover, Γ(𝑆𝑘 , 𝑋𝑘 ) is the (𝑘+1)-clique,
which has treewidth 𝑘 . Thus sew(𝑆𝑘 , 𝑋𝑘 ) = 𝑘 . Corollary 33 follows immediately from Theorem 1.

Corollary 33. The WL-dimension of (𝑆𝑘 , 𝑋𝑘 ) is 𝑘 .

We can now provide the proof of Corollary 6, which we decided not to defer to the full version,

since it illustrates the combined power of the machinery developed in this paper.

Corollary 34 (Corollary 6, restated). The WL-dimension of the function 𝐺 ↦→ |Δ𝑘 (𝐺) | is 𝑘 .

Proof. We start with the lower bound. To this end, given a graph 𝐺 , and a conjunctive query

(𝐻,𝑋 ), we set
Inj((𝐻,𝑋 ),𝐺) = {𝑎 ∈ Ans((𝐻,𝑋 ),𝐺) | 𝑎 is injective}.

Let 𝐼 = {(𝑖, 𝑗) ∈ [𝑘]2 | 𝑖 < 𝑗} and consider a subset 𝐽 ⊆ 𝐼 . The query (𝑆𝑘 , 𝑋𝑘 )/𝐽 is obtained by

identifying 𝑥𝑖 and 𝑥 𝑗 if and only if (𝑖, 𝑗) ∈ 𝐽 . Observe that (𝑆𝑘 , 𝑋𝑘 )/𝐽 � (𝑆ℓ , 𝑋ℓ ) for some ℓ ≤ 𝑘 . By
the principle of inclusion and exclusion, for each graph 𝐺 ,
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|Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) | =
∑︁
𝐽 ⊆𝐼

(−1) | 𝐽 | · |Ans((𝑆𝑘 , 𝑋𝑘 )/𝐽 ,𝐺) |

=

𝑘∑︁
𝑖=1

𝑐𝑖 · |Ans((𝑆𝑖 , 𝑋𝑖 ),𝐺) |,

where 𝑐𝑖 = {𝐽 ⊆ 𝐼 | (𝑆𝑘 , 𝑋𝑘 )/𝐽 � (𝑆𝑖 , 𝑋𝑖 )}. Thus, |Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) | computes the number of

answers to the quantum query with constituents (𝑆𝑖 , 𝑋𝑖 ) and coefficients 𝑐𝑖 . Moreover, 𝑐𝑘 = 1 since

(𝑆𝑘 , 𝑋𝑘 )/𝐽 � (𝑆𝑘 , 𝑋𝑘 ) if and only if 𝐽 = ∅.3 By Corollary 5 and the fact that sew(𝑆ℓ , 𝑋ℓ ) = ℓ for all
ℓ ∈ [𝑘], the WL-dimension of the function 𝐺 ↦→ |Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) | is equal to 𝑘 .

Next observe that |Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) |/𝑘! is the number of 𝑘-vertex subsets 𝐴 of 𝐺 such that there

is a vertex 𝑦 ∈ 𝑉 (𝐺) that is adjacent to all 𝑎 ∈ 𝐴. Thus
( |𝑉 (𝐺 ) |

𝑘

)
− |Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) |/𝑘! is equal to

the size of the set

𝐷𝑘 (𝐺) := {𝐴 ⊆ 𝑉 (𝐺) | |𝐴| = 𝑘 ∧ ∀𝑦 ∈ 𝑉 (𝐺) : ∃𝑎 ∈ 𝐴 : {𝑎,𝑦} ∉ 𝐸 (𝐺)}.

Let 𝐺 be the self-loop-free complement of 𝐺 , that is, two distinct vertices 𝑢 and 𝑣 in 𝑉 (𝐺) = 𝑉 (𝐺)
are adjacent in𝐺 if and only if they are not adjacent in𝐺 . Observe that {𝑎,𝑦} ∉ 𝐸 (𝐺) if and only if

𝑎 = 𝑦 or {𝑎,𝑦} ∈ 𝐸 (𝐺). Therefore |𝐷𝑘 (𝐺) | = |Δ𝑘 (𝐺) |.
We are now ready to prove that the WL-dimension of the function 𝐺 ↦→ |Δ𝑘 (𝐺) | is at least

𝑘 . Suppose for contradiction that its WL-dimension is 𝑘 ′ for some 1 ≤ 𝑘 ′ < 𝑘 . Then, for all 𝐺

and 𝐺 ′
with 𝐺 �𝑘 ′ 𝐺 ′

, |Δ𝑘 (𝐺) | = |Δ𝑘 (𝐺 ′) |. However, we know that the WL-dimension of 𝐺 ↦→
|Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) | is equal to 𝑘 . Thus there are graphs 𝐹 and 𝐹 ′ with 𝐹 �𝑘 ′ 𝐹 ′ and |Inj((𝑆𝑘 , 𝑋𝑘 ), 𝐹 ) | ≠
|Inj((𝑆𝑘 , 𝑋𝑘 ), 𝐹 ′) |. It is well known (see e.g. Seppelt [35]) that 𝐹 �𝑘 ′ 𝐹 ′ implies 𝐹 �𝑘 ′ 𝐹 ′. Therefore
|Δ𝑘 (𝐹 ) | = |Δ𝑘 (𝐹 ′) |. Let 𝐾1 be the (treewidth 0) graph containing one isolated vertex. The number

of homomomorphisms from 𝐾1 to 𝐹 determines the number of vertices of 𝐹 so 𝐹 �𝑘 ′ 𝐹 ′ implies

|𝑉 (𝐹 ) | = |𝑉 (𝐹 ′) |. Let 𝑛 = |𝑉 (𝐹 ) | = |𝑉 (𝐹 ′) |. In summary,

|Inj((𝑆𝑘 , 𝑋𝑘 ), 𝐹 ) | = 𝑘!
((
𝑛

𝑘

)
− |Δ𝑘 (𝐹 ) |

)
= 𝑘!

((
𝑛

𝑘

)
− |Δ𝑘 (𝐹 ′) |

)
= |Inj((𝑆𝑘 , 𝑋𝑘 ), 𝐹 ′) |,

which contradicts the choice of 𝐹 and 𝐹 ′ and concludes the proof of the lower bound.

For the upper bound, we have to show that 𝐹 �𝑘 𝐹 ′ implies Δ𝑘 (𝐹 ) = Δ𝑘 (𝐹 ′), which is an

immediate consequence of our previous analysis. Since theWL-dimension of𝐺 ↦→ |Inj((𝑆𝑘 , 𝑋𝑘 ),𝐺) |
is equal to 𝑘 , we have

|Δ𝑘 (𝐹 ) | =
(
𝑛

𝑘

)
− |Inj((𝑆𝑘 , 𝑋𝑘 ), 𝐹 ) |/𝑘!

=

(
𝑛

𝑘

)
− |Inj((𝑆𝑘 , 𝑋𝑘 ), 𝐹 ′) |/𝑘! = |Δ𝑘 (𝐹 ′) |.

This concludes the proof. □

3
To obtain a quantum query, we need to remove all terms (𝑆𝑖 , 𝑋𝑖 ) with 𝑐𝑖 = 0. In fact, following the analysis in [13], it can

be shown that none of the 𝑐𝑖 is 0. However, since we only need 𝑐𝑘 ≠ 0, we omit going into further details.
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